51
|
Gomes FV, Grace AA. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophr Bull 2017; 43:592-600. [PMID: 28003467 PMCID: PMC5464092 DOI: 10.1093/schbul/sbw156] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress during adolescence is a risk factor for schizophrenia, and medial prefrontal cortex (mPFC) dysfunction is proposed to interfere with stress control, increasing the susceptibility to stress. We evaluated the impact of different stressful events during adolescence (restraint stress [RS], footshock [FS], or the combination of FS and RS) on behaviors correlated with schizophrenia in rats as adults. At adulthood, animals were tested for anxiety responses (elevated plus-maze), cognitive function (novel-object recognition test) and dopamine (DA) system responsivity (locomotor response to amphetamine and DA neuron activity in the ventral tegmental area (VTA) using in vivo electrophysiology). All adolescent stressors impaired weight gain and induced anxiety-like responses in adults. FS and FS + RS also disrupted cognitive function. Interestingly, only the combination of FS and RS induced a DA hyper-responsivity as indicated by augmented locomotor response to amphetamine and increased number of spontaneously active DA neurons which was confined to the lateral VTA. Additionally, prelimbic (pl) mPFC lesions triggered a DA hyper-responsivity in animals exposed to FS alone during adolescence. Our results are consistent with previous studies showing long-lasting changes induced by stressful events during adolescence. The impact on DA system activity, however, seems to depend on intense multiple stressors. Our data also suggest that plPFC dysfunction increases the vulnerability to stress in terms of changes in the DA system. Hence, stress during adolescence could be a precipitating factor for the transition to schizophrenia, and stress control at this vulnerable period may circumvent these changes to prevent the emergence of psychosis.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
52
|
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659:41-54. [DOI: 10.1016/j.brainres.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
53
|
Belujon P. Structural Integrity in the Sustained Antidepressant Effect of Ketamine. Int J Neuropsychopharmacol 2017; 20:359-361. [PMID: 28165131 PMCID: PMC5409126 DOI: 10.1093/ijnp/pyw117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pauline Belujon
- INSERM, U1084, F-86022 Poitiers, France; Université de Poitiers, U1084, F-86022 Poitiers, France
| |
Collapse
|
54
|
Gilabert-Juan J, Bueno-Fernandez C, Castillo-Gomez E, Nacher J. Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress. Brain Behav 2017; 7:e00534. [PMID: 28239515 PMCID: PMC5318357 DOI: 10.1002/brb3.534] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. METHODS In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days of mild restrain stress. The analyses were performed in GIN mice, a strain that displays EGFP-labeled interneurons. RESULTS We observed a significant decrease in the dendritic arborization of interneurons in the CA1 region, which did not occur in those in CA3. We found neither changes in dendritic spine density in these regions nor alterations in the number of EGFP-positive interneurons. Nevertheless, the expression of glutamic acid decarboxylase 67 was reduced in different layers of CA1 and CA3 regions of the hippocampus. No significant changes were found in the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or synaptophysin. CONCLUSIONS Chronic stress reduces the interneuronal dendritic arborization in CA1 region of the hippocampus but not in CA3.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- Neurobiology Unit Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED) Universitat de València Burjassot Spain; Genetics Department Universitat de València Burjassot Spain; CIBERSAM: Spanish National Network for Research in Mental Health Burjassot Spain; Fundación Investigación Hospital Clínico de Valencia INCLIVA Burjassot Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED) Universitat de València Burjassot Spain
| | - Esther Castillo-Gomez
- Neurobiology Unit Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED) Universitat de València Burjassot Spain
| | - Juan Nacher
- Neurobiology Unit Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED) Universitat de València Burjassot Spain; CIBERSAM: Spanish National Network for Research in Mental Health Burjassot Spain; Fundación Investigación Hospital Clínico de Valencia INCLIVA Burjassot Spain
| |
Collapse
|
55
|
Ladrón de Guevara-Miranda D, Millón C, Rosell-Valle C, Pérez-Fernández M, Missiroli M, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Martínez-Losa M, Álvarez-Dolado M, Santín LJ, Castilla-Ortega E. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech 2017; 10:323-336. [PMID: 28138095 PMCID: PMC5374316 DOI: 10.1242/dmm.026682] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.
Collapse
Affiliation(s)
- David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Carmelo Millón
- Departamento de Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Cristina Rosell-Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Mercedes Pérez-Fernández
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Michele Missiroli
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Magdalena Martínez-Losa
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Manuel Álvarez-Dolado
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
56
|
Gomes FV, Rincón-Cortés M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neurosci Biobehav Rev 2016; 70:260-270. [PMID: 27235082 PMCID: PMC5074867 DOI: 10.1016/j.neubiorev.2016.05.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 11/30/2022]
Abstract
Adolescence is a time of extensive neuroanatomical, functional and chemical reorganization of the brain, which parallels substantial maturational changes in behavior and cognition. Environmental factors that impinge on the timing of these developmental factors, including stress and drug exposure, increase the risk for psychiatric disorders. Indeed, antecedents to affective and psychotic disorders, which have clinical and pathophysiological overlap, are commonly associated with risk factors during adolescence that predispose to these disorders. In the context of schizophrenia, psychosis typically begins in late adolescence/early adulthood, which has been replicated by animal models. Rats exposed during gestational day (GD) 17 to the mitotoxin methylazoxymethanol acetate (MAM) exhibit behavioral, pharmacological, and anatomical characteristics consistent with an animal model of schizophrenia. Here we provide an overview of adolescent changes within the dopamine system and the PFC and review recent findings regarding the effects of stress and cannabis exposure during the peripubertal period as risk factors for the emergence of schizophrenia-like deficits. Finally, we discuss peripubertal interventions appearing to circumvent the emergence of adult schizophrenia-like deficits.
Collapse
Affiliation(s)
- Felipe V Gomes
- Departments of Neuroscience, Psychiatry and Psychology, United States
| | | | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, United States.
| |
Collapse
|
57
|
Tao C, Yan W, Li Y, Lu X. Effect of antidepressants on spatial memory deficit induced by dizocilpine. Psychiatry Res 2016; 244:266-72. [PMID: 27512913 DOI: 10.1016/j.psychres.2016.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/02/2016] [Accepted: 03/22/2016] [Indexed: 12/24/2022]
Abstract
Cognitive deficits are a core symptom of schizophrenia. It is controversial whether antidepressants could improve cognitive symptoms in schizophrenia patients. The present study was designed to identify the therapeutic effect of antidepressants on cognitive deficits in schizophrenia. In the present study, adolescent rats were repeatedly exposed to dizocilpine, which can induce cognitive deficits associated with schizophrenia. Then these rats were treated by six antidepressants (fluvoxamine, sertraline, paroxetine, escitalopram, venlafaxine, mirtazapine) or vehicle. The rats in the control group were exposed to vehicle during the study. Lastly, all rats' spatial memory (a major part of cognition) was assessed using the Morris water maze (MWM) test, and the density of hippocampal parvalbumin (PV) interneurons was evaluated to explore possible mechanisms underlying spatial memory change in schizophrenia. The results of the present study supported the hypothesis of a therapeutic effect of fluvoxamine and escitalopram on spatial memory deficit induced by dizocilpine. Additionally, the data of the present study suggested that fluvoxamine and escitalopram remitted hippocampal PV interneuron reduction induced by dizocilpine. The neuroprotective effect of fluvoxamine and escitalopram may partly explain the therapeutic effect of antidepressants on spatial memory deficit in schizophrenia patients.
Collapse
Affiliation(s)
- Chenjuan Tao
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China
| | - Weiwei Yan
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Hangzhou 310015, PR China
| | - Yuan Li
- Department of Otolaryngology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China.
| | - Xiaodong Lu
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China
| |
Collapse
|
58
|
Csabai D, Seress L, Varga Z, Ábrahám H, Miseta A, Wiborg O, Czéh B. Electron Microscopic Analysis of Hippocampal Axo-Somatic Synapses in a Chronic Stress Model for Depression. Hippocampus 2016; 27:17-27. [PMID: 27571571 PMCID: PMC5215622 DOI: 10.1002/hipo.22650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin‐positive (PV+) neurons in response to stress, while the density of cholecystokinin‐immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive‐like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive‐like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - László Seress
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary.,Department of Medical Biology, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
59
|
Amygdala Hyperactivity in MAM Model of Schizophrenia is Normalized by Peripubertal Diazepam Administration. Neuropsychopharmacology 2016; 41:2455-62. [PMID: 27000940 PMCID: PMC4987842 DOI: 10.1038/npp.2016.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
Abstract
In addition to prefrontal cortex (PFC) and hippocampus, amygdala may have a role in the pathophysiology of schizophrenia, given its pivotal role in emotion and extensive connectivity with the PFC and hippocampus. Moreover, abnormal activities of amygdala may be related to the anxiety observed in schizophrenia patients and at-risk adolescents. These at-risk subjects demonstrated heightened levels of anxiety, which are correlated with the onset of psychosis later in life. Similarly, rats that received methyl azoxymethanol acetate (MAM) gestationally exhibited higher levels of anxiety peripubertally. In the current study, the heightened anxiety was also observed in adult MAM animals, as well as higher firing rates of BLA neurons in both peripubertal and adult MAM rats. In addition, the power of BLA theta oscillations of adult MAM rats showed a larger increase in response to conditioned stimuli (CS). We showed previously that administration of the antianxiety drug diazepam during the peripubertal period prevents the hyperdopaminergic state in adult MAM rats. In this study, we found that peripubertal diazepam treatment reduced heightened anxiety, decreased BLA neuron firing rates and attenuated the CS-induced increase in BLA theta power in adult MAM rats, supporting a persistent normalization by this treatment. This study provides a link between BLA hyperactivity and anxiety in schizophrenia model rats and that circumvention of stress may prevent the emergence of pathology in the adult.
Collapse
|
60
|
Jamal I, Kumar V, Vatsa N, Singh BK, Shekhar S, Sharma A, Jana NR. Environmental Enrichment Improves Behavioral Abnormalities in a Mouse Model of Angelman Syndrome. Mol Neurobiol 2016; 54:5319-5326. [PMID: 27581300 DOI: 10.1007/s12035-016-0080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder largely caused by the loss of function of maternally inherited UBE3A. UBE3A-maternal deficient mice (AS mice) exhibit many typical features of AS including cognitive and motor deficits but the underlying mechanism of these behavioral abnormalities is poorly understood. Here, we demonstrate that rearing of AS mice in the enriched environment for prolonged period significantly improved their cognitive and motor dysfunction. Enriched environment also restored elevated serum corticosterone level and reduced anxiety-like behaviors in these mice. Biochemical analysis further revealed restoration of altered levels of brain-derived neurotrophic factor, glucocorticoid receptor, and phoshphorylated calcium/calmodulin-dependent protein kinase IIα in the hippocampus of AS mice maintained in the enriched environment. Enriched environment also significantly increased the number of parvalbumin-positive GABAergic interneuron in the hippocampus and basolateral amygdala of AS mice. These results indicate potential beneficial effect of enriched environment in the reversal of AS phenotype.
Collapse
Affiliation(s)
- Imran Jamal
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Shashi Shekhar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India.
| |
Collapse
|
61
|
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016; 13:207. [PMID: 27566665 PMCID: PMC5002118 DOI: 10.1186/s12974-016-0686-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. Methods Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. Results Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. Conclusions Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Francesca Gargano
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Anna Schubart
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|
62
|
Varga Z, Csabai D, Miseta A, Wiborg O, Czéh B. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. Behav Brain Res 2016; 316:104-114. [PMID: 27555539 DOI: 10.1016/j.bbr.2016.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Abstract
Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals.
Collapse
Affiliation(s)
- Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.
| |
Collapse
|
63
|
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17:524-32. [PMID: 27256556 PMCID: PMC5166560 DOI: 10.1038/nrn.2016.57] [Citation(s) in RCA: 745] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dopamine system is unique among the brain's modulatory systems in that it has discrete projections to specific brain regions involved in motor behaviour, cognition and emotion. Dopamine neurons exhibit several activity patterns - including tonic and phasic firing - that are determined by a combination of endogenous pacemaker conductances and regulation by multiple afferent systems. Emerging evidence suggests that disruptions in these regulatory systems may underlie the pathophysiology of several psychiatric disorders, including schizophrenia and depression.
Collapse
Affiliation(s)
- Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
64
|
Effects of neonatal stress on gamma oscillations in hippocampus. Sci Rep 2016; 6:29007. [PMID: 27363787 PMCID: PMC4929501 DOI: 10.1038/srep29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic early life stress increases adult risk for depression, bipolar disorder and schizophrenia, illnesses characterized by aberrant functions of cognition and memory. We asked whether chronic early life stress disrupts maturation of gamma oscillations, on which these functions depend. Lifelong impairment of the stress response results from separation of rat pups from the dam for three hours per day during a critical period of hippocampal development (PNDs 2–14). Parvalbumin-expressing interneurons, including the basket cell network which is fundamental to gamma oscillations, are reduced in number in post mortem studies of bipolar disorder and schizophrenia, and in chronically-stressed adult rats. To determine effects of chronic early life stress on gamma oscillations, we separated pups from dams once each day on PNDs 2–14 and recorded in vitro at PNDs 15–21. In control pups, separated for 15 minutes per day, gamma power had highly significant correlations with both age (p = 0.0022) and weight (p = 0.0024); gamma in pups separated for 180 minutes per day was not correlated with either factor. ANCOVA indicated significant differences between the groups in both measures. These findings indicate that chronic early life stress can disrupt maturation of the gamma oscillation network.
Collapse
|
65
|
Zaletel I, Filipović D, Puškaš N. Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far? Rev Neurosci 2016; 27:397-409. [DOI: 10.1515/revneuro-2015-0042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/02/2023]
Abstract
AbstractThe hippocampus is a brain structure involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and stress response. It plays an important role in the formation of declarative, spatial and contextual memory, as well as in the processing of emotional information. As a part of the limbic system, it is a very susceptible structure towards the effects of various stressors. The molecular mechanisms of structural and functional alternations that occur in the hippocampus under chronic stress imply an increased level of circulating glucocorticoids (GCs), which is an HPA axis response to stress. Certain data show that changes induced by chronic stress may be independent from the GCs levels, opening the possibility of existence of other poorly explored mechanisms and pathways through which stressors act. The hippocampal GABAergic parvalbumin-positive (PV+) interneurons represent an especially vulnerable population of neurons in chronic stress, which may be of key importance in the development of mood disorders. However, cellular and molecular hippocampal changes that arise as a consequence of chronic stress still represent a large and unexplored area. This review discusses the current knowledge about the PV+ interneurons of the hippocampus and the influence of chronic stress on this intriguing population of neurons.
Collapse
Affiliation(s)
- Ivan Zaletel
- 1Institute of Histology and Embryology “Aleksandar Đ. Kostić”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | | |
Collapse
|
66
|
Mintzopoulos D, Gillis TE, Robertson HR, Dalia T, Feng G, Rauch SL, Kaufman MJ. Striatal magnetic resonance spectroscopy abnormalities in young adult SAPAP3 knockout mice. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:39-48. [PMID: 26858992 PMCID: PMC4742338 DOI: 10.1016/j.bpsc.2015.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a debilitating condition with lifetime prevalence of 1-3%. OCD typically arises in youth but delays in diagnosis impede optimal treatment and developmental studies of the disorder. Research using genetically modified rodents may provide models of etiology that enable earlier detection and intervention. The SAPAP3 knockout (KO) transgenic mouse was developed as an animal model of OCD and related disorders (OCRD). KO mice exhibit compulsive self-grooming behavior analogous to behaviors found in people with OCRD. Striatal hyperactivity has been reported in these mice and in humans with OCD. METHODS Striatal and medial frontal cortex 9.4 Tesla proton spectra were acquired from young adult SAPAP3 KO and wild-type control mice to determine whether KO mice have metabolic and neurochemical abnormalities. RESULTS Young adult KO mice had lower striatal lactate (P=0.006) and glutathione (P=0.039) levels. Among all mice, striatal lactate and glutathione levels were associated (R=0.73, P=0.007). We found no group differences in medial frontal cortex metabolites. At the age range studied, only 1 of 8 KO mice had skin lesions indicative of severe compulsive grooming. CONCLUSION Young adult SAPAP3 KO mice have striatal but not medial frontal cortex MRS abnormalities that may reflect striatal hypermetabolism accompanied by oxidative stress. These abnormalities typically preceded the onset of severe compulsive grooming. Our findings are consistent with striatal hypermetabolism in OCD. Together, these results suggest that striatal MRS measures of lactate or glutathione might be useful biomarkers for early detection of risk for developing compulsive behavior disorders.
Collapse
|
67
|
Corvino V, Di Maria V, Marchese E, Lattanzi W, Biamonte F, Michetti F, Geloso MC. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Front Cell Neurosci 2015; 9:433. [PMID: 26594149 PMCID: PMC4633568 DOI: 10.3389/fncel.2015.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.
Collapse
Affiliation(s)
- Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
68
|
Nieto-Gonzalez JL, Holm MM, Vardya I, Christensen T, Wiborg O, Jensen K. Presynaptic plasticity as a hallmark of rat stress susceptibility and antidepressant response. PLoS One 2015; 10:e0119993. [PMID: 25742132 PMCID: PMC4350919 DOI: 10.1371/journal.pone.0119993] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/31/2015] [Indexed: 12/28/2022] Open
Abstract
Two main questions are important for understanding and treating affective disorders: why are certain individuals susceptible or resilient to stress, and what are the features of treatment response and resistance? To address these questions, we used a chronic mild stress (CMS) rat model of depression. When exposed to stress, a fraction of rats develops anhedonic-like behavior, a core symptom of major depression, while another subgroup of rats is resilient to CMS. Furthermore, the anhedonic-like state is reversed in about half the animals in response to chronic escitalopram treatment (responders), while the remaining animals are resistant (non-responder animals). Electrophysiology in hippocampal brain slices was used to identify a synaptic hallmark characterizing these groups of animals. Presynaptic properties were investigated at GABAergic synapses onto single dentate gyrus granule cells. Stress-susceptible rats displayed a reduced probability of GABA release judged by an altered paired-pulse ratio of evoked inhibitory postsynaptic currents (IPSCs) (1.48 ± 0.25) compared with control (0.81 ± 0.05) and stress-resilient rats (0.78 ± 0.03). Spontaneous IPSCs (sIPSCs) occurred less frequently in stress-susceptible rats compared with control and resilient rats. Finally, a subset of stress-susceptible rats responding to selective serotonin reuptake inhibitor (SSRI) treatment showed a normalization of the paired-pulse ratio (0.73 ± 0.06) whereas non-responder rats showed no normalization (1.2 ± 0.2). No changes in the number of parvalbumin-positive interneurons were observed. Thus, we provide evidence for a distinct GABAergic synaptopathy which associates closely with stress-susceptibility and treatment-resistance in an animal model of depression.
Collapse
Affiliation(s)
- Jose Luis Nieto-Gonzalez
- Synaptic Physiology Laboratory, Department of Biomedicine, Building 1160, Aarhus University, DK-8000, Aarhus C, Denmark
- * E-mail:
| | - Mai Marie Holm
- Synaptic Physiology Laboratory, Department of Biomedicine, Building 1160, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Irina Vardya
- Synaptic Physiology Laboratory, Department of Biomedicine, Building 1160, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Trine Christensen
- Translational Neuropsychiatry Unit, Aarhus University Hospital, DK-8240, Risskov, Denmark
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Aarhus University Hospital, DK-8240, Risskov, Denmark
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Biomedicine, Building 1160, Aarhus University, DK-8000, Aarhus C, Denmark
- Translational Neuropsychiatry Unit, Aarhus University Hospital, DK-8240, Risskov, Denmark
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
69
|
Czéh B, Varga ZKK, Henningsen K, Kovács GL, Miseta A, Wiborg O. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 2014; 25:393-405. [PMID: 25331166 DOI: 10.1002/hipo.22382] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 11/05/2022]
Abstract
Major depressive disorder is a common and complex mental disorder with unknown etiology. GABAergic dysfunction is likely to contribute to the pathophysiology since disrupted GABAergic systems are well documented in depressed patients. Here we studied structural changes in the hippocampal GABAergic network using the chronic mild stress (CMS) model, as one of the best validated animal models for depression. Rats were subjected to 9 weeks of daily stress and behaviorally characterized using the sucrose consumption test into anhedonic and resilient animals based on their response to stress. Different subtypes of GABAergic interneurons were visualized by immunohistochemistry using antibodies for parvalbumin (PV), calretinin (CR), calbindin (CB), cholecystokinin (CCK), somatostatin (SOM), and neuropeptide Y (NPY). We used an unbiased quantification method to systematically count labeled cells in different subareas of the dorsal and ventral hippocampus. Chronic stress reduced the number of specific interneurons in distinct hippocampal subregions significantly. PV+ and CR+ neurons were reduced in all dorsal subareas, whereas in the ventral part only the CA1 was affected. Stress had the most pronounced effect on the NPY+ and SOM+ cells and reduced their number in almost all dorsal and ventral subareas. Stress had no effect on the CCK+ and CB+ interneurons. In most cases the effect of stress was irrespective to the behavioral phenotype. However, in a few specific areas the number of SOM+, NPY+, and CR+ neurons were significantly reduced in anhedonic animals compared to the resilient group. Overall, these data clearly demonstrate that chronic stress affects the structural integrity of specific GABAergic neuronal subpopulations and this should also affect the functioning of these hippocampal GABAergic networks.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Institute of Laboratory Medicine, Faculty of Medicine, University of Pécs, 7624, Pécs, Hungary; Structural Neurobiology Research Group, Szentágothai János Research Center, University of Pécs, 7624, Pécs, Hungary; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark
| | | | | | | | | | | |
Collapse
|
70
|
Godavarthi SK, Sharma A, Jana NR. Reversal of reduced parvalbumin neurons in hippocampus and amygdala of Angelman syndrome model mice by chronic treatment of fluoxetine. J Neurochem 2014; 130:444-54. [DOI: 10.1111/jnc.12726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Swetha K. Godavarthi
- Cellular and Molecular Neuroscience Laboratory; National Brain Research Centre; Manesar Gurgaon India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory; National Brain Research Centre; Manesar Gurgaon India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory; National Brain Research Centre; Manesar Gurgaon India
| |
Collapse
|
71
|
Zlatković J, Todorović N, Tomanović N, Bošković M, Djordjević S, Lazarević-Pašti T, Bernardi RE, Djurdjević A, Filipović D. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. Eur J Pharm Sci 2014; 59:20-30. [PMID: 24768740 DOI: 10.1016/j.ejps.2014.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/28/2014] [Accepted: 04/13/2014] [Indexed: 12/16/2022]
Abstract
Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups resulted in liver injury. These data suggest that clozapine appears to have a higher potential to induce liver toxicity than fluoxetine.
Collapse
Affiliation(s)
- Jelena Zlatković
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Nada Tomanović
- Institute of Pathology, School of Medicine, University of Belgrade, Serbia
| | - Maja Bošković
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | | | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Rick E Bernardi
- Central Institute of Mental Health, Institute of Psychopharmacology, Mannheim, Germany
| | | | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia.
| |
Collapse
|
72
|
Read J, Fosse R, Moskowitz A, Perry B. The traumagenic neurodevelopmental model of psychosis revisited. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/npy.13.89] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Czéh B, Abrahám H, Tahtakran S, Houser CR, Seress L. Number and regional distribution of GAD65 mRNA-expressing interneurons in the rat hippocampal formation. ACTA BIOLOGICA HUNGARICA 2013; 64:395-413. [PMID: 24275587 DOI: 10.1556/abiol.64.2013.4.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodent models for neuropsychiatric disorders reduced number of hippocampal interneurons have been reported, but the total number of GABAergic neurons in the normal rat hippocampus is yet unknown. We used in situ hybridization method to label the 65 isoform of glutamic acid decarboxylase (GAD65) and counted the number of GAD65 mRNA-expressing neurons along the entire septo-temporal axis of the hippocampus. We found that 2/3 of the interneurons were in Ammon's horn (61,590) and 1/3 in the dentate gyrus (28,000). We observed the following numbers in Ammon's horn: CA3 area 33,400, CA2 area 4,190, CA1 area 24,000 and in the dentate gyrus: 6,000 in the molecular and 9,000 in the granule cell layers and 13,000 in the hilus. GAD65 mRNA-expressing neurons were significantly more numerous in dorsal than in ventral hippocampus. The ratio between interneurons and principal cells was lowest in the granule cell layer (0.9%) and highest in hilus (21%). In Ammon's horn this ratio was constant being 13% in CA3 and 8% in CA1-2 areas. In the entire hippocampal formation, the interneuron/principal cell ratio was 6%, with a significant difference between Ammon's horn (9.5%) and the dentate gyrus (2.8%) including the hilus. Such low ratios could suggest that even a limited loss of GABAergic neurons in the hippocampus may have a considerable functional impact.
Collapse
Affiliation(s)
- B Czéh
- University of Pécs Department of Laboratory Medicine, Faculty of Medicine H-7624 Pécs Hungary Aarhus University Hospital Centre for Psychiatric Research 8240 Risskov Denmark University of Pécs Szentágothai János Research Center, Neuroendocrinology Research Group H-7624 Pécs Hungary
| | | | | | | | | |
Collapse
|
74
|
Lussier AL, Lebedeva K, Fenton EY, Guskjolen A, Caruncho HJ, Kalynchuk LE. The progressive development of depression-like behavior in corticosterone-treated rats is paralleled by slowed granule cell maturation and decreased reelin expression in the adult dentate gyrus. Neuropharmacology 2013; 71:174-83. [DOI: 10.1016/j.neuropharm.2013.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023]
|
75
|
Tsiarli MA, Monaghan AP, DeFranco DB. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Res 2013; 1523:10-27. [PMID: 23751362 PMCID: PMC3749785 DOI: 10.1016/j.brainres.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/16/2013] [Accepted: 06/01/2013] [Indexed: 01/12/2023]
Abstract
Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation.
Collapse
Affiliation(s)
- Maria A. Tsiarli
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - A. Paula Monaghan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donald B. DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
76
|
Milner TA, Burstein SR, Marrone GF, Khalid S, Gonzalez AD, Williams TJ, Schierberl KC, Torres-Reveron A, Gonzales KL, McEwen BS, Waters EM. Stress differentially alters mu opioid receptor density and trafficking in parvalbumin-containing interneurons in the female and male rat hippocampus. Synapse 2013; 67:757-72. [PMID: 23720407 DOI: 10.1002/syn.21683] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
Stress differentially affects hippocampal-dependent learning relevant to addiction and morphology in male and female rats. Mu opioid receptors (MORs), which are located in parvalbumin (PARV)-containing GABAergic interneurons and are trafficked in response to changes in the hormonal environment, play a critical role in promoting principal cell excitability and long-term potentiation. Here, we compared the effects of acute and chronic immobilization stress (AIS and CIS) on MOR trafficking in PARV-containing neurons in the hilus of the dentate gyrus in female and male rats using dual label immunoelectron microscopy. Following AIS, the density of MOR silver-intensified gold particles (SIGs) in the cytoplasm of PARV-labeled dendrites was significantly reduced in females (estrus stage). Conversely, AIS significantly increased the proportion of cytoplasmic MOR SIGs in PARV-labeled dendrites in male rats. CIS significantly reduced the number of PARV-labeled neurons in the dentate hilus of males but not females. However, MOR/PARV-labeled dendrites and terminals were significantly smaller in CIS females, but not males, compared with controls. Following CIS, the density of cytoplasmic MOR SIGs increased in PARV-labeled dendrites and terminals in females. Moreover, the proportion of near-plasmalemmal MOR SIGs relative to total decreased in large PARV-labeled dendrites in females. After CIS, no changes in the density or trafficking of MOR SIGs were seen in PARV-labeled dendrites or terminals in males. These data show that AIS and CIS differentially affect available MOR pools in PARV-containing interneurons in female and male rats. Furthermore, they suggest that CIS could affect principal cell excitability in a manner that maintains learning processes in females but not males.
Collapse
Affiliation(s)
- Teresa A Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, New York, 10065; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, New York, 10065
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Jiang Z, Rompala GR, Zhang S, Cowell RM, Nakazawa K. Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biol Psychiatry 2013; 73:1024-34. [PMID: 23348010 PMCID: PMC3638045 DOI: 10.1016/j.biopsych.2012.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Our previous studies indicated that N-methyl-D-aspartate receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear. METHODS With γ-aminobutyric acid-ergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-Cre/fGluN1 knockout [KO] mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice. RESULTS The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at 8 weeks although increased at 16 weeks old. Postweaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress after PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation. CONCLUSIONS These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, might contribute to exacerbation of schizophrenia-like behavioral phenotypes.
Collapse
Affiliation(s)
- Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Gregory R. Rompala
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Shuqin Zhang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Rita M. Cowell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
78
|
Burstein SR, Williams TJ, Lane DA, Knudsen MG, Pickel VM, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus. Brain Res 2013; 1518:71-81. [PMID: 23583481 DOI: 10.1016/j.brainres.2013.03.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/31/2013] [Indexed: 12/20/2022]
Abstract
In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females.
Collapse
Affiliation(s)
- Suzanne R Burstein
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience 2013; 236:47-54. [DOI: 10.1016/j.neuroscience.2013.01.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
|
80
|
Anneken JH, Cunningham JI, Collins SA, Yamamoto BK, Gudelsky GA. MDMA increases glutamate release and reduces parvalbumin-positive GABAergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase. J Neuroimmune Pharmacol 2013; 8:58-65. [PMID: 23179355 PMCID: PMC3587367 DOI: 10.1007/s11481-012-9420-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; Ecstasy) is a popular drug of abuse with well-documented acute effects on serotonergic, dopaminergic, and cholinergic transmitter systems, as well as evidence of long-term disruption of serotoninergic systems in the rat brain. Recently, it was demonstrated that MDMA evokes a delayed and sustained increase in glutamate release in the hippocampus. The purpose of the present study was to determine the role of inflammatory mediators in the MDMA-induced increase in glutamate release, as well as the contribution of inflammatory pathways in the persistent neurochemical toxicity associated with repeated MDMA treatment. Treatment with the non-selective cyclooxygenase (COX) inhibitor ketoprofen and the COX-2 selective inhibitor nimesulide attenuated the increase in extracellular glutamate in the hippocampus evoked by repeated MDMA exposure (10 mg/kg, i.p., every 2 h); no attenuation was observed in rats treated with the COX-1 selective inhibitor piroxicam. Reverse dialysis of a major product of COX activity, prostaglandin E2, also resulted in a significant increase in extracellular glutamate in the hippocampus . Repeated exposure to MDMA diminished the number of parvalbumin-positive GABA interneurons in the dentate gyrus of the hippocampus, an effect that was attenuated by ketoprofen treatment. However, COX inhibition with ketoprofen did not prevent the long-term depletion of 5-HT in the hippocampus evoked by MDMA treatment. These data are supportive of the view that cyclooxygenase activity contributes to the mechanism underlying both the increased release of glutamate and decreased number of GABA interneurons in the rat hippocampus produced by repeated MDMA exposure.
Collapse
Affiliation(s)
- John H. Anneken
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Jacobi I. Cunningham
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Stuart A. Collins
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Bryan K. Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Gary A. Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
81
|
Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. Brain Struct Funct 2012. [PMID: 23179864 DOI: 10.1007/s00429-012-0479-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic stress in experimental animals induces dendritic atrophy and decreases spine density in principal neurons of the medial prefrontal cortex (mPFC). This structural plasticity may play a neuroprotective role and underlie stress-induced behavioral changes. Different evidences indicate that the prefrontocortical GABA system is also altered by stress and in major depression patients. In the amygdala, chronic stress induces dendritic remodeling both in principal neurons and in interneurons. However, it is not known whether similar structural changes occur in mPFC interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these changes, because it is known to influence the dendritic organization of adult cortical interneurons. We have analyzed the dendritic arborization and spine density of mPFC interneurons in adult mice after 21 days of restraint stress and have found dendritic hypertrophy in a subpopulation of interneurons identified mainly as Martinotti cells. This aversive experience also decreases the number of glutamate decarboxylase enzyme, 67 kDa isoform (GAD67) expressing somata, without affecting different parameters related to apoptosis, but does not alter the number of interneurons expressing PSA-NCAM. Quantitative retrotranscription-polymerase chain reaction (qRT-PCR) analysis of genes related to general and inhibitory neurotransmission and of PSA synthesizing enzymes reveals increases in the expression of NCAM, synaptophysin and GABA(A)α1. Together these results show that mPFC inhibitory networks are affected by chronic stress and suggest that structural plasticity may be an important feature of stress-related psychiatric disorders where this cortical region, specially their GABAergic system, is altered.
Collapse
|
82
|
Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience 2012; 239:214-27. [PMID: 22922121 DOI: 10.1016/j.neuroscience.2012.08.034] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypothesis that stress-related learning deficits resulted from suppressed hippocampal neurogenesis. However, recent evidence suggests that BDNF also plays a rapid and essential role in regulating synaptic plasticity, providing another mechanism through which BDNF can modulate learning and memory after a stressful event. Numerous reports have shown BDNF levels are highly dynamic in response to stress, and not only vary across brain regions but also fluctuate rapidly, both immediately after a stressor and over the course of a chronic stress paradigm. Yet, BDNF alone is not sufficient to effect many of the changes observed after stress. Glucocorticoids and other molecules have been shown to act in conjunction with BDNF to facilitate both the morphological and molecular changes that occur, particularly changes in spine density and gene expression. This review briefly summarizes the evidence supporting BDNF's role as a trophic factor modulating neuronal survival, and will primarily focus on the interactions between BDNF and other systems within the brain to facilitate synaptic plasticity. This growing body of evidence suggests a more nuanced role for BDNF in stress-related learning and memory, where it acts primarily as a facilitator of plasticity and is dependent upon the coactivation of glucocorticoids and other factors as the determinants of the final cellular response.
Collapse
|
83
|
Guidotti G, Calabrese F, Auletta F, Olivier J, Racagni G, Homberg J, Riva MA. Developmental influence of the serotonin transporter on the expression of npas4 and GABAergic markers: modulation by antidepressant treatment. Neuropsychopharmacology 2012; 37:746-58. [PMID: 22012473 PMCID: PMC3260971 DOI: 10.1038/npp.2011.252] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alterations of the serotonergic system are involved in the pathophysiology of mood disorders and represent an important target for its pharmacological treatment. Genetic deletion of the serotonin transporter (SERT) in rodents leads to an anxious and depressive phenotype, and is associated with reduced neuronal plasticity as indicated by decreased brain-derived neurotrophic factor (Bdnf) expression levels. One of the transcription factors regulating Bdnf is the neuronal PAS domain protein 4 (Npas4), which regulates activity-dependent genes and neuroprotection, and has a critical role in the development of GABA synapses. On the basis of these premises, we investigated the expression of Npas4 and GABAergic markers in the hippocampus and prefrontal cortex of homozygous (SERT(-/-)) and heterozygous (SERT(+/-)) knockout rats, and analyzed the effect of long-term duloxetine treatment on the expression of these targets. We found that Npas4 expression was reduced in both the brain structures of adult SERT(+/-) and SERT(-/-) animals. This effect was already present in adolescent SERT(-/-), and could be mimicked by prenatal exposure to the antidepressant fluoxetine. Moreover, SERT(-/-) rats showed a strong impairment of the GABAergic system, as indicated by the reduction of several markers, including the vesicular transporter (Vgat), glutamic acid decarboxylase-67 (Gad67), the receptor subunit GABA A receptor, gamma 2 (GABA(A)-γ2), and calcium-binding proteins that label subgroups of the GABAergic neurons. Interestingly, chronic treatment with the antidepressant duloxetine was able to restore the physiological levels of Npas4 and GABAergic markers in SERT(-/-) rats, although some differences in the modulation of GABAergic genes exist between hippocampus and prefrontal cortex. Our results demonstrate that SERT knockout rats, an animal model of mood disorders, have reduced Npas4 expression that correlates with decreased expression of Bdnf exon I and IV. These changes lead to an impairment of the GABAergic system that may contribute to the anxious and depressive phenotype associated with inherited SERT downregulation.
Collapse
Affiliation(s)
- Gianluigi Guidotti
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Francesca Auletta
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Jocelien Olivier
- Department of Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Giorgio Racagni
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Judith Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marco A Riva
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy,Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy, Tel: +39 02 50318334, Fax: +39 02 50318278, E-mail:
| |
Collapse
|
84
|
Grip L, Lonne-Rahm SB, Holst M, Johansson B, Nordlind K, Theodorsson E, El-Nour H. Substance P alterations in skin and brain of chronically stressed atopic-like mice. J Eur Acad Dermatol Venereol 2012; 27:199-205. [PMID: 22251186 DOI: 10.1111/j.1468-3083.2011.04443.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stress is known to worsen the symptoms of atopic eczema (AE). Substance P is likely to play an important role in the development and pathogenesis of AE. OBJECTIVE To examine a possible connection between chronic mild stress and changes in the expression of substance P and its receptor (R) neurokinin (NK) 1 in the skin and stress-related brain regions in NC/Nga atopic-like mice. METHODS The mice were divided into three groups (eight animals per group): SE (stressed eczematous), NSE (non-stressed eczematous) and SC (stressed control). Ears and brains of the mice were investigated using immunohistochemistry and RT-PCR. RESULTS In the skin, there was a decrease in the number of substance P immunoreactive nerve fibres in SE compared with SC group. RT-PCR showed a strong tendency to an increase in mRNA for NK1R in the skin of SE compared with NSE mice. There was an increase in the number of mast cells and the degree of their degranulation in the SE compared with both other groups. A decrease in substance P immunoreactivity in medial hippocampus was found in SE compared with NSE animals. In prefrontal cortex and central amygdala, there were no significant differences in substance P immunoreactivity between the three groups. CONCLUSION Exposure to chronic mild stress in NC/Nga atopic-like mice may result in altered expression patterns of substance P in the skin and hippocampus.
Collapse
Affiliation(s)
- L Grip
- Department of Medicine, Dermatology and Venereology Unit, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
85
|
Godavarthi SK, Dey P, Maheshwari M, Jana NR. Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 2012; 21:1824-34. [PMID: 22215440 DOI: 10.1093/hmg/ddr614] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused due to deletions or loss-of-function mutations in maternally inherited UBE3A. Ube3a functions as an ubiquitin ligase as well as a transcriptional coactivator of steroid hormone receptors. However, the mechanisms by which maternal Ube3a deficiency gives rise to phenotypic features of AS are not clear. We report here that Ube3a regulates glucocorticoid receptor (GR) transactivation and GR signaling pathway is disrupted in Ube3a-maternal-deficient mice brain. The expression of several GR-dependent genes is down-regulated in multiple brain regions of Ube3a-maternal-deficient mice. AS mice show significantly higher level of blood corticosterone, selective loss of GR and reduced number of parvalbumin-positive inhibitory interneurons in their hippocampus that could ultimately lead to increased stress. These mice also exhibit increased anxiety-like behavior, which could be due to chronic stress. Altogether, our findings suggest that chronic stress due to altered GR signaling might lead to anxiety-like behavior in a mouse of model of AS.
Collapse
Affiliation(s)
- Swetha K Godavarthi
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | | | | | | |
Collapse
|
86
|
Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 2011; 23:730-7. [PMID: 21996102 DOI: 10.1016/j.ceb.2011.09.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 02/07/2023]
Abstract
Depression is associated with structural alterations in limbic brain regions that control emotion and mood. Studies of chronic stress in animal models and postmortem tissue from depressed subjects demonstrate that these structural alterations result from atrophy and loss of neurons and glial cells. These findings indicate that depression and stress-related mood disorders can be considered mild neurodegenerative disorders. Importantly, there is evidence that these structural alterations can be blocked or even reversed by elimination of stress and by antidepressant treatments. A major focus of current investigations is to characterize the molecular signaling pathways and factors that underlie these effects of stress, depression, and antidepressant treatment. Recent advances in this research area are discussed and potential novel targets for antidepressant development are highlighted.
Collapse
Affiliation(s)
- Mounira Banasr
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06508, United States
| | | | | |
Collapse
|
87
|
Masiulis I, Yun S, Eisch AJ. The interesting interplay between interneurons and adult hippocampal neurogenesis. Mol Neurobiol 2011; 44:287-302. [PMID: 21956642 DOI: 10.1007/s12035-011-8207-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irene Masiulis
- UT Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | |
Collapse
|
88
|
Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21:422-33. [PMID: 20087886 DOI: 10.1002/hipo.20758] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In major depression, one line of research indicates that a dysfunctional GABAergic inhibitory system is linked to the appearance of depressive symptoms. However, as the mechanistic details of such GABAergic deficit are largely unknown, we undertook a functional investigation of the GABAergic system in the rat chronic mild stress model of depression. Adult rats were exposed to an eight-week long stress protocol leading to anhedonic-like behavior. In hippocampal brain slices, phasic, and tonic GABA(A) receptor-mediated currents in dentate gyrus granule cells were examined using patch-clamp recordings. In granule cells, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was reduced to 41% in anhedonic-like rats, which was associated with a reduced probability of evoked GABA release. Using immunohistochemical analysis, there was no change in the number of parvalbumin-positive interneurons in the dentate gyrus. Notably, we observed a 60% increase in THIP-activated tonic GABA(A) mediated current in anhedonic-like rats, suggesting an upregulation of extrasynaptic GABA(A) receptors. Finally, five weeks treatment with the antidepressant escitalopram partially reversed the sIPSCs frequency. In summary, we have revealed a hippocampal dysfunction in the GABAergic system in the chronic mild stress model of depression in rats, caused by a reduction in action potential-dependent GABA release. Since the function of the GABAergic system was improved by antidepressant treatment, in parallel with behavioral read outs, it suggests a role of the GABAergic system in the pathophysiology of depression.
Collapse
Affiliation(s)
- Mai Marie Holm
- Department of Physiology and Biophysics, Synaptic Physiology Laboratory, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
89
|
Nowak B, Zadrożna M, Ossowska G, Sowa-Kućma M, Gruca P, Papp M, Dybała M, Pilc A, Nowak G. Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment. Pharmacol Rep 2011; 62:1204-10. [PMID: 21273679 DOI: 10.1016/s1734-1140(10)70383-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/12/2010] [Indexed: 12/27/2022]
Abstract
In this study, the neuropathological changes induced by chronic unpredictable stress (CUS) and chronic mild stress (CMS) in calbindin D-28K (CB) and parvalbumin (PV) immunoreactive neurons in the rat hippocampus were demonstrated. We used immunohistochemical techniques to quantify the numerical density and morphological changes of PV immunoreactive and CB immunoreactive neurons in the dentate gyrus (DG) and the CA1 and CA3 regions of the hippocampus. We also assessed cell proliferation (Ki-67) and apoptotic processes (active caspase-3) in the DG. We found a significant decrease (16.6% for CUS and 13.3% for CMS) in the numerical density of granule cells (GC), alterations in the CB immunoreactive cells of the GC in the DG and an impairment of mossy fiber CB immunolabelling in the CA3. These changes were not accompanied by a decrease in Ki-67 labeling or the level of caspase-3 in the DG. These data indicate a stress-induced reduction of calcium binding neuron parameters, which may be related to the behavioral paradigms exhibited in these models.
Collapse
Affiliation(s)
- Barbara Nowak
- Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Méndez P, Bacci A. Assortment of GABAergic plasticity in the cortical interneuron melting pot. Neural Plast 2011; 2011:976856. [PMID: 21785736 PMCID: PMC3139185 DOI: 10.1155/2011/976856] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/01/2011] [Indexed: 12/30/2022] Open
Abstract
Cortical structures of the adult mammalian brain are characterized by a spectacular diversity of inhibitory interneurons, which use GABA as neurotransmitter. GABAergic neurotransmission is fundamental for integrating and filtering incoming information and dictating postsynaptic neuronal spike timing, therefore providing a tight temporal code used by each neuron, or ensemble of neurons, to perform sophisticated computational operations. However, the heterogeneity of cortical GABAergic cells is associated to equally diverse properties governing intrinsic excitability as well as strength, dynamic range, spatial extent, anatomical localization, and molecular components of inhibitory synaptic connections that they form with pyramidal neurons. Recent studies showed that similarly to their excitatory (glutamatergic) counterparts, also inhibitory synapses can undergo activity-dependent changes in their strength. Here, some aspects related to plasticity and modulation of adult cortical and hippocampal GABAergic synaptic transmission will be reviewed, aiming at providing a fresh perspective towards the elucidation of the role played by specific cellular elements of cortical microcircuits during both physiological and pathological operations.
Collapse
Affiliation(s)
- Pablo Méndez
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alberto Bacci
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
91
|
McHugh PC, Rogers GR, Glubb DM, Joyce PR, Kennedy MA. Proteomic analysis of rat hippocampus exposed to the antidepressant paroxetine. J Psychopharmacol 2010; 24:1243-51. [PMID: 19346281 DOI: 10.1177/0269881109102786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antidepressant drugs can exert significant effects on the mood of a patient suffering major depression and other disorders. These drugs generally have pharmacological actions on the uptake or metabolism of the neurotransmitters serotonin, noradrenaline and, to a lesser extent, dopamine. However, there are many aspects of antidepressant action we do not understand. We have applied proteomic analysis in a rat hippocampal model in an attempt to identify relevant molecules that operate in pathways functionally relevant to antidepressant action. Rats were administered either 5 mg/kg daily of the antidepressant paroxetine or vehicle for 12 days, then hippocampal protein was recovered and resolved by 2-D gel electrophoresis. After antidepressant exposure, we observed increased expression or modification of cytochrome c oxidase, subunit Va, cyclin-dependent kinase inhibitor 2A interacting protein, dynein, axonemal, heavy polypeptide 3 and RHO GDP-dissociation inhibitor alpha. Decreased expression or modification was observed for complexin 1 (CPLX1), alpha-synuclein, parvalbumin, ribosomal protein large P2, prohibitin, nerve growth factor, beta subunit (NGFB), peroxiredoxin 6 (PRDX6), 1-acylglycerol-3-phosphate O-acyltransferase 2_predicted, cystatin B (CYTB) and lysosomal membrane glycoprotein 1. CPLX1, the most strongly regulated protein observed, mediates the fusion of cellular transport vesicles with their target membranes and has been implicated in the pathophysiology of mood disorders, as well as antidepressant action. CPLX1 and the other proteins identified may represent links into molecular processes of importance to mood dysregulation and control, and their respective genes may represent novel candidates for studies of antidepressant pharmacogenetics.
Collapse
Affiliation(s)
- P C McHugh
- Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
92
|
Hu W, Zhang M, Czéh B, Flügge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 2010; 35:1693-707. [PMID: 20357756 PMCID: PMC3055473 DOI: 10.1038/npp.2010.31] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stress facilitates the development of psychiatric disorders in vulnerable individuals. It affects physiological functions of hippocampal excitatory neurons, but little is known about the impact of stress on the GABAergic network. Here, we studied the effects of stress and a synthetic glucocorticoid on hippocampal GABAergic neurotransmission and network function focusing on two perisomatic interneurons, the parvalbumin (PV)- and the cholecystokinin (CCK)-positive neurons. In acute hippocampal slices of rat, application of the potent glucocorticoid receptor (GR) agonist dexamethasone (DEX) caused a rapid increase in spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. This effect was mediated by a nongenomic GR that evoked nitric oxide (NO) release from pyramidal neurons. Retrograde NO signaling caused the augmentation of GABA release from the interneurons and increased CCK release, which in turn further enhanced the activity of the PV-positive cells. Interestingly, chronic restraint stress also resulted in increased sIPSCs in CA1 pyramidal neurons that were Ca(2+)-dependent and an additional DEX application elicited no further effect. Concomitantly, chronic stress reduced the number of PV-immunoreactive cells and impaired rhythmic sIPSCs originating from the PV-positive neurons. In contrast, the CCK-positive neurons remained unaffected. We therefore propose that, in addition to the immediate effect, the sustained activation of nongenomic GRs during chronic stress injures the PV neuron network and results in an imbalance in perisomatic inhibition mediated by the PV and CCK interneurons. This stress-induced dysfunctional inhibitory network may in turn impair rhythmic oscillations and thus lead to cognitive deficits that are common in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Wen Hu
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Mingyue Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriele Flügge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. Tel: +49-551-3851133, Fax: +49-551-3851307, E-mail:
| | - Weiqi Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany, Tel: +49-251-8356610, Fax: +49-251-8357128, E-mail:
| |
Collapse
|
93
|
Sargin D, Hassouna I, Sperling S, Sirén AL, Ehrenreich H. Uncoupling of neurodegeneration and gliosis in a murine model of juvenile cortical lesion. Glia 2009; 57:693-702. [DOI: 10.1002/glia.20797] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
94
|
Reduced Expression of GABA Transporter GAT3 in Helpless Rats, an Animal Model of Depression. Neurochem Res 2009; 34:1584-93. [DOI: 10.1007/s11064-009-9947-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 03/04/2009] [Indexed: 11/26/2022]
|
95
|
Michael-Titus AT, Albert M, Michael GJ, Michaelis T, Watanabe T, Frahm J, Pudovkina O, van der Hart MG, Hesselink MB, Fuchs E, Czéh B. SONU20176289, a compound combining partial dopamine D2 receptor agonism with specific serotonin reuptake inhibitor activity, affects neuroplasticity in an animal model for depression. Eur J Pharmacol 2008; 598:43-50. [DOI: 10.1016/j.ejphar.2008.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 08/23/2008] [Accepted: 09/04/2008] [Indexed: 01/11/2023]
|
96
|
Kozicz T, Bordewin LAP, Czéh B, Fuchs E, Roubos EW. Chronic psychosocial stress affects corticotropin-releasing factor in the paraventricular nucleus and central extended amygdala as well as urocortin 1 in the non-preganglionic Edinger-Westphal nucleus of the tree shrew. Psychoneuroendocrinology 2008; 33:741-54. [PMID: 18394812 DOI: 10.1016/j.psyneuen.2008.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 11/19/2022]
Abstract
Stressful stimuli evoke neuronal and neuroendocrine responses helping an organism to adapt to changed environmental conditions. Chronic stressors may induce maladaptive responses leading to psychiatric diseases, such as anxiety and major depression. A suitable animal model to unravel mechanisms involved in the control of adaptation to chronic stress is the psychological subordination stress in the male tree shrew. Subordinate male tree shrews exhibit chronic hypothalamo-pituitary-adrenal (HPA) activation as reflected in continuously elevated cortisol secretion, and structural changes in the hippocampal formation. Corticotropin-releasing factor (CRF) is the major peptide released upon activation of the HPA axis in response to stress. Recent evidence suggests that besides CRF, urocortin 1 (Ucn1) also plays a role in stress adaptation. We have tested the significance of CRF and Ucn1 in adaptation to chronic psychosocial stress in male tree shrews exposed for 35 days to daily psychosocial conflict, by performing semi-quantitative immunocytochemistry for CRF in the parvocellular hypothalamic paraventricular nucleus (pPVN), extended amygdala, viz. central extended amygdala (CeA) and dorsolateral nucleus of the bed nucleus of the stria terminalis (BNSTdl) as well as that for Ucn1 in the non-preganglionic Edinger-Westphal nucleus (npEW). Compared to unstressed animals, psychosocial stress resulted in an immediate and sustained activation of the HPA axis and sympathetic tone as well as reduced testosterone concentration and decreased body and testis weights vs. non-stressed tree shrews. In the pPVN, the number of CRF-immunoreactive neurons and the specific signal density of CRF-immunoreactive fiber terminals in the CeA were strongly reduced (-300 and -40%, respectively; P<0.05), whereas no significant difference in CRF fiber density was found in BNSTdl. The npEW revealed 4 times less Ucn1-immunoreactive neurons (P<0.05). These clear effects on both Ucn1- and CRF-neuropeptide contents may reflect a crucial mechanism enabling the animal to adapt successfully to the stressors, and point to the significance of the pPVN, CeA and npEW in stress-induced brain diseases.
Collapse
Affiliation(s)
- T Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, IWWR, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, 6525 ED Nijmegen, Toernooiveld 1, The Netherlands.
| | | | | | | | | |
Collapse
|
97
|
Desarnaud F, Jakovcevski M, Morellini F, Schachner M. Stress downregulates hippocampal expression of the adhesion molecules NCAM and CHL1 in mice by mechanisms independent of DNA methylation of their promoters. Cell Adh Migr 2008; 2:38-44. [PMID: 19262122 DOI: 10.4161/cam.2.1.6013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stress is an important physiological regulator of brain function in young and adult mammals. The mechanisms underlying regulation of the consequences of stress, and in particular severe chronic stress, are thus important to investigate. These consequences most likely involve changes in synaptic function of brain areas being part of neural networks that regulate responses to stress. Cell adhesion molecules have been shown to regulate synaptic function in the adult and we were thus interested to investigate a regulatory mechanism that could influence expression of three adhesion molecules of the immunoglobulin superfamily (NCAM, L1 and CHL1) after exposure of early postnatal and adult mice to repeated stress. We hypothesized that reduction of adhesion molecule expression after chronic stress, as observed previously in vivo, could be due to gene silencing of the three molecules by DNA methylation. Although adhesion molecule expression was reduced after exposure of C57BL/6 mice to stress, thus validating our stress paradigm as imposing changes in adhesion molecule expression, we did not observe differences in methylation of CpG islands in the promoter regions of NCAM, L1 and CHL1, nor in the promoter region of the glucocorticoid receptor in the hippocampus, the expression of which at the protein level was also reduced after stress. We must therefore infer that severe stress in mice of the C57BL/6 strain downregulates adhesion molecule levels by mechanisms that do not relate to DNA methylation.
Collapse
Affiliation(s)
- Frank Desarnaud
- Department of Cell Biology and Neuroscience, WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
98
|
Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW. Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learn Mem 2007; 88:249-59. [PMID: 17587610 PMCID: PMC2173881 DOI: 10.1016/j.nlm.2007.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/12/2007] [Accepted: 05/02/2007] [Indexed: 01/08/2023]
Abstract
New neurons are continually produced in the adult mammalian brain from progenitor cells located in specific brain regions, including the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. We hypothesized that neurogenesis occurs in the canine brain and is reduced with age. We examined neurogenesis in the hippocampus of five young and five aged animals using doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining. The total unilateral number of new neurons in the canine SGZ and granule cell layer (GCL) was estimated using stereological techniques based upon unbiased principles of systematic uniformly random sampling. Animals received 25mg/kg of BrdU once a day for 5 days and were euthanized 9 days after the last injection. We found evidence of neurogenesis in the canine brain and that cell genesis and neurogenesis are greatly reduced in the SGZ/GCL of aged animals compared to young. We further tested the hypothesis that an antioxidant fortified food or behavioral enrichment would improve neurogenesis in the aged canine brain and neurogenesis may correlate with cognitive function. Aged animals were treated for 2.8 years and tissue was available for six that received the antioxidant food, five that received the enrichment and six receiving both treatments. There were no significant differences in the absolute number of DCX or DCX-BrdU neurons or BrdU nuclei between the treatment groups compared to control animals. The number of DCX-positive neurons and double-labeled DCX-BrdU-positive neurons, but not BrdU-positive nuclei alone, significantly correlated with performance on several cognitive tasks including spatial memory and discrimination learning. These results suggest that new neurons in the aged canine dentate gyrus may participate in modulating cognitive functions.
Collapse
Affiliation(s)
- Christina T Siwak-Tapp
- Institute for Brain Aging and Dementia, University of California, 1226 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4540, USA.
| | | | | | | | | |
Collapse
|
99
|
Seybold KS. Physiological mechanisms involved in religiosity/spirituality and health. J Behav Med 2007; 30:303-9. [PMID: 17549618 DOI: 10.1007/s10865-007-9115-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
During the last two decades of the 20th century, psychological science rediscovered religiosity/spirituality (R/S) as a legitimate subject matter in understanding the human experience. In large measure, this renewed interest was motivated by the positive association between this variable and health (physical and mental) reported in much of the literature. If the described relationship between R/S and health is accurate, the question of how such an influence might be realized becomes important and subject to empirical investigation. The present paper develops a rationale for why such an outcome might be expected and describes various physiological mechanisms that could mediate the effect of R/S on health.
Collapse
Affiliation(s)
- Kevin S Seybold
- Department of Psychology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA.
| |
Collapse
|
100
|
Sandi C, Bisaz R. A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology 2007; 85:158-76. [PMID: 17409734 DOI: 10.1159/000101535] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/02/2007] [Indexed: 12/18/2022]
Abstract
Critical interactions between genetic and environmental factors -- among which stress is one of the most potent non-genomic factors -- are involved in the development of mood disorders. Intensive work during the past decade has led to the proposal of the network hypothesis of depression [Castren E: Nat Rev Neurosci 2005;6:241-246]. In contrast to the earlier chemical hypothesis of depression that emphasized neurochemical imbalance as the cause of depression, the network hypothesis proposes that problems in information processing within relevant neural networks might underlie mood disorders. Clinical and preclinical evidence supporting this hypothesis are mainly based on observations from depressed patients and animal stress models indicating atrophy (with basic research pointing at structural remodeling and decreased neurogenesis as underlying mechanisms) and malfunctioning of the hippocampus and prefrontal cortex, as well as the ability of antidepressant treatments to have the opposite effects. A great research effort is devoted to identify the molecular mechanisms that are responsible for the network effects of depression and antidepressant actions, with a great deal of evidence pointing at a key role of neurotrophins (notably the brain-derived neurotrophic factor) and other growth factors. In this review, we present evidence that implicates alterations in the levels of the neural cell adhesion molecules of the immunoglobulin superfamily, NCAM and L1, among the mechanisms contributing to stress-related mood disorders and, potentially, in antidepressant action.
Collapse
Affiliation(s)
- Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|