51
|
Seyfoori A, Seyyed Ebrahimi SA, Samiei E, Akbari M. Multifunctional Hybrid Magnetic Microgel Synthesis for Immune-Based Isolation and Post-Isolation Culture of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24945-24958. [PMID: 31268286 DOI: 10.1021/acsami.9b02959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Circulating tumor cells are of utmost importance among various biomarkers in liquid biopsies as a prognosis indicator of metastasis as well as in chemotherapeutic monitoring. This study introduces an efficient tool composed of soft nano/hybrid immune microgels for magnetic isolation of targeted tumor cells. The development process involves the in situ synthesis of magnetic nanoparticles within the three-dimensional matrix of thermoresponsive microgels. Surface modification and anti-EpCAM conjugation are adjusted by changing the temperature, and a conjugation efficiency of around 70% is achieved by using a protein G linker. Anti-EpCAM-conjugated nano/hybrid magnetic microgels are used to isolate EpCAM-expressing breast adenocarcinoma MCF-7 cells from culture media and whole blood with an efficiency of 75 and 70%, respectively. Furthermore, we demonstrate the ability of the hybrid microgels to isolate cancer cells with a purity of 65% and culture the cells post-isolation for further drug studies. The multifunctional hybrid microcarriers reported in this work can be potentially used for continuous monitoring of cancers and in personalized medicine.
Collapse
Affiliation(s)
- Amir Seyfoori
- Advanced Magnetic Materials Research Center, College of Engineering , University of Tehran , Tehran 14399-57131 , Iran
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute , ACECR , Tehran 1665659911 , Iran
| | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, College of Engineering , University of Tehran , Tehran 14399-57131 , Iran
| | | | | |
Collapse
|
52
|
Brungs D, Lochhead A, Iyer A, Illemann M, Colligan P, Hirst NG, Splitt A, Liauw W, Vine KL, Pathmanandavel S, Carolan M, Becker TM, Aghmesheh M, Ranson M. Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology 2019; 51:474-480. [PMID: 31230819 DOI: 10.1016/j.pathol.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Gastroesophageal adenocarcinoma is a common and highly lethal malignancy. Cancer stem cells (CSCs) have a key role in the development and progression of metastatic disease. While expression of CSC markers CD44, CD133 and aldehyde dehydrogenase 1 (ALDH1) in locoregional gastroesophageal cancer is known to be associated with poorer clinical outcomes, the significance of CSC marker expression in distal metastatic disease is unknown. We investigated the clinicopathological and prognostic associations of the CSC markers, CD44, CD133, and ALDH1, on metastatic deposits from gastroesophageal adenocarcinomas, and evaluated the association of CSC expression with urokinase-type plasminogen activator receptor (uPAR) expression. Of the 36 patients included in the study, 16 (44%) were positive for CD44, 13 (36%) were positive for CD133, and 26 (72%) were positive for ALDH1. CD44 expression was significantly associated with poorer overall survival (OS) in univariate [hazard ratio (HR) 2.9, 95% confidence interval (CI) 1.3-6.9, p=0.008] and multivariate analyses (HR 2.5, 95%CI 1.1-6.2, p=0.04). ALDH1 expression was significantly associated with poorer OS in univariate (HR 2.4, 95% CI 1.01-5.7, p=0.04) analysis but was not significant in multivariate analysis. Both CD44 and ALDH1 expression were significantly associated with uPAR expression. We found no association between CD133 expression and OS. CD44 expression on metastatic disease from gastroesophageal adenocarcinomas is an independent prognostic marker associated with poorer OS. These results expand current evidence to support the role of CSCs as biomarkers in metastatic gastroesophageal cancer.
Collapse
Affiliation(s)
- Daniel Brungs
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia.
| | | | - Anita Iyer
- Southern IML Pathology, Wollongong, NSW, Australia
| | - Martin Illemann
- Biotech Research Innovation Centre - BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ashleigh Splitt
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia
| | - Winston Liauw
- Department of Medical Oncology, St George Hospital, Sydney, NSW, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | | | - Martin Carolan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | - Therese M Becker
- CONCERT-Translational Cancer Research Centre, NSW, Australia; School of Medicine, University of Western Sydney, Liverpool, NSW, Australia; South Western Medical School, University of New South Wales, Liverpool, Australia; Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| |
Collapse
|
53
|
Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res 2019; 79:3011-3027. [PMID: 31053634 PMCID: PMC6571042 DOI: 10.1158/0008-5472.can-19-0458] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. The process involves a complex interplay between intrinsic tumor cell properties as well as interactions between cancer cells and multiple microenvironments. The outcome is the development of a nearby or distant discontiguous secondary mass. To successfully disseminate, metastatic cells acquire properties in addition to those necessary to become neoplastic. Heterogeneity in mechanisms involved, routes of dissemination, redundancy of molecular pathways that can be utilized, and the ability to piggyback on the actions of surrounding stromal cells makes defining the hallmarks of metastasis extraordinarily challenging. Nonetheless, this review identifies four distinguishing features that are required: motility and invasion, ability to modulate the secondary site or local microenvironments, plasticity, and ability to colonize secondary tissues. By defining these first principles of metastasis, we provide the means for focusing efforts on the aspects of metastasis that will improve patient outcomes.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Douglas R Hurst
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
54
|
Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts. Clin Exp Metastasis 2019; 36:393-409. [PMID: 31190270 DOI: 10.1007/s10585-019-09977-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
Blood samples, bone marrow, tumours and metastases where possible were collected from SCID mice bearing orthotopic xenografts of the triple-negative MDA-MB-468 cell line or a transplantable ER-positive patient derived xenograft (ED-03), and assessed using human-specific, tandem-nested RT-qPCR for markers relating to detection of circulating (CTCs) and disseminated tumour cells (DTCs), breast cancer clinicopathology, the 'cancer stem cell' phenotype, metabolism, hypoxia and epithelial-mesenchymal plasticity (EMP). Increased levels of SNAI1, ILK, NOTCH1, CK20, and PGR, and a decrease/loss of EPCAM in CTCs/DTCs were observed relative to the primary xenograft across both models. Decreased CD24 and EGFR was restricted to the MDA-MB-468 model, while increased TFF1 was seen in the ED-03 model. The major metabolic regulator PPARGC1A, and several hypoxia-related markers (HIF1A, APLN and BNIP3) were significantly elevated in both models. Increased expression of mesenchymal markers including SNAI1 was seen across both models, however CDH1 did not decrease concordantly, and several other epithelial markers were increased, suggesting an uncoupling of EMP to produce an EMP hybrid or partial-EMT. Single cell analysis of ED-03 CTCs, although limited, indicated uncoupling of the EMP axis in single hybrid cells, rather than distinct pools of epithelial or mesenchymal-enriched cells, however dynamic heterogeneity between CTCs/DTCs cannot be ruled out. Reduced CD24 expression was observed in the MDA-MB-468 CTCs, consistent with the 'breast cancer stem cell' phenotype, and metastatic deposits in this model mostly resembled the primary xenografts, consistent with the mesenchymal-epithelial transition paradigm.
Collapse
|
55
|
Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res 2019; 11:5271-5291. [PMID: 31239778 PMCID: PMC6559244 DOI: 10.2147/cmar.s170380] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, new therapeutic options have become available for prostate cancer (PC) patients, generating an urgent need for better biomarkers to guide the choice of therapy and monitor treatment response. Liquid biopsies, including circulating tumor cells (CTCs), circulating nucleic acids, and exosomes, have been developed as minimally invasive assays allowing oncologists to monitor PC patients with real-time cellular or molecular information. While CTC counts remain the most extensively validated prognostic biomarker to monitor treatment response, recent advances demonstrate that CTC morphology and androgen receptor characterization can provide additional information to guide the choice of treatment. Characterization of cell-free DNA (cfDNA) is another rapidly emerging field with novel technologies capable of monitoring the evolution of treatment relevant alterations such as those in DNA damage repair genes for poly (ADP-ribose) polymerase (PARP) inhibition. In addition, several new liquid biopsy fields are emerging, including the characterization of heterogeneity, CTC RNA sequencing, the culture and xenografting of CTCs, and the characterization of extracellular vesicles (EVs) and circulating microRNAs. This review describes the clinical utilization of liquid biopsies in the management of PC patients and emerging liquid biopsy technologies with the potential to advance personalized cancer therapy.
Collapse
Affiliation(s)
- Yi-Tsung Lu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin Delijani
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew Mecum
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling. Int J Mol Sci 2019; 20:ijms20081916. [PMID: 31003475 PMCID: PMC6514876 DOI: 10.3390/ijms20081916] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022] Open
Abstract
Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.
Collapse
|
57
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
58
|
Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochem Pharmacol 2019; 162:169-176. [DOI: 10.1016/j.bcp.2018.11.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
|
59
|
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A 2019; 116:2232-2236. [PMID: 30674677 PMCID: PMC6369805 DOI: 10.1073/pnas.1814102116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks. The system is based on a microfluidic cell sorting chip connected serially to an unanesthetized mouse via an implanted arteriovenous shunt. Pneumatically controlled microfluidic valves capture CTCs as they flow through the device, and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over 4 days of treatment with the BET inhibitor JQ1 using single-cell RNA sequencing (scRNA-Seq) and show that our approach eliminates potential biases driven by intermouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs evolve over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis.
Collapse
|
60
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
61
|
Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers (Basel) 2018; 11:cancers11010019. [PMID: 30586936 PMCID: PMC6356998 DOI: 10.3390/cancers11010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
The main cause of death from cancer is associated with the development of metastases, resulting from the inability of current therapies to cure patients at metastatic stages. Generating preclinical models to better characterize the evolution of the disease is thus of utmost importance, in order to implement effective new cancer biomarkers and therapies. Circulating Tumor Cells (CTCs) are good candidates for generating preclinical models, making it possible to follow up the spatial and temporal heterogeneity of tumor tissues. This method is a non-invasive liquid biopsy that can be obtained at any stage of the disease. It partially summarizes the molecular heterogeneity of the corresponding tumors at a given time. Here, we discuss the CTC-derived models that have been generated so far, from simplified 2D cultures to the most complex CTC-derived explants (CDX models). We highlight the challenges and strengths of these preclinical tools, as well as some of the recent studies published using these models.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- RNA and Molecular Pathology Research Group, Department of Medical Biology, The Artic University of Norway, N-9037 Tromsø, Norway.
| | - Denis Cochonneau
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Marie Cadé
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Camille Jubellin
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Marie-Françoise Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Dominique Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
- Department of Oncology & Metabolism, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
62
|
Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22:5776-5786. [PMID: 30255991 PMCID: PMC6237612 DOI: 10.1111/jcmm.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Buqing Sai
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Juanjuan Xiang
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaHunanChina
| |
Collapse
|
63
|
Vishnoi M, Boral D, Liu H, Sprouse ML, Yin W, Goswami-Sewell D, Tetzlaff MT, Davies MA, Oliva ICG, Marchetti D. Targeting USP7 Identifies a Metastasis-Competent State within Bone Marrow-Resident Melanoma CTCs. Cancer Res 2018; 78:5349-5362. [PMID: 30026332 PMCID: PMC6139068 DOI: 10.1158/0008-5472.can-18-0644] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/12/2018] [Accepted: 07/13/2018] [Indexed: 02/03/2023]
Abstract
Systemic metastasis is the major cause of death from melanoma, the most lethal form of skin cancer. Although most patients with melanoma exhibit a substantial gap between onset of primary and metastatic tumors, signaling mechanisms implicated in the period of metastatic latency remain unclear. We hypothesized that melanoma circulating tumor cells (CTC) home to and reside in the bone marrow during the asymptomatic phase of disease progression. Using a strategy to deplete normal cell lineages (Lin-), we isolated CTC-enriched cell populations from the blood of patients with metastatic melanoma, verified by the presence of putative CTCs characterized by melanoma-specific biomarkers and upregulated gene transcripts involved in cell survival and prodevelopment functions. Implantation of Lin- population in NSG mice (CTC-derived xenografts, i.e., CDX), and subsequent transcriptomic analysis of ex vivo bone marrow-resident tumor cells (BMRTC) versus CTC identified protein ubiquitination as a significant regulatory pathway of BMRTC signaling. Selective inhibition of USP7, a key deubiquinating enzyme, arrested BMRTCs in bone marrow locales and decreased systemic micrometastasis. This study provides first-time evidence that the asymptomatic progression of metastatic melanoma can be recapitulated in vivo using patient-isolated CTCs. Furthermore, these results suggest that USP7 inhibitors warrant further investigation as a strategy to prevent progression to overt clinical metastasis.Significance: These findings provide insights into mechanism of melanoma recurrence and propose a novel approach to inhibit systematic metastatic disease by targeting bone marrow-resident tumor cells through pharmacological inhibition of USP7.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5349/F1.large.jpg Cancer Res; 78(18); 5349-62. ©2018 AACR.
Collapse
Affiliation(s)
- Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Haowen Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | | | - Michael T Tetzlaff
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
64
|
Kitz J, Lowes LE, Goodale D, Allan AL. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel) 2018; 8:E30. [PMID: 29710776 PMCID: PMC6023422 DOI: 10.3390/diagnostics8020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Lori E Lowes
- Flow Cytometry and Special Hematology, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Lawson Health Research Institute, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
65
|
Magbanua MJM, Rugo HS, Wolf DM, Hauranieh L, Roy R, Pendyala P, Sosa EV, Scott JH, Lee JS, Pitcher B, Hyslop T, Barry WT, Isakoff SJ, Dickler M, Van't Veer L, Park JW. Expanded Genomic Profiling of Circulating Tumor Cells in Metastatic Breast Cancer Patients to Assess Biomarker Status and Biology Over Time (CALGB 40502 and CALGB 40503, Alliance). Clin Cancer Res 2018; 24:1486-1499. [PMID: 29311117 PMCID: PMC5856614 DOI: 10.1158/1078-0432.ccr-17-2312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/18/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Purpose: We profiled circulating tumor cells (CTCs) to study the biology of blood-borne metastasis and to monitor biomarker status in metastatic breast cancer (MBC).Methods: CTCs were isolated from 105 patients with MBC using EPCAM-based immunomagnetic enrichment and fluorescence-activated cells sorting (IE/FACS), 28 of whom had serial CTC analysis (74 samples, 2-5 time points). CTCs were subjected to microfluidic-based multiplex QPCR array of 64 cancer-related genes (n = 151) and genome-wide copy-number analysis by array comparative genomic hybridization (aCGH; n = 49).Results: Combined transcriptional and genomic profiling showed that CTCs were 26% ESR1-ERBB2-, 48% ESR1+ERBB2-, and 27% ERBB2+ Serial testing showed that ERBB2 status was more stable over time compared with ESR1 and proliferation (MKI67) status. While cell-to-cell heterogeneity was observed at the single-cell level, with increasingly stable expression in larger pools, patient-specific CTC expression "fingerprints" were also observed. CTC copy-number profiles clustered into three groups based on the extent of genomic aberrations and the presence of large chromosomal imbalances. Comparative analysis showed discordance in ESR1/ER (27%) and ERBB2/HER2 (23%) status between CTCs and matched primary tumors. CTCs in 65% of the patients were considered to have low proliferation potential. Patients who harbored CTCs with high proliferation (MKI67) status had significantly reduced progression-free survival (P = 0.0011) and overall survival (P = 0.0095) compared with patients with low proliferative CTCs.Conclusions: We demonstrate an approach for complete isolation of EPCAM-positive CTCs and downstream comprehensive transcriptional/genomic characterization to examine the biology and assess breast cancer biomarkers in these cells over time. Clin Cancer Res; 24(6); 1486-99. ©2018 AACR.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California.
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Louai Hauranieh
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center and Computational Biology and Informatics, University of California at San Francisco, San Francisco, California
| | - Praveen Pendyala
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Eduardo V Sosa
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Janet H Scott
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Jin Sun Lee
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California
| | - Brandelyn Pitcher
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Terry Hyslop
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - William T Barry
- Alliance Statistics and Data Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Maura Dickler
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Van't Veer
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - John W Park
- Division of Hematology/Oncology, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
66
|
Brungs D, Lynch D, Luk AWS, Minaei E, Ranson M, Aghmesheh M, Vine KL, Carolan M, Jaber M, de Souza P, Becker TM. Cryopreservation for delayed circulating tumor cell isolation is a valid strategy for prognostic association of circulating tumor cells in gastroesophageal cancer. World J Gastroenterol 2018; 24:810-818. [PMID: 29467551 PMCID: PMC5807939 DOI: 10.3748/wjg.v24.i7.810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To demonstrate the feasibility of cryopreservation of peripheral blood mononuclear cells (PBMCs) for prognostic circulating tumor cell (CTC) detection in gastroesophageal cancer.
METHODS Using 7.5 mL blood samples collected in EDTA tubes from patients with gastroesopheagal adenocarcinoma, CTCs were isolated by epithelial cell adhesion molecule based immunomagnetic capture using the IsoFlux platform. Paired specimens taken during the same blood draw (n = 15) were used to compare number of CTCs isolated from fresh and cryopreserved PBMCs. Blood samples were processed within 24 h to recover the PBMC fraction, with PBMCs used for fresh analysis immediately processed for CTC isolation. Cryopreservation of PBMCs lasted from 2 wk to 25.2 mo (median 14.6 mo). CTCs isolated from pre-treatment cryopreserved PBMCs (n = 43) were examined for associations with clinicopathological variables and survival outcomes.
RESULTS While there was a significant trend to a decrease in CTC numbers associated with cryopreserved specimens (mean number of CTCs 34.4 vs 51.5, P = 0.04), this was predominately in samples with a total CTC count of > 50, with low CTC count samples less affected (P = 0.06). There was no significant association between the duration of cryopreservation and number of CTCs. In cryopreserved PBMCs from patient samples prior to treatment, a high CTC count (> 17) was associated with poorer overall survival (OS) (n = 43, HR = 4.4, 95%CI: 1.7-11.7, P = 0.0013). In multivariate analysis, after controlling for sex, age, stage, ECOG performance status, and primary tumor location, a high CTC count remained significantly associated with a poorer OS (HR = 3.7, 95%CI: 1.2-12.4, P = 0.03).
CONCLUSION PBMC cryopreservation for delayed CTC isolation is a valid strategy to assist with sample collection, transporting and processing.
Collapse
Affiliation(s)
- Daniel Brungs
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- School of Biological Sciences, University of Wollongong, Wollongong 2500, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - David Lynch
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
- Centre for Circulating Tumor Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney 2170, Australia
| | - Alison WS Luk
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Elahe Minaei
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- School of Biological Sciences, University of Wollongong, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- School of Biological Sciences, University of Wollongong, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- School of Biological Sciences, University of Wollongong, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Martin Carolan
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Mouhannad Jaber
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong 2500, Australia
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
| | - Paul de Souza
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
- Centre for Circulating Tumor Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney 2170, Australia
- School of Medicine, University of Western Sydney, Sydney 2170, Australia
- South Western Medical School, University of New South Wales, Sydney 2170, Australia
| | - Therese M Becker
- CONCERT-Translational Cancer Research Centre, New South Wales 2000, Australia
- Centre for Circulating Tumor Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney 2170, Australia
- School of Medicine, University of Western Sydney, Sydney 2170, Australia
- South Western Medical School, University of New South Wales, Sydney 2170, Australia
| |
Collapse
|
67
|
Paschall AV, Yang D, Lu C, Redd PS, Choi JH, Heaton CM, Lee JR, Nayak-Kapoor A, Liu K. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype. Oncotarget 2018; 7:78698-78712. [PMID: 27659530 PMCID: PMC5346671 DOI: 10.18632/oncotarget.12168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jeong-Hyeon Choi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Jeffrey R Lee
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
68
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
69
|
Gambara G, Gaebler M, Keilholz U, Regenbrecht CRA, Silvestri A. From Chemotherapy to Combined Targeted Therapeutics: In Vitro and in Vivo Models to Decipher Intra-tumor Heterogeneity. Front Pharmacol 2018; 9:77. [PMID: 29491834 PMCID: PMC5817069 DOI: 10.3389/fphar.2018.00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH) for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (micro)environment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D) cell cultures and patient-derived tumor xenografts (PDX) as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.
Collapse
Affiliation(s)
- Guido Gambara
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Gaebler
- Department of Interdisciplinary Oncology, HELIOS Klinikum Berlin-Buch GmbH, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
70
|
Abraham J, Singh S, Joshi S. Liquid biopsy - emergence of a new era in personalized cancer care. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s41241-018-0053-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Yeh PY, Chen YR, Wang CF, Chang YC. Promoting Multivalent Antibody–Antigen Interactions by Tethering Antibody Molecules on a PEGylated Dendrimer-Supported Lipid Bilayer. Biomacromolecules 2018; 19:426-437. [DOI: 10.1021/acs.biomac.7b01515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Po-Ying Yeh
- Genomics Research
Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
- Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Yih-Ruey Chen
- Genomics Research
Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
| | - Chien-Fang Wang
- Genomics Research
Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
| | - Ying-Chih Chang
- Genomics Research
Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
| |
Collapse
|
72
|
Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, Wong AS, Han RP. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018; 150:112-124. [DOI: 10.1016/j.biomaterials.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
|
73
|
Wang G, Benasutti H, Jones JF, Shi G, Benchimol M, Pingle S, Kesari S, Yeh Y, Hsieh LE, Liu YT, Elias A, Simberg D. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids Surf B Biointerfaces 2018; 161:200-209. [PMID: 29080504 PMCID: PMC5726926 DOI: 10.1016/j.colsurfb.2017.10.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells found in blood of metastatic cancer patients. There is a need for inexpensive technologies for fast enrichment of CTCs from large blood volumes. Previous data showed that antibody-conjugated lipid shell immuno-microbubbles (MBs) bind and isolate cells from biological fluids by flotation. Here, blood-stable MBs targeted to several surface markers for isolation of breast tumor cells were developed. MBs coated with anti-human EpCAM antibodies showed efficient binding of EpCAM+ breast cancer cell lines SKBR-3, MCF-7, and MDA-MB-453, whereas anti-human EGFR MBs showed binding of EpCAMLOW/NEGATIVE cell lines MDA-MB-231 and BT-549. Multitargeted anti-human EpCAM/EGFR MBs bound all cell lines with over 95% efficiency. Highly concentrated MB-bound tumor cells were collected in a microliter volume via an inverted vacuum-assisted harvesting setup. Using anti-EpCAM and/or anti-EpCAM/EGFR MBs, an efficient (70-90%) recovery and fast (30min) isolation of the above-mentioned cells and cell clusters was achieved from 7.5mL of spiked human blood. Using anti-EpCAM MBs and anti-EpCAM/EGFR MBs, cytokeratin-positive, CD45-negative CTCs were detected in 62.5% (10/16) of patients with metastatic breast cancer and CTC clusters were detected in 41.7% (5/12) of CTC-positive samples. Moreover, in some samples MBs isolated cytokeratin positive, CD45 negative tumor-derived microparticles. None of these structures were detected in blood from non-epithelial malignancies. The fast and inexpensive multitargeted platform for batch isolation of CTCs can promote research and clinical applications involving primary tumors and metastases.
Collapse
Affiliation(s)
- Guankui Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Halli Benasutti
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Jessica F Jones
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Guixin Shi
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Michael Benchimol
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Sandeep Pingle
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Yasan Yeh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Li-En Hsieh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Yu-Tsueng Liu
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| | - Anthony Elias
- University of Colorado Cancer Center, Breast & Sarcoma Programs, Department of Medicine, University of Colorado, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA.
| |
Collapse
|
74
|
Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, Ji X, Wang YA, Styblo T, O'Regan R, Mao H, Yang L. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 2017; 152:47-62. [PMID: 29107218 DOI: 10.1016/j.biomaterials.2017.10.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022]
Abstract
Heterogeneous tumor cells, high incidence of tumor recurrence, and decrease in overall survival are the major challenges for the treatment of chemo-resistant breast cancer. Results of our study showed differential chemotherapeutic responses among breast cancer patient derived xenograft (PDX) tumors established from the same patients. All doxorubicin (Dox)-resistant tumors expressed higher levels of cancer stem-like cell biomarkers, including CD44, Wnt and its receptor LRP5/6, relative to Dox-sensitive tumors. To effectively treat resistant tumors, we developed an ultra-small magnetic iron oxide nanoparticle (IONP) drug carrier conjugated with peptides that are dually targeted to Wnt/LRP5/6 and urokinase plasminogen activator receptor (uPAR). Our results showed that simultaneous binding to LRP5/6 and uPAR by the dual receptor targeted IONPs was required to inhibit breast cancer cell invasion. Molecular analysis revealed that the dual receptor targeted IONPs significantly inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumor cells, with marked reduction of Wnt ligand, CD44 and uPAR. Systemic administration of the dual targeted IONPs led to nanoparticle-drug delivery into PDX tumors, resulting in stronger tumor growth inhibition compared to non-targeted or single-targeted IONP-Dox in a human breast cancer PDX model. Therefore, co-targeting Wnt/LRP and uPAR using IONP drug carriers is a promising therapeutic approach for effective drug delivery to chemo-resistant breast cancer.
Collapse
Affiliation(s)
- Jasmine Miller-Kleinhenz
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiangxue Guo
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiping Qian
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongyu Zhou
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Erica N Bozeman
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Lei Zhu
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Ji
- Ocean Nanotech, San Diego, CA, USA
| | | | - Toncred Styblo
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruth O'Regan
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Winship Cancer Institute, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
75
|
Lampignano R, Yang L, Neumann MHD, Franken A, Fehm T, Niederacher D, Neubauer H. A Novel Workflow to Enrich and Isolate Patient-Matched EpCAM high and EpCAM low/negative CTCs Enables the Comparative Characterization of the PIK3CA Status in Metastatic Breast Cancer. Int J Mol Sci 2017; 18:ijms18091885. [PMID: 28858218 PMCID: PMC5618534 DOI: 10.3390/ijms18091885] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs), potential precursors of most epithelial solid tumors, are mainly enriched by epithelial cell adhesion molecule (EpCAM)-dependent technologies. Hence, these approaches may overlook mesenchymal CTCs, considered highly malignant. Our aim was to establish a workflow to enrich and isolate patient-matched EpCAMhigh and EpCAMlow/negative CTCs within the same blood samples, and to investigate the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutational status within single CTCs. We sequentially processed metastatic breast cancer (MBC) blood samples via CellSearch® (EpCAM-based) and via Parsortix™ (size-based) systems. After enrichment, cells captured in Parsortix™ cassettes were stained in situ for nuclei, cytokeratins, EpCAM and CD45. Afterwards, sorted cells were isolated via CellCelector™ micromanipulator and their genomes were amplified. Lastly, PIK3CA mutational status was analyzed by combining an amplicon-based approach with Sanger sequencing. In 54% of patients′ blood samples both EpCAMhigh and EpCAMlow/negative cells were identified and successfully isolated. High genomic integrity was observed in 8% of amplified genomes of EpCAMlow/negative cells vs. 28% of EpCAMhigh cells suggesting an increased apoptosis in the first CTC-subpopulation. Furthermore, PIK3CA hotspot mutations were detected in both EpCAMhigh and EpCAMlow/negative CTCs. Our workflow is suitable for single CTC analysis, permitting—for the first time—assessment of the heterogeneity of PIK3CA mutational status within patient-matched EpCAMhigh and EpCAMlow/negative CTCs.
Collapse
Affiliation(s)
- Rita Lampignano
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Liwen Yang
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Martin H D Neumann
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
76
|
Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, Hong DS, Tan TZ, Thiery JP, Chang JC, Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun 2017; 8:196. [PMID: 28775303 PMCID: PMC5543046 DOI: 10.1038/s41467-017-00196-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
The enumeration of EpCAM-positive circulating tumor cells (CTCs) has allowed estimation of overall metastatic burden in breast cancer patients. However, a thorough understanding of CTCs associated with breast cancer brain metastasis (BCBM) is necessary for early identification and evaluation of treatment response to BCBM. Here we report that BCBM CTCs is enriched in a distinct sub-population of cells identifiable by their biomarker expression and mutational content. Deriving from a comprehensive analysis of CTC transcriptomes, we discovered a unique "circulating tumor cell gene signature" that is distinct from primary breast cancer tissues. Further dissection of the circulating tumor cell gene signature identified signaling pathways associated with BCBM CTCs that may have roles in potentiating BCBM. This study proposes CTC biomarkers and signaling pathways implicated in BCBM that may be used either as a screening tool for brain micro-metastasis detection or for making rational treatment decisions and monitoring therapeutic response in patients with BCBM.Characterization of CTCs derived from breast cancer patients with brain metastasis (BCBM) may allow for early diagnosis of brain metastasis and/or help for treatment choice and its efficacy. In this study, the authors identify a unique signature, based on patient-derived CTCs transcriptomes, for BCBM- CTCs that is different from primary tumors.
Collapse
Affiliation(s)
- Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Haowen N Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Antonio Scamardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - Tuan Z Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jenny C Chang
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA.
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA.
| |
Collapse
|
77
|
Zhang X, Hofmann S, Rack B, Harbeck N, Jeschke U, Sixou S. Fluorescence Analysis of Vitamin D Receptor Status of Circulating Tumor Cells (CTCS) in Breast Cancer: From Cell Models to Metastatic Patients. Int J Mol Sci 2017. [PMID: 28632174 PMCID: PMC5486139 DOI: 10.3390/ijms18061318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Vitamin D receptor (VDR) expressed in normal breast tissue and breast tumors has been suggested as a new prognostic biomarker in breast cancer (BC). Besides, increasing evidence supports the view that the detection of circulating tumor cells (CTCs) predicts outcome in early and metastatic BC. Consequently, an evaluation of VDR expression in the CTCs of BC patients may allow optimization of their treatment. As an attempt to profile and subtype the CTCs of metastatic patients, we established an innovative fluorescence technique using nine BC cell lines to visualize, define, and compare their individual VDR status. Afterwards, we tested the CTC presence and VDR expression in blood samples (cytospins) collected from 23 metastatic BC patients. The results demonstrated major differences in the VDR levels among the nine cell lines, and VDR positive CTCs were detected in 46% of CTC-positive patients, with a total of 42 CTCs individually analyzed. Due to the limited number of patients in this study, no correlation between VDR expression and BC subtype classification (according to estrogen receptor (ER), progesterone receptor (PR) and HER2) could be determined, but our data support the view that VDR evaluation is a potential new prognostic biomarker to help in the optimization of therapy management for BC patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Simone Hofmann
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Brigitte Rack
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Nadia Harbeck
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Sophie Sixou
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
- Faculty of Pharmacy, University Paul Sabatier Toulouse III, Toulouse cedex 09 31062, France.
| |
Collapse
|
78
|
Werner S, Stenzl A, Pantel K, Todenhöfer T. Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:205-228. [DOI: 10.1007/978-3-319-55947-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
79
|
Abstract
From bacteria to circulating tumor cells, advances in flow cytometry technology are pushing the boundaries of cell biology research.
Collapse
|
80
|
Rossmeisl JH, Hall-Manning K, Robertson JL, King JN, Davalos RV, Debinski W, Elankumaran S. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors. Onco Targets Ther 2017; 10:2077-2085. [PMID: 28442916 PMCID: PMC5396930 DOI: 10.2147/ott.s132964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The expression of the urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-anchored protein family member, and the activity of its ligand, urokinase-type plasminogen activator (uPA), have been associated with the invasive and metastatic potentials of a variety of human brain tumors through their regulation of extracellular matrix degradation. Domesticated dogs develop naturally occurring brain tumors that share many clinical, phenotypic, molecular, and genetic features with their human counterparts, which has prompted the use of the dogs with spontaneous brain tumors as models to expedite the translation of novel brain tumor therapeutics to humans. There is currently little known regarding the role of the uPA system in canine brain tumorigenesis. The objective of this study was to characterize the expression of uPAR and the activity of uPA in canine brain tumors as justification for the development of uPAR-targeted brain tumor therapeutics in dogs. Methods We investigated the expression of uPAR in 37 primary canine brain tumors using immunohistochemistry, Western blotting, real-time quantitative polymerase chain reaction analyses, and by the assay of the activity of uPA using casein–plasminogen zymography. Results Expression of uPAR was observed in multiple tumoral microenvironmental niches, including neoplastic cells, stroma, and the vasculature of canine brain tumors. Relative to normal brain tissues, uPAR protein and mRNA expression were significantly greater in canine meningiomas, gliomas, and choroid plexus tumors. Increased activity of uPA was documented in all tumor types. Conclusions uPAR is overexpressed and uPA activity increased in canine meningiomas, gliomas, and choroid plexus tumors. This study illustrates the potential of uPAR/uPA molecularly targeted approaches for canine brain tumor therapeutics and reinforces the translational significance of canines with spontaneous brain tumors as models for human disease.
Collapse
Affiliation(s)
- John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory.,Department of Small Animal Clinical Sciences.,The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| | - Kelli Hall-Manning
- Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine
| | - John L Robertson
- Veterinary and Comparative Neuro-Oncology Laboratory.,The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC.,Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech
| | - Jamie N King
- Veterinary and Comparative Neuro-Oncology Laboratory.,Department of Small Animal Clinical Sciences
| | - Rafael V Davalos
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC.,Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech
| | - Waldemar Debinski
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| | - Subbiah Elankumaran
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
81
|
Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Mælandsmo GM, Marangoni E, Marine JC, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 2017; 17:254-268. [PMID: 28104906 DOI: 10.1038/nrc.2016.140] [Citation(s) in RCA: 504] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.
Collapse
Affiliation(s)
- Annette T Byrne
- EurOPDX Consortium and are at the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Denis G Alférez
- EurOPDX Consortium and are at the Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4QL, UK
| | - Frédéric Amant
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Daniela Annibali
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joaquín Arribas
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CIBERONC, 08035 Barcelona, Spain
| | - Andrew V Biankin
- EurOPDX Consortium and are at the Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alejandra Bruna
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Eva Budinská
- EurOPDX Consortium and is at the Institute of Biostatistics and Analyses, Faculty of Medicine, and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, 625 00 Brno, Czech Republic
| | - Carlos Caldas
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - David K Chang
- EurOPDX Consortium and are at the Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert B Clarke
- EurOPDX Consortium and are at the Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4QL, UK
| | - Hans Clevers
- Hubrecht Institute, University Medical Centre Utrecht, and Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, The Netherlands
| | - George Coukos
- EurOPDX Consortium and are at Lausanne Branch, Ludwig Institute for Cancer Research at the University of Lausanne, 1066 Lausanne, Switzerland
| | - Virginie Dangles-Marie
- EurOPDX Consortium and is at the Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, and Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France
| | - S Gail Eckhardt
- University of Colorado Cancer Center, Aurora, Colorado 80045, USA
| | - Eva Gonzalez-Suarez
- EurOPDX Consortium and is at the Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Els Hermans
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Manuel Hidalgo
- EurOPDX Consortium and is at Beth Israel Deaconess Medical Center, Boston, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Monika A Jarzabek
- EurOPDX Consortium and are at the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Steven de Jong
- EurOPDX Consortium and is at the University Medical Centre Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Jos Jonkers
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kristel Kemper
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Luisa Lanfrancone
- EurOPDX Consortium and are at the Department of Experimental Oncology, European Institiute of Oncology, 20139 Milan, Italy
| | - Gunhild Mari Mælandsmo
- EurOPDX Consortium and are at Oslo University Hospital, Institute for Cancer Research, 0424 Oslo, Norway
| | - Elisabetta Marangoni
- EurOPDX Consortium and are at Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, France
| | - Jean-Christophe Marine
- EurOPDX Consortium and is at the Laboratory for Molecular Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, and the Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Enzo Medico
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Jens Henrik Norum
- EurOPDX Consortium and are at Oslo University Hospital, Institute for Cancer Research, 0424 Oslo, Norway
| | - Héctor G Palmer
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Daniel S Peeper
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pier Giuseppe Pelicci
- EurOPDX Consortium and are at the Department of Experimental Oncology, European Institiute of Oncology, 20139 Milan, Italy
| | - Alejandro Piris-Gimenez
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Sergio Roman-Roman
- EurOPDX Consortium and are at Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, France
| | - Oscar M Rueda
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Joan Seoane
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CIBERONC, 08035 Barcelona, Spain
| | - Violeta Serra
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Laura Soucek
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Dominique Vanhecke
- EurOPDX Consortium and are at Lausanne Branch, Ludwig Institute for Cancer Research at the University of Lausanne, 1066 Lausanne, Switzerland
| | - Alberto Villanueva
- EurOPDX Consortium and is at the Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology ICO, Bellvitge Biomedical Research Institute IDIBELL, 08098 L'Hospitalet de Llobregat, Barcelona, and Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Andrea Bertotti
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| |
Collapse
|
82
|
Bankaitis K, Borriello L, Cox T, Lynch C, Zijlstra A, Fingleton B, Gužvić M, Anderson R, Neman J. Meeting report: Metastasis Research Society-Chinese Tumor Metastasis Society joint conference on metastasis. Clin Exp Metastasis 2017; 34:203-213. [PMID: 28260197 DOI: 10.1007/s10585-017-9842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
During September 16th-20th 2016, metastasis experts from around the world convened for the 16th Biennial Congress of the Metastasis Research Society and 12th National Congress of the Chinese Tumor Metastasis Society in Chengdu, China to share most current data covering basic, translational, and clinical metastasis research. Presentations of the more than 40 invited speakers of the main congress and presentations from the associated Young Investigator Satellite Meeting are summarized in this report by session topic. The congress program also included three concurrent short talk sessions, an advocacy forum with Chinese and American metastatic patient advocates, a 'Meet the Professors Roundtable' session for young investigators, and a 'Meet the Editors' session with editors from Cancer Cell and Nature Cell Biology. The goal of integrating expertise and exchanging the latest findings, ideas, and practices in cancer metastasis research was achieved magnificently, thanks to the excellent contributions of many leaders in the field.
Collapse
Affiliation(s)
- Katherine Bankaitis
- Metastasis Research Society (MRS), 124 Hunters Ridge Rd, Chapel Hill, NC, 27517, USA.
| | - Lucia Borriello
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas Cox
- Cancer Division, The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, Australia
| | - Conor Lynch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andries Zijlstra
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara Fingleton
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Robin Anderson
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Grattan Street, Melbourne, VIC, Australia
| | - Josh Neman
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
83
|
Jiang J, Zhao H, Shu W, Tian J, Huang Y, Song Y, Wang R, Li E, Slamon D, Hou D, Du X, Zhang L, Chen Y, Wang Q. An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells. Sci Rep 2017; 7:42612. [PMID: 28198402 PMCID: PMC5309797 DOI: 10.1038/srep42612] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Recently there has been a more focus on the development of an efficient technique for detection of circulating tumor cells (CTCs), due to their significance in prognosis and therapy of metastatic cancer. However, it remains a challenge because of the low count of CTCs in the blood. Herein, a rapid and high-sensitivity approach for CTCs detection using an integrated microfluidic system, consisting of a deterministic lateral displacement (DLD) isolating structure, an automatic purifying device with CD45-labeled immunomagnetic beads and a capturing platform coated with rat-tail collagen was reported. We observed high capture rate of 90%, purity of about 50% and viability of more than 90% at the high throughput of 1 mL/min by capturing green fluorescent protein (GFP)-positive cells from blood. Further capturing of CTCs from metastatic cancers patients revealed a positive capture rate of 83.3%. Furthermore, our device was compared with CellSearch system via parallel analysis of 30 cancer patients, to find no significant difference between the capture efficiency of both methods. However, our device displayed advantage in terms of time, sample volume and cost for analysis. Thus, our integrated device with sterile environment and convenient use will be a promising platform for CTCs detection with potential clinical application.
Collapse
Affiliation(s)
- Jianing Jiang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| | - Hui Zhao
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| | - Weiliang Shu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Tian
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| | - Yuqing Huang
- LABVIV Technology(Shenzhen) Co., Ltd, Shenzhen 518055, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ruoyu Wang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| | - Dennis Slamon
- Department of Medicine, Division of Hematology Oncology, Medical School of University of California at Los Angeles, Los Angeles 90095, CA, USA
| | - Dongmei Hou
- Department of Medicine, Division of Hematology Oncology, Medical School of University of California at Los Angeles, Los Angeles 90095, CA, USA
| | - Xiaohui Du
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| | - Lichuan Zhang
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
| |
Collapse
|
84
|
Gallerani G, Fici P, Fabbri F. Circulating Tumor Cells: Back to the Future. Front Oncol 2017; 6:275. [PMID: 28123996 PMCID: PMC5225084 DOI: 10.3389/fonc.2016.00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Giulia Gallerani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Pietro Fici
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| |
Collapse
|
85
|
Lampignano R, Schneck H, Neumann M, Fehm T, Neubauer H. Enrichment, Isolation and Molecular Characterization of EpCAM-Negative Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:181-203. [PMID: 28560675 DOI: 10.1007/978-3-319-55947-6_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The presence of EpCAM-positive circulating tumor cells (CTCs) in the peripheral blood is associated with poor clinical outcomes in breast, colorectal and prostate cancer, as well as the prognosis of other tumor types. In addition, recent studies have suggested that the presence of CTCs undergoing epithelial-to-mesenchymal transition and, as such, may exhibit reduced or no expression of epithelial proteins e.g. EpCAM, might be related to disease progression in metastatic breast cancer (MBC) patients. Analyzing the neoplastic nature of this EpCAM-low/negative (EpCAM-neg) subpopulation remains an open issue as the current standard detection methods for CTCs are not efficient at identifying this subpopulation of cells. The possible association of EpCAM-neg CTCs with EpCAM-positive (EpCAM-pos) CTCs and role in the clinicopathological features and prognosis of MBC patients has still to be demonstrated. Several technologies have been developed and are currently being tested for the identification and the downstream analyses of EpCAM-pos CTCs. These technologies can be adapted and implemented into workflows to isolate and investigate EpCAM-neg cells to understand their biology and clinical relevance. This chapter will endeavour to explain the rationale behind the identification and analyses of all CTC subgroups, as well as to review the current strategies employed to enrich, isolate and characterize EpCAM-negative CTCs. Finally, the latest findings in the field will briefly be discussed with regard to their clinical relevance.
Collapse
Affiliation(s)
- Rita Lampignano
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Helen Schneck
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Neumann
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Forschungslabore der Frauenklinik des, Universitätsklinikums Düsseldorf, Life Science Center, Merowingerplatz 1A, 40225, Düsseldorf, Germany.
| |
Collapse
|
86
|
Bhagwat N, Carpenter EL. Flow Cytometric Methods for Circulating Tumor Cell Isolation and Molecular Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:105-118. [DOI: 10.1007/978-3-319-55947-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Khoo BL, Chaudhuri PK, Lim CT, Warkiani ME. Advancing Techniques and Insights in Circulating Tumor Cell (CTC) Research. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:71-94. [DOI: 10.1007/978-3-319-45397-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
88
|
Mu Z, Benali-Furet N, Uzan G, Znaty A, Ye Z, Paolillo C, Wang C, Austin L, Rossi G, Fortina P, Yang H, Cristofanilli M. Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer. Int J Mol Sci 2016; 17:ijms17101665. [PMID: 27706044 PMCID: PMC5085698 DOI: 10.3390/ijms17101665] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/06/2023] Open
Abstract
The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.
Collapse
Affiliation(s)
- Zhaomei Mu
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | - Zhong Ye
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Carmela Paolillo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Chun Wang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Laura Austin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Giovanna Rossi
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
- Department of Molecular Medicine, University of Rome "Sapienza", Rome 00185, Italy.
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
89
|
Linde N, Fluegen G, Aguirre-Ghiso JA. The Relationship Between Dormant Cancer Cells and Their Microenvironment. Adv Cancer Res 2016; 132:45-71. [PMID: 27613129 PMCID: PMC5342905 DOI: 10.1016/bs.acr.2016.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The majority of cancer deaths are due to metastases that can occur years or decades after primary tumor diagnosis and treatment. Disseminated tumor cells (DTCs) surviving in a dormant state in target organs appear to explain the timing of this phenomenon. Knowledge on this process is important as it might provide a window of opportunity to prevent recurrences by eradicating dormant DTCs and/or by maintaining DTCs in a dormant state. Importantly, this research might offer markers of dormancy for early monitoring of metastatic relapse. However, our understanding of the mechanisms underlying the regulation of entry into and exit from dormancy is still limited and crippling any therapeutic opportunity. While cancer cell-intrinsic signaling pathways have been linked to dormancy regulation, it is likely that these pathways and the switch controlling reactivation from dormancy are regulated by microenvironmental cues. Here we review and discuss recent findings on how the microenvironment regulates cancer dormancy and raise new questions that may help advance the field.
Collapse
Affiliation(s)
- N Linde
- Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.
| | - G Fluegen
- Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.
| | - J A Aguirre-Ghiso
- Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.
| |
Collapse
|
90
|
Gallerani G, Fabbri F. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus. Int J Mol Sci 2016; 17:ijms17081266. [PMID: 27527155 PMCID: PMC5000664 DOI: 10.3390/ijms17081266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted.
Collapse
Affiliation(s)
- Giulia Gallerani
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, FC, Italy.
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, FC, Italy.
| |
Collapse
|
91
|
Hanssen A, Wagner J, Gorges TM, Taenzer A, Uzunoglu FG, Driemel C, Stoecklein NH, Knoefel WT, Angenendt S, Hauch S, Atanackovic D, Loges S, Riethdorf S, Pantel K, Wikman H. Characterization of different CTC subpopulations in non-small cell lung cancer. Sci Rep 2016; 6:28010. [PMID: 27302574 PMCID: PMC4908396 DOI: 10.1038/srep28010] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/27/2016] [Indexed: 01/18/2023] Open
Abstract
Circulating tumour cells (CTCs) serve as valuable biomarkers. However, EpCAM positive CTCs are less frequently detected in NSCLC patients compared to other epithelial tumours. First, EpCAM protein expression was analysed in primary and metastatic lung cancer tissue. In both groups 21% of the samples were EpCAM negative. Second, the CellSearch system identified 15% of patients (n = 48) as CTC positive whereas a multiplex RT-PCR for PIK3CA, AKT2, TWIST, and ALDH1 following EGFR, HER2 and EpCAM based enrichment detected CTCs in 29% of the patients. Interestingly, 86% of CTC positive patients were found to express ALDH1. Only 11% of the patients were CTC-positive by both techniques. CTC positivity was associated with patient disease state when assessed by the multiplex RT-PCR assay (p = 0.015). Patients harbouring tumours with an altered EGFR genotype were more frequently CTC-positive compared to patients with EGFR wildtype tumours. In subsets of patients, CTCs were found to express genes involved in resistance to therapy such as HER3 and MET. In conclusion, using multiple targets for CTC capture and identification increases the sensitivity of CTC detection in NSCLC patients, which can be explained by the presence of different CTC subtypes with distinct molecular features.
Collapse
Affiliation(s)
- Annkathrin Hanssen
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tobias M Gorges
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Aline Taenzer
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Center for Neurology, Neurosurgery, and Psychiatry, Department of Psychiatry, Campus Benjamin Franklin, Charité University Hospital Berlin, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfram T Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Angenendt
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Djordje Atanackovic
- Department of Internal Medicine II and Clinic (Oncology Centre), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Department of Internal Medicine II and Clinic (Oncology Centre), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
92
|
CTCs in early breast cancer: A path worth taking. Cancer Lett 2016; 376:205-10. [PMID: 27060205 DOI: 10.1016/j.canlet.2016.03.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) are cellular elements of undeniable significance that spread from the tumor mass into the peripheral blood and constitute one of the main vehicles for disease diffusion. Their rarity, in addition to a number of molecular and cellular features, has severely impaired research and exploitation. CTCs have been evaluated in early breast cancer (EBC), although long from being fully accepted in this field also due to a lack of technical standardization. CTCs hold promise to be a powerful non-invasive real-time measurable biomarker in all disease stages. This hypothesis is particularly appealing in the adjuvant setting of breast cancer, as it still lacks a marker that could play a central role in monitoring disease-free intervals, predicting early relapse and guiding drug selection. This review aimed to discuss CTC characteristics and show the main results of CTC-research in EBC setting, stating the urgency to continue basic and translational research in this field to definitely translate this marker from bench to bedside.
Collapse
|