51
|
Vieira NF, Serafini LN, Novais PC, Neto FSL, Cirino MLDA, Kemp R, Ardengh JC, Saggioro FP, Gaspar AF, Sankarankutty AK, Júnior JRL, Tirapelli DPDC, dos Santos JS. The role of circulating miRNAs and CA19-9 in pancreatic cancer diagnosis. Oncotarget 2021; 12:1638-1650. [PMID: 34434493 PMCID: PMC8378767 DOI: 10.18632/oncotarget.28038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis and treatment of pancreatic ductal adenocarcinoma (PA) remains a challenge in clinical practice. The aim of this study was to assess the role of microRNAs (miRNAs-21, -23a, -100, -107, -181c, -210) in plasma and tissue as possible biomarkers in the diagnosis of PA. Samples of plasma (PAp-n = 13), pancreatic tumors (PAt-n = 18), peritumoral regions (PPT-n = 9) were collected from patients during the surgical procedure. The control group consisted of samples from patients submitted to pancreatic surgery for trauma or cadaveric organs (PC-n = 7) and healthy volunteers donated blood (PCp-n = 6). The expression profile of microRNAs was measured in all groups using RT-PCR, serum CA19-9 levels were determined in PA and PC. In tissue samples, there was a difference in the expression of miRNAs-21, -210 (p < 0.05) across the PAt, PC and PPT groups. The PAp showed overexpression of miRNAs-181c, -210 (p < 0.05) when compared to PCp. The combination of miRNAs-21, -210 tissue expression and serum CA19-9 showed 100% accuracy in the diagnosis of PA, as well as miR-181c expression in the plasma (PApxPCp). The expression of microRNAs in plasma proved to be a promising tool for a noninvasive detection test for PA, as well as further studies will evaluate the utility of microRNAs expression as biomarkers for prognostic and response to therapy in PA.
Collapse
Affiliation(s)
- Nivaldo Faria Vieira
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Cezar Novais
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia, Marília, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Kemp
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Celso Ardengh
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alberto Facury Gaspar
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Resende Lopes Júnior
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
52
|
Yi X, He Z, Tian T, Kou Z, Pang W. LncIMF2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging MiR-217. Anim Biotechnol 2021; 34:268-279. [PMID: 34346296 DOI: 10.1080/10495398.2021.1956509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.
Collapse
Affiliation(s)
- XuDong Yi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhaoZhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - TingTing Tian
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - ZhongYun Kou
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| | - WeiJun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, P.R. China
| |
Collapse
|
53
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
54
|
Fu XF, Zhao HC, Yang CL, Chen CZ, Wang K, Gao F, Tian YZ, Zhao HL. MicroRNA-203-3p inhibits the proliferation, invasion and migration of pancreatic cancer cells by downregulating fibroblast growth factor 2. Oncol Lett 2021; 22:626. [PMID: 34267818 PMCID: PMC8258624 DOI: 10.3892/ol.2021.12887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of fibroblast growth factor 2 (FGF2) is a major cause of poor prognosis in patients with pancreatic cancer. MicroRNA (miRNA/miR) miR-203-3p is a newly identified miRNA that can affect the biological behavior of tumors. The present study investigated the function of miR-203-3p on the regulation of FGF2 expression, and its role in pancreatic cancer cell proliferation, apoptosis, invasion and migration. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of miR-203-3p and FGF2 in vitro. Cell Counting Kit-8, Annexin V-APC/7-AAD double-staining Apoptosis Detection kit, wound healing and Transwell assays were used to determine the proliferation, apoptosis, migration and invasion of pancreatic cancer cells. The binding of miR-203-3p to FGF2 was assessed by a luciferase reporter assay. The results demonstrated that miR-203-3p expression was downregulated in pancreatic cancer cells. Gain- and loss-of-function experiments indicated that miR-203-3p inhibited the proliferation, migration and invasion, and promoted the apoptosis of pancreatic cancer cells in vitro. In addition, it was found that alteration of miR-203-3p abolished the promoting effects of FGF2 on pancreatic cancer cells. The present study demonstrated that FGF2 significantly promoted the proliferation, invasion and migration of pancreatic cancer cells. The mechanism involved the binding of miR-203-3p to the 3′-untranslated region of FGF2 mRNA, resulting in the downregulation of FGF2. In conclusion, miR-203-3p inhibited FGF2 expression, regulated the proliferation and inhibited the invasion and migration of pancreatic cancer cells.
Collapse
Affiliation(s)
- Xi-Feng Fu
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China.,Third Clinical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hai-Chao Zhao
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China.,Third Clinical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chuan-Li Yang
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Chang-Zhou Chen
- Third Clinical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Kang Wang
- Third Clinical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fei Gao
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Yang-Zhang Tian
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Hao-Liang Zhao
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China.,Third Clinical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
55
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
56
|
Govindaraj V, Kar S. Role of microRNAs in oncogenesis: Insights from computational and systems‐level modeling approaches. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Sandip Kar
- Department of Chemistry IIT Bombay Mumbai India
| |
Collapse
|
57
|
Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, Wang LD. MicroRNA-155 acts as a diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:977-982. [PMID: 32573268 DOI: 10.1080/21691401.2020.1773479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MicroRNA-155 is over-expressed in many human cancers, but researches on its association with malignant oesophageal squamous cell carcinoma (ESCC) are limited. The aim of the present study was to evaluate the potential value of miR-155 as a biomarker for ESCC diagnosis and prognosis. In this study, we found that miR-155 was significantly increased in ESCC tissues compared with the paired adjacent tissues and healthy normal controls (p < .001), according to qRT-PCR, which suggested that miR-155 might act as an oncogene in ESCC. In addition, clinical features such as the depth of tumour invasion, tumour size, and TNM stage were all proved to impact the expression of miR-155 (p < .01). Then, ROC curve analysis, reaching an AUC of 0.870, and a sensitivity and specificity of 83.5% and 77.5%, respectively, revealed that miR-155 was a predictive factor for ESCC. As well, high expression of miR-155 was associated with poor overall survival of the patients (log-rank test, p = .004), according to Kaplan-Meier analysis. MiR-155 might be an independent predictor for overall survival in ESCC patients, manifested by Cox regression analysis (HR = 16.94, 95%CI = 3.33-86.12, p = .001). Taken together, miR-155 could be an independent diagnostic and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Ying-Juan Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Song Liang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Yi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su-Nan Zhai
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao-Ke Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
58
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|
59
|
Ernst LM, Mithal LB, Mestan K, Wang V, Mangold KA, Freedman A, Das S. Umbilical cord miRNAs to predict neonatal early onset sepsis. PLoS One 2021; 16:e0249548. [PMID: 33961620 PMCID: PMC8104380 DOI: 10.1371/journal.pone.0249548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/21/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To determine if miRNA (miR) expression in umbilical cord blood and umbilical cord tissue differs between neonates with early onset sepsis (EOS) versus neonates without true infection. METHODS Retrospective case-control study design of human patients with EOS (n = 8), presumed sepsis (N = 12) and non-infected control patients (N = 21). Differential expression of >300 miRs was examined using the MIHS-3001ZE-miScript miRNA PCR Array Human miFinder 384HC. Expression levels of miRs were normalized using the global Ct mean of expressed miR and compared between groups. Data analysis was performed using GeneGlobe data analysis software. Ratios of over and under-expressed miRs were calculated and compared between groups using receiver operating characteristic (ROC) curves. RESULTS Both umbilical cord plasma and umbilical cord tissue revealed several miRs with differential expression with little overlap between the two specimen types. The most overexpressed miR in plasma of EOS patients was miR-211-5p and the most overexpressed in EOS cord tissue was miR-223-5p. ROC curves comparing the ratios of over and under-expressed miRs for EOS patients and controls resulted in an area under the curve of 0.787 for cord plasma (miR-211-5p/miR-142-3p) and 0.988 for umbilical cord tissue (miR-223-5p/miR-22-3p), indicating good discrimination. CONCLUSIONS miRs show differential expression in EOS versus non-infected controls and presumed sepsis. A ratio of over and under-expressed miRs can provide a potentially sensitive and specific diagnostic test for EOS.
Collapse
Affiliation(s)
- Linda M. Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, United States of America
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States of America
| | - Leena B. Mithal
- Division of Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States of America
| | - Karen Mestan
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States of America
| | - Vivien Wang
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, United States of America
| | - Kathy A. Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, United States of America
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States of America
| | - Alexa Freedman
- Institute for Policy Research, Northwestern University, Evanston, IL, United States of America
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States of America
| | - Sanchita Das
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, United States of America
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
60
|
Singh HM, Leber MF, Bossow S, Engeland CE, Dessila J, Grossardt C, Zaoui K, Bell JC, Jäger D, von Kalle C, Ungerechts G. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:340-355. [PMID: 34141871 PMCID: PMC8182383 DOI: 10.1016/j.omto.2021.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Advanced pancreatic cancer is characterized by few treatment options and poor outcomes. Oncolytic virotherapy and chemotherapy involve complementary pharmacodynamics and could synergize to improve therapeutic efficacy. Likewise, multimodality treatment may cause additional toxicity, and new agents have to be safe. Balancing both aims, we generated an oncolytic measles virus for 5-fluorouracil-based chemovirotherapy of pancreatic cancer with enhanced tumor specificity through microRNA-regulated vector tropism. The resulting vector encodes a bacterial prodrug convertase, cytosine deaminase-uracil phosphoribosyl transferase, and carries synthetic miR-148a target sites in the viral F gene. Combination of the armed and targeted virus with 5-fluorocytosine, a prodrug of 5-fluorouracil, resulted in cytotoxicity toward both infected and bystander pancreatic cancer cells. In pancreatic cancer xenografts, a single intratumoral injection of the virus induced robust in vivo expression of prodrug convertase. Based on intratumoral transgene expression kinetics, we devised a chemovirotherapy regimen to assess treatment efficacy. Concerted multimodality treatment with intratumoral virus and systemic prodrug administration delayed tumor growth and prolonged survival of xenograft-bearing mice. Our results demonstrate that 5-fluorouracil-based chemovirotherapy with microRNA-sensitive measles virus is an effective strategy against pancreatic cancer at a favorable therapeutic index that warrants future clinical translation.
Collapse
Affiliation(s)
- Hans Martin Singh
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Mathias Felix Leber
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Sascha Bossow
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Virotherapy, Research Group Mechanisms of Oncolytic Immunotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Stockumer Straße 10, 58453 Witten, Germany
| | - Jan Dessila
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian Grossardt
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karim Zaoui
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Berlin Institute of Health and Charité Universitätsmedizin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.,Sidra Medical and Research Center, Al Luqta Street, Education City, North Campus, P.O. Box 26999, Doha, Qatar
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ONT, Canada
| |
Collapse
|
61
|
Panebianco C, Trivieri N, Villani A, Terracciano F, Latiano TP, Potenza A, Perri F, Binda E, Pazienza V. Improving Gemcitabine Sensitivity in Pancreatic Cancer Cells by Restoring miRNA-217 Levels. Biomolecules 2021; 11:639. [PMID: 33925948 PMCID: PMC8146031 DOI: 10.3390/biom11050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Nadia Trivieri
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Fulvia Terracciano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Tiziana Pia Latiano
- Oncology Unit Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Elena Binda
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| |
Collapse
|
62
|
Nie HX, Zhang L, He T, Wang L, Wan BS, Wang XQ, Han F. lncRNA-XLOC_012370 Promotes the Development of Pancreatic Cancer and Inactivates the NF-κB Pathway Through miR-140-5p. Front Oncol 2021; 10:620550. [PMID: 33708618 PMCID: PMC7940521 DOI: 10.3389/fonc.2020.620550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a high incidence, high degree of malignancy, and high mortality in the digestive system tumor. The incidence of pancreatic cancer in China has increased nearly six folds in the past 20 years, ranking fifth in the mortality rate of malignant tumors, so it is particularly important to actively explore clinical indicators with better diagnostic significance for pancreatic cancer. LncRNA performs an essential regulatory function in the occurrence, development, and metastasis of many kinds of tumors, playing both a carcinogenic role and a tumor suppressor gene. Here, we demonstrated the function and mechanism of LncRNA-XLOC_012370 in the development of pancreatic cancer. In our research, the abnormal upregulation of XLOC_012370 was observed in pancreatic cancer patients’ tumor tissues. XLOC_012370 was related to tumor stage, lymph node metastasis, and overall survival. Silencing of XLOC_012370 prevented the proliferation, migration, and invasion via the NF-κB signal pathway. Further, miR-140-5p was identified as the target and downstream of XLOC_012370 and involved in pancreatic cancer progression. In vivo, knockdown of XLOC_012370 inhibited tumor growth via the NF-κB signal pathway. In conclusion, lncRNA-XLOC_012370 is closely related to some malignant clinicopathological features and prognosis of pancreatic cancer. Thus the miR-140-5p/NF-κB signal pathway might represent a promising treatment strategy to combat pancreatic cancer.
Collapse
Affiliation(s)
- Han-Xiao Nie
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ling Zhang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tao He
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bai-Shun Wan
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiao-Qian Wang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Feng Han
- Department of Hepatopancreatobiliary Surgery, Henan Tumor Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
63
|
Satoh K. Molecular Approaches Using Body Fluid for the Early Detection of Pancreatic Cancer. Diagnostics (Basel) 2021; 11:375. [PMID: 33671729 PMCID: PMC7926932 DOI: 10.3390/diagnostics11020375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most malignant form of gastrointestinal tumor and is the fourth leading cause of deaths due to cancer in Japan. This cancer shows a poor outcome due to the difficulty of its early diagnosis and its rapid growth. Once this disease becomes clinically evident, it is frequently accompanied by distant metastasis at the time of diagnosis. A recent multicenter study in Japan revealed that patients with the early stage of this disease (stage 0 and I) showed favorable prognosis after surgical resection, indicating the importance of early detection for improvement of PDAC prognosis. PDAC develops through a stepwise progression from the precursor lesion, and over the last few decades molecular analyses have shown the detailed genetic alterations that occur in this process. Since advances in molecular technologies have enabled the detection of genetic changes from a very small quantity of samples, a large number of non-invasive molecular approaches have been utilized in an attempt to find precursor or non-invasive carcinoma lesions. In this review, the current efforts in terms of the molecular approaches applied for the early detection of PDAC-especially using body fluids such as pancreatic juice, blood, and saliva-are summarized.
Collapse
Affiliation(s)
- Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi 983-8536, Japan
| |
Collapse
|
64
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
65
|
Targeted Therapies for Pancreatic Cancer: Overview of Current Treatments and New Opportunities for Personalized Oncology. Cancers (Basel) 2021; 13:cancers13040799. [PMID: 33672917 PMCID: PMC7918504 DOI: 10.3390/cancers13040799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, endothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do not behave uniformly and are able to escape therapy. The advance in technology of whole-genome sequencing has now provided the possibility of identifying every somatic mutation, copy-number change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In this review, we provide an overview of the current and emerging treatment strategies in pancreatic cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to stimulate new thoughts for clinical trials aimed at improving patient outcomes.
Collapse
|
66
|
Khan IA, Rashid S, Singh N, Rashid S, Singh V, Gunjan D, Das P, Dash NR, Pandey RM, Chauhan SS, Gupta S, Saraya A. Panel of serum miRNAs as potential non-invasive biomarkers for pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:2824. [PMID: 33531550 PMCID: PMC7854650 DOI: 10.1038/s41598-021-82266-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Early-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Safoora Rashid
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Nidhi Singh
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Sumaira Rashid
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Vishwajeet Singh
- grid.413618.90000 0004 1767 6103Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Prasenjit Das
- grid.413618.90000 0004 1767 6103Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- grid.413618.90000 0004 1767 6103Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra Mohan Pandey
- grid.413618.90000 0004 1767 6103Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- grid.413618.90000 0004 1767 6103Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Anoop Saraya
- grid.413618.90000 0004 1767 6103Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
67
|
Zhou S, Zhu C, Pang Q, Liu HC. MicroRNA-217: A regulator of human cancer. Biomed Pharmacother 2021; 133:110943. [PMID: 33254014 DOI: 10.1016/j.biopha.2020.110943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
As highly conserved non-coding RNAs of approximately 18-24 nucleotides, microRNAs (miRNAs) regulate the expression of target genes. Multiple studies have demonstrated that miRNAs participate in the regulation of human cancer. MircoRNA-217 (miR-217) participates in the regulation of various tumors by specifically binding target genes and post-transcriptional regulation. In recent years, there have been numerous reports about miR-217 in tumor progression. MiR-217 is known mainly as a tumor suppressor, although some studies have shown that it functions as an oncomiR. Here, we review the current research related to miR-217, including its role in tumor progression and the molecular mechanisms.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Chao Zhu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Qing Pang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Hui Chun Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| |
Collapse
|
68
|
Chhatriya B, Sarkar P, Nath D, Ray S, Das K, Mohapatra SK, Goswami S. Pilot study identifying circulating miRNA signature specific to alcoholic chronic pancreatitis and its implication on alcohol-mediated pancreatic tissue injury. JGH OPEN 2020; 4:1079-1087. [PMID: 33319040 PMCID: PMC7731805 DOI: 10.1002/jgh3.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 11/12/2022]
Abstract
Background and Aim Alcohol exerts its effects on organs in multiple ways. Alcoholic chronic pancreatitis (ACP) is a disease in which alcohol triggers the pathological changes in pancreas, leading to chronic inflammation and fibrosis. The molecular mechanism behind these changes is not clear. Identification of key circulating miRNA changes in ACP patients and determination of the fraction that is secreted from diseased pancreas not only could serve as potential biomarker for assessing disease severity, but also could help identifying the molecular alterations prevailing in the organ precipitating the disease, to some extent. Methods We performed microRNA microarray using the Affymetrix miRNA 4.0 platform to identify differentially expressed miRNAs in serum of ACP patients as compared to alcoholic control individuals and then found out how many of them could be pancreas-specific and exosomally secreted. We further analyzed a pancreatitis-specific gene expression data set to find out the differentially expressed genes in diseased pancreas and explored the possible role of those selected miRNAs in regulation of gene expression in ACP. Results We identified 14 miRNAs differentially expressed in both serum and pancreas and also identified their experimentally validated targets. Transcription factors modulating the miRNA expression in an alcohol-dependent manner were also identified and characterized to derive the miRNA-gene-TF interaction network responsible for progression of the disease. Conclusions Differentially expressed miRNA signature demonstrated significant changes in both pro- and anti-inflammatory pathways probably balancing the chronic inflammation in the pancreas. Our findings also suggested possible involvement of pancreatic stellate cells in disease progression.
Collapse
Affiliation(s)
| | - Piyali Sarkar
- Department of Cytogenetics Tata Medical Centre Kolkata India
| | - Debashis Nath
- Department of Medicine Indira Gandhi Memorial Hospital Agartala India
| | - Sukanta Ray
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | - Kshaunish Das
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | | | | |
Collapse
|
69
|
Schlick K, Hohla F, Hamacher F, Hackl H, Hufnagl C, Markus S, Magnes T, Gampenrieder SP, Melchardt T, Stättner S, Hauser-Kronberger C, Greil R, Rinnerthaler G. Overcoming negative predictions of microRNA expressions to gemcitabine response with FOLFIRINOX in advanced pancreatic cancer patients. Future Sci OA 2020; 7:FSO644. [PMID: 33437513 PMCID: PMC7787156 DOI: 10.2144/fsoa-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
FOLFIRINOX is superior to gemcitabine in patients with pancreatic cancer, but this regimen is associated with toxicity and biomarkers for response are warranted. MicroRNAs can mediate drug resistance and could provide predictive information. Altered expressions of several microRNAs including miR-21-5p, miR-10b-5p and miR-34a-5p have been previously linked to a worse response to gemcitabine. We investigated the influence of expression levels in tumor tissue of those three microRNAs on outcome to FOLFIRINOX. Twenty-nine patients with sufficient formalin-fixed paraffin-embedded tumor tissue were identified. There was no significant association between high and low expression groups for these three microRNA. We conclude that polychemotherapy combination can overcome intrinsic negative prognostic factors.
Collapse
Affiliation(s)
- Konstantin Schlick
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Florian Hohla
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
| | - Frank Hamacher
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Hufnagl
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Steiner Markus
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Teresa Magnes
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Simon Peter Gampenrieder
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Stättner
- Department of Surgery, Salzkammergutklinikum, Standort Vöcklabruck, Oberösterreich, Austria
- Department of Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Richard Greil
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
70
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
71
|
Fu X, Hong L, Yang Z, Tu Y, Xin W, Zha M, Tu S, Sun G, Li Y, Xiao W. MicroRNA-148a-3p suppresses epithelial-to-mesenchymal transition and stemness properties via Wnt1-mediated Wnt/β-catenin pathway in pancreatic cancer. J Cell Mol Med 2020; 24:13020-13035. [PMID: 33026174 PMCID: PMC7701524 DOI: 10.1111/jcmm.15900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Although miR-148a-3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR-148a-3p in regulating epithelial-to-mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR-148a-3p expression was remarkably down-regulated in PC tissues and cell lines. Moreover, low expression of miR-148a-3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain-of-function and loss-of-function experiments showed that miR-148a-3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual-luciferase reporter assay demonstrated that Wnt1 was a direct target of miR-148a-3p, and its expression was inversely associated with miR-148a-3p in PC tissues. Furthermore, miR-148a-3p suppressed the Wnt/β-catenin pathway via down-regulation of Wnt1. The effects of ectopic miR-148a-3p were rescued by Wnt1 overexpression. These biological functions of miR-148a-3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR-148a-3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1-mediated Wnt/β-catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Le Hong
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Zhengjiang Yang
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Yi Tu
- Department of PathologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Wanpeng Xin
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Ming Zha
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Shuju Tu
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Gen Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Yong Li
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Weidong Xiao
- Department of General SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
72
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
73
|
Ramamoorthy K, Anandam KY, Yasujima T, Srinivasan P, Said HM. Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319:G323-G332. [PMID: 32683950 PMCID: PMC7509260 DOI: 10.1152/ajpgi.00178.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B1 (thiamin) plays essential roles in normal metabolism and function of all human/mammalian cells, including the pancreatic acinar cells (PACs). PACs obtain thiamin from their surrounding circulation via transport across the plasma membrane, a process that is mediated by thiamin transporter (THTR)-1 and THTR-2. We have previously characterized different aspects of thiamin uptake by mouse and human primary PACs, but little is known about posttranscriptional regulation of the uptake event. We addressed this by focusing on the predominant thiamin transporter THTR-1 (encoded by SLC19A2 gene) in PACs. Transfecting pmirGLO-SLC19A2 3'-untranslated region (UTR) into mouse-derived PAC 266-6 cells leads to a significant reduction in luciferase activity compared with cells transfected with empty vector. Subjecting the SLC19A2 3'-UTR to different in silico algorithms identified multiple putative microRNA binding sites in this region. Focusing on miR-200a-3p (since it is highly expressed in mouse and human pancreas), we found that transfecting PAC 266-6 and human primary PACs (hPACs) with mimic miR-200a-3p leads to a significant inhibition of THTR-1 expression (both protein and mRNA levels) and in thiamin uptake. In contrast, transfection by miR-200a-3p inhibitor leads to an increase in THTR-1 expression and thiamin uptake. Additionally, truncating the region carrying miR-200a-3p binding site in SLC19A2 3'-UTR and mutating the binding site lead to abrogation in the inhibitory effect of this microRNA on luciferase activity in PAC 266-6. These results demonstrate that expression of THTR-1 and thiamin uptake in PACs is subject to posttranscriptional regulation by microRNAs.NEW & NOTEWORTHY The findings of this study show, for the first time, that the membrane transporter of vitamin B1, i.e., thiamin transporter-1 (THTR-1), is subject to regulation by microRNAs (specifically miR-200a-3p) in mouse and human primary pancreatic acinar cells (PACs). The results also show that this posttranscriptional regulation has functional consequences on the ability of PACs to take in the essential micronutrient thiamin.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Kasin Yadunandam Anandam
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Tomoya Yasujima
- 4Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Padmanabhan Srinivasan
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- 1Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California,2Department of Medicine, School of Medicine, University of California, Irvine, California,3Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
74
|
Tan Y, Lu X, Cheng Z, Pan G, Liu S, Apiziaji P, Wang H, Zhang J, Abulimiti Y. miR-148a Regulates the Stem Cell-Like Side Populations Distribution by Affecting the Expression of ACVR1 in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:8079-8094. [PMID: 32904700 PMCID: PMC7457590 DOI: 10.2147/ott.s248925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/07/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) is a malignant tumor disease with high mortality and morbidity rates, especially for a terminal cancer. At present, the prognosis and treatment of ESCC cannot effectively control or inhibit the spread and proliferation of tumor cells. microRNAs, a class of small spliced RNAs, are essential in the regulation of tumorigenesis and tumor cell migration and proliferation. microRNAs interact with target mRNA to silence gene expression and degrade mRNA, thereby inhibiting the expression of tumor genes or impairing the expression of tumor suppressor genes. Methods A total of 20 human ESCC samples were collected from the Affiliated Tumor Hospital of Xinjiang Medical University. Eca109 and Kyse510 cells, which are ESCC cell lines, were subjected to FACS analysis to get side population (SP) cells and non-SP cells. Cell cycle and cell proliferation were analyzed by flow cytometry. Cell migration and invasion were detected using a transwell assay. Quantitative PCR and Western blot were performed to analyze the expression levels of ABCG2, KLF4, OCT4, and ACVR1, which are related to the stemness of stem cells. The target genes of hsa-miR-148a were predicted using TargetScan (version 7.2) and verified by a dual luciferase reporter assay. A chromatin immunoprecipitation (ChIP) assay was carried out to demonstrate direct interaction between miR-148a and ACVR1. Results The expression of miR-148a was significantly down-regulated in ESCC cells and significantly decreased in SP esophageal squamous cells when compared to the tumor cells. By analyzing the stem cell stemness of ESCC, overexpression of miR-148a decreased the expression of ABCG2, KLF4, SOX2, OCT4, and Nanog, indicating that miR-148a may regulate stem cell function. Target gene prediction and functional annotation of miR-148a suggested that miR-148a is involved in stem cell stemness of ESCC via ACVR1. Expression of the dual luciferase-labeled gene indicates that overexpression of miR-148a inhibits the expression of ACVR1, thereby affecting stem cell stemness. Conclusion miR-148a regulates the stem cell-like side populations distribution by inhibiting the expression of ACVR1 in ESCC. miR-148a may be a promising targeted therapy for ESCC.
Collapse
Affiliation(s)
- Yao Tan
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xi Lu
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhenzhen Cheng
- Clinical Laboratory, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Guangpeng Pan
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shujuan Liu
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Palida Apiziaji
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Haifeng Wang
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jinrong Zhang
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yisikandaer Abulimiti
- Department of Thoracic and Abdominal Radiotherapy, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
75
|
Use of Biomarkers and Imaging for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071965. [PMID: 32707720 PMCID: PMC7409286 DOI: 10.3390/cancers12071965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers worldwide, and it is typically diagnosed late, with a poor prognosis. Early detection is the most important underlying factor for improving the prognosis of pancreatic cancer patients. One of the most effective strategies for detecting cancers at an early stage is screening of the general population. However, because of the low incidence of pancreatic cancer in the general population, the stratification of subjects who need to undergo further examinations by invasive and expensive modalities is important. Therefore, minimally invasive modalities involving biomarkers and imaging techniques that would facilitate the early detection of pancreatic cancer are highly needed. Multiple types of new blood biomarkers have recently been developed, including unique post-translational modifications of circulating proteins, circulating exosomes, microRNAs, and circulating tumor DNA. We previously reported that circulating apolipoprotein A2 undergoes unique processing in the bloodstream of patients with pancreatic cancer and its precancerous lesions. Additionally, we recently demonstrated a new method for measuring pancreatic proton density in the fat fraction using a fat–water magnetic resonance imaging technique that reflects pancreatic steatosis. In this review, we describe recent developments in potential biomarkers and imaging modalities for the early detection and risk stratification of pancreatic cancer, and we discuss current strategies for implementing screening programs for pancreatic cancer.
Collapse
|
76
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
77
|
Zhang Q, Xu HF, Song WY, Zhang PJ, Song YB. Potential microRNA panel for the diagnosis and prediction of overall survival of hepatocellular carcinoma with hepatitis B virus infection. World J Gastrointest Oncol 2020; 12:383-393. [PMID: 32368317 PMCID: PMC7191334 DOI: 10.4251/wjgo.v12.i4.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC), abnormal expression of multiple microRNAs (miRNAs) has been shown to be involved in the malignant biological behavior of liver cancer. The vast majority of liver cancer cases in China are closely related to hepatitis B virus (HBV) infection, but there are few studies on the changes of miRNA expression in the progression from HBV infection to hepatoma.
AIM To explore the role of miRNAs in the progression of HBV infection to cirrhosis and even to liver cancer.
METHODS We screened differentially expressed miRNAs in 40 HBV cirrhosis, 40 normal and 15 HCC tissues by using a TaqMan Low Density Array and real time quantitative polymerase chain reaction. To evaluate the power of the selected miRNAs to predict disease, we calculated the area under the receiver-operating-characteristic curves. The overall survival of HBV cirrhosis patients was analyzed via Kaplan-Meier analysis.
RESULTS The levels of miR-375, miR-122 and miR-143 were significantly lower in HBV cirrhosis tissues, while miR-224 was significantly higher than in the controls (P < 0.0001). The area under the curves of the receiver-operating-characteristic curve for the 4-miRNA panel was 0.991 (95%CI: 0.974-1). Patients with a lower expression level of miR-224 or higher expression levels of miR-375, miR-122 and miR-143 had longer overall survival.
CONCLUSION The four miRNAs (miR-375, miR-122, miR-143 and miR-224) may be helpful for early diagnosis of HBV infection, HBV cirrhosis, and prediction of its overall survival.
Collapse
Affiliation(s)
- Qi Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Hai-Feng Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wen-Yue Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong-Bo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
78
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
79
|
The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers (Basel) 2020; 12:cancers12030708. [PMID: 32192092 PMCID: PMC7140083 DOI: 10.3390/cancers12030708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/06/2023] Open
Abstract
The establishment and spreading of cancer involve the acquirement of many biological functions including resistance to apoptosis, enhanced proliferation and the ability to invade the surrounding tissue, extravasate from the primary site, survive in circulating blood, and finally extravasate and colonize distant organs giving origin to metastatic lesions, the major cause of cancer deaths. Dramatic changes in the expression of protein coding genes due to altered transcription factors activity or to epigenetic modifications orchestrate these events, intertwining with a microRNA regulatory network that is often disrupted in cancer cells. microRNAs-143 and -145 represent puzzling players of this game, with apparently contradictory functions. They were at first classified as tumor suppressive due to their frequently reduced levels in tumors, correlating with cell survival, proliferation, and migration. More recently, pro-oncogenic roles of these microRNAs have been described, challenging their simplistic definition as merely tumor-suppressive. Here we review their known activities in tumors, whether oncogenic or onco-suppressive, and highlight how their expression and functions are strongly dependent on their complex regulation downstream and upstream of cytokines and growth factors, on the cell type of expression and on the specific tumor stage.
Collapse
|
80
|
MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:3. [PMID: 31898520 PMCID: PMC6939329 DOI: 10.1186/s13046-019-1490-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. METHODS Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons' correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. RESULTS We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. CONCLUSIONS These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.
Collapse
|
81
|
Ni J, Zhou S, Yuan W, Cen F, Yan Q. Mechanism of miR-210 involved in epithelial-mesenchymal transition of pancreatic cancer cells under hypoxia. J Recept Signal Transduct Res 2019; 39:399-406. [PMID: 31875764 DOI: 10.1080/10799893.2019.1683863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to analyze cell viability. The MiRNA expression level was measured by qRT-PCR. HOXA9, EMT-related proteins, and NF-κB activities were examined by immunoblotting assay. Dual luciferase reporter assay was used to assess whether HOXA9 was a target of miR-210.Results: Under hypoxia condition, miR-210, HIF-1α and NF-κB were increased, and the HOXA9 was reduced in PANC-1 cells. When miR-210 was overexpressed in normoxic PANC-1 cells, EMT epithelial markers of E-cadherin and β-catenin were down-regulated, and mesenchymal markers of vimentin and N-cadherin were up-regulated to promote cell migration/invasive ability, and the HOXA9 level was decreased. After HOXA9 level decreased, the sensitivity to chemotherapeutic drug of gemcitabine was reduced, NF-κB expression level and cell migration/invasive ability was enhanced. Whereas, miR-210 antagonist into hypoxic PANC-1 cells, which up-regulated E-cadherin, β-catenin level, and down-regulated vimentin and N-cadherin levels to decrease cell migration/invasive ability, and increase the HOXA9. Furthermore, increasing HOXA9 level decreased NF-κB expression level and cell migration/invasive ability, enhanced the sensitivity to gemcitabine. At last, miRDB and TargetScan predicted that HOXA9 was a target of miR-210, and dual luciferase reporter assay verified this hypothesis.Conclusion: MiR-210 inhibited the expression of HOXA9 to activate the NF-κB signaling pathway and mediated the occurrence of EMT of pancreatic cancer cells induced by HIF-1α under hypoxia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Hepatological Surgery, Fuyang hospital of traditional Chinese medicine, Hangzhou, China
| | - Shiyu Zhou
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenbin Yuan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Feng Cen
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Qiang Yan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
82
|
Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019; 19:1130. [PMID: 31752758 PMCID: PMC6868851 DOI: 10.1186/s12885-019-6284-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
A severe lack of early diagnosis coupled with resistance to most available therapeutic options renders pancreatic cancer as a major clinical concern. The limited efficacy of current treatments necessitates the development of novel therapeutic strategies that are based on an understanding of the molecular mechanisms involved in pancreatic cancer progression. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the expression of multiple proteins in the post-translation process and thus have promise as biomarkers, prognostic agents, and as advanced pancreatic therapies. Profiling of deregulated miRNAs in pancreatic cancer can correlate to diagnosis, indicate optimal treatment and predict response to therapy. Furthermore, understanding the main effector genes in pancreatic cancer along with downstream pathways can identify possible miRNAs as therapeutic candidates. Additionally, obstacles to the translation of miRNAs into the clinic are also considered. Distinct miRNA expression profiles can correlate to stages of malignant pancreatic disease, and hold potential as biomarkers, prognostic markers and clinical targets. However, a limited understanding and validation of the specific role of such miRNAs stunts clinical application. Target prediction using algorithms provides a wide range of possible targets, but these miRNAs still require validation through pre-clinical studies to determine the knock-on genetic effects.
Collapse
Affiliation(s)
- Afra Z Daoud
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grace Cole
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
83
|
Xiao Y, Wang X, Dong X, Zhang Y, Liu H. RBPJ inhibits the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway. Onco Targets Ther 2019; 12:8075-8084. [PMID: 31632061 PMCID: PMC6778847 DOI: 10.2147/ott.s212519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background Recombination signal-binding protein J (RBPJ) is a crucial downstream effector of Notch signaling, which is involved cell proliferation, differentiation, and apoptosis. It plays an important role in tumorigenesis although the further studies and concrete evidence are still needed. Especially for endometrial carcinoma, the functions and mechanism of RBPJ are still elusive. Methods The RNA expressions of RBPJ, miR-155, NF-κB, TNF-α and κB-Ras1 were examined by rt-PCR, and their protein levels were determined by Western Blot. Their expressions were inhibited by transient transfection of related siRNAs. Wound healing and transwell invasion assays were performed in ECC003 cells for measuring the migration and invasion ability, respectively. The ROS levels were detected by flow cytometry with H2DCFDA. Purpose This study was designed to investigate biological characteristics and molecular pathway of RBPJ in endometrial carcinoma cells, which may provide a potential therapeutic target for the treatments against endometrial carcinoma. Results It was shown in our study that the expression levels of RBPJ were significantly downregulated in different endometrial carcinoma cell lines. And a siRNA-mediated reduction of RBPJ enhanced the migration and invasion ability of ECC003 obviously. Besides, the results showed that the reactive oxygen
species (ROS) levels increase when inhibiting RBPJ. To investigate the molecular pathway of RBPJ, we examined the expression of nuclear factor-κB (NF-κB), NF-κB inhibitor interacting Ras-like protein 1 (κB-Ras1), tumor necrosis factor-α (TNF-α) and miR-155. The results suggested that the expression of NF-κB and TNF-α significantly was promoted, while κB-Ras1 was inhibited. An upregulated expression was observed with miR-155 as well, which suggested the inhibition of NF-κB signal pathway was mediated by miR-155. Our results of Notch intracellular domain (NICD) knockdown also demonstrated that NICD is required for the inhibition of RBPJ on miR-155. And knockdown of miR-155 could inhibit the mobility of endometrial carcinoma cells. Conclusion Our study suggested that RBPJ can inhibit the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Xiaoli Wang
- Department of Gynecology, Liangshan People's Hospital, Jining, Shandong Province 272699, People's Republic of China
| | - Xiping Dong
- Department of Obstetrics and Gynecology, The First People's Hospital of Ji'nan, Ji'nan, Shandong Province 250011, People's Republic of China
| | - Yan Zhang
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Haibin Liu
- Department of Gynecology and Obstetrics, Heze Municipal Hospital, Heze, Shandong Province 274000, People's Republic of China
| |
Collapse
|
84
|
Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The Importance of microRNAs in RAS Oncogenic Activation in Human Cancer. Front Oncol 2019; 9:988. [PMID: 31612113 PMCID: PMC6777413 DOI: 10.3389/fonc.2019.00988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ram C Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
85
|
Yang Y, Huang Q, Luo C, Wen Y, Liu R, Sun H, Tang L. MicroRNAs in acute pancreatitis: From pathogenesis to novel diagnosis and therapy. J Cell Physiol 2019; 235:1948-1961. [PMID: 31552677 DOI: 10.1002/jcp.29212] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder initiated by activation of pancreatic zymogens, leading to pancreatic injury and systemic inflammatory response. MicroRNAs (miRNAs) have emerged as important regulators of gene expression and key players in human physiological and pathological processes. Discoveries over the past decade have confirmed that altered expression of miRNAs is implicated in the pathogenesis of AP. Indeed, a number of miRNAs have been found to be dysregulated in various cell types involved in AP such as acinar cells, macrophages, and lymphocytes. These aberrant miRNAs can regulate acinar cell necrosis and apoptosis, local and systemic inflammatory response, thereby contributing to the initiation and progression of AP. Moreover, patients with AP possess unique miRNA signatures when compared with healthy individuals or those with other diseases. In view of their stability and easy detection, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with AP. In this review, we provide an overview of the novel cellular and molecular mechanisms underlying the roles of miRNAs during the disease processes of AP, as well as the potential diagnosis and therapeutic biomarkers of miRNAs in patients with AP.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Chen Luo
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
86
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
87
|
Soeda N, Iinuma H, Suzuki Y, Tsukahara D, Midorikawa H, Igarashi Y, Kumata Y, Horikawa M, Kiyokawa T, Fukagawa T, Fukushima R. Plasma exosome-encapsulated microRNA-21 and microRNA-92a are promising biomarkers for the prediction of peritoneal recurrence in patients with gastric cancer. Oncol Lett 2019; 18:4467-4480. [PMID: 31611956 PMCID: PMC6781766 DOI: 10.3892/ol.2019.10807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
In patients with gastric cancer (GC), peritoneal recurrence is a common risk and associated with poor prognosis. A novel biomarker for the prediction of high-risk peritoneal recurrence in patients with GC is desirable. The present study investigated the effectiveness of exosome-encapsulated microRNAs (ex-miRNAs) as minimally invasive biomarkers in patients with GC that received curative surgery. Recurrence-specific ex-miRNAs were selected following comparison of miRNA microarray data from patients with TNM stage II GC with peritoneal recurrence (n=3) and without peritoneal recurrence following curative surgery (n=3), and three healthy volunteers. In this analysis, exosome-encapsulated miRNA-21 (ex-miR-21) and exosomal miR-92a (ex-miR-92a) exhibited the greatest alterations in expression patterns. Using plasma exosome samples collected from another 129 patients with stage II and III GC, the present study investigated the potential value of ex-miR-21 and ex-miR-92a as biomarkers. Ex-miRNA levels were measured using TaqMan miRNA assays. Ex-miR-21 levels were significantly higher and ex-miR-92a levels were significantly lower in samples from patients with GC compared with healthy controls. The overall survival (OS) and peritoneal recurrence-free survival (PRFS) were poorer in stage II and III patients with high ex-miR-21 levels than in patients with low miR-21 levels. OS and PRFS of stage II and III patients with low ex-miR92a levels were significantly worse than those with high ex-miR92a levels. Cox multivariate analyses indicated that ex-miR-21 and ex-miR-92a were independent prognostic factors for OS and PRFS in stage II and III GC. A negative correlation was detected between expression levels of miR-21 and programmed cell death protein 4 mRNA, and miR-92a and prostaglandin E receptor 4 mRNA. Therefore, ex-miR-21 and ex-miR-92a may function as effective and minimally invasive biomarkers for the prediction of peritoneal recurrence and the prognosis of patients with stage II/III GC.
Collapse
Affiliation(s)
- Naruyoshi Soeda
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yusuke Suzuki
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Daisuke Tsukahara
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Hironori Midorikawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yuichi Igarashi
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Yoshimasa Kumata
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Masahiro Horikawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Takashi Kiyokawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Takeo Fukagawa
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| | - Ryoji Fukushima
- Department of Surgery, Teikyo University School of Medicine, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
88
|
Le N, Fillinger J, Szanyi S, Wichmann B, Nagy ZB, Ivády G, Burai M, Tarpay Á, Pozsár J, Pap Á, Molnár B, Csuka O, Bak M, Tulassay Z, Szmola R. Analysis of microRNA expression in brush cytology specimens improves the diagnosis of pancreatobiliary cancer. Pancreatology 2019; 19:873-879. [PMID: 31400934 DOI: 10.1016/j.pan.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Malignant pancreatobiliary strictures are in many cases clinically indistinguishable and present a major problem to endoscopy specialists. Intraductal sampling procedures such as brush cytology are commonly used for diagnosis with a sensitivity that is low for a diagnostic test used in daily clinical practice. MicroRNA (miR) alterations detected in many cancers are disease-specific, which can be utilized in clinical applications. The aim of the present study was to analyze whether determination of miR expression levels in intraductal brush cytology specimens is a feasible approach to improve the diagnosis of pancreatobiliary cancer. METHODS Brush cytology specimens have been collected during endoscopic retrograde cholangio-pancreatography (ERCP) and analyzed by routine cytology and ancillary miR assays. Total RNA was extracted using the miRNeasy Mini Kit and the expression of miRs frequently dysregulated in pancreatobiliary cancer (miR-16, miR-21, miR-196a, miR-221) were analyzed by quantitative real-time PCR using RNU6B as internal control. RESULTS Routine cytology resulted in no false positive diagnoses, however, the combined sensitivity remained at 53.8%. Expression (ΔCt values) of miR-16 (p = 0.0039), miR-196a (p = 0.0003) and miR-221 (p = 0.0049) showed a clear statistical significance between malignant and benign pancreatobiliary specimens (n = 35). Malignancy could be detected combining routine cytology and the miR-196a single marker expression levels with a sensitivity of 84.6% (92.9% in biliary strictures) with no false positives. CONCLUSIONS The results offer the first direct demonstration that microRNAs are readily detectable in brush cytology specimens obtained during ERCP, and have the potential to help the cytological diagnosis of pancreatobiliary malignancy.
Collapse
Affiliation(s)
- N Le
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary; School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - J Fillinger
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - Sz Szanyi
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary; School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - B Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z B Nagy
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - G Ivády
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - M Burai
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - Á Tarpay
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - J Pozsár
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - Á Pap
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - B Molnár
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - O Csuka
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - M Bak
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - Z Tulassay
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - R Szmola
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
89
|
Erdos Z, Barnum JE, Wang E, DeMaula C, Dey PM, Forest T, Bailey WJ, Glaab WE. Evaluation of the Relative Performance of Pancreas-Specific MicroRNAs in Rat Plasma as Biomarkers of Pancreas Injury. Toxicol Sci 2019; 173:5-18. [PMID: 31504967 DOI: 10.1093/toxsci/kfz184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Drug-induced pancreatic injury (DIPI) has become linked in recent years to many commonly prescribed medications from several pharmacological classes. Diagnosis is currently most often focused on identification of acute pancreatitis and generally based on subjective clinical assessment and serum amylase and lipase enzymatic activity, which have been criticized as being insufficiently sensitive and specific. The lack of novel noninvasive biomarkers of DIPI can impede the advancement of drug candidates through nonclinical development and translation into clinical settings. Pancreas-specific microRNAs (miRNAs) are currently being evaluated as biomarkers of DIPI that may outperform and/or add value to the interpretation of amylase and lipase. To assess the relative performance of these novel miRNAs, a comprehensive evaluation was conducted to determine the sensitivity and specificity of detecting DIPI in rats. Four miRNAs were evaluated (miR-216a-5p, miR-216b-5p, miR-217-5p, and miR-375-3p) in plasma from 10 studies in which rats were treated with known pancreatic toxicants to assess sensitivity, and from 10 different studies in which toxicity was evident in tissues other than pancreas to assess specificity. The candidate miRNA biomarker performance was compared with amylase and lipase, and receiver operator characteristics (ROC) were determined. Analysis of ROCs demonstrated that all four miRNAs outperformed amylase and lipase in monitoring acute pancreatic injury defined as acinar cell degeneration/necrosis. Specifically, miR-217-5p had the highest performance among all biomarkers assessed. The increased sensitivity and specificity of these miRNAs support their use as biomarkers of DIPI, thereby adding value to the interpretation of amylase and lipase measurements in nonclinical studies. The potential for miRNAs to serve as translational biomarkers in the clinic for the monitoring of DIPI is also supported by this investigation.
Collapse
Affiliation(s)
- Zoltan Erdos
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - John E Barnum
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Erjia Wang
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Christopher DeMaula
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Paritosh Markus Dey
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Thomas Forest
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Wendy J Bailey
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Warren E Glaab
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19486
| |
Collapse
|
90
|
Sutaria DS, Jiang J, Azevedo-Pouly AC, Wright L, Bray JA, Fredenburg K, Liu X, Lu J, Torres C, Mancinelli G, Grippo PJ, Coppola V, Schmittgen TD. Knockout of Acinar Enriched microRNAs in Mice Promote Duct Formation But Not Pancreatic Cancer. Sci Rep 2019; 9:11147. [PMID: 31367007 PMCID: PMC6668398 DOI: 10.1038/s41598-019-47566-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The pancreatic acinar-enriched miR-216a, miR-216b and miR-217 are encoded within the miR217HG. These miRNAs have been purported to play a tumor suppressive role as their expression is reduced in both human and mouse pancreatic ductal adenocarcinoma (PDAC). To examine this possibility, we generated individual, germline knockout (KO) mice of miR-216a, miR-216b or miR-217. Unlike our previous study showing germline deletion of the miR217HG was embryonic lethal, CRISPR-Cas9 deleted portions of the 5' seed region of the miRNAs produced live births. To investigate possible phenotypes during pancreatic acinar ductal metaplasia (ADM), pancreatic acini from wild type and KO mice were plated on collagen and allowed to transdifferentiate over 4 days. Acini from each of the three miRNA KO mice produced greater numbers of ducts compared to controls. Evaluation of the gene expression during in vitro ADM demonstrated an increase in Krt19 and a reduction in acinar genes (Carboxypeptidase A1, Amylase2a) on day 4 of the transdifferentiation. Recovery was delayed for the miR-216a and miR-216b KOs following caerulein-induced acute pancreatitis. Also predominate in the caerulein treated miR-216a and miR-216b KO mice was the presence of pancreatic duct glands (PDGs). To further establish a phenotype, miRNA KO mice were crossed with EL-KRASG12D (EK) mice and followed up to 13 months of age. While all mice developed severe dysplasia and cystic papillary neoplasms, there existed no apparent phenotypic difference in the miRNA KO/EK mice compared to EK mice. Our data does not support a tumor suppressor role for miR-216a, miR-216b or miR-217 in PDAC and emphasizes the need for phenotypic evaluation of miRNAs in complex in vivo models beyond that performed using cell culture.
Collapse
Affiliation(s)
- Dhruvitkumar S Sutaria
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Clara Azevedo-Pouly
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Lais Wright
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A Bray
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Xiuli Liu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital University, Beijing, China
| | - Carolina Torres
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
91
|
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y, Chen S. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:310. [PMID: 31307515 PMCID: PMC6631643 DOI: 10.1186/s13046-019-1313-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022]
Abstract
Background Exosomes from cancer cells or immune cells, carrying bio-macromolecules or microRNAs (miRNAs), participate in tumor pathogenesis and progression by modulating microenvironment. Our study aims to investigate the role of these microRNA-501-3p (miR-501-3p) containing exosomes derived from tumor-associated macrophage (TAM) in the progression of pancreatic ductal adenocarcinoma (PDAC). Methods Firstly, the function of TAM recruitment in PDAC tissues was assessed, followed by identification of the effects of M2 macrophage-derived exosomes on PDAC cell activities and tumor formation and metastasis in mice. In silico analysis was conducted to predict differentially expressed genes and regulatory miRNAs related to PDAC treated with macrophages, which determined miR-501-3p and TGFBR3 for subsequent experiments. Next, gain- and loss-of-function experiments were performed to examine their role in PDAC progression with the involvement of the TGF-β signaling pathway. Results TAM recruitment in PDAC tissues was associated with metastasis. Highly expressed miR-501-3p was observed in PDAC tissues and TAM-derived exosomes. Both M2 macrophage-derived exosomes and miR-501-3p promoted PDAC cell migration and invasion, as well as tumor formation and metastasis in nude mice. MiR-501-3p was verified to target TGFBR3. PDAC cells presented with down-regulated TGFBR3, which was further decreased in response to M2 macrophage treatment. TGF-β signaling pathway activation was implicated in the promotion of miR-501-3p in PDAC development. The suppression of macrophage-derived exosomal miR-501-3p resulted in the inhibition of tumor formation and metastasis in vivo. Conclusion M2 macrophage-derived exosomal miR-501-3p inhibits tumor suppressor TGFBR3 gene and facilitates the development of PDAC by activating the TGF-β signaling pathway, which provides novel targets for the molecular treatment of PDAC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1313-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zi Yin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Tingting Ma
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Lehang Lin
- Medical Research Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yu Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Jinhai Yan
- Pathology Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yiping Zou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Sheng Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
92
|
Javid H, Soltani A, Mohammadi F, Hashemy SI. Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. J Cell Biochem 2019; 120:10874-10883. [PMID: 30719752 DOI: 10.1002/jcb.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
93
|
Diaz-Riascos ZV, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L, Cordelier P, Capellá G. Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:491-503. [PMID: 31336236 PMCID: PMC6656921 DOI: 10.1016/j.omtn.2019.06.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs from the miR-200 family are commonly associated with the inhibition of the metastatic potential of cancer cells, following inhibition of ZEB transcription factors expression and epithelial-to-mesenchymal transition. However, previous studies performed in pancreatic adenocarcinoma revealed a more complex picture challenging this canonical model. To gain better insights into the role of miR-200 family members in this disease, we analyzed the expression of miR-200a, miR-200b, miR-200c, miR-141, miR-429, and miR-205, and ZEB1, ZEB2, and CDH1 in pancreatic tumors and matching normal adjacent parenchyma and patient-derived xenografts. We found that miR-200a, miR-429, and miR-205 are frequently overexpressed in pancreatic tumors, whereas CDH1 is downregulated, and ZEB1 and ZEB2 levels remain unchanged. Furthermore, we measured a positive correlation between miR-200 family members and CDH1 expression, and a negative correlation between ZEB1 and miR-200c, miR-141, and miR-205 expression, respectively. Interestingly, we identified significant changes in expression of epithelial-to-mesenchymal transition regulators and miR-200 members in patient-derived xenografts. Lastly, functional studies revealed that miR-141 and miR-429 inhibit the tumorigenic potential of pancreatic cancer cells. Taken together, this comprehensive analysis strongly suggests that miRNAs from the miR-200 family, and in particular miR-429, may act as a tumor suppressor gene in pancreatic cancer.
Collapse
Affiliation(s)
- Zamira Vanessa Diaz-Riascos
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mireia M Ginesta
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain
| | - Joan Fabregat
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Serrano
- Department of Pathology, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juli Busquets
- Department of Surgery, Hepatobiliopancreatic Unit, IDIBELL-Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France; Department of Gastroenterology, CHU Toulouse-Rangueil, Toulouse, France
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France.
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Centro de Investigación Biomédica en Red en Cáncer, Madrid, Spain.
| |
Collapse
|
94
|
Felix TF, Lopez Lapa RM, de Carvalho M, Bertoni N, Tokar T, Oliveira RA, M. Rodrigues MA, Hasimoto CN, Oliveira WK, Pelafsky L, Spadella CT, Llanos JC, F. Silva G, Lam WL, Rogatto SR, Amorim LS, Drigo SA, Carvalho RF, Reis PP. MicroRNA modulated networks of adaptive and innate immune response in pancreatic ductal adenocarcinoma. PLoS One 2019; 14:e0217421. [PMID: 31150430 PMCID: PMC6544344 DOI: 10.1371/journal.pone.0217421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Despite progress in treatment strategies, only ~24% of pancreatic ductal adenocarcinoma (PDAC) patients survive >1 year. Our goal was to elucidate deregulated pathways modulated by microRNAs (miRNAs) in PDAC and Vater ampulla (AMP) cancers. Global miRNA expression was identified in 19 PDAC, 6 AMP and 25 paired, histologically normal pancreatic tissues using the GeneChip 4.0 miRNA arrays. Computational approaches were used for miRNA target prediction/identification of miRNA-regulated pathways. Target gene expression was validated in 178 pancreatic cancer and 4 pancreatic normal tissues from The Cancer Genome Atlas (TCGA). 20 miRNAs were significantly deregulated (FC≥2 and p<0.05) (15 down- and 5 up-regulated) in PDAC. miR-216 family (miR-216a-3p, miR-216a-5p, miR-216b-3p and miR-216b-5p) was consistently down-regulated in PDAC. miRNA-modulated pathways are associated with innate and adaptive immune system responses in PDAC. AMP cancers showed 8 down- and 1 up-regulated miRNAs (FDR p<0.05). Most enriched pathways (p<0.01) were RAS and Nerve Growth Factor signaling. PDAC and AMP display different global miRNA expression profiles and miRNA regulated networks/tumorigenesis pathways. The immune response was enriched in PDAC, suggesting the existence of immune checkpoint pathways more relevant to PDAC than AMP.
Collapse
Affiliation(s)
- Tainara F. Felix
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rainer M. Lopez Lapa
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Márcio de Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rogério A. Oliveira
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria A. M. Rodrigues
- Department of Pathology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cláudia N. Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Walmar K. Oliveira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Leonardo Pelafsky
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - César T. Spadella
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juan C. Llanos
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovanni F. Silva
- Department of Clinics and Gastroenterology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wan L. Lam
- Genetics Unity, Integrative Oncology, British Columbia Cancer Center, Vancouver, BC, Canada
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark, DK
| | | | - Sandra A. Drigo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Robson F. Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
95
|
Karimi L, Zeinali T, Hosseinahli N, Mansoori B, Mohammadi A, Yousefi M, Asadi M, Sadreddini S, Baradaran B, Shanehbandi D. miRNA-143 replacement therapy harnesses the proliferation and migration of colorectal cancer cells in vitro. J Cell Physiol 2019; 234:21359-21368. [PMID: 31032951 DOI: 10.1002/jcp.28745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
miR-143 is a tumor suppressor miRNA which its downregulation is frequently reported in colorectal cancer (CRC). This miRNA is a negative regulator of K-RAS, c-MYC, BCL-2, and MMP-9 genes which are engaged in tumor growth and metastasis. In the present study, miR-143 restoration was performed by transfection of the pCMV-miR-143 vector into the SW-480 CRC cells. Subsequently, alterations in proliferative and migratory potential of the cells were investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and wound-healing assays, respectively. Moreover, to detect apoptosis incidence in the transfected cells, 4',6-diamidino-2-phenylindole (DAPI) staining was used. Furthermore, mRNA levels of c-MYC, K-RAS, MMP-9, and BCL-2, as potential targets of miR-143, were assessed by quantitative Real-Time PCR (qRT-PCR). Also the expression levels of c-MYC, K-RAS, and MMP-9 proteins were investigated by the western blot analysis. Finally, the ratio of BAX to BCL-2 expression, as a potential marker of the response to apoptosis stimuli, was compared between the control and test groups. Furthermore, the trypan blue test was performed to determine the cell viability in cell suspension. According to the results, a decreased viability and migratory potential was observed for the miR-143 receiving cells. The DAPI staining also confirmed the occurrence of apoptosis. Moreover, BCL-2, K-RAS, MMP-9, and c-MYC mRNAs were significantly downregulated in the miR-143 grafted cells. The BAX/BCL-2 ratio also indicated a notable increase in the cells with miR-143 overexpression. In brief, miR-143 replacement could be considered as an effective strategy for the management of CRC and attenuating its invasive features.
Collapse
Affiliation(s)
- Leila Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Zeinali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
96
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
97
|
Abstract
Objectives: The aim of this research was to study whether plasma microRNAs (miRNA) can be used for early detection of pancreatic cancer (PC) by analyzing prediagnostic plasma samples collected before a PC diagnosis. Background: PC has a poor prognosis due to late presenting symptoms and early metastasis. Circulating miRNAs are altered in PC at diagnosis but have not been evaluated in a prediagnostic setting. Methods: We first performed an initial screen using a panel of 372 miRNAs in a retrospective case-control cohort that included early-stage PC patients and healthy controls. Significantly altered miRNAs at diagnosis were then measured in an early detection case-control cohort wherein plasma samples in the cases are collected before a PC diagnosis. Carbohydrate antigen 19–9 (Ca 19–9) levels were measured in all samples for comparison. Results: Our initial screen, including 23 stage I-II PC cases and 22 controls, revealed 15 candidate miRNAs that were differentially expressed in plasma samples at PC diagnosis. We combined all 15 miRNAs into a multivariate statistical model, which outperformed Ca 19–9 in receiver-operating characteristics analysis. However, none of the candidate miRNAs, individually or in combination, were significantly altered in prediagnostic plasma samples from 67 future PC patients compared with 132 matched controls. In comparison, Ca 19–9 levels were significantly higher in the cases at <5 years before diagnosis. Conclusion: Plasma miRNAs are altered in PC patients at diagnosis, but the candidate miRNAs found in this study appear late in the course of the disease and cannot be used for early detection of the disease.
Collapse
|
98
|
Ishigami K, Nosho K, Koide H, Kanno S, Mitsuhashi K, Igarashi H, Shitani M, Motoya M, Kimura Y, Hasegawa T, Kaneto H, Takemasa I, Suzuki H, Nakase H. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer. Carcinogenesis 2019; 39:1127-1134. [PMID: 29860474 DOI: 10.1093/carcin/bgy075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
Bile duct cancer is a highly aggressive malignancy wherein early diagnosis is difficult and few treatment options are available. MicroRNA-31 (miR-31) is reported to be related with survival in patients with gastrointestinal cancers; however, the regulatory mechanism of miR-31 and association between miR-31 expression and survival in patients with bile duct cancer cases have not been established. Thus, we evaluated miR-31 expression in bile duct cancer tissues and assessed its relationship with prognosis. Additionally, we examined the effects of several cytokines on miR-31 expression. The study included 81 samples of bile duct cancer tissues. MiR-31 expression in bile duct cancer cells was significantly higher than that in normal bile duct epithelial cells (P = 0.038). There were no significant associations between miR-31 expression and clinical or pathological characteristics, except for tumour size (P = 0.012). In Kaplan-Meier analysis, high miR-31 expression was significantly associated with shorter survival (log-rank test, P = 0.0082). In multivariate Cox regression analysis, high miR-31 expression was significantly associated with prognosis (P = 0.043), independent of clinical or pathological features. Interleukin-6 (IL-6) significantly promoted miR-31 expression and cell proliferation in a dose-dependent manner, and the inhibition of STAT-3 signalling significantly suppressed miR-31 expression and cell proliferation. In conclusion, high expression was significantly associated with poor prognosis in bile duct cancer patients. The IL-6-STAT-3 signalling regulated bile duct cancer cell proliferation and miR-31 expression. Our findings suggest that miR-31 may be a promising biomarker that reflects IL-6 expression in bile duct cancer tissues and predicts poor prognosis.
Collapse
Affiliation(s)
- Keisuke Ishigami
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Hideyuki Koide
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Shinichi Kanno
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Kei Mitsuhashi
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | | | - Masahiro Shitani
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Masayo Motoya
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology and Science, Chuo-ku, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | - Hiroyuki Kaneto
- Department of Gastroenterology, Muroran City General Hospital, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Chuo-ku, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Chuo-ku, Sapporo, Japan
| |
Collapse
|
99
|
Wang L, Wang Z, Huang L, Wu C, Zhang B. MiR-29b suppresses proliferation and mobility by targeting SOX12 and DNMT3b in pancreatic cancer. Anticancer Drugs 2019; 30:281-288. [PMID: 30601190 DOI: 10.1097/cad.0000000000000719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is one of the leading causes of solid carcinoma with the worst survival rate. The reasons for the worst survival rate include the lack of biomarkers for early detection, diagnosis at a late stage, and the limitation of the current therapy. Further study to investigate the underlying molecular mechanism in pancreatic cancer patients is necessary. A previous study showed that the miR-29b expression level is dysregulated, suggesting that it may serve an important function in pancreatic cancer. The CCK8 assay and the colony formation assay were used to detect the proliferation ability of the treated pancreatic cancer cells; a wound-healing assay and a transwell assay were used to test the migration and invasion ability and the interactive action of miR-29b and SOX12 or DNMT3b was examined by a luciferase assay. Cell proliferation, migration, and invasion were attenuated by miR-29b, whereas knockdown of SOX12 and DNMT3b could block SW1990 malignant activity. Further, the double luciferase assay showed that miR-29b can target SOX12 and DNMT3b directly by binding to their 3'-untranslated region. Finally, a rescue experiment was conducted by transfecting miR-29b and SOX12 overexpressed plasmid into cells. Cell proliferation, migration, and invasion inhibition induced by miR-29b were reversed by SOX12 overexpression, and revail of the expression of DNMT3b. MiR-29b suppressed proliferation, migration, and invasion by directly targeting SOX12 and DNMT3b in pancreatic cancer cells, and DNMT3b might be a target gene of SOX12.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Gastroenterology, Yuhuangding Hospital of Yantai, Yantai, China
| | | | | | | | | |
Collapse
|
100
|
Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep 2019; 9:1518. [PMID: 30728365 PMCID: PMC6365501 DOI: 10.1038/s41598-018-35947-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
Transferrin receptor 1 (TFR1) is a transmembrane glycoprotein that allows for transferrin-bound iron uptake in mammalian cells. It is overexpressed in various cancers to satisfy the high iron demand of fast proliferating cells. Here we show that in hepatocellular carcinoma (HCC) TFR1 expression is regulated by miR-148a. Within the TFR1 3′UTR we identified and experimentally validated two evolutionarily conserved miRNA response elements (MREs) for miR-148/152 family members, including miR-148a. Interestingly, analyses of RNA sequencing data from patients with liver hepatocellular carcinoma (LIHC) revealed a significant inverse correlation of TFR1 mRNA levels and miR-148a. In addition, TFR1 mRNA levels were significantly increased in the tumor compared to matched normal healthy tissue, while miR-148a levels are decreased. Functional analysis demonstrated post-transcriptional regulation of TFR1 by miR-148a in HCC cells as well as decreased HCC cell proliferation upon either miR-148a overexpression or TFR1 knockdown. We hypothesize that decreased expression of miR-148a in HCC may elevate transferrin-bound iron uptake, increasing cellular iron levels and cell proliferation.
Collapse
Affiliation(s)
- Kamesh R Babu
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|