51
|
Li X, Li J, Gardner EL, Xi ZX. Activation of mGluR7s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats. J Neurochem 2010; 114:1368-80. [PMID: 20534005 DOI: 10.1111/j.1471-4159.2010.06851.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabotropic glutamate receptor 7 (mGluR7) has been reported to be involved in cocaine and alcohol self-administration. However, the role of mGluR7 in relapse to drug seeking is unknown. Using a rat relapse model, we found that systemic administration of AMN082, a selective mGluR7 allosteric agonist, dose-dependently inhibits cocaine-induced reinstatement of drug-seeking behavior. Intracranial microinjections of AMN082 into the nucleus accumbens (NAc) or ventral pallidum, but not the dorsal striatum, also inhibited cocaine-primed reinstatement, an effect that was blocked by local co-administration of MMPIP, a selective mGluR7 antagonist. In vivo microdialysis demonstrated that cocaine priming significantly increased extracellular dopamine in the NAc, ventral pallidum and dorsal striatum, while increasing extracellular glutamate in the NAc only. AMN082 alone failed to alter extracellular dopamine, but produced a slow-onset long-lasting increase in extracellular glutamate in the NAc only. Pre-treatment with AMN082 dose-dependently blocked both cocaine-enhanced NAc glutamate and cocaine-induced reinstatement, an effect that was blocked by MMPIP or LY341497 (a selective mGluR2/3 antagonist). These data suggest that mGluR7 activation inhibits cocaine-induced reinstatement of drug-seeking behavior by a glutamate-mGluR2/3 mechanism in the NAc. The present findings support the potential use of mGluR7 agonists for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Xia Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
52
|
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322. [PMID: 20055706 DOI: 10.1146/annurev.pharmtox.011008.145533] [Citation(s) in RCA: 1389] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
53
|
Niswender CM, Johnson KA, Miller NR, Ayala JE, Luo Q, Williams R, Saleh S, Orton D, Weaver CD, Conn PJ. Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol Pharmacol 2010; 77:459-68. [PMID: 20026717 PMCID: PMC2835423 DOI: 10.1124/mol.109.058768] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/18/2009] [Indexed: 01/26/2023] Open
Abstract
Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323:147-156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[ 4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein G alpha(15). Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative cooperativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous G(i/o)-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native G(i/o) signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2010; 2:391-413. [PMID: 21309118 DOI: 10.1007/7854_2010_36] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.
Collapse
Affiliation(s)
- Will Spooren
- CNS Disease Biology Area, pRED, Building 74/3W308, Basel CH-4070, Switzerland.
| | | | | | | | | |
Collapse
|
55
|
Li X, Li J, Peng XQ, Spiller K, Gardner EL, Xi ZX. Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism. Neuropsychopharmacology 2009; 34:1783-96. [PMID: 19158667 PMCID: PMC3739975 DOI: 10.1038/npp.2008.236] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1-5 microg/microl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 microg/microl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082's action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine's acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082's actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Xia Li
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jie Li
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Xiao-Qing Peng
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Krista Spiller
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
56
|
Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le Goff L, Gubellini P. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 2009; 109:1096-105. [DOI: 10.1111/j.1471-4159.2009.06036.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
57
|
Abstract
Deorphanization of the large group of G protein-coupled receptors (GPCRs) for which an endogenous activating ligand has not yet been identified (orphan GPCRs) has become increasingly difficult. A specialized technique that has been successfully applied to deorphanize some of these GPCRs involves two-electrode voltage-clamp recordings of currents through ion channels, which are activated by GPCRs heterologously expressed in Xenopus oocytes. The ion channels that couple to GPCR activation in Xenopus oocytes can be endogenous calcium-activated chloride channels (CaCCs) or heterologously expressed G protein-coupled inwardly rectifying potassium channels (GIRKs). We will describe a general approach for expression of GPCRs in Xenopus oocytes and characterization of these using electrophysiological recordings. We will focus on the detection of GPCR activation by recordings of currents through CaCCs that are activated by calcium release from the endoplasmic reticulum and thus the G(q) signaling pathway.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
58
|
Individual contribution of metabotropic glutamate receptor (mGlu) 2 and 3 to c-Fos expression pattern evoked by mGlu2/3 antagonism. Psychopharmacology (Berl) 2008; 201:1-13. [PMID: 18813914 DOI: 10.1007/s00213-008-1236-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 06/10/2008] [Indexed: 12/22/2022]
Abstract
UNLABELLED OBJECTIVES AND MATERIALS AND METHODS: The aims of the present study were (1) to determine the neuronal activation pattern elicited by the group II mGlu antagonist LY341495 and (2) to evaluate the contribution of each group II mGlu subtype by using wild-type (WT) and knockout (KO) mice lacking either mGlu2 or mGlu3. c-Fos expression was used as a marker of neuronal activation. RESULTS AND DISCUSSION In WT mice, LY341495 induced widespread c-Fos expression in 68 out of 92 brain areas, including limbic areas such as the amygdala, septum, prefrontal cortex, and hippocampus. LY341495-induced c-Fos response was markedly decreased in the medial part of the central amygdala (CeM) and lateral septum (LS) in mGlu3-KO mice, as well as in the lateral parabrachial nucleus (LPB) in both KO strains. In the majority of investigated areas, LY341495-induced c-Fos expression was similar in KO and WT mice. Analysis of the cellular and subcellular distribution of mGlu2 and mGlu3 revealed a prevailing presence of mGlu3-immunoreactivity in the CeM in glial processes and in postsynapstic neuronal elements, whereas only rare presynaptic axon terminals were found immunoreactive for mGlu2. CONCLUSION In conclusion, our data indicate that group II mGlu blockade increases neuronal activation in a variety of brain areas, including many stress- and anxiety-related areas. The activation of two key brain areas, the CeM and LS, is mediated via mGlu3, while activation in the LPB involves both subtypes. Moreover, in the majority of investigated areas, LY341495-mediated neuronal activation appears to require a complex cross talk between group II mGlu subtypes or the action of LY341495 on additional receptors.
Collapse
|
59
|
Schröder U, Müller T, Schreiber R, Stolle A, Zuschratter W, Balschun D, Jork R, Reymann K. The potent non-competitive mGlu1 receptor antagonist BAY 36-7620 differentially affects synaptic plasticity in area cornu ammonis 1 of rat hippocampal slices and impairs acquisition in the water maze task in mice. Neuroscience 2008; 157:385-95. [DOI: 10.1016/j.neuroscience.2008.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
60
|
Krivoy A, Fischel T, Weizman A. The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 2008; 18:395-405. [PMID: 18063347 DOI: 10.1016/j.euroneuro.2007.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/16/2007] [Accepted: 11/07/2007] [Indexed: 02/02/2023]
Abstract
Glutamate disruption is thought to have a major role in schizophrenia brain processes, possibly involving NMDA hypofunction. The metabotropic glutamate receptors are distributed in brain regions related to schizophrenia and seem to affect glutamate release in a moderate way. Compounds modulating these receptors are being investigated in animal models of schizophrenia, in an attempt to discover new antipsychotics. This article reviews the current research data regarding the role of these receptors in schizophrenia animal models. It was found that more research was done on Group I and II metabotropic receptors while investigation of group III receptors is still trailing behind. Accumulating evidence shows that mGluR5 antagonists by themselves do not necessarily disrupt pre-pulse inhibition (PPI), but can exacerbate disruption of PPI caused by MK-801 and PCP, while positive modulation of this receptor has beneficial effects on these models of psychosis. Group II agonists are also showing beneficial effects in animal models. It seems that metabotropic glutamate receptor modulators could be developed into a novel treatment of schizophrenia by altering glutamate release, thus overcoming the putative NMDA hypofunction. Although the implications from these pre-clinical studies to human schizophrenia patients are premature, the data obtained with some compounds point to promising results for drug development. More studies, with agents active at other mGluRs in animal models and schizophrenia patients as well as with human subjects are needed in order to clarify the role of the metabotropic glutamate receptors in the pathophysiology and pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Amir Krivoy
- Geha Mental Health Center, Petach-Tikva, Israel.
| | | | | |
Collapse
|
61
|
Niswender CM, Johnson KA, Luo Q, Ayala JE, Kim C, Conn PJ, Weaver CD. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol 2008; 73:1213-24. [PMID: 18171729 DOI: 10.1124/mol.107.041053] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The group III metabotropic glutamate receptors (mGluRs) represent a family of presynaptically expressed G-protein-coupled receptors (GPCRs) with enormous therapeutic potential; however, robust cellular assays to study their function have been difficult to develop. We present here a new assay, compatible with traditional high-throughput screening platforms, to detect activity of pharmacological ligands interacting with G(i/o)-coupled GPCRs, including the group III mGluRs 4, 7, and 8. The assay takes advantage of the ability of the Gbetagamma subunits of G(i) and G(o) heterotrimers to interact with G-protein regulated inwardly rectifying potassium channels (GIRKs), and we show here that we are able to detect the activity of multiple types of pharmacophores including agonists, antagonists, and allosteric modulators of several distinct GPCRs. Using GIRK-mediated thallium flux, we perform a side-by-side comparison of the activity of a number of commercially available compounds, some of which have not been extensively evaluated because of the previous lack of robust assays at each of the three major group III mGluRs. It is noteworthy that several compounds previously considered to be general group III mGluR antagonists have very weak activity using this assay, suggesting the possibility that these compounds may not effectively inhibit these receptors in native systems. We anticipate that the GIRK-mediated thallium flux strategy will provide a novel tool to advance the study of G(i/o)-coupled GPCR biology and promote ligand discovery and characterization.
Collapse
Affiliation(s)
- Colleen M Niswender
- 1215 MRB IV, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Li X, Gardner EL, Xi ZX. The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology 2007; 54:542-51. [PMID: 18155073 DOI: 10.1016/j.neuropharm.2007.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/29/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
The group III metabotropic glutamate receptor 7 (mGluR7) has been implicated in many neurological and psychiatric diseases, including drug addiction. However, it is unclear whether and how mGluR7 modulates nucleus accumbens (NAc) dopamine (DA), L-glutamate or gamma-aminobutyric acid (GABA), important neurotransmitters believed to be involved in such neuropsychiatric diseases. In the present study, we found that systemic or intra-NAc administration of the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082) dose-dependently lowered NAc extracellular GABA and increased extracellular glutamate, but had no effect on extracellular DA levels. Such effects were blocked by (R,S)-alpha-methylserine-O-phosphate (MSOP), a group III mGluR antagonist. Intra-NAc perfusion of tetrodotoxin (TTX) blocked the AMN082-induced increases in glutamate, but failed to block the AMN082-induced reduction in GABA, suggesting vesicular glutamate and non-vesicular GABA origins for these effects. In addition, blockade of NAc GABAB receptors by 2-hydroxy-saclofen itself elevated NAc extracellular glutamate. Intra-NAc perfusion of 2-hydroxy-saclofen not only abolished the enhanced extracellular glutamate normally produced by AMN082, but also decreased extracellular glutamate in a TTX-resistant manner. We interpret these findings to suggest that the increase in glutamate is secondary to the decrease in GABA, which overcomes mGluR7 activation-induced inhibition of non-vesicular glutamate release. In contrast to its modulatory effect on GABA and glutamate, the mGluR7 receptor does not appear to modulate NAc DA release.
Collapse
Affiliation(s)
- Xia Li
- Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
63
|
Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VVTS, Toth R. Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 2007; 90:690-702. [PMID: 17936574 DOI: 10.1016/j.ygeno.2007.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
Alcoholism is a heritable disease that afflicts about 8% of the adult population. Its development and symptoms, such as craving, loss of control, physical dependence, and tolerance, have been linked to changes in mesolimbic, mesocortical neurotransmitter systems utilizing biogenic amines, GABA, and glutamate. Identification of genes predisposing to alcoholism, or to alcohol-related behaviors in animal models, has been elusive because of variable interactions of multiple genes with relatively small individual effect size and sensitivity of the predisposing genotype to lifestyle and environmental factors. Here, using near-isogenic advanced animal models with reduced genetic background interactions, we integrate gene mapping and gene mRNA expression data in segregating and congenic mice and identify glutamate receptor metabotropic 7 (Grm7) as a cis-regulated gene for alcohol consumption. Traditionally, the mesoaccumbal dopamine reward hypothesis of addiction and the role of the ionotropic glutamate receptors have been emphasized. Our results lend support to an emerging direction of research on the role of metabotropic glutamate receptors in alcoholism and drug addiction. These data suggest for the first time that Grm7 is a risk factor for alcohol drinking and a new target in addiction therapy.
Collapse
Affiliation(s)
- Csaba Vadasz
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Ngomba RT, Ferraguti F, Badura A, Citraro R, Santolini I, Battaglia G, Bruno V, De Sarro G, Simonyi A, van Luijtelaar G, Nicoletti F. Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures. Neuropharmacology 2007; 54:344-54. [PMID: 18022649 DOI: 10.1016/j.neuropharm.2007.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/29/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Individual metabotropic glutamate (mGlu) receptor subtypes have been implicated in the pathophysiology of epileptic seizures, and are potential targets for novel antiepileptic drugs. Here, we examined the role of the mGlu4 receptor subtype in absence seizures using as models: (i) WAG/Rij rats, which develop spontaneous absence seizures after 2-3months of age; and (ii) mice treated with pentylentetrazole (PTZ, 30mg/kg, s.c.). Expression of mGlu4 receptors was enhanced in the reticular thalamic nucleus (RTN) of symptomatic WAG/Rij rats as compared with age-matched controls, as assessed by immunoblotting and immunohistochemistry. No changes were found in other regions of WAG/Rij rats including ventrobasal thalamic nuclei, somatosensory cortex, and hippocampus. Electron microscopy and in situ hybridization data suggested that mGlu4 receptors in the RTN are localized on excitatory cortical afferents. Systemic injection of the selective mGlu4 receptor positive allosteric modulator, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen1a-carboxamide (PHCCC, 10mg/kg, s.c.), substantially enhanced the number of spike-and-wave discharges (SWDs) in WAG/Rij rats. Injection of PHCCC also enhanced absence-like seizures in PTZ-treated mice, whereas it was totally inactive in mGlu4 receptor knockout mice, which were intrinsically resistant to PTZ-induced seizures, as expected. This data supports the hypothesis that activation of mGlu4 receptors participates in the generation of absence seizures which can be exacerbated with the use of a positive allosteric modulator.
Collapse
|
65
|
Sibille P, Lopez S, Brabet I, Valenti O, Oueslati N, Gaven F, Goudet C, Bertrand HO, Neyton J, Marino MJ, Amalric M, Pin JP, Acher FC. Synthesis and biological evaluation of 1-amino-2-phosphonomethylcyclopropanecarboxylic acids, new group III metabotropic glutamate receptor agonists. J Med Chem 2007; 50:3585-95. [PMID: 17602546 DOI: 10.1021/jm070262c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoisomers of 1-amino-2-phosphonomethylcyclopropanecarboxylic acid (APCPr), conformationally restricted analogues of L-AP4 (2-amino-4-phosphonobutyric acid), have been prepared and evaluated at recombinant group III metabotropic glutamate receptors. They activate these receptors over a broad range of potencies. The most potent isomer (1S,2R)-APCPr displays a similar pharmacological profile as that of L-AP4 (EC50 0.72, 1.95, >500, 0.34 microM at mGlu4, 6, 7, 8 receptors, respectively, and no effect at group I/II mGluRs). It was characterized on native receptors located in the basal ganglia (BG) where it induced a robust and reversible inhibition of synaptic transmission. It was tested in vivo in haloperidol-induced catalepsy, a model of Parkinsonian akinesia, by direct infusion in the globus pallidus of the BG. At a dose of 0.5 nmol/microL, catalepsy was significantly antagonized. This study reveals that (1S,2R)-APCPr is a potent group III mGluR agonist and confirms that these receptors may be considered as a therapeutic target in the Parkinson's disease.
Collapse
Affiliation(s)
- Pauline Sibille
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, University Paris Descartes, 45 rue des Saints Péres, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res 2007; 1152:215-27. [PMID: 17434465 DOI: 10.1016/j.brainres.2007.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/29/2022]
Abstract
Aberrant glutamatergic neurotransmission may underlie the pathogenesis of schizophrenia and metabotropic glutamate receptors (mGluRs) have been implicated in the disease. We have established the localization of the group III mGluR subtype, mGluR8, in the human body and investigated the biological effects of the selective mGluR8 agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) in schizophrenia-related animal models. The mGlu8 receptor has a widespread CNS distribution with expression observed in key brain regions associated with schizophrenia pathogenesis including the hippocampus. (S)-3,4-DCPG inhibited synaptic transmission and increased paired-pulse facilitation in rat hippocampal slices supporting the role of mGluR8 as a presynaptic autoreceptor. Using the rat Maximal Electroshock Seizure Threshold (MEST) test, (S)-3,4-DCPG (30 mg/kg, i.p.) reduced seizure activity confirming the compound to be centrally active following systemic administration. (S)-3,4-DCPG did not reverse (locomotor) hyperactivity induced by acute administration of phenylcyclidine (PCP, 1-32 mg/kg, i.p.) or amphetamine (3-30 mg/kg, i.p.) in Sprague-Dawley rats. However, 10 nmol (i.c.v.) (S)-3.4-DCPG did reverse amphetamine-induced hyperactivity in mice although it also inhibited spontaneous locomotor activity at this dose. In addition, mGluR8 null mutant mouse behavioral phenotyping revealed an anxiety-related phenotype but no deficit in sensorimotor gating. These data provide a potential role for mGluR8 in anxiety and suggest that mGluR8 may not be a therapeutic target for schizophrenia.
Collapse
|
67
|
Bertaso F, Lill Y, Airas JM, Espeut J, Blahos J, Bockaert J, Fagni L, Betz H, El-Far O. MacMARCKS interacts with the metabotropic glutamate receptor type 7 and modulates G protein-mediated constitutive inhibition of calcium channels. J Neurochem 2006; 99:288-98. [PMID: 16987251 DOI: 10.1111/j.1471-4159.2006.04121.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that the interaction of Ca2+/calmodulin with the metabotropic glutamate receptor type 7 (mGluR7) promotes the G-protein-mediated inhibition of voltage-sensitive Ca2+ channels (VSCCs) seen upon agonist activation. Here, we performed a yeast two-hybrid screen of a new-born rat brain cDNA library using the cytoplasmic C-terminal tail of mGluR7 as bait and identified macrophage myristoylated alanine-rich c-kinase substrate (MacMARCKS) as a binding protein. The interaction was confirmed in vitro and in vivo by pull-down assays, immunoprecipitation, and colocalization of mGluR7 and MacMARCKS in transfected HEK293 cells and cultured cerebellar granule cells. Binding of MacMARCKS to mGluR7 was antagonized by Ca2+/calmodulin. In neurons, cotransfection of MacMARCKS with mGluR7, but not mGluR7 mutants unable to bind MacMARCKS, reduced the G-protein-mediated tonic inhibition of VSCCs in the absence of mGluR7 agonist. These results suggest that competitive interactions of Ca2+/calmodulin and MacMARCKS with mGluR7 control the tonic inhibition of VSCCs by G-proteins.
Collapse
Affiliation(s)
- Federica Bertaso
- CNRS, UMR5203, Montpellier; INSERM, U661, Montpellier, University Montpellier I & II, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006; 326:483-504. [PMID: 16847639 DOI: 10.1007/s00441-006-0266-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 05/31/2006] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlus) are a family of G-protein-coupled receptors activated by the neurotransmitter glutamate. Molecular cloning has revealed eight different subtypes (mGlu1-8) with distinct molecular and pharmacological properties. Multiplicity in this receptor family is further generated through alternative splicing. mGlus activate a multitude of signalling pathways important for modulating neuronal excitability, synaptic plasticity and feedback regulation of neurotransmitter release. In this review, we summarize anatomical findings (from our work and that of other laboratories) describing their distribution in the central nervous system. Recent evidence regarding the localization of these receptors in peripheral tissues will also be examined. The distinct regional, cellular and subcellular distribution of mGlus in the brain will be discussed in view of their relationship to neurotransmitter release sites and of possible functional implications.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Strasse 1a, A-6020, Innsbruck, Austria
| | | |
Collapse
|
69
|
Kaneda K, Tachibana Y, Imanishi M, Kita H, Shigemoto R, Nambu A, Takada M. Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci 2006; 22:3241-54. [PMID: 16367790 DOI: 10.1111/j.1460-9568.2005.04488.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced glutamatergic neurotransmission via the subthalamopallidal or subthalamonigral projection seems crucial for developing parkinsonian motor signs. In the present study, the possible changes in the expression of metabotropic glutamate receptors (mGluRs) were examined in the basal ganglia of a primate model for Parkinson's disease. When the patterns of immunohistochemical localization of mGluRs in monkeys administered systemically with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were analysed in comparison with normal controls, we found that expression of mGluR1alpha, but not of other subtypes, was significantly reduced in the internal and external segments of the globus pallidus and the substantia nigra pars reticulata. To elucidate the functional role of mGluR1 in the control of pallidal neuron activity, extracellular unit recordings combined with intrapallidal microinjections of mGluR1-related agents were then performed in normal and parkinsonian monkeys. In normal awake conditions, the spontaneous firing rates of neurons in the pallidal complex were increased by DHPG, a selective agonist of group I mGluRs, whereas they were decreased by AIDA, a selective antagonist of group I mGluRs, or LY367385, a selective antagonist of mGluR1. These electrophysiological data strongly indicate that the excitatory mechanism of pallidal neurons by glutamate is mediated at least partly through mGluR1. The effects of the mGluR1-related agents on neuronal firing in the internal pallidal segment became rather obscure after MPTP treatment. Our results suggest that the specific down-regulation of pallidal and nigral mGluR1alpha in the parkinsonian state may exert a compensatory action to reverse the overactivity of the subthalamic nucleus-derived glutamatergic input that is generated in the disease.
Collapse
Affiliation(s)
- K Kaneda
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JDB, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y. Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 2006; 25:10520-36. [PMID: 16280590 PMCID: PMC6725819 DOI: 10.1523/jneurosci.2547-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic metabotropic glutamate receptors (mGluRs) show a highly selective expression and subcellular location in nerve terminals modulating neurotransmitter release. We have demonstrated that alternatively spliced variants of mGluR8, mGluR8a and mGluR8b, have an overlapping distribution in the hippocampus, and besides perforant path terminals, they are expressed in the presynaptic active zone of boutons making synapses selectively with several types of GABAergic interneurons, primarily in the stratum oriens. Boutons labeled for mGluR8 formed either type I or type II synapses, and the latter were GABAergic. Some mGluR8-positive boutons also expressed mGluR7 or vasoactive intestinal polypeptide. Interneurons strongly immunopositive for the muscarinic M2 or the mGlu1 receptors were the primary targets of mGluR8-containing terminals in the stratum oriens, but only neurochemically distinct subsets were innervated by mGluR8-enriched terminals. The majority of M2-positive neurons were mGluR8 innervated, but a minority, which expresses somatostatin, was not. Rare neurons coexpressing calretinin and M2 were consistently targeted by mGluR8-positive boutons. In vivo recording and labeling of an mGluR8-decorated and strongly M2-positive interneuron revealed a trilaminar cell with complex spike bursts during theta oscillations and strong discharge during sharp wave/ripple events. The trilaminar cell had a large projection from the CA1 area to the subiculum and a preferential innervation of interneurons in the CA1 area in addition to pyramidal cell somata and dendrites. The postsynaptic interneuron type-specific expression of the high-efficacy presynaptic mGluR8 in both putative glutamatergic and in identified GABAergic terminals predicts a role in adjusting the activity of interneurons depending on the level of network activity.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Oxford University, Oxford OX1 3TH, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tang Z, El Far O, Betz H, Scheschonka A. Pias1 Interaction and Sumoylation of Metabotropic Glutamate Receptor 8. J Biol Chem 2005; 280:38153-9. [PMID: 16144832 DOI: 10.1074/jbc.m508168200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group III presynaptic metabotropic glutamate receptors (mGluRs) play a central role in regulating presynaptic activity through G-protein effects on ion channels and signal transducing enzymes. Like all Class C G-protein-coupled receptors, mGluR8 has an extended intracellular C-terminal domain (CTD) presumed to allow for modulation of downstream signaling. In a yeast two-hybrid screen of an adult rat brain cDNA library with the CTDs of mGluR8a and 8b (mGluR8-C) as baits, we identified sumo1 and four different components of the sumoylation cascade (ube2a, Pias1, Piasgamma, Piasxbeta) as interacting proteins. Binding assays using recombinant GST fusion proteins confirmed that Pias1 interacts not only with mGluR8-C but also with all group III mGluR CTDs. Pias1 binding to mGluR8-C required a region N-terminal to a consensus sumoylation motif and was not affected by arginine substitution of the conserved lysine 882 within this motif. Co-transfection of fluorescently tagged mGluR8a-C, sumo1, and enzymes of the sumoylation cascade into HEK293 cells showed that mGluR8a-C can be sumoylated in vivo. Arginine substitution of lysine 882 within the consensus sumoylation motif, but not other conserved lysines within the CTD, abolished in vivo sumoylation. Our results are consistent with post-translational sumoylation providing a novel mechanism of group III mGluR regulation.
Collapse
Affiliation(s)
- Zhongshu Tang
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, 60528 Frankfurt, Germany
| | | | | | | |
Collapse
|
72
|
Guo J, Ikeda SR. Coupling of metabotropic glutamate receptor 8 to N-type Ca2+ channels in rat sympathetic neurons. Mol Pharmacol 2005; 67:1840-51. [PMID: 15755905 DOI: 10.1124/mol.105.010975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Group III metabotropic glutamate receptors (mGluRs; mGluR4, 6, 7, and 8) couple to the Galpha(i/o)-containing G protein heterotrimers and act as autoreceptors to regulate glutamate release, probably by inhibiting voltage-gated Ca(2+) channels. Although most mGluRs have been functionally expressed in a variety of systems, few studies have demonstrated robust coupling of mGluR8 to downstream effectors. We therefore tested whether activation of mGluR8 inhibited Ca(2+) channels. Both L-glutamate (L-Glu) and l-2-amino-4-phosphonobutyric acid (L-AP4), a selective agonist for group III mGluRs, inhibited N-type Ca(2+) current in rat superior cervical ganglion neurons previously injected with a cDNA encoding mGluR8a/b. L-AP4 was approximately 100-fold more potent (IC(50) = 0.1 microM) than L-Glu ( approximately 10 microM), but it had efficacy similar to that of L-Glu ( approximately 50% maximal inhibition). The potency and efficacy of L-AP4 and L-Glu were similar for both splice variants. Agonist-induced inhibition was abolished by pretreatment with (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine, a selective group III mGluR antagonist, and pertussis toxin. Deletion of either a calmodulin (CaM) binding motif in the C terminus or the entire C terminus of mGluR8 did not affect mGluR8-mediated response. Our studies indicate that both mGluR8a and 8b are capable of inhibiting N-type Ca(2+) channel, suggesting a role as presynaptic autoreceptors to regulate neuronal excitability. The studies also imply that the potential CaM binding domain is not required for the mGluR8-mediated Ca(2+) channel inhibition and the C terminus of mGluR8a is dispensable for receptor coupling to N-type Ca(2+) channels.
Collapse
Affiliation(s)
- Juan Guo
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism/NIH, Room TS-06, 5625 Fishers Lane, Bethesda, MD 20892-8815, USA
| | | |
Collapse
|
73
|
Marabese I, de Novellis V, Palazzo E, Mariani L, Siniscalco D, Rodella L, Rossi F, Maione S. Differential roles of mGlu8 receptors in the regulation of glutamate and gamma-aminobutyric acid release at periaqueductal grey level. Neuropharmacology 2005; 49 Suppl 1:157-66. [PMID: 16084932 DOI: 10.1016/j.neuropharm.2005.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 02/03/2005] [Accepted: 02/09/2005] [Indexed: 11/17/2022]
Abstract
We investigated the role of group III metabotropic glutamate (mGlu) receptors on glutamate and GABA releases at the periaqueductal grey (PAG) level by using in vivo microdialysis in rats. Intra-PAG perfusion of either L-(+)-2-amino-4-phosphonobutyric acid (L-AP4, 100-300 microM), (RS)-4-phosphonophenylglycine ((RS)-PPG, 100-300 microM) selective agonists of group III mGlu receptors, or (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG, 50-100 microM), a selective agonist of mGlu8 receptor, increased glutamate and decreased GABA extracellular concentrations. (RS)-alpha-methylserine-O-phosphate (MSOP, 0.5 mM), a selective group III receptor antagonist, perfused in combination with (S)-3,4-DCPG, L-AP4 or (RS)-PPG, antagonised the effects induced by these agonists on both extracellular glutamate and GABA values. alpha-Methyl-3-methyl-4-phosphonophenylglycine (UBP1112, 300 microM), a group III mGlu receptor antagonist, perfused in combination with (RS)-PPG or (S)-3,4-DCPG, antagonised the effects induced by these agonists. Intra-PAG perfusion with forskolin (100 microM), an activator of adenylate cyclase, increased dialysate glutamate and GABA levels. Moreover, intra-PAG perfusion with N-[2-(p-bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89) (100 microM), a protein kinase (PKA) inhibitor, abolished the effect of (S)-3,4-DCPG on both glutamate and GABA releases. H-89, per se, did not modify glutamate release but reduced extracellular GABA value at the higher dosage used (200 microM). These data suggest that group III mGlu receptors in the PAG modulate the releases of glutamate and GABA conversely. In particular, both the facilitation of glutamate and the inhibition of GABA releases require the participation of coupling to adenylate cyclase and the subsequent activation of the PKA pathway.
Collapse
Affiliation(s)
- Ida Marabese
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Faculty of Medicine and Surgery, Second University of Naples, Via Costantinopoli, 16, 80138 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Rosemond E, Wang M, Yao Y, Storjohann L, Stormann T, Johnson EC, Hampson DR. Molecular basis for the differential agonist affinities of group III metabotropic glutamate receptors. Mol Pharmacol 2004; 66:834-42. [PMID: 15231870 DOI: 10.1124/mol.104.002956] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist stimulation of group III metabotropic glutamate receptors (mGluRs) induces an inhibition of neurotransmitter release from neurons. The group III mGluRs are pharmacologically defined by activation with the glutamate analog L-amino-4-phosphonobutyric acid (L-AP4). The affinities of these receptors for L-AP4 and glutamate vary over approximately a 1500-fold concentration range. The goal of this study was to elucidate the molecular basis for this dispersion of agonist affinities for the group III receptors mGluR4, mGluR6, and mGluR7. [3H]L-AP4 binding was present in human embryonic kidney cells transfected with the high-affinity mGluR4 receptor but not in cells transfected with mGluR6 or the low-affinity mGluR7 receptor. Analysis of mGluR4/mGluR6 receptor chimeras revealed that replacement of the first 35 amino acids of mGluR6 with the first 50 amino acids of mGluR4 was sufficient to impart [3H]L-AP4 binding to mGluR6. Homology models of mGluR4 and mGluR7 were used to predict amino acids that may affect ligand affinity. Mutations were made in mGluR7 to convert selected residues into the equivalent amino acids present in the high-affinity mGluR4 receptor. The mGluR7 N74K mutation caused a 12-fold increase in affinity in a functional assay, whereas the N74K mutation in combination with mutations in residues 258 to 262, which lie outside the binding pocket, caused a 112-fold increase in affinity compared with unmutated mGluR7. Our results demonstrate that the binding site residues at position lysine 74 in mGluR4, glutamine 58 in mGluR6, and asparagine 74 in mGluR7 are key determinants of agonist affinity and that additional residues situated outside of the binding pocket, including those present in the extreme amino terminus, also contribute to agonist affinity and the pharmacological profiles of the group III mGluRs.
Collapse
Affiliation(s)
- Erica Rosemond
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell Street, Ontario, Canada M5S 2S2
| | | | | | | | | | | | | |
Collapse
|
75
|
Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P. GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 2004; 19:552-69. [PMID: 14984406 DOI: 10.1111/j.0953-816x.2003.03091.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vesicular glutamate transporter type 3 (VGLUT3) containing neuronal elements were characterized using antibodies to VGLUT3 and molecular cell markers. All VGLUT3-positive somata were immunoreactive for CCK, and very rarely, also for calbindin; none was positive for parvalbumin, calretinin, VIP or somatostatin. In the CA1 area, 26.8 +/- 0.7% of CCK-positive interneuron somata were VGLUT3-positive, a nonoverlapping 22.8 +/- 1.9% were calbindin-positive, 10.7 +/- 2.5% VIP-positive and the rest were only CCK-positive. The patterns of coexpression were similar in the CA3 area, the dentate gyrus and the isocortex. Immunoreactivity for VGLUT3 was undetectable in pyramidal and dentate granule cells. Boutons colabelled for VGLUT3, CCK and GAD were most abundant in the cellular layers of the hippocampus and in layers II-III of the isocortex. Large VGLUT3-labelled boutons at the border of strata radiatum and lacunosum-moleculare in the CA1 area were negative for GAD, but were labelled for vesicular monoamine transporter type 2, plasmalemmal serotonin transporter or serotonin. No colocalization was found in terminals between VGLUT3 and parvalbumin, vesicular acetylcholine transporter and group III (mGluR7a,b; mGluR8a,b) metabotropic glutamate receptors. In stratum radiatum and the isocortex, VGLUT3-positive but GAD-negative boutons heavily innervated the soma and proximal dendrites of some VGLUT3- or calbindin-positive interneurons. The results suggest that boutons coexpressing VGLUT3, CCK and GAD originate from CCK-positive basket cells, which are VIP-immunonegative. Other VGLUT3-positive boutons immunopositive for serotonergic markers but negative for GAD probably originate from the median raphe nucleus and innervate select interneurons. The presumed amino acid substrate of VGLUT3 may act on presynaptic kainate or group II metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Jozsef Somogyi
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Oxford OX1 3TH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Lorez M, Humbel U, Pflimlin MC, Kew JNC. Group III metabotropic glutamate receptors as autoreceptors in the cerebellar cortex. Br J Pharmacol 2003; 138:614-25. [PMID: 12598415 PMCID: PMC1573705 DOI: 10.1038/sj.bjp.0705099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Group III metabotropic glutamate receptors (mGluRs) of the subtype 4a are localized within presynaptic active zones of cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. In order to investigate the conditions necessary for group III mGluR autoreceptor-activation by synaptically released glutamate, we characterized the effects of selective agonists and antagonists on excitatory postsynaptic currents (EPSCs) evoked by several distinct PF stimulation patterns. 2. The group III mGluR-selective agonist L-AP4 depressed evoked EPSCs at PF-PC synapses in rat brain slices with an EC(50) of 2.4 microM and maximum inhibition of 80%. This L-AP4-induced depression was antagonized by the group III mGluR-selective antagonist MSOP with an estimated equilibrium dissaciation constant of 12.5 microM. 3. Paired-pulse or four-pulse PF stimulations did not activate presynaptic group III mGluRs as revealed by the lack of effect of 1 mM MSOP on relative test EPSC amplitudes with latencies of 250-500 ms. The potentiation of a test EPSC evoked 200-500 ms after a short tetanic burst (100 Hz for 60 ms), was also unchanged in the presence of MSOP. 4. Endogenous autoreceptor-activation was revealed only during prolonged stimulation trains (10 Hz for 4.4 s), where, in the presence of 1 mM MSOP, the EPSC amplitudes were enhanced by 15%. 5. These observations support an autoreceptor function of group III mGluRs and a role in short-term synaptic plasticity at PF synapses. However, the low to moderate activation levels observed, despite the close spatial relation with glutamate release sites, suggests that additional mechanisms regulate receptor activation.
Collapse
Affiliation(s)
- Matthias Lorez
- Pharma Division Pre-clinical Research, F Hoffmann-La Roche Ltd, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
77
|
Micheli F, Fabio RD, Cavanni P, Rimland JM, Capelli AM, Chiamulera C, Corsi M, Corti C, Donati D, Feriani A, Ferraguti F, Maffeis M, Missio A, Ratti E, Paio A, Pachera R, Quartaroli M, Reggiani A, Sabbatini FM, Trist DG, Ugolini A, Vitulli G. Synthesis and pharmacological characterisation of 2,4-dicarboxy-pyrroles as selective non-competitive mGluR1 antagonists. Bioorg Med Chem 2003; 11:171-83. [PMID: 12470711 DOI: 10.1016/s0968-0896(02)00424-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an unusual family of G-protein coupled receptor (GPCR), and are characterised by a large extracellular N-terminal domain that contains the glutamate binding site. We have identified a new class of non-competitive metabotropic glutamate receptor 1 (mGluR1) antagonists, 2,4-dicarboxy-pyrroles which are endowed with nanomolar potency. They interact within the 7 transmembrane (7TM) domain of the receptor and show antinociceptive properties when tested in a number of different animal models.
Collapse
Affiliation(s)
- Fabrizio Micheli
- GlaxoSmithkline Medicine Research Centre, Via Fleming, 4-37135 Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, Yu JL, Köster A, Baez M, Schoepp DD. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 2002; 43:251-9. [PMID: 12213279 DOI: 10.1016/s0028-3908(02)00079-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pre-synaptic metabotropic glutamate (mGlu) receptors modulate neuronal excitability by controlling glutamate and gamma-aminobutyric acid (GABA) release. The mGlu8 receptor is predominantly found in pre-synaptic terminals and its expression is highly restricted. To study the role of this receptor, mGlu8 receptor-deficient mice were generated. Here we report that naïve mGlu8 receptor-deficient mice showed increased anxiety-related behavior in the elevated plus maze in low illumination conditions (red light). Open arm avoidance and risk assessment behavior were both significantly increased in mutant mice. Increased stressfulness of the testing conditions abolished this behavioral difference. Fluorescent light or prior restraint stress decreased the open arm activity of wild-type mice, while the open arm activity of mutant mice was essentially unaffected, leading to similar values in both strains. The total number of arm entries or closed arm entries was not significantly different between strains, indicating that the lack of mGlu8 receptor does not affect locomotor activity. No gross behavioral changes, or changes in the function of the autonomic nervous system or somatomotor systems were observed in mutant mice. Moreover, no significant differences in seizure susceptibility were detected between strains. Our results suggest that mGlu8 receptor may play a role in responses to novel stressful environment.
Collapse
Affiliation(s)
- A-M Linden
- Neuroscience Research Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Perroy J, El Far O, Bertaso F, Pin J, Betz H, Bockaert J, Fagni L. PICK1 is required for the control of synaptic transmission by the metabotropic glutamate receptor 7. EMBO J 2002; 21:2990-9. [PMID: 12065412 PMCID: PMC126066 DOI: 10.1093/emboj/cdf313] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Both postsynaptic density and presynaptic active zone are structural matrix containing scaffolding proteins that are involved in the organization of the synapse. Little is known about the functional role of these proteins in the signaling of presynaptic receptors. Here we show that the interaction of the presynaptic metabotropic glutamate (mGlu) receptor subtype, mGlu7a, with the postsynaptic density-95 disc-large zona occludens 1 (PDZ) domain-containing protein, PICK1, is required for specific inhibition of P/Q-type Ca(2+) channels, in cultured cerebellar granule neurons. Furthermore, we show that activation of the presynaptic mGlu7a receptor inhibits synaptic transmission and this effect also requires the presence of PICK1. These results indicate that the scaffolding protein, PICK1, plays an essential role in the control of synaptic transmission by the mGlu7a receptor complex.
Collapse
Affiliation(s)
| | - O. El Far
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | | | | | - H. Betz
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | | | - L. Fagni
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| |
Collapse
|
80
|
Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 2002; 110:403-20. [PMID: 11906782 DOI: 10.1016/s0306-4522(01)00591-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Group III metabotropic glutamate receptors (mGluRs) are selectively activated by L-2-amino-4-phosphonobutyrate (L-AP4), which produces depression of synaptic transmission. The relative contribution of different group III mGluRs to the effects of L-AP4 remains to be clarified. Here, we assessed the distribution of mGluR4 in the rat and mouse brain using affinity-purified antibodies raised against its entire C-terminal domain. The antibodies reacted specifically with mGluR4 and not with other mGluRs in transfected COS 7 cells. No immunoreactivity was detected in brains of mice with gene-targeted deletion of mGluR4. Pre-embedding immunocytochemistry for light and electron microscopy showed the most intense labelling in the cerebellar cortex, basal ganglia, the sensory relay nuclei of the thalamus, and some hippocampal areas. Immunolabelling was most intense in presynaptic active zones. In the basal ganglia, both the direct and indirect striatal output pathways showed immunolabelled terminals forming mostly type II synapses on dendritic shafts. The localisation of mGluR4 on GABAergic terminals of striatal projection neurones suggests a role as a presynaptic heteroreceptor. In the cerebellar cortex and hippocampus, mGluR4 was also localised in terminals establishing type I synapses, where it probably operates as an autoreceptor. In the hippocampus, mGluR4 labelling was prominent in the dentate molecular layer and CA1-3 strata lacunosum moleculare and oriens. Somatodendritic profiles of some stratum oriens/alveus interneurones were richly decorated with mGluR4-labelled axon terminals making either type I or II synapses. This differential localisation suggests a regulation of synaptic transmission via a target cell-dependent synaptic segregation of mGluR4. Our results demonstrate that, like other group III mGluRs, presynaptic mGluR4 is highly enriched in the active zone of boutons innervating specific classes of neurones. In addition, the question of alternatively spliced mGluR4 isoforms is discussed.
Collapse
Affiliation(s)
- C Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
81
|
Enz R. The metabotropic glutamate receptor mGluR7b binds to the catalytic gamma-subunit of protein phosphatase 1. J Neurochem 2002; 81:1130-40. [PMID: 12065625 DOI: 10.1046/j.1471-4159.2002.00922.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Correct targeting of enzymes represents an important biological mechanism to control post-translational modifications of neurotransmitter receptors. The metabotropic glutamate receptor type 7 (mGluR7) exists in two splice variants (mGluR7a and mGluR7b), defined by different C-termini that are phosphorylated by protein kinase C (PKC). Recently, the search for mGluR7a binding partners yielded several proteins that interacted with its C-terminus. Here, a yeast two-hybrid screen using the mGluR7b C-terminus identified both variants of the catalytic gamma-subunit of protein phosphatase 1 (PP1gamma1 and PP1gamma2) as binding partners. The minimal interacting region of PP1gamma1/2 contained the core domain and was homologous to a region of PP1alpha that is needed for functional expression. Although this core domain is highly conserved within the protein phosphatase family, PP1alpha1 and PP1beta did not interact with mGluR7b. Binding between PP1gamma1 and mGluR7b might be regulated by alternative splicing, as the variant-specific distal part of the mGluR7b C-terminus mediated the interaction. Within this domain, amino acids involved in the binding to PP1gamma1 were mapped and biochemical assays using recombinant and native proteins verified the proposed interaction. Finally, the expression pattern of PP1gamma1, PP1gamma2 and mGluR7b was analysed in various CNS regions. In summary, these results suggest a regulation of mGluR7b by PP1gamma.
Collapse
Affiliation(s)
- Ralf Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
82
|
Tamaru Y, Nomura S, Mizuno N, Shigemoto R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2002; 106:481-503. [PMID: 11591452 DOI: 10.1016/s0306-4522(01)00305-0] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) have distinct distribution patterns in the CNS but subtypes within group I or group III mGluRs share similar ultrastructural localization relative to neurotransmitter release sites: group I mGluRs are concentrated in an annulus surrounding the edge of the postsynaptic density, whereas group III mGluRs are concentrated in the presynaptic active zone. One of the group II subtypes, mGluR2, is expressed in both pre- and postsynaptic elements, having no close association with synapses. In order to determine if such a distribution is common to another group II subtype, mGluR3, an antibody was raised against a carboxy-terminus of mGluR3 and used for light and electron microscopic immunohistochemistry in the mouse CNS. The antibody reacted strongly with mGluR3, but it also reacted, though only weakly, with mGluR2. Therefore, to examine mGluR3-selective distribution, we used mGluR2-deficient mice as well as wild-type mice. Strong immunoreactivity for mGluR3 was found in the cerebral cortex, striatum, dentate gyrus of the hippocampus, olfactory tubercle, lateral septal nucleus, lateral and basolateral amygdaloid nuclei, and nucleus of the lateral olfactory tract. Pre-embedding immunoperoxidase and immunogold methods revealed mGluR3 labeling in both presynaptic and postsynaptic elements, and also in glial profiles. Double labeling revealed that the vast majority of mGluR3 in presynaptic elements is not closely associated with glutamate and GABA release sites in the striatum and thalamus, respectively. However, in the spines of the dentate granule cells, the highest receptor density was found in perisynaptic sites (20% of immunogold particles within 60 nm from the edge of postsynaptic membrane specialization) followed by a decreasing receptor density away from the synapses (to approximately 5% of particles per 60 nm). Furthermore, 19% of immunogold particles were located in asymmetrical postsynaptic specialization, indicating an association of mGluR3 to glutamatergic synapses. The present results indicate that the localization of mGluR3 is rather similar to that of group I mGluRs in the postsynaptic elements, suggesting a unique functional role of mGluR3 in glutamatergic neurotransmission in the CNS.
Collapse
Affiliation(s)
- Y Tamaru
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
83
|
Perroy J, Gutierrez GJ, Coulon V, Bockaert J, Pin JP, Fagni L. The C terminus of the metabotropic glutamate receptor subtypes 2 and 7 specifies the receptor signaling pathways. J Biol Chem 2001; 276:45800-5. [PMID: 11584003 DOI: 10.1074/jbc.m106876200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is accumulating evidence that the specificity of the transduction cascades activated by G protein-coupled receptors cannot solely depend on the nature of the coupled G protein. To identify additional structural determinants, we studied two metabotropic glutamate (mGlu) receptors, the mGlu2 and mGlu7 receptors, that are both coupled to G(o) proteins but are known to affect different effectors in neurons. Thus, the mGlu2 receptor selectively blocks N- and L-type Ca(2+) channels via a protein kinase C-independent pathway, whereas the mGlu7 receptor selectively blocks P/Q-type Ca(2+) channels via a protein kinase C-dependent pathway, and both effects are pertussis toxin-sensitive. We examined the role of the C-terminal domain of these receptors in this coupling. Chimeras were constructed by exchanging the C terminus of these receptors and transfected into neurons. Different chimeric receptors bearing the C terminus of mGlu7 receptor blocked selectively P/Q-type Ca(2+) channels, whereas chimeras bearing the C terminus of mGlu2 receptor selectively blocked N- and L-type Ca(2+) channels. These results show that the C terminus of mGlu2 and mGlu7 receptors is a key structural determinant that allows these receptors to select a specific signaling pathway in neurons.
Collapse
Affiliation(s)
- J Perroy
- CNRS, UPR 9023, CCIPE, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
84
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
85
|
Valerio A, Zoppi N, Ferraboli S, Paterlini M, Ferrario M, Barlati S, Spano P. Alternative splicing of mGlu6 gene generates a truncated glutamate receptor in rat retina. Neuroreport 2001; 12:2711-5. [PMID: 11522953 DOI: 10.1097/00001756-200108280-00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel splice variant of metabotropic glutamate receptor type 6 (mGlu6 receptor) was identified by reverse transcription-polymerase chain reaction amplification and sequence analysis of rat retina cDNA. The new rat receptor isoform (mGlu6b receptor) is characterized by an additional exon of 88 nucleotides containing an inframe stop codon, thus predicting the expression of a truncated protein of 508 amino acids. In situ hybridization reveals mGlu6b receptor mRNA to be predominantly expressed in the outer part of the inner nuclear layer of rat retina, containing ON-bipolar cells. The mGlu6b protein would comprise the extracellular domain of the receptor containing the ligand-binding site, but would lack the transmembrane and intracellular portions, thus possibly acting as a retinal soluble receptor for glutamate.
Collapse
Affiliation(s)
- A Valerio
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnologies, Brescia University Medical School, Via Valsabbina 19, 25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
86
|
Corti C, Xuereb JH, Corsi M, Ferraguti F. Identification and characterization of the promoter region of the GRM3 gene. Biochem Biophys Res Commun 2001; 286:381-7. [PMID: 11500049 DOI: 10.1006/bbrc.2001.5391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently described the genomic organisation of the human metabotropic glutamate receptor 3 (GRM3) gene. The putative promoter region is characterised by the presence of a CCAAT and Sp1 site and the absence of a TATA box. Using a reporter gene assay, now we describe the functional activity of GRM3 promoter by transient transfection in both human neuroblastoma and astroglioma cell lines. Deletion of the CCAAT box and Sp1 site resulted in a pronounced reduction of reporter gene expression in both cell types, which indicates that these elements to correspond to the core promoter region. Moreover, we found that the genomic sequence 140 bp upstream of the first transcription initiation site appears to contain regulatory promoter elements for a preferential transcription of the gene in neuroblastoma cells. We also provide evidence that the genomic sequence spanning exon I, corresponding to the GRM3 5'-untranslated region, contains a negative regulatory element that represses gene transcription.
Collapse
Affiliation(s)
- C Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Level 3 Laboratory Block Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom.
| | | | | | | |
Collapse
|
87
|
Cai Z, Saugstad JA, Sorensen SD, Ciombor KJ, Zhang C, Schaffhauser H, Hubalek F, Pohl J, Duvoisin RM, Conn PJ. Cyclic AMP-dependent protein kinase phosphorylates group III metabotropic glutamate receptors and inhibits their function as presynaptic receptors. J Neurochem 2001; 78:756-66. [PMID: 11520896 PMCID: PMC3799790 DOI: 10.1046/j.1471-4159.2001.00468.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence suggests that the functions of presynaptic metabotropic glutamate receptors (mGluRs) are tightly regulated by protein kinases. We previously reported that cAMP-dependent protein kinase (PKA) directly phosphorylates mGluR2 at a single serine residue (Ser843) on the C-terminal tail region of the receptor, and that phosphorylation of this site inhibits coupling of mGluR2 to GTP-binding proteins. This may be the mechanism by which the adenylyl cyclase activator forskolin inhibits presynaptic mGluR2 function at the medial perforant path-dentate gyrus synapse. We now report that PKA also directly phosphorylates several group III mGluRs (mGluR4a, mGluR7a, and mGluR8a), as well as mGluR3 at single conserved serine residues on their C-terminal tails. Furthermore, activation of PKA by forskolin inhibits group III mGluR-mediated responses at glutamatergic synapses in the hippocampus. Interestingly, beta-adrenergic receptor activation was found to mimic the inhibitory effect of forskolin on both group II and III mGluRs. These data suggest that a common PKA-dependent mechanism may be involved in regulating the function of multiple presynaptic group II and group III mGluRs. Such regulation is not limited to the pharmacological activation of adenylyl cyclase but can also be elicited by the stimulation of endogenous G(s)-coupled receptors, such as beta-adrenergic receptors.
Collapse
Affiliation(s)
- Zhaohui Cai
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julie A. Saugstad
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Scott D. Sorensen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelly J. Ciombor
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Congxiao Zhang
- Dyson Vision Research Institute, Weill Medical College, Cornell University, New York, USA
| | - Hervé Schaffhauser
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Frantisek Hubalek
- Microchemical Facilities, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jan Pohl
- Microchemical Facilities, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert M. Duvoisin
- Dyson Vision Research Institute, Weill Medical College, Cornell University, New York, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neuroscience, Merck Research Laboratories, West Point, Philadelphia, USA
| |
Collapse
|
88
|
Yip PK, Meldrum BS, Rattray M. Elevated levels of group-III metabotropic glutamate receptors in the inferior colliculus of genetically epilepsy-prone rats following intracollicular administration of L-serine-O-phosphate. J Neurochem 2001; 78:13-23. [PMID: 11432969 DOI: 10.1046/j.1471-4159.2001.00418.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The selective group-III metabotropic glutamate receptor agonist, L-serine-O-phosphate (L-SOP), when injected bilaterally into the inferior colliculus of the sound sensitive genetically epilepsy-prone (GEP) rats produces a short proconvulsant excitation followed by a long phase of protection against sound-induced seizures lasting for 2-4 days. We have studied this prolonged suppression of audiogenic seizures using pharmacological and molecular biological approaches including semiquantitative RT-PCR and western blotting. The intracerebroventricular injection of the protein synthesis inhibitor cycloheximide (120 microg) 30 min beforehand significantly reduces the proconvulsant seizure activity and the prolonged anticonvulsant effect of intracollicular L-SOP (500 nmol/side). The sensitive semiquantitative RT-PCR revealed a significant up-regulation in mGlu(4) and mGlu(7) mRNA levels in the inferior colliculus at 2 days (maximum suppression of audiogenic seizures) after intracollicular L-SOP injection compared with the non-injected, 2-day post-vehicle treated and 7-day (return to expressing audiogenic seizures) post-drug or vehicle-treated groups. No significant changes were observed in mGlu(6) or mGlu(8) mRNA expression levels in drug-treated compared with control groups. Examination of mGlu(4a) and mGlu(7a) protein levels using western blotting showed a significant increase in mGlu(7a) but no significant change in mGlu(4a) protein levels 2 days after L-SOP treatment compared with the control groups (non-injected and 2-day vehicle-injected group). These results suggest that up-regulation of mGlu(7) receptors is involved in the prolonged anticonvulsant effect of L-SOP against sound-induced seizures in GEP rats. The potential use of mGlu(7) agonists as novel anti-epileptic agents merits investigation.
Collapse
Affiliation(s)
- P K Yip
- Department of Neurology, Institute of Psychiatry, King's College London, London, UK
| | | | | |
Collapse
|
89
|
Mion S, Corti C, Neki A, Shigemoto R, Corsi M, Fumagalli G, Ferraguti F. Bidirectional regulation of neurite elaboration by alternatively spliced metabotropic glutamate receptor 5 (mGluR5) isoforms. Mol Cell Neurosci 2001; 17:957-72. [PMID: 11414786 DOI: 10.1006/mcne.2001.0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alternative splicing in the mGluR5 gene generates two different receptor isoforms, of which expression is developmentally regulated. However, little is known about the functional significance of mGluR5 splice variants. We have examined the functional coupling, subcellular targeting, and effect on neuronal differentiation of epitope-tagged mGluR5 isoforms by expression in neuroblastoma NG108-15 cells. We found that both mGluR5 splice variants give rise to comparable [Ca2+]i transients and have similar pharmacological profile. Tagged receptors were shown by immunofluorescence to be inserted in the plasma membrane. In undifferentiated cells the subcellular localization of the two mGluR5 isoforms was partially segregated, whereas in differentiated cells the labeling largely redistributed to the newly formed neurites. Interestingly, we demonstrate that mGluR5 splice variants dramatically influence the formation and maturation of neurites; mGluR5a hinders the acquisition of mature neuronal traits and mGluR5b fosters the elaboration and extension of neurites. These effects are partly inhibited by MPEP.
Collapse
Affiliation(s)
- S Mion
- Department of Medicine and Public Health, Pharmacology Section, Universita' di Verona, Policlinico Borgo Roma, Verona, 37134, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Airas JM, Betz H, El Far O. PKC phosphorylation of a conserved serine residue in the C-terminus of group III metabotropic glutamate receptors inhibits calmodulin binding. FEBS Lett 2001; 494:60-3. [PMID: 11297735 DOI: 10.1016/s0014-5793(01)02311-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Group III metabotropic glutamate receptors (mGluRs) serve as presynaptic receptors that mediate feedback inhibition of glutamate release via a Ca(2+)/calmodulin (CaM)-dependent mechanism. In vitro phosphorylation of mGluR7A by protein kinase C (PKC) prevents its interaction with Ca(2+)/CaM. In addition, activation of PKC leads to an inhibition of mGluR signaling. Here, we demonstrate that disrupting CaM binding to mGluR7A by PKC in vitro is due to phosphorylation of a highly conserved serine residue, S862. We propose charge neutralization of the CaM binding consensus sequence resulting from phosphorylation to constitute a general mechanism for the regulation of presynaptic mGluR signaling.
Collapse
Affiliation(s)
- J M Airas
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528, Frankfurt, Germany
| | | | | |
Collapse
|
91
|
Valerio A, Ferraboli S, Paterlini M, Spano P, Barlati S. Identification of novel alternatively-spliced mRNA isoforms of metabotropic glutamate receptor 6 gene in rat and human retina. Gene 2001; 262:99-106. [PMID: 11179672 DOI: 10.1016/s0378-1119(00)00547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel splice variants of metabotropic glutamate receptor type 6 (mGlu6 receptor) were identified by reverse transcription-polymerase chain reaction (RT-PCR) amplification and sequence analysis of rat and human retina cDNAs. The new rat mGlu6 receptor mRNA isoform is characterized by an additional exon of 88 nucleotides containing an in frame stop codon, thus predicting the expression of a truncated protein of 508 amino acids. The human retina was found to express two different mGlu6 receptor mRNA variants: one lacking 97 nucleotides from exon 6, the other including five nucleotides of intron 5. These mRNAs would encode truncated receptors of 425 and 405 amino acids, respectively. Both in rats and in humans, the truncated mGlu6 receptor proteins would comprise the extracellular domain but lack the transmembrane and intracellular portion of the receptor, thus possibly acting as retinal soluble receptors for glutamate. Though generated by different patterns of alternative splicing, the inter-species conservation of truncated mGlu receptor molecules strongly suggest their relevance in the regulatory network of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- A Valerio
- Division of Biology and Genetics, Department of Biomedical Sciences & Biotechnologies, Brescia University Medical School, Via Valsabbina 19, 25123, Brescia, Italy
| | | | | | | | | |
Collapse
|
92
|
Corti C, Sala CF, Yang F, Corsi M, Xuereb JH, Ferraguti F. Genomic organization of the human metabotropic glutamate receptor subtype 3. J Neurogenet 2000; 14:207-25, 271. [PMID: 11342382 DOI: 10.3109/01677060009084499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the genomic organization of the human metabotropic glutamate receptor subtype 3 (mGluR3) gene has been determined. We have identified two transcription initiation sites and the polyadenylation signal by using 5'-rapid amplification of cDNA ends (RACE) and 3'-RACE, respectively. The exon/intron organization of the human mGluR3 gene revealed the presence of 6 exons separated by 5 introns. The size of introns varied from 10.4 to 120 kbp that contained consensus sequences for repetitive elements such as Alu and long interspersed elements. A putative promoter region flanking the 5' sequence of exon 1 was identified by computer-aided analysis. The putative promoter region was characterized by the presence of a CAAT and GC box, and the absence of a TATA box or CpG islands. Several putative binding sites for transcription factors were also identified. In addition, we have isolated, from a mouse genomic library, part of the mouse mGluR3 gene and found it to correspond to exon 2 in the human mGluR3 gene. The mouse mGluR3 gene was then mapped by fluorescent in situ hybridization analysis to chromosome 5qA2.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 7
- Data Interpretation, Statistical
- Electronic Data Processing
- Genomic Library
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Molecular Sequence Data
- Nucleic Acid Amplification Techniques
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Metabotropic Glutamate/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- C Corti
- Biology Department, GlaxoWellcome Medicines Research Centre, Via Fleming 4, 37135 Verona, Italy
| | | | | | | | | | | |
Collapse
|
93
|
Ross FM, Cassidy J, Wilson M, Davies SN. Developmental regulation of hippocampal excitatory synaptic transmission by metabotropic glutamate receptors. Br J Pharmacol 2000; 131:453-64. [PMID: 11015295 PMCID: PMC1572364 DOI: 10.1038/sj.bjp.0703610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Revised: 07/19/2000] [Accepted: 07/19/2000] [Indexed: 11/09/2022] Open
Abstract
The aims of this study were, to use agonists selective for the 3 mGlu receptor groups to identify developmental changes in their effects, and to assess the usefulness of proposed selective antagonists as pharmacological tools. Hippocampal slices (400 microm) were prepared from neonate (9 - 14 days) and young adult (5 - 7 weeks) Sprague-Dawley rats. Field excitatory postsynaptic potentials (fEPSP) were recorded from CA1. DHPG (100 microM), a group I agonist, produced a slowly developing enhancement of fEPSP slope in slices from adults. In slices from neonates, DHPG (75 microM) depressed fEPSP slope. DCG-IV (500 nM), a group II agonist, did not affect the fEPSP recorded from slices from adults whereas perfusion in neonate slices produced a sustained depression. The group III agonist L-AP4 (50 microM) was ineffective in adult slices but depressed fEPSP slope in slices prepared from neonates. DHPG-induced depression of fEPSP slope was inhibited by 4-CPG (400 microM), a group I antagonist, but was unaffected by MCCG (500 microM) and MAP4 (500 microM), group II and III receptor antagonists respectively. MCCG but not MAP4 antagonized the effects of DCG-IV with 4-CPG producing variable effects. The effect of L-AP4 was unaffected by MCCG, blocked by MAP4, and enhanced by 4-CPG. The results show that the effects of the agonists for all groups of mGlu receptors are developmentally regulated. Furthermore, MCCG and MAP4 behave as effective and selective antagonists for group II and group III mGlu receptors respectively, whereas the usefulness of 4-CPG as a group I antagonist may be limited.
Collapse
Affiliation(s)
- F M Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD
| | | | | | | |
Collapse
|
94
|
Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 2000. [PMID: 10964947 DOI: 10.1523/jneurosci.20-17-06413.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, and mGluR8) has been established to be neuroprotective in vitro and in vivo. To disclose the identity of the receptor subtype(s) that exert(s) the protective effect, we have used group III agonists in combination with mGluR4 subtype-deficient mice (-/-). In cortical cultures prepared from wild-type (+/+) mice and exposed to a toxic pulse of NMDA, the selective group III agonist (+)-4-phosphonophenylglycine [(+)-PPG] reversed excitotoxicity with an EC(50) value of 4.9 microm, whereas its enantiomer (-)-PPG was inactive. This correlated closely with the potency of (+)-PPG in activating recombinant mGluR4a. In cortical neurons from -/- mice, (+)-PPG showed no protection against the NMDA insult up to 300 microm, whereas group I/II mGluR ligands still retained their protective activity. Classical group III agonists (l-2-amino-4-phosphonobutyrate and l-serine-O-phosphate) were also substantially neuroprotective against NMDA toxicity in +/+ and heterozygous (+/-) cultures but were inactive in -/- cultures. Interestingly, -/- cultures were more vulnerable to low concentrations of NMDA and showed higher extracellular glutamate levels compared with +/+ cultures. We have also examined neurodegeneration induced by intrastriatal infusion of NMDA in wild-type or mGluR4-deficient mice. Low doses of (R,S)-PPG (10 nmol/0.5 microl) substantially reduced NMDA toxicity in +/+ mice but were ineffective in -/- mice. Higher doses of (R,S)-PPG were neuroprotective in both strains of animals. Finally, microdialysis studies showed that intrastriatal infusion of NMDA increased extracellular glutamate levels to a greater extent in -/- than in +/+ mice, supporting the hypothesis that the mGluR4 subtype is necessary for the maintenance of the homeostasis of extracellular glutamate levels.
Collapse
|
95
|
Modulation of absence seizures by the GABA(A) receptor: a critical rolefor metabotropic glutamate receptor 4 (mGluR4). J Neurosci 2000. [PMID: 10934271 DOI: 10.1523/jneurosci.20-16-06218.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental absence seizures are associated with perturbations in the presynaptic release of GABA and glutamate within thalamocortical circuitry. The release of both glutamate and GABA is regulated by group III metabotropic glutamate receptors (mGluRs). Therefore, we examined the susceptibility of mice lacking the mGluR4 subtype of mGluR (mGluR4(-/-)) versus their wild-type controls (mGluR4(+/+)) to absence seizures induced either by gamma-hydroxybutyrate (GHB) or the GABA(B) agonist (-) baclofen or by low doses of the GABA(A) receptor (GABA(A)R) antagonists pentylenetetrazole, bicuculline, or picrotoxin. There was no difference between mGluR4(-/-) and mGluR4(+/+) mice in threshold to absence seizures induced by either GHB or (-) baclofen. In contrast, the mGluR4(-/-) mice were markedly resistant to absence seizures induced by low doses of GABA(A)R antagonists. No differences were observed between mGluR4(-/-) and mGluR4(+/+) mice in threshold to clonic or tonic seizures induced by higher doses of GABA(A)R antagonists, strychnine, or electroshock, indicating that seizure resistance in the mGluR4(-/-) mice was restricted solely to absence seizures. The resistance of mGluR4(-/-) mice to absence seizures induced by GABA(A)R antagonists was mimicked by bilateral administration of a mGluR4 antagonist into the nucleus reticularis thalami (nRT) of mGluR4(+/+) mice. Conversely, intra-nRT administration of a mGluR4 agonist in mGluR4(+/+) mice exacerbated GABA(A)R-induced absence seizures. These data indicate that the presence of mGluR4 within nRT is critical to GABAergic modulation of thalamocortical synchronization in normal and pathological states, such as generalized absence epilepsy.
Collapse
|
96
|
Varney MA, Suto CM. Discovery of subtype-selective metabotropic glutamate receptor ligands using functional HTS assays. Drug Discov Today 2000. [DOI: 10.1016/s1359-6446(00)01499-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
97
|
De Colle C, Bessis AS, Bockaert J, Acher F, Pin JP. Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. Eur J Pharmacol 2000; 394:17-26. [PMID: 10771029 DOI: 10.1016/s0014-2999(00)00113-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the brain, group-III metabotropic glutamate (mGlu) receptors mGlu(4), mGlu(7) and mGlu(8) receptors play a critical role in controlling the release process at many glutamatergic synapses. The pharmacological profile of mGlu(4) receptor has been studied extensively, allowing us to propose a pharmacophore model for this receptor subtype. Surprisingly, the activity of only a few compounds have been reported on mGlu(7) and mGlu(8) receptors. In order to identify new possibilities for the design of selective compounds able to discriminate between the members of the group-III mGlu receptors, we have undertaken a complete pharmacological characterization of mGlu(8) receptor and compared it with that of mGlu(4) receptor, using the same expression system, and the same read out. The activities of 32 different molecules revealed that these two mGlu receptors subtypes share a similar pharmacological profile. Only small differences were noticed in addition to that previously reported with S-carboxyglutamate (S-Gla) being a partial agonist at mGlu(4) receptor and a full antagonist at mGlu(8) receptor. These include: a slightly higher relative potency of the agonists 1S,3R and 1S,3S-aminocyclopentane-1,3-dicarboxylic acid (ACPD), S-4-carboxyphenylglycine (S-4CPG) and S-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG), and a slightly higher potency of the antagonists 2-aminobicyclo[3.1.0]hexane-2, 6-dicarboxylic acid (LY354740) and RS-alpha-methyl-4-phosphonophenylglycine (MPPG) on mGlu(8) receptor. When superimposed on the mGlu(4) receptor pharmacophore model, these molecules revealed three regions that may be different between the ligand binding sites of mGlu(8) and mGlu(4) receptors.
Collapse
Affiliation(s)
- C De Colle
- Centre INSERM-CNRS de Pharmacologie-Endocrinologie, UPR 9023-CNRS, rue de la Cardonille, 34094, Montpellier, France
| | | | | | | | | |
Collapse
|
98
|
Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 2000; 47:22-8. [PMID: 10650445 DOI: 10.1016/s0006-3223(99)00207-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The central role that the thalamus plays in information processing and sensory integration suggests that its dysfunction may be a factor in the pathophysiology of schizophrenia. Glutamate is a key neurotransmitter in thalamic function, and although all aspects of thalamic glutamate neurotransmission have not been elucidated, transcripts encoding members of each family of the glutamate receptors have been identified in the thalamus. Recently, activation of group II metabotropic glutamate receptors (mGluRs) was demonstrated in rats to ameliorate the behavioral effects associated with exposure to phencyclidine, an uncompetitive NMDA receptor antagonist that can induce psychotic symptoms, suggesting the possibility of mGluR abnormalities in schizophrenia. We investigated whether expression of thalamic mGluR mRNA is altered in this illness. METHODS We examined the expression of the transcripts encoding the mGluR1, 2, 3, 4, 5, 7, and 8 receptors in postmortem thalamic tissue samples from elderly schizophrenic and control subjects, using in situ hybridization. We identified six thalamic nuclei in each section (anterior, dorsomedial, lateral dorsal, central medial, reticular, and nuclei of the ventral tier). RESULTS There were no differences between elderly schizophrenic and control subjects in the expression of mGluR1, 2, 3, 4, 5, 7, or 8 transcript levels in any of these six thalamic nuclei. CONCLUSIONS mGluR mRNA expression is not abnormal in the thalamus of patients with schizophrenia. The modulatory roles proposed for mGluRs, and the potentially important relationship between mGluRs and NMDA receptors, suggest that mGluRs may be involved in the pathophysiology of schizophrenia, but this is not detectable at this level of gene expression.
Collapse
|
99
|
Shigemoto R, Mizuno N. Chapter III Metabotropic glutamate receptors — immunocytochemical and in situ hybridization analyses. GLUTAMATE 2000. [DOI: 10.1016/s0924-8196(00)80044-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
100
|
Lafon-Cazal M, Viennois G, Kuhn R, Malitschek B, Pin JP, Shigemoto R, Bockaert J. mGluR7-like receptor and GABA(B) receptor activation enhance neurotoxic effects of N-methyl-D-aspartate in cultured mouse striatal GABAergic neurones. Neuropharmacology 1999; 38:1631-40. [PMID: 10530824 DOI: 10.1016/s0028-3908(99)00124-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Presynaptic metabotropic glutamate receptors (mGluRs) of group III constitute possible targets for putative neuroprotective drugs acting against glutamate excitotoxic insults. Indeed, in glutamatergic cerebellar granule neurones in culture, high concentrations of L-2-amino-4-phosphonobutyrate (L-AP4, above 0.3 mM, thus activating mGluR7) inhibit NMDA-induced cell death. In contrast, in striatal cultures which are enriched in GABAergic neurones, we show that high concentrations of L-AP4 increased neuronal death in control as well as in NMDA-stimulated cultures. Moreover, similar results were obtained with the GABA(B)R agonist. baclofen. Both the neuroprotective effects in cerebellar granule cells and the neurotoxic effects in striatal neurones were mediated via Gi-Go-coupled mGluRs, suggesting that these effects were probably mediated by mGluR7a or b and GABA(B)R expressed in these neurones. In striatal neurones, we found that L-AP4 and baclofen inhibited both basal and NMDA-stimulated GABA release. These inhibitions of GABA release may be responsible for the increase in basal and NMDA-stimulated neuronal death. Indeed, blockade of GABA(A) receptors with bicuculline increased neuronal death of control and NMDA-treated striatal cultures. Taken together, these results suggest that L-AP4 and baclofen, via mGluR7 and GABA(B)R, reduced the neuroprotective effect of GABA present in striatal cultures acting via GABA(A) receptors. Although caution must be taken when extrapolating from in vitro to in vivo situations, the present experiments and the recent observations that mGluR7 and GABA(B)R are expressed in heterologous synapses, should be taken into consideration when evaluating the neuroprotective action of future mGluR7 specific agonists or GABA(B)R specific antagonists.
Collapse
|