51
|
Kurian NK, Modi D. Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet 2019; 36:189-198. [PMID: 30362057 PMCID: PMC6420537 DOI: 10.1007/s10815-018-1343-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles are lipoproteinaceous membrane-enclosed nanometer-sized structures produced by cells and are thought to mediate cellular communications. Loaded with a specific set of miRNA and protein depending on their tissue of origin, these extracellular vesicles modulate diverse set of biological processes in their target tissues. In recent years, data has gathered on the roles of extracellular vesicles in embryo implantation and pregnancy. Embryo, oviduct, endometrial epithelium and stroma/decidua derived vesicles interact with trophoblast cells and promote their growth and differentiation to aid in embryo implantation. The placental vesicles are detected in maternal circulation that aids in feto-maternal immune tolerance, their levels vary in women with pregnancy-related complications like preeclampsia. Beyond the host, the microbes in the genital tract are also reported to produce extracellular vesicles which are thought to be responsible for inflammation and preterm births. This review focuses on the extracellular vesicular trafficking involved in success of pregnancy.
Collapse
Affiliation(s)
- Noble K Kurian
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
52
|
Baysa A, Fedorov A, Kondratov K, Ruusalepp A, Minasian S, Galagudza M, Popov M, Kurapeev D, Yakovlev A, Valen G, Kostareva A, Vaage J, Stensløkken KO. Release of Mitochondrial and Nuclear DNA During On-Pump Heart Surgery: Kinetics and Relation to Extracellular Vesicles. J Cardiovasc Transl Res 2018; 12:184-192. [PMID: 30542983 DOI: 10.1007/s12265-018-9848-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
During heart surgery with cardiopulmonary bypass (CPB), the release of mitochondrial (mtDNA) and nuclear DNA (nDNA) and their association to extracellular vesicles were investigated. In patients undergoing elective coronary artery bypass grafting (CABG, n = 12), blood was sampled before, during, and after surgery from peripheral artery, pulmonary artery, and the coronary sinus. Plasma was separated in three fractions: microvesicles, exosomes, and supernatant. mtDNA and nDNA were measured by qPCR. mtDNA and nDNA levels increased after start of surgery, but before CPB, and increased further during CPB. mtDNA copy number was about 1000-fold higher than nDNA. mtDNA was predominantly localized to the vesicular fractions in plasma, whereas nDNA was predominantly in the supernatant. The amount of free mtDNA increased after surgery. There was no net release or disappearance of DNAs across the pulmonary, systemic, or coronary circulation. Extracellular DNAs, in particular mtDNA, may be important contributors to the whole-body inflammation during CPB.
Collapse
Affiliation(s)
- Anton Baysa
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Postbox 1103, Blindern, 0317, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Anton Fedorov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Kirill Kondratov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Sarkis Minasian
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Maxim Popov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitry Kurapeev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Alexey Yakovlev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Guro Valen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Postbox 1103, Blindern, 0317, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Jarle Vaage
- Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Postbox 1103, Blindern, 0317, Oslo, Norway.
- Center for Heart Failure Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
53
|
Boere J, Malda J, van de Lest CHA, van Weeren PR, Wauben MHM. Extracellular Vesicles in Joint Disease and Therapy. Front Immunol 2018; 9:2575. [PMID: 30483255 PMCID: PMC6240615 DOI: 10.3389/fimmu.2018.02575] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
The use of extracellular vesicles (EVs) as a potential therapy is currently explored for different disease areas. When it comes to the treatment of joint diseases this approach is still in its infancy. As in joint diseases both inflammation and the associated articular tissue destruction are important factors, both the immune-suppressive and the regenerative properties of EVs are potentially advantageous characteristics for future therapy. There is, however, only limited knowledge on the basic features, such as numerical profile and function, of EVs in joint articular tissues in general and their linking medium, the synovial fluid, in particular. Further insight is urgently needed in order to appreciate the full potential of EVs and to exploit these in EV-mediated therapies. Physiologic joint homeostasis is a prerequisite for proper functioning of joints and we postulate that EVs play a key role in the regulation of joint homeostasis and hence can have an important function in re-establishing disturbed joint homeostasis, and, in parallel, in the regeneration of articular tissues. In this mini-review EVs in the joint are explained from a historical perspective in both health and disease, including the potential niche for EVs in articular tissue regeneration. Furthermore, the translational potential of equine models for human joint biology is discussed. Finally, the use of MSC-derived EVs that is recently gaining ground is highlighted and recommendations are given for further EV research in this field.
Collapse
Affiliation(s)
- Janneke Boere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chris H A van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
54
|
Salybekov AA, Salybekova AK, Pola R, Asahara T. Sonic Hedgehog Signaling Pathway in Endothelial Progenitor Cell Biology for Vascular Medicine. Int J Mol Sci 2018; 19:E3040. [PMID: 30301174 PMCID: PMC6213474 DOI: 10.3390/ijms19103040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an important role in embryonic and postnatal vascular development and in maintaining the homeostasis of organs. Under physiological conditions, Sonic Hedgehog (SHH), a secreted protein belonging to the HH family, regulates endothelial cell growth, promotes cell migration and stimulates the formation of new blood vessels. The present review highlights recent advances made in the field of SHH signaling in endothelial progenitor cells (EPCs). The canonical and non-canonical SHH signaling pathways in EPCs and endothelial cells (ECs) related to homeostasis, SHH signal transmission by extracellular vesicles (EVs) or exosomes containing single-strand non-coding miRNAs and impaired SHH signaling in cardiovascular diseases are discussed. As a promising therapeutic tool, the possibility of using the SHH signaling pathway for the activation of EPCs in patients suffering from cardiovascular diseases is further explored.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Ainur K Salybekova
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| |
Collapse
|
55
|
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Front Cell Dev Biol 2018; 6:94. [PMID: 30211159 PMCID: PMC6121069 DOI: 10.3389/fcell.2018.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The blastocyst inner cell mass (ICM) that gives rise to a whole embryo in vivo can be derived and cultured in vitro as embryonic stem cells (ESCs), which retain full developmental potential. ICM cells receive, from diverse sources, complex molecular and spatiotemporal signals that orchestrate the finely-tuned processes associated with embryogenesis. Those instructions come, continuously, from themselves and from surrounding cells, such as those present in the trophectoderm and primitive endoderm (PrE). A key component of the ICM niche are the extracellular vesicles (EVs), produced by distinct cell types, that carry and transfer key molecules that regulate target cells and modulate cell renewal or cell fate. A growing number of studies have demonstrated the extracellular circulation of morphogens, a group of classical regulators of embryo development, are carried by EVs. miRNAs are also an important cargo of the EVs that have been implicated in tissue morphogenesis and have gained special attention due to their ability to regulate protein expression through post-transcriptional modulation, thereby influencing cell phenotype. This review explores the emerging evidence supporting the role of EVs as an additional mode of intercellular communication in early embryonic and ESCs differentiation.
Collapse
Affiliation(s)
- Lilian Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jenny A A Romero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis 2018; 9:701. [PMID: 29899399 PMCID: PMC5999604 DOI: 10.1038/s41419-018-0647-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
The Hedgehog (Hh) signalling pathway is involved in cell differentiation, growth and tissue polarity. This pathway is also involved in the progression and invasion of various human cancers. Osteosarcoma, a subtype of bone cancer, is commonly seen in children and adolescents. Typically, pulmonary osteosarcoma metastases are especially difficult to control. In the present paper, we summarise recent studies on the regulation of osteosarcoma progression and metastasis by downregulating Hh signalling. We also summarise the crosstalk between the Hh pathway and other cancer-related pathways in the tumourigenesis of various cancers. We further summarise and highlight the therapeutic value of potential inhibitors of Hh signalling in the clinical therapy of human cancers.
Collapse
|
57
|
Bellavia D, Raimondi L, Costa V, De Luca A, Carina V, Maglio M, Fini M, Alessandro R, Giavaresi G. Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim Biophys Acta Gen Subj 2018; 1862:1893-1901. [PMID: 29885361 DOI: 10.1016/j.bbagen.2018.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine. SCOPE OF REVIEW The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system. MAJOR CONCLUSIONS The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine. GENERAL SIGNIFICANCE However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.
Collapse
Affiliation(s)
- D Bellavia
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy.
| | - L Raimondi
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto ortopedico Rizzoli, Bologna, Italy
| | - M Maglio
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - M Fini
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - R Alessandro
- Department of Biopathology and Medical Biotechnologies, Section of Biology and Genetics, University of Palermo, Palermo 90133, Italy; Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - G Giavaresi
- IRCCS Istituto ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
58
|
From intra- to extracellular vesicles: extracellular vesicles in developmental signalling. Essays Biochem 2018; 62:215-223. [DOI: 10.1042/ebc20180001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.
Collapse
|
59
|
Abstract
Spatial organization of membrane domains within cells and cells within tissues is key to the development of organisms and the maintenance of adult tissue. Cell polarization is crucial for correct cell-cell signalling, which, in turn, promotes cell differentiation and tissue patterning. However, the mechanisms linking internal cell polarity to intercellular signalling are just beginning to be unravelled. The Hedgehog (Hh) and Wnt pathways are major directors of development and their malfunction can cause severe disorders like cancer. Here we discuss parallel advances into understanding the mechanism of Hedgehog and Wnt signal dissemination and reception. We hypothesize that cell polarization of the signal-sending and signal-receiving cells is crucial for proper signal spreading and activation of the pathway and, thus, fundamental for development of multicellular organisms.
Collapse
|
60
|
Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE -/- mice. Int J Cardiol 2018; 265:181-187. [PMID: 29685689 DOI: 10.1016/j.ijcard.2018.04.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Vasa vasorum (VV) angiogenesis is increased in type 2 diabetes mellitus (T2DM) and may promote atherosclerotic plaque rupture. We sought to determine whether insulin resistance adipocyte-derived exosomes (IRADEs) played a major role in modulating VV angiogenesis and the mechanisms involved. METHODS The characterization of IRADEs was performed by electron microscopy, NTA (Nanoparticle Tracking Analysis) and western blot. The cellular effects of IRADEs on angiogenesis were explored in human umbilical vein endothelial cells (HUVECs) and murine aortic endothelial cells (MAECs) in vitro. The roles of IRADEs in angiogenesis were demonstrated with aortic ring and matrigel plug assays ex vivo and the plaque burden, plaque stability and angiogenesis-related protein expression in vivo were evaluated by ultrasonography, immunohistochemistry and western blot. RESULTS The IRADEs had a cup-shaped morphology, could be taken up by HUVECs and atherosclerotic plaques, and promoted tube formation by shh in vitro. In the aortic ring and matrigel plug assays, angiogenesis was significantly increased in the IRADEs group. Exogenously administered shh-containing IRADEs increased VV angiogenesis, the plaque burden, the vulnerability index and the expression of angiogenesis-related factors, whereas these effects were attenuated by silencing shh in IRADEs. CONCLUSIONS In conclusion, IRADEs promote plaque burden and plaque vulnerability partly by inducing VV angiogenesis, which occurs partly through shh. Accordingly, the application of IRADEs may serve as a novel therapeutic approach to treat diabetic atherosclerosis.
Collapse
|
61
|
Sanchez MA, Sullivan GM, Armstrong RC. Genetic detection of Sonic hedgehog (Shh) expression and cellular response in the progression of acute through chronic demyelination and remyelination. Neurobiol Dis 2018; 115:145-156. [PMID: 29627579 DOI: 10.1016/j.nbd.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 04/01/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis is a demyelinating disease in which neurological deficits result from damage to myelin, axons, and neuron cell bodies. Prolonged or repeated episodes of demyelination impair remyelination. We hypothesized that augmenting Sonic hedgehog (Shh) signaling in chronically demyelinated lesions could enhance oligodendrogenesis and remyelination. Shh regulates oligodendrocyte development during postnatal myelination, and maintains adult neural stem cells. We used genetic approaches to detect Shh expression and Shh responding cells in vivo. ShhCreERT2 or Gli1CreERT2 mice were crossed to reporter mice for genetic fate-labeling of cells actively transcribing Shh or Gli1, an effective readout of canonical Shh signaling. Tamoxifen induction enabled temporal control of recombination at distinct stages of acute and chronic cuprizone demyelination of the corpus callosum. Gli1 fate-labeled cells were rarely found in the corpus callosum with tamoxifen given during acute demyelination stages to examine activated microglia, reactive astrocytes, or remyelinating cells. Gli1 fate-labeled cells, mainly reactive astrocytes, were observed in the corpus callosum with tamoxifen given after chronic demyelination. However, Shh expressing cells were not detected in the corpus callosum during acute or chronic demyelination. Finally, SAG, an agonist of both canonical and type II non-canonical Hedgehog signaling pathways, was microinjected into the corpus callosum after chronic demyelination. Significantly, SAG delivery increased proliferation and enhanced remyelination. SAG did not increase Gli1 fate-labeled cells in the corpus callosum, which may indicate signaling through the non-canonical Hedgehog pathway. These studies demonstrate that Hedgehog pathway interventions may have therapeutic potential to modulate astrogliosis and to promote remyelination after chronic demyelination.
Collapse
Affiliation(s)
- Maria A Sanchez
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina C Armstrong
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
62
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
63
|
Schürmann S, Steffes G, Manikowski D, Kastl P, Malkus U, Bandari S, Ohlig S, Ortmann C, Rebollido-Rios R, Otto M, Nüsse H, Hoffmann D, Klämbt C, Galic M, Klingauf J, Grobe K. Proteolytic processing of palmitoylated Hedgehog peptides specifies the 3-4 intervein region of the Drosophila wing. eLife 2018. [PMID: 29522397 PMCID: PMC5844694 DOI: 10.7554/elife.33033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell fate determination during development often requires morphogen transport from producing to distant responding cells. Hedgehog (Hh) morphogens present a challenge to this concept, as all Hhs are synthesized as terminally lipidated molecules that form insoluble clusters at the surface of producing cells. While several proposed Hh transport modes tie directly into these unusual properties, the crucial step of Hh relay from producing cells to receptors on remote responding cells remains unresolved. Using wing development in Drosophila melanogaster as a model, we show that Hh relay and direct patterning of the 3–4 intervein region strictly depend on proteolytic removal of lipidated N-terminal membrane anchors. Site-directed modification of the N-terminal Hh processing site selectively eliminated the entire 3–4 intervein region, and additional targeted removal of N-palmitate restored its formation. Hence, palmitoylated membrane anchors restrict morphogen spread until site-specific processing switches membrane-bound Hh into bioactive forms with specific patterning functions. Each cell in a developing embryo receives information that determines what type of body structure it will form. In fruit flies, this information is partly given by a protein called Hedgehog. In the embryo cells that receive it, Hedgehog can trigger a series of events which activate certain genes and thereby regulate structure formation. The Hedgehog proteins are produced by a different organizing group of cells: from there they transport within the embryo, creating a gradient. Depending on where a responding cell is in the embryo, it receives a different amount of Hedgehog, which gives the cell its identity. For example, Hedgehog proteins form a gradient across a fruit fly’s developing wing, which creates a visible vein pattern. How Hedgehog proteins form gradients is enigmatic, however, because once produced, they cling to the cells that created them. The reason for this unusual behavior is that the two ends of the Hedgehog protein are attached to a different fat molecule. In particular, one extremity is linked to a fat molecule called palmitate. These ends’ fatty additions anchor Hedgehog to the cells that produced them. Then, the tethered proteins gather together to form chain-like clusters where they inactivate each other: the extremity with the palmitate ‘hides’ the portion of the neighboring protein that binds to the receiving cells. It is still unclear how Hedgehog can be activated and released to reach these faraway cells. One hypothesis is that an enzyme comes to the clusters and frees the proteins by cutting both of Hedgehog’s fatty anchors. Thanks to how the palmitate tethers Hedgehog to the cell, the protein is positioned in such a way that when the enzyme makes its snip, the binding site on the neighboring Hedgehog gets exposed: this protein is activated and, when also cut by the enzyme, released. Here, Schürmann et al. create an array of mutant Hedgehog proteins – for example some without palmitate, some with palmitate that cannot be removed by the enzyme – and study how they affect the development of the wing’s pattern in the fruit fly. Coupled with the imaging of the clusters, these experiments support the hypothesis that the palmitate anchor is necessary so that Hedgehog proteins can be turned on before diffusing away. The Hedgehog family of proteins is also present in humans, where it presides over the development of the embryo but is also involved in cancer. Understanding how Hedgehog works in the fruit fly could lead to new discoveries in humans too.
Collapse
Affiliation(s)
- Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Georg Steffes
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.,Institute of Neurobiology, University of Münster, Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Ursula Malkus
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Stefanie Ohlig
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Corinna Ortmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | | | - Mandy Otto
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
64
|
Parchure A, Vyas N, Mayor S. Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends Cell Biol 2018; 28:157-170. [PMID: 29132729 PMCID: PMC6941938 DOI: 10.1016/j.tcb.2017.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Morphogens are signaling molecules produced by a localized source, specifying cell fate in a graded manner. The source secretes morphogens into the extracellular milieu to activate various target genes in an autocrine or paracrine manner. Here we describe various secreted forms of two canonical morphogens, the lipid-anchored Hedgehog (Hh) and Wnts, indicating the involvement of multiple carriers in the transport of these morphogens. These different extracellular secreted forms are likely to have distinct functions. Here we evaluate newly identified mechanisms that morphogens use to traverse the required distance to activate discrete paracrine signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; Current address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Neha Vyas
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore 560034, India.
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
| |
Collapse
|
65
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
66
|
Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination. Exp Neurol 2018; 299:122-136. [DOI: 10.1016/j.expneurol.2017.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/23/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022]
|
67
|
Abstract
Signaling pathways direct organogenesis, often through concentration-dependent effects on cells. The hedgehog pathway enables cells to sense and respond to hedgehog ligands, of which the best studied is sonic hedgehog. Hedgehog signaling is essential for development, proliferation, and stem cell maintenance, and it is a driver of certain cancers. Lipid metabolism has a profound influence on both hedgehog signal transduction and the properties of the ligands themselves, leading to changes in the strength of hedgehog signaling and cellular functions. Here we review the evolving understanding of the relationship between lipids and hedgehog signaling.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences (NDCN), Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Department of Neurology, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes, MK6 5LD, UK.
| |
Collapse
|
68
|
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2017; 74:66-77. [PMID: 28807885 DOI: 10.1016/j.semcdb.2017.08.022] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | |
Collapse
|
69
|
Kondratov KA, Petrova TA, Mikhailovskii VY, Ivanova AN, Kostareva AA, Fedorov AV. A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning electron microscopy. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17030051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
70
|
Vyas N, Dhawan J. Exosomes: mobile platforms for targeted and synergistic signaling across cell boundaries. Cell Mol Life Sci 2017; 74:1567-1576. [PMID: 27826642 PMCID: PMC11107587 DOI: 10.1007/s00018-016-2413-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
Abstract
Intercellular communications play a vital role during tissue patterning, tissue repair, and immune reactions, in homeostasis as well as in disease. Exosomes are cell-derived secreted vesicles, extensively studied for their role in intercellular communication. Exosomes have the intrinsic ability to package multiple classes of proteins and nucleic acids within their lumens and on their membranes. Here, we explore the hypothesis that exosomal targeting may represent a cellular strategy that has evolved to deliver specific combinations of signals to specific target cells and influence normal or pathological processes. This review aims to evaluate the available evidence for this hypothesis and to identify open questions whose answers will illuminate our understanding and applications of exosome biology.
Collapse
Affiliation(s)
- Neha Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.
- Molecular Medicine Department, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, Karnataka, 560 034, India.
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Center for Cellular and Molecular Biology, CSIR, Hyderabad, India
| |
Collapse
|
71
|
Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, Buck AH, de Candia P, Chow FWN, Das S, Driedonks TAP, Fernández-Messina L, Haderk F, Hill AF, Jones JC, Van Keuren-Jensen KR, Lai CP, Lässer C, Liegro ID, Lunavat TR, Lorenowicz MJ, Maas SLN, Mäger I, Mittelbrunn M, Momma S, Mukherjee K, Nawaz M, Pegtel DM, Pfaffl MW, Schiffelers RM, Tahara H, Théry C, Tosar JP, Wauben MHM, Witwer KW, Nolte-'t Hoen ENM. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles 2017; 6:1286095. [PMID: 28326170 PMCID: PMC5345583 DOI: 10.1080/20013078.2017.1286095] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/25/2016] [Indexed: 02/07/2023] Open
Abstract
The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Collapse
Affiliation(s)
- Bogdan Mateescu
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zürich) , Zurich , Switzerland
| | - Emma J K Kowal
- Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht , Utrecht , the Netherlands
| | - Sabine Bartel
- Experimental Asthma Research, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL) , Borstel , Germany
| | - Suvendra N Bhattacharyya
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , Budapest , Hungary
| | - Amy H Buck
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | | | - Franklin W N Chow
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Saumya Das
- Cardiovascular Research Institute, Massachusetts General Hospital , Boston , MA , USA
| | - Tom A P Driedonks
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | | | - Franziska Haderk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora , Australia
| | - Jennifer C Jones
- Molecular Immunogenetics & Vaccine Research Section, Vaccine Branch, CCR, NCI , Bethesda , MD , USA
| | | | - Charles P Lai
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu , Taiwan
| | - Cecilia Lässer
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Italia di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo , Palermo , Italy
| | - Taral R Lunavat
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magdalena J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht & Regenerative Medicine Center , Utrecht , the Netherlands
| | - Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School , Boston , MA , USA
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Maria Mittelbrunn
- Instituto de Investigación del Hospital 12 de Octubre , Madrid , Spain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School , Frankfurt am Main , Germany
| | - Kamalika Mukherjee
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Muhammed Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo , Sao Paulo , Brazil
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, VU University Medical Center , Amsterdam , the Netherlands
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich (TUM) Weihenstephan , Freising , Germany
| | - Raymond M Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht , Utrecht , the Netherlands
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical & Health Sciences, Hiroshima University , Hiroshima , Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932 , Paris , France
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Nuclear Research Center, Faculty of Science, Universidad de la República , Montevideo , Uruguay
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology and Department of Neurology, The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
72
|
Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 2017; 27:172-188. [PMID: 27979573 PMCID: PMC5318253 DOI: 10.1016/j.tcb.2016.11.003] [Citation(s) in RCA: 1066] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound carriers with complex cargoes including proteins, lipids, and nucleic acids. While the release of EVs was previously thought to be only a mechanism to discard nonfunctional cellular components, increasing evidence implicates EVs as key players in intercellular and even interorganismal communication. EVs confer stability and can direct their cargoes to specific cell types. EV cargoes also appear to act in a combinatorial manner to communicate directives to other cells. This review focuses on recent findings and knowledge gaps in the area of EV biogenesis, release, and uptake. In addition, we highlight examples whereby EV cargoes control basic cellular functions, including motility and polarization, immune responses, and development, and contribute to diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Alissa M Weaver
- Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University School of Medicine and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
73
|
Simon E, Aguirre-Tamaral A, Aguilar G, Guerrero I. Perspectives on Intra- and Intercellular Trafficking of Hedgehog for Tissue Patterning. J Dev Biol 2016; 4:jdb4040034. [PMID: 29615597 PMCID: PMC5831803 DOI: 10.3390/jdb4040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.
Collapse
Affiliation(s)
- Eléanor Simon
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Gustavo Aguilar
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
74
|
Yao PJ, Petralia RS, Mattson MP. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci 2016; 39:840-850. [PMID: 27865563 PMCID: PMC5148655 DOI: 10.1016/j.tins.2016.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
75
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
76
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
77
|
Sena E, Feistel K, Durand BC. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center. J Dev Biol 2016; 4:jdb4040031. [PMID: 29615594 PMCID: PMC5831802 DOI: 10.3390/jdb4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli). The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh) whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN).
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstr. 30, 70593 Stuttgart, Germany.
| | - Béatrice C Durand
- Institut Curie, Université Paris Sud, INSERM U1021, CNRS UMR3347, Centre Universitaire, Bâtiment 110, F-91405 Orsay Cedex, France.
| |
Collapse
|
78
|
Campbell C, Beug S, Nickerson PEB, Peng J, Mazerolle C, Bassett EA, Ringuette R, Jama FA, Morales C, Christ A, Wallace VA. Sortilin regulates sorting and secretion of Sonic hedgehog. J Cell Sci 2016; 129:3832-3844. [PMID: 27632999 DOI: 10.1242/jcs.183541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that is an essential regulator of patterning and growth. The Shh full-length protein undergoes autocleavage in the endoplasmic reticulum to generate the biologically active N-terminal fragment (ShhN), which is destined for secretion. We identified sortilin (Sort1), a member of the VPS10P-domain receptor family, as a new Shh trafficking receptor. We demonstrate that Sort-Shh interact by performing coimmunoprecipitation and proximity ligation assays in transfected cells and that they colocalize at the Golgi. Sort1 overexpression causes re-distribution of ShhN and, to a lesser extent, of full-length Shh to the Golgi and reduces Shh secretion. We show loss of Sort1 can partially rescue Hedgehog-associated patterning defects in a mouse model that is deficient in Shh processing, and we show that Sort1 levels negatively regulate anterograde Shh transport in axons in vitro and Hedgehog-dependent axon-glial interactions in vivo Taken together, we conclude that Shh and Sort1 can interact at the level of the Golgi and that Sort1 directs Shh away from the pathways that promote its secretion.
Collapse
Affiliation(s)
- Charles Campbell
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Shawn Beug
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Philip E B Nickerson
- Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| | - Jimmy Peng
- Department of Biology, McGill University, 1205 Ave Docteur Penfield Room W4/8, Montreal, Quebec, Canada H3A 1B1 Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7
| | - Chantal Mazerolle
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Erin A Bassett
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Randy Ringuette
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Fadumo A Jama
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Carlos Morales
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, Quebec, Canada H3A 0C7
| | - Annabel Christ
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Valerie A Wallace
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 Vision Science Division, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, 60 Leonard Street, Toronto ON M5T 2S8
| |
Collapse
|
79
|
Eitan E, Petralia RS, Wang YX, Indig FE, Mattson MP, Yao PJ. Probing extracellular Sonic hedgehog in neurons. Biol Open 2016; 5:1086-92. [PMID: 27387534 PMCID: PMC5004615 DOI: 10.1242/bio.019422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023] Open
Abstract
The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Fred E Indig
- Confocal Imaging Facility, Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
80
|
Abstract
In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes – extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling.
Collapse
Affiliation(s)
- Ian John McGough
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Jean-Paul Vincent
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
81
|
Triyatni M, Berger EA, Saunier B. Assembly and release of infectious hepatitis C virus involving unusual organization of the secretory pathway. World J Hepatol 2016; 8:796-814. [PMID: 27429716 PMCID: PMC4937168 DOI: 10.4254/wjh.v8.i19.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/30/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if calnexin (CANX), RAB1 and alpha-tubulin were involved in the production of hepatitis C virus (HCV) particles by baby hamster kidney-West Nile virus (BHK-WNV) cells.
METHODS: Using a siRNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observed in thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.
RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.
CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.
Collapse
|
82
|
Aswad H, Jalabert A, Rome S. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol 2016; 16:32. [PMID: 27038912 PMCID: PMC4818850 DOI: 10.1186/s12896-016-0262-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Fetal bovine serum (FBS) contains a wide range of growth factors, hormones, vitamins, amino acids, fatty acids and trace elements required for cell growth. It was shown that animal sera contain also extracellular vesicles (EVs) with important biological properties; thus we wondered whether EVs present in FBS would influence muscle cell phenotype. EVs were removed from sera by ultracentrifugation (18 h). C2C12, L6 and human primary myoblasts, were grown either in classical media (CM) or in EVs-depleted media. Differentiation was induced by replacing the culture medium either with CM or EV-depleted media. qRT-PCR of relevant genes and miRNA involved in proliferation, differentiation, energy metabolism and EVs formation and secretion were performed. Results Growth of myoblasts in EV-free media during proliferation produces the most unfavorable situation for proper myotube formation, when considering C212 and human myoblasts. Removing EVs from serum committed myoblasts to differentiate precociously (induction of myogenin and decreased expression of myomiR involved in myogenesis). C2C12 and human myoblasts, grown constantly in EV-depleted media during proliferation and differentiation, formed less myotubes than in CM. They had a reduced level of myogenin and a strong increase in myostatin expression, a negative regulator of muscle cell differentiation that affects myotube size. This situation was not reversed when confluent myoblasts were switched to CM for differentiation. Like C2C12 and human cells, L6 formed less myotubes in EVs-depleted media. However, as they do not express myostatin, L6 myotubes were larger and expressed higher level of CKTM2 compared to myotubes grown in CM suggesting that they had reached a higher level of differentiation. Conclusions Researchers studying the role of muscle EVs in culture conditions should consider that depleting EVs from serum alters the phenotype of muscle cells. Interestingly, the cross-talk between myoblasts and myotubes during myogenesis (Forterre 2014, PLoS One. 2014 Jan 2;9(1):e84153) can be recapitulate by using FBS-EVs as well. This implies that EVs can transfer specific signals to cells from unrelated species and that part of serum EV composition is evolutionarily conserved (e.g.; myomiR are detected in FBS-EVs). EVs in body fluids could have an unsuspected function during embryogenesis and in regulation of cellular processes such as hypertrophy and hyperplasia. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hala Aswad
- CarMeN laboratory (INSERM 1060, INRA 1397, INSA), Faculté de Médecine Lyon-Sud, University of Lyon, Chemin du Grand Revoyet, Oullins, 69600, France
| | - Audrey Jalabert
- CarMeN laboratory (INSERM 1060, INRA 1397, INSA), Faculté de Médecine Lyon-Sud, University of Lyon, Chemin du Grand Revoyet, Oullins, 69600, France
| | - Sophie Rome
- CarMeN laboratory (INSERM 1060, INRA 1397, INSA), Faculté de Médecine Lyon-Sud, University of Lyon, Chemin du Grand Revoyet, Oullins, 69600, France.
| |
Collapse
|
83
|
Morton MC, Feliciano DM. Neurovesicles in Brain Development. Cell Mol Neurobiol 2016; 36:409-16. [PMID: 26993505 PMCID: PMC11482443 DOI: 10.1007/s10571-015-0297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
Long before the nervous system is organized into electrically active neural circuits, connectivity emerges between cells of the developing brain through extracellular signals. Extracellular vesicles that shuttle RNA, proteins, and lipids from donor cells to recipient cells are candidates for mediating connectivity in the brain. Despite the abundance of extracellular vesicles during brain development, evidence for their physiological functions is only beginning to materialize. Here, we review evidence of the existence, content, and functions of extracellular vesicles in brain development.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA.
| |
Collapse
|
84
|
Fleury A, Hoch L, Martinez MC, Faure H, Taddei M, Petricci E, Manetti F, Girard N, Mann A, Jacques C, Larghero J, Ruat M, Andriantsitohaina R, Le Lay S. Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway. Sci Rep 2016; 6:23479. [PMID: 27010359 PMCID: PMC4806302 DOI: 10.1038/srep23479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/07/2016] [Indexed: 01/13/2023] Open
Abstract
Hedgehog (Hh) is a critical regulator of adipogenesis. Extracellular vesicles are natural Hh carriers, as illustrated by activated/apoptotic lymphocytes specifically shedding microparticles (MP) bearing the morphogen (MP(Hh+)). We show that MP(Hh+) inhibit adipocyte differentiation and orientate mesenchymal stem cells towards a pro-osteogenic program. Despite a Smoothened (Smo)-dependency, MP(Hh+) anti-adipogenic effects do not activate a canonical Hh signalling pathway in contrast to those elicited either by the Smo agonist SAG or recombinant Sonic Hedgehog. The Smo agonist GSA-10 recapitulates many of the hallmarks of MP(Hh+) anti-adipogenic effects. The adipogenesis blockade induced by MP(Hh+) and GSA-10 was abolished by the Smo antagonist LDE225. We further elucidate a Smo/Lkb1/Ampk axis as the non-canonical Hh pathway used by MP(Hh+) and GSA-10 to inhibit adipocyte differentiation. Our results highlight for the first time the ability of Hh-enriched MP to signal via a non-canonical pathway opening new perspectives to modulate fat development.
Collapse
Affiliation(s)
- Audrey Fleury
- INSERM U1063, Université d'Angers, IBS-IRIS Rue des Capucins, F-49100 Angers, France
| | - Lucile Hoch
- CNRS, UMR-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, 1 Avenue de la Terrasse, F-91198, Gif sur Yvette, France
| | - M Carmen Martinez
- INSERM U1063, Université d'Angers, IBS-IRIS Rue des Capucins, F-49100 Angers, France
| | - Hélène Faure
- CNRS, UMR-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, 1 Avenue de la Terrasse, F-91198, Gif sur Yvette, France
| | - Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Nicolas Girard
- CNRS, UMR-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, 74 Route du Rhin, BP 60024, F-67401 Illkirch, France
| | - André Mann
- CNRS, UMR-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, 74 Route du Rhin, BP 60024, F-67401 Illkirch, France
| | - Caroline Jacques
- INSERM U1063, Université d'Angers, IBS-IRIS Rue des Capucins, F-49100 Angers, France
| | - Jérôme Larghero
- Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire; Inserm UMR1160 et CIC de Biothérapies; Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France
| | - Martial Ruat
- CNRS, UMR-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, 1 Avenue de la Terrasse, F-91198, Gif sur Yvette, France
| | | | - Soazig Le Lay
- INSERM U1063, Université d'Angers, IBS-IRIS Rue des Capucins, F-49100 Angers, France
| |
Collapse
|
85
|
Abstract
INTRODUCTION Application of regenerative medicine strategies for repair of organs/tissue impacted by chronic disease is an active subject for product development. Such methodologies emphasize the role of stem cells as the active biological ingredient. However, recent developments in elucidating mechanisms of action of these therapies have focused on the role of paracrine, 'action-at-a-distance' modus operandi in mediating the ability to catalyze regenerative outcomes without significant site-specific engraftment. A salient component of this secreted regenerative milieu are exosomes: 40-100 nm intraluminal vesicles that mediate transfer of proteins and nucleic acids across cellular boundaries. AREAS COVERED Here, we synthesize recent studies from PubMed and Google Scholar highlighting how cell-based therapeutics and cosmeceutics are transitioning towards the secretome generally and exosomes specifically as a principal modulator of regenerative outcomes. EXPERT OPINION Exosomes contribute to organ development and mediate regenerative outcomes in injury and disease that recapitulate observed bioactivity of stem cell populations. Encapsulation of the active biological ingredients of regeneration within non-living exosome carriers may offer process, manufacturing and regulatory advantages over stem cell-based therapies.
Collapse
|
86
|
Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, Nosov A, Evtushenko V, Filatov M, Malek A. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: Application for prostate cancer diagnostic. Prostate 2016; 76:68-79. [PMID: 26417675 DOI: 10.1002/pros.23101] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however, insufficient diagnostic specificity. Novel complementary diagnostic approaches are greatly needed. MiRNAs are small regulatory RNAs which play an important role in tumorogenesis and are being investigated as a cancer biomarker. In addition to their intracellular regulatory functions, miRNAs are secreted into the extracellular space and can be found in various body fluids, including urine. The stability of extracellular miRNAs is defined by association with proteins, lipoprotein particles, and membrane vesicles. Among the known forms of miRNA packaging, tumour-derived exosome-enclosed miRNAs is thought to reflect the vital activity of cancer cells. The assessment of the exosomal fraction of urinary miRNA may present a new and highly specific method for prostate cancer diagnostics; however, this is challenged by the absence of reliable and inexpensive methods for isolation of exosomes. METHODS Prostate cancer (PC) cell lines and urine samples collected from 35 PC patients and 35 healthy donors were used in the study. Lectins, phytohemagglutinin, and concanavalin A were used to induce agglutination of exosomes. The efficiency of isolation process was evaluated by AFM and DLS assays. The protein content of isolated exosomes was analysed by western blotting. Exosomal RNA was assayed by automated electrophoresis and expression level of selected miRNAs was evaluated by RT-qPCR. The diagnostic potency of the urinary exosomal miRNA assessment was estimated by the ROC method. RESULTS The formation of multi-vesicular agglutinates in urine can be induced by incubation with lectin at a final concentration of 2 mg/ml. These agglutinates contain urinary exosomes and may be pelleted by centrifugation with a relatively low G-force. The analysis of PC-related miRNA in urinary exosomes revealed significant up-regulation of miR-574-3p, miR-141-5p, and miR-21-5p associated with PC. CONCLUSIONS Lectin-induced aggregation is a low-cost and easily performed method for isolation of exosomes from urine. Isolated exosomes can be further analysed in terms of miRNA content. The miRNA profile of urinary exosomes reflects development of prostate cancer and may present a promising diagnostic tool.
Collapse
Affiliation(s)
- Roman Samsonov
- Laboratory of Oncoendocrinology, N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, Russia
- Laboratory of Genetic Engineering, Russian Research Centre for Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tatiana Shtam
- Division of Molecular and Radiation Biophysics, SFBI Petersburg Nuclear Physics Institute, Gatchina, Saint-Petersburg, Russia
| | - Vladimir Burdakov
- Division of Molecular and Radiation Biophysics, SFBI Petersburg Nuclear Physics Institute, Gatchina, Saint-Petersburg, Russia
| | - Andrey Glotov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint-Petersburg, Russia
| | - Evgenia Tsyrlina
- Laboratory of Oncoendocrinology, N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, Russia
| | - Lev Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, Russia
| | - Alexander Nosov
- Department of Urology, N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, Russia
| | - Vladimir Evtushenko
- Laboratory of Genetic Engineering, Russian Research Centre for Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Michael Filatov
- Division of Molecular and Radiation Biophysics, SFBI Petersburg Nuclear Physics Institute, Gatchina, Saint-Petersburg, Russia
| | - Anastasia Malek
- Laboratory of Oncoendocrinology, N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, Russia
- Division of Molecular and Radiation Biophysics, SFBI Petersburg Nuclear Physics Institute, Gatchina, Saint-Petersburg, Russia
- Laboratory of Cell Migration and Invasion, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
87
|
Parchure A, Vyas N, Ferguson C, Parton RG, Mayor S. Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Mol Biol Cell 2015; 26:4700-17. [PMID: 26490120 PMCID: PMC4678025 DOI: 10.1091/mbc.e15-09-0671] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 12/14/2022] Open
Abstract
Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)-dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Neha Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Charles Ferguson
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane St Lucia 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane St Lucia 4072, Australia
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India Institute for Stem Cell Biology and Regenerative Medicine, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
88
|
Fleming J, Chiang C. The Purkinje neuron: A central orchestrator of cerebellar neurogenesis. NEUROGENESIS 2015; 2:e1025940. [PMID: 27604220 PMCID: PMC4973588 DOI: 10.1080/23262133.2015.1025940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 03/02/2015] [Indexed: 11/02/2022]
Abstract
Within the cyto-architecture of the brain is an often complex, but balanced, neuronal circuitry, the successful construction of which relies on the coordinated generation of functionally opposed neurons. Indeed, deregulated production of excitatory/inhibitory interneurons can greatly disrupt the integrity of excitatory/inhibitory neuronal transmission, which is a hallmark of neurodevelopmental disorders such as autism. Recent work has demonstrated that the Purkinje neuron, the central integrator of signaling within the cerebellar system, acts during development to ensure that neurogenesis occurring in spatially opposed domains reaches completion by transmitting the Sonic hedgehog ligand bi-directionally. In addition to a classic role in driving granule cell precursor proliferation, we now know that Purkinje neuron-derived Sonic hedgehog is simultaneously disseminated to the neonatal white matter. Within this neurogenic niche a lineage of Shh-responding stem and progenitor cells expand pools of GABAergic interneuron and astrocyte precursors. These recent findings advance our understanding of how Purkinje neurons function dynamically to oversee completion of a balanced cerebellar circuit.
Collapse
Affiliation(s)
- Jonathan Fleming
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| | - Chin Chiang
- Department of Cell and Developmental Biology; Vanderbilt University ; Nashville TN USA
| |
Collapse
|
89
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
90
|
Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015; 35:69-77. [PMID: 26001269 DOI: 10.1016/j.ceb.2015.04.013] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 02/08/2023]
Abstract
The release of extracellular vesicles (EVs) is a highly conserved process exploited by diverse organisms as a mode of intercellular communication. Vesicles of sizes ranging from 30 to 1000nm, or even larger, are generated by blebbing of the plasma membrane (microvesicles) or formed in multivesicular endosomes (MVEs) to be secreted by exocytosis as exosomes. Exosomes, microvesicles and other EVs contain membrane and cytosolic components that include proteins, lipids and RNAs, a composition that differs related to their site of biogenesis. Several mechanisms are involved in vesicle formation at the plasma membrane or in endosomes, which is reflected in their heterogeneity, size and composition. EVs have significant promise for therapeutics and diagnostics and for understanding physiological and pathological processes all of which have boosted research to find modulators of their composition, secretion and targeting.
Collapse
|