51
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
52
|
Abstract
Pain serves as a warning of impending injury, triggering appropriate protective responses. Emotional and cognitive processing in the brain is involved in the sensation of pain. As Ca(2+) waves in keratinocytes are mediated by the release of extracellular molecules such as signaling molecules, this may also affect the activity of surrounding cells such as sensory neurons. Although no junctions have been found between keratinocytes and sensory termini, ultrastructural studies have shown that keratinocytes come into contact with dorsal root ganglion neurons through membrane-membrane apposition. There is also indirect evidence that keratinocytes communicate with sensory neurons via extracellular molecules. Sensory neurons themselves sense various external stimuli, but there may also be skin-derived regulatory mechanisms by which sensory signaling is modulated.First, we will give a general outline of the subject: 1) Progress in identifying cortical loci that process pain messages is needed. 2) Far greater advances have been made in understanding the molecular mechanisms whereby primary sensory neurons detect pain-producing stimuli. 3) Genetic studies have facilitated the identification and functional characterization of molecules. 4) Now, the relationship between sensory and ion channels has become clear.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Physiology, Tokyo Dental College, Mihama-ku, Chiba, Japan
| |
Collapse
|
53
|
Flood S, Parri R, Williams A, Duance V, Mason D. Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synoviocytes by functional ionotropic glutamate receptors. ARTHRITIS AND RHEUMATISM 2007; 56:2523-34. [PMID: 17665433 DOI: 10.1002/art.22829] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) have increased concentrations of the amino acid glutamate in synovial fluid. This study was undertaken to determine whether glutamate receptors are expressed in the synovial joint, and to determine whether activation of glutamate receptors on human synoviocytes contributes to RA disease pathology. METHODS Glutamate receptor expression was examined in tissue samples from rat knee joints and in human fibroblast-like synoviocytes (FLS). FLS from 5 RA patients and 1 normal control were used to determine whether a range of glutamate receptor antagonists influenced expression of the proinflammatory cytokine interleukin-6 (IL-6), enzymes involved in matrix degradation and cytokine processing (matrix metalloproteinase 2 [MMP-2] and MMP-9), and the inhibitors of these enzymes (tissue inhibitor of metalloproteinases 1 [TIMP-1] and TIMP-2). IL-6 concentrations were determined by enzyme-linked immunosorbent assay, MMP activity was measured by gelatin zymography, and TIMP activity was determined by reverse zymography. Fluorescence imaging of intracellular calcium concentrations in live RA FLS stimulated with specific antagonists was used to reveal functional activation of glutamate receptors that modulated IL-6 or MMP-2. RESULTS Ionotropic and metabotropic glutamate receptor subunit mRNA were expressed in the patella, fat pad, and meniscus of the rat knee and in human articular cartilage. Inhibition of N-methyl-D-aspartate (NMDA) receptors in RA FLS increased proMMP-2 release, whereas non-NMDA ionotropic glutamate receptor antagonists reduced IL-6 production by these cells. Stimulation with glutamate, NMDA, or kainate (KA) increased intracellular calcium concentrations in RA FLS, demonstrating functional activation of specific ionotropic glutamate receptors. CONCLUSION Our findings indicate that activation of NMDA and KA glutamate receptors on human synoviocytes may contribute to joint destruction by increasing IL-6 expression.
Collapse
MESH Headings
- Adult
- Animals
- Calcium/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression
- Glutamic Acid/pharmacology
- Hindlimb
- Humans
- Interleukin-6/metabolism
- Kainic Acid/pharmacology
- Male
- Matrix Metalloproteinase 2/metabolism
- Menisci, Tibial/chemistry
- Menisci, Tibial/metabolism
- Middle Aged
- N-Methylaspartate/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Synovial Membrane/drug effects
- Synovial Membrane/metabolism
- Tissue Inhibitor of Metalloproteinases/metabolism
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Sophie Flood
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | | | | | | | | |
Collapse
|
54
|
Toyono T, Kataoka S, Seta Y, Shigemoto R, Toyoshima K. Expression of group II metabotropic glutamate receptors in rat gustatory papillae. Cell Tissue Res 2007; 328:57-63. [PMID: 17216195 DOI: 10.1007/s00441-006-0351-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/04/2006] [Indexed: 11/29/2022]
Abstract
Glutamate is one candidate for the neurotransmitters and/or neuromodulators involved in taste signaling in taste buds. Group II metabotropic glutamate receptors (mGluRs: mGluR2 and mGluR3) are known to function as presynaptic receptors that regulate the release of glutamate and/or other neurotransmitters in the central nervous system. Group II mGluRs are negatively linked to adenylyl cyclase through Galphai subunits and thereby reduce the turnover of cAMP. In rat taste tissues, a subset of adenylyl-cyclase-8-expressing taste cells coexpress the Galphai subunits gustducin and Galphai2. However, the expression patterns of group II mGluRs in rat taste tissues have not yet been elucidated. We have therefore examined the expression patterns of mGluR2, mGluR3, and gustducin in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays have revealed that mGluR2 and mGluR3 mRNAs are expressed in the circumvallate papillae. In situ hybridization analyses have detected positive signals for mGluR2 and mGluR3 mRNAs only in the circumvallate taste buds. Among the fungiform, foliate, and circumvallate papillae, an antibody against mGluR2/3 labels a subset of taste bud cells and nerve fibers immediately beneath the taste lingual epithelium. Double-labeling experiments have demonstrated that mGluR2/3-positive cells coexpress gustducin. These results indicate that mGluR2 and mGluR3 are coupled to Galphai subunits and play roles in glutamate-mediated signaling in taste transductions.
Collapse
Affiliation(s)
- Takashi Toyono
- Division of Oral Histology and Neurobiology, Department of Biosciences, Science of Health Improvement, Kyushu Dental College, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | | | | | | | | |
Collapse
|
55
|
Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signal 2006; 2:491-8. [PMID: 18404486 PMCID: PMC2104003 DOI: 10.1007/s11302-005-7331-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 05/04/2005] [Indexed: 01/06/2023] Open
Abstract
Retinoids, vitamin A derivatives, are important regulators of the growth and differentiation of skin cells. Although retinoids are therapeutically used for several skin ailments, little is known about their effects on P2 receptors, known to be involved in various functions in the skin. DNA array analysis showed that treatment of normal human epidermal keratinocytes (NHEKs) with all-trans-retinoic acid (ATRA), an agonist to RAR (retinoic acid receptor), enhanced the expression of mRNA for the P2Y2 receptor, a metabotropic P2 receptor that is known to be involved in the proliferation of the epidermis. The expression of other P2 receptors in NHEKs was not affected by ATRA. ATRA increased the mRNA for the P2Y2 receptor in a concentration-dependent fashion (1 nM to 1 μM). Am80, a synthesized agonist to RAR, showed a similar enhancement, whereas 9-cis-retinoic acid (9-cisRA), an agonist to RXR (retinoid X receptor), enhanced P2Y2 gene expression to a lesser extent. Ca2+ imaging analysis showed that ATRA also increased the function of P2Y2 receptors in NHEKs. Retinoids are known to enhance the turnover of the epidermis by increasing both proliferation and terminal differentiation. The DNA microarray analysis also revealed that ATRA upregulates various genes involved in the differentiation of NHEKs. Our present results suggest that retinoids, at least in part, exert their proliferative effects by upregulating P2Y2 receptors in NHEKs. This effect of retinoids may be closely related to their therapeutic effect against various ailments or aging events in skins such as over-keratinization, pigmentation and re-modeling.
Collapse
|
56
|
Do SH, Yun HS, Jeong WI, Jeong DH, Ki MR, Chung JY, Park SJ, Kim SB, Jeong KS. Up-regulation of Metabotropic glutamate receptor 3 (mGluR3) in rat fibrosis and cirrhosis model of persistent hypoxic condition. Mol Cell Biochem 2006; 294:189-96. [PMID: 16845489 DOI: 10.1007/s11010-006-9259-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and evidence for peripheral glutamatergic fibers in mammals is still lacking. However, glutamate receptors have been identified in peripheral organs, including taste buds, myenteric plexus, and pancreatic islet cell. Protection against anoxic damage could also be explained by mechanisms mediated by postsynaptic mGluR2 or mGluR3, such as the inhibition of membrane excitability resulting from a reduction of cAMP formation by a G-protein-dependent modulation of ion channels. In addition, activation of mGluR3 present in glial cells may contribute to neuroprotection by enhancing the production of death. Thus, mGluR2/3 behaves potentially as a major defensive mechanism anoxia-tolerant species. There are a few reports for the regional pattern of hypoxic damage, which was inversely related to the expression of mGluR2/3. The aim of this study was to characterize the expression of mGluR3 in hypoxic liver in experimental model of rat liver. Proteomic analysis of protein extracts from CCl4-induced cirrhotic liver revealed the presence of the mGluR3. The presence of mGluR3 in the cirrhotic liver was confirmed by immunohistochemical analysis. There were a number of macrophages expressing mGluR3 mainly in the fibrous septa. After 2 weeks recovery, however, most of mGluR3 positive macrophages disappeared with collagen fibers. These results demonstrate that mGluR3 involved in the liver in response to persistent hypoxic status such as fibrotic/cirrhotic condition, and suggest that the expression of mGluR3 may be a key role functional metabolism and viability in the liver by interacting with the glutamate receptors in vivo.
Collapse
Affiliation(s)
- Sun Hee Do
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, 702-701, #1370 Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cahusac PMB, Senok SS. Metabotropic glutamate receptor antagonists selectively enhance responses of slowly adapting type I mechanoreceptors. Synapse 2006; 59:235-42. [PMID: 16385550 DOI: 10.1002/syn.20236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is evidence that glutamate may participate as a transmitter at the junction between Merkel cells and the nerve terminals of slowly adapting type I (St I) units. We recorded extracellularly from the deep vibrissal nerve of an isolated rat vibrissa preparation in vitro. Five second trapezoid stimulus ramp deflections of the hair shaft were used to evoke responses. We bath-applied two compounds, which we planned would interfere with glutamatergic transmission. (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) was used at concentrations up to 100 microM to block all known metabotropic glutamate (mGlu) receptors. The racemic mixture (RS)-4-carboxy-3-hydroxyphenylglycine ((RS)-4C3HPG) was used up to 100 microM to block ionotropic and Group I metabotropic glutamate receptors, and as an agonist at Group II mGlu receptors. Unexpectedly, both compounds had rapid onset excitatory effects on mechanically-evoked responses. (RS)-4C3HPG increased responses, with a mean 146% of control (P < 0.05) in a concentration-dependent manner. LY341495 increased responses, with a mean 128% of control (P < 0.05). With (RS)-4C3HPG in particular, it was noted that the static component (the firing during the last 1 s plateau) was preferentially enhanced relative to the dynamic component (firing during the first 0.5 s). Rapid recovery was seen after wash. Slowly adapting type II units, which have no junctional transmission, were completely unaffected by these compounds up to 200 microM. These results suggest that mGlu receptors play a role in Merkel cell-neurite complex mechanotransduction, although other explanations are considered.
Collapse
Affiliation(s)
- Peter M B Cahusac
- Department of Psychology, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | |
Collapse
|
58
|
Hoogduijn MJ, Hitchcock IS, Smit NPM, Gillbro JM, Schallreuter KU, Genever PG. Glutamate receptors on human melanocytes regulate the expression of MiTF. ACTA ACUST UNITED AC 2006; 19:58-67. [PMID: 16420247 DOI: 10.1111/j.1600-0749.2005.00284.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system but has also important functions in the epidermis. It is involved in keratinocyte barrier function and in re-epithelialization processes after wounding. Recently, glutamate signalling has been suggested to be implicated in the development of melanoma. The present study examined the expression and functionality of metabotropic and ionotropic glutamate receptors on normal human melanocytes. We found that cultured melanocytes expressed the ionotropic glutamate receptors GluR2 and 4 [alpha-amino-3-hydroxy-5-methyl-4-isoxsazolepropionic acid (AMPA) receptors] and N-methyl-d-aspartate (NMDA) receptors 2A and 2C and possibly the metabotropic glutamate receptor 1. Melanocytes were also found to express specific glutamate transporters and decarboxylases, but appeared neither to produce nor to release l-glutamate. Stimulation with 10 or 100 microM AMPA or NMDA elevated intracellular calcium concentrations in melanocytes, and thus demonstrated the functionality of the glutamate receptors. Millimolar concentrations of l-glutamate did not induce melanocyte toxicity and had no stimulating effect on melanin production. However, blockage of AMPA and NMDA receptors with CFM-2, memantine or MK801 caused a rapid and reversible change in melanocyte morphology, which was associated with disorganisation of actin and tubulin microfilaments. After 24 h of treatment with the AMPA receptor inhibitor CFM-2, there was a sharp reduction in the expression of the crucial melanocyte differentiation and proliferation factor MiTF. The results of this study demonstrate a role for glutamate in melanocyte regulation that may have implications in melanocyte associated disorders.
Collapse
Affiliation(s)
- M J Hoogduijn
- Biomedical Tissue Research Group, Department of Biology, University of York, York YO10 5YW, UK.
| | | | | | | | | | | |
Collapse
|
59
|
Rai G, Ray S, Shaw RE, Degrange PF, Mage RG, Newman BA. Models of systemic lupus erythematosus: development of autoimmunity following peptide immunizations of noninbred pedigreed rabbits. THE JOURNAL OF IMMUNOLOGY 2006; 176:660-7. [PMID: 16365462 DOI: 10.4049/jimmunol.176.1.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reported in this study are the initial results from studies to develop rabbit models of systemic lupus erythematosus (SLE) by immunizations using two distinct peptides on branched polylysine backbones (multiple Ag peptide)-peptides. Eleven rabbits received a peptide from the Sm B/B' spliceosomal complex previously shown to be immunogenic in rabbits, and 13 rabbits received a peptide from the rabbit N-methyl-d-aspartate receptor NR2b. All 24 animals in different generations of pedigreed, noninbred rabbits produced peptide-specific responses. Anti-nuclear autoantibody responses, including anti-dsDNA, were seen in 17 of 24 rabbits. To date, two rabbits have been observed to have seizure-like events and a third nystagmus. A model for eliciting development of SLE in genetically related yet heterogeneous rabbits may more closely resemble development of human SLE than do some models in inbred mice. Through selective breeding, it may also ultimately provide additional information about the genetics and etiology of SLE and serve as a model for assessing new treatment options.
Collapse
Affiliation(s)
- Geeta Rai
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
60
|
Tang F, Yue S, Luo Z, Feng D, Wang M, Qian C, Zhen X, Duan Y. Role of N-methyl-D-aspartate receptor in hyperoxia-induced lung injury. Pediatr Pulmonol 2005; 40:437-44. [PMID: 16163726 DOI: 10.1002/ppul.20299] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutamate (Glu) N-methyl-D-aspartate (NMDA) receptor is present in the lungs, and NMDA receptor antagonist MK-801 attenuates oxidant lung injury. We hypothesized that Glu excitotoxicity may participate in the pathogenesis of hyperoxia-induced lung injury. To determine possible pulmonary protective effects, we administered 0.05 ml/kg MK-801 or saline intraperitoneally daily to neonatal rats exposed to more than 95% oxygen in air. After 7 days, MK-801 decreased the hyperoxia-associated elevation of wet-to-dry lung weight, total leukocyte and neutrophil counts, total protein and lactate dehydroase in BAL fluid, total myeloperoxidase activity, and lung pathological injury. MK-801 inhibited hyperoxia-associated increments in reactive oxygen species production and NF-kappaB production. Hence, NMDA receptor antagonist MK-801 ameliorates hyperoxia-induced lung injury in neonatal rats, and is associated with decreased reactive oxygen species and NF-kappaB. We conclude that Glu may play an important role in hyperoxia-induced lung injury by activation of NMDA receptor.
Collapse
Affiliation(s)
- FeiGe Tang
- Department of Pediatrics, XinHua Hospital, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Chang HJ, Yoo BC, Lim SB, Jeong SY, Kim WH, Park JG. Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res 2005; 11:3288-95. [PMID: 15867225 DOI: 10.1158/1078-0432.ccr-04-1912] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Metabotropic glutamate receptors (mGluR) play a variety of roles in both neuronal and nonneuronal cells. Recently, we reported that mGluR4 mediates 5-fluorouracil resistance in a human colon cancer cell line. In this study, we evaluated the nonneural expression of mGluR4 and clarified the existence of mGluR4 in normal colon epithelium and colorectal carcinomas. We also investigated the association of mGluR4 expression levels with various clinicopathologic parameters. EXPERIMENTAL DESIGN mGluR4 expression was investigated in 21 normal and 312 malignant tissues from various organs using immunohistochemistry. In addition, 241 cases of colorectal carcinomas were examined and correlations between mGluR4 expression and various clinicopathologic parameters were then statistically analyzed. RESULTS Expression of mGluR4 was identified in the normal epithelia of the upper respiratory tract, gastrointestinal tracts, breast, uterine cervix, urinary bladder, and skin, whereas it was not detected in the thyroid, lung alveoli, liver, testis, or prostate. In the corresponding malignant tissues, mGluR4 expression was frequently identified in colorectal carcinoma (68%), followed by malignant melanoma, laryngeal carcinoma, and breast carcinomas. Expression of mGluR4 was detected in 131 (54%) of 241 colorectal carcinomas and 12 (5%) cases among them showed overexpression in their cytoplasms. Loss of mGluR4 expression was negatively associated with tumor differentiation (P = 0.028), whereas overexpression of mGluR4 was positively associated with recurrence (P = 0.034) and poor disease-free survival (P = 0.017) in multivariate analyses. CONCLUSIONS Our results suggest that mGluR4 signaling may play a role in colorectal carcinomas and that overexpression of mGluR4 is associated with poor prognosis.
Collapse
Affiliation(s)
- Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | | | | | | | | | | |
Collapse
|
62
|
Bodó E, Bíró T, Telek A, Czifra G, Griger Z, Tóth BI, Mescalchin A, Ito T, Bettermann A, Kovács L, Paus R. A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:985-98. [PMID: 15793280 PMCID: PMC1602392 DOI: 10.1016/s0002-9440(10)62320-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vanilloid receptor-1 (VR1, or transient receptor potential vanilloid-1 receptor, TRPV1) is activated by capsaicin, the key ingredient of hot peppers. TRPV1 was originally described on sensory neurons as a central integrator of various nociceptive stimuli. However, several human skin cell populations are also now recognized to express TRPV1, but with unknown function. Exploiting the human hair follicle (HF) as a prototypic epithelial-mesenchymal interaction system, we have characterized the HF expression of TRPV1 in situ and have examined TRPV1 signaling in organ-cultured human scalp HF and outer root sheath (ORS) keratinocytes in vitro. TRPV1 immunoreactivity was confined to distinct epithelial compartments of the human HF, mainly to the ORS and hair matrix. In organ culture, TRPV1 activation by capsaicin resulted in a dose-dependent and TRPV1-specific inhibition of hair shaft elongation, suppression of proliferation, induction of apoptosis, premature HF regression (catagen), and up-regulation of intrafollicular transforming growth factor-beta(2). Cultured human ORS keratinocytes also expressed functional TRPV1, whose stimulation inhibited proliferation, induced apoptosis, elevated intracellular calcium concentration, up-regulated known endogenous hair growth inhibitors (interleukin-1beta, transforming growth factor-beta(2)), and down-regulated known hair growth promoters (hepatocyte growth factor, insulin-like growth factor-I, stem cell factor). These findings strongly support TRPV1 as a significant novel player in human hair growth control, underscore the physiological importance of TRPV1 in human skin beyond nociception, and identify TRPV1 as a promising, novel target for pharmacological manipulations of epithelial growth disorders.
Collapse
Affiliation(s)
- Eniko Bodó
- Department of Physiology, University of Debrecen, MHSC, 4012 Debrecen, Nagyerdei krt. 98., Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Morhenn VB, Murakami M, O'Grady T, Nordberg J, Gallo RL. Characterization of the expression and function of N-methyl-D-aspartate receptor in keratinocytes. Exp Dermatol 2005; 13:505-11. [PMID: 15265015 DOI: 10.1111/j.0906-6705.2004.00186.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is expressed on neural tissue where it gates calcium ion entry upon stimulation. Using immunohistochemistry, it has been demonstrated in this study that the NMDAR1 receptor is also expressed on keratinocytes (KCs) in normal human skin and inflamed psoriatic skin in vivo. Furthermore, the NMDA receptor was functional as demonstrated by the ability of this receptor to trigger Ca++ influx in KCs. Incubation of cultured, human KCs with MK-801 decreases the cell growth and induces an increase in apoptosis. These findings demonstrate that the KC expression of NMDA receptor is a mechanism through which the influx of Ca++ into the cell can be regulated and suggest that the expression of this receptor may play a role in the regulation of KC growth and differentiation.
Collapse
Affiliation(s)
- V B Morhenn
- Division of Dermatology, University of California, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
64
|
Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 2004; 380:329-38. [PMID: 14967069 PMCID: PMC1224173 DOI: 10.1042/bj20031089] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/23/2003] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a co-culture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Inoue K, Tsuda M, Koizumi S. [ATP receptors in pain sensation]. Nihon Yakurigaku Zasshi 2004; 124:228-33. [PMID: 15467256 DOI: 10.1254/fpj.124.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We reported that activation of P2X2/3 heteromeric channels in A delta-DRG neurons causes tactile allodynia and activation of P2X3 in C-fiber causes nocifensive behavior. We also found that tactile allodynia under the chronic pain state requires an activation of P2X4 ionotropic ATP receptor and p38 mitogen-activated protein kinase in spinal microglia.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Division of Biosignaling, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | |
Collapse
|
66
|
Fischer M, Glanz D, William T, Klapperstück T, Wohlrab J, Marsch WC. N-methyl-D-aspartate receptors influence the intracellular calcium concentration of keratinocytes. Exp Dermatol 2004; 13:512-9. [PMID: 15265016 DOI: 10.1111/j.0906-6705.2004.00200.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the distribution of ionotropic glutamate receptors of the N-methyl-D-aspartate (NMDA)-receptor type was immunohistochemically demonstrated in healthy human skin (n = 22) and healthy buccal mucosa (n = 20). Moreover, the intracellular calcium concentration of HaCaT-cells and native human keratinocytes were studied under the influence of the selective agonist NMDA and the selective NMDA-antagonist MK-801. Immunohistochemical imaging of NMDA receptors in healthy epidermis showed a positive reaction in the stratum basale, spinosum and granulosum, whereby the greatest expression was observed in the granular layer. In the mucosal preparations, the distribution of NMDA receptors was observed to be equal in all cell layers. In the cell culture (HaCaT-cells), NMDA concentrations between 25 microM and 1 mM resulted in a significant increase in the number of cells showing elevated intracellular calcium concentration. This effect could be significantly reduced by prior application of MK-801 (100 micro M). In supplementary tests on HaCaT-keratinocytes, blockade of the keratinocytic NMDA receptors with MK-801 suppressed the differentiation of the cells (expression of cytokeratin 10). The proliferation of cells was not influenced by NMDA. The investigations showed that glutamate receptors of the NMDA type have an influence on keratinocytic calcium concentration. This appears especially important for the differentiation of keratinocytes.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Dermatology and Venerology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
67
|
Hitchcock IS, Genever PG, Cahusac PMB. Essential components for a glutamatergic synapse between Merkel cell and nerve terminal in rats. Neurosci Lett 2004; 362:196-9. [PMID: 15158013 DOI: 10.1016/j.neulet.2004.02.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
The exact role of Merkel cells and their possible involvement in mechanosensation is unclear. The aim of this study was to determine, in the adult rat sinus hair follicle, the expression pattern of a number of vesicular proteins involved in neurotransmitter release to provide a clearer understanding of Merkel cell signalling mechanisms. We identified prominent expression and co-localization of the glutamatergic vesicle loading proteins VGLUT1 and VGLUT2 at the site of the sinus hair follicle known to be densely populated with Merkel cells. We also found expression of the vesicle recycling proteins synaptogyrin and syntaxin-6 in the same region of the hair follicle. Our data suggest that glutamate signalling is involved in Merkel cell mechanosensation and that vesicular trafficking is commonplace in the Merkel cell-neurite complex.
Collapse
Affiliation(s)
- Ian S Hitchcock
- Department of Biology, University of York, Heslington, York, UK
| | | | | |
Collapse
|
68
|
Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. ACTA ACUST UNITED AC 2004; 271:1-13. [PMID: 14686914 DOI: 10.1046/j.1432-1033.2003.03907.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hypothesis that l-glutamate (Glu) is an excitatory amino acid neurotransmitter in the mammalian central nervous system is now gaining more support after the successful cloning of a number of genes coding for the signaling machinery required for this neurocrine at synapses in the brain. These include Glu receptors (signal detection), Glu transporters (signal termination) and vesicular Glu transporters (signal output through exocytotic release). Relatively little attention has been paid to the functional expression of these molecules required for Glu signaling in peripheral neuronal and non-neuronal tissues; however, recent molecular biological analyses show a novel function for Glu as an extracellular signal mediator in the autocrine and/or paracrine system. Emerging evidence suggests that Glu could play a dual role in mechanisms underlying the maintenance of cellular homeostasis - as an excitatory neurotransmitter in the central neurocrine system and an extracellular signal mediator in peripheral autocrine and/or paracrine tissues. In this review, the possible Glu signaling methods are outlined in specific peripheral tissues including bone, testis, pancreas, and the adrenal, pituitary and pineal glands.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
69
|
Krimm RF, Davis BM, Woodbury CJ, Albers KM. NT3 expressed in skin causes enhancement of SA1 sensory neurons that leads to postnatal enhancement of Merkel cells. J Comp Neurol 2004; 471:352-60. [PMID: 14991566 DOI: 10.1002/cne.20041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine the role of NT3 in the postnatal maturation of Merkel cell (MC) sensory neurite complexes (touch domes), we examined the development of their neural and end-organ components in wild-type and transgenic mice that overexpress NT3 (NT3-OE). Touch domes are sensory complexes of the skin that contain specialized MCs innervated by slowly adapting type 1 (SA1) neurons. Touch domes are dependent on NT3 and, though formed in newborn mice that lack NT3, are severely depleted during postnatal maturation. Mice that overexpress NT3 in the skin have larger touch domes characterized by enhanced neural innervation and MC number. In this study, we asked how this NT3-mediated enhancement occurs, whether through stimulatory effects of NT3 on the SA1 neuron, or the MC, or both. The innervation density and number of MCs associated with each touch dome were measured in wild-type and transgenic animals at postnatal times. In newborn NT3-OE mice, touch dome innervation was enhanced. Surprisingly, however, the number of MCs was lower in newborn NT3-OE animals than in wild-type littermates, and equivalent numbers were not reached until postnatal day 8 (PN8). Not until the PN12 and PN16 time points did MCs increase in NT3-OE mice. To examine the neural dependence of MCs in NT3-OE mice, touch domes were chronically denervated by resecting dorsal cutaneous nerves. Both wild-type and NT3-OE animals showed similar depletion in the number of MCs associated with touch domes. These data indicate that NT3 is not a survival factor for MCs and that the NT3-mediated enhancement of MC number is indirect and neurally dependent.
Collapse
Affiliation(s)
- Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
70
|
Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V. Significance ofN-methyl-d-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 2004; 200:309-17. [PMID: 15174101 DOI: 10.1002/jcp.20010] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing data suggest that glutamate might act as a cell-signaling molecule in non-neuronal tissues such as the skin. Here we demonstrate the presence of functional N-methyl-D-aspartate (NMDA)-type glutamate receptors in human keratinocytes. NMDA receptor expression strongly reflects the degree of cell-to-cell contact. Wounding polarizes the expression of NMDA receptors in keratinocytes involved in re-epithelialization, and the process of re-epithelialization is inhibited by NMDA receptor activation. We also demonstrate that squamous cell carcinomas lack NMDA receptors. Our data suggest that Ca2+ entry through NMDA receptors influences the cycle of keratinocyte proliferation, differentiation, and migration during epithelialization. Moreover, NMDA receptor activation might play a role in contact-mediated inhibition of growth, a process that is absent during neoplastic pathology. This receptor may serve as a pharmacological target for modulating keratinocyte behavior and treating cutaneous disorders.
Collapse
Affiliation(s)
- Walter K Nahm
- University of California, San Diego, School of Medicine and Veteran Affairs Medical Center, San Diego, California USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 2003; 121:362-7. [PMID: 12880429 DOI: 10.1046/j.1523-1747.2003.12367.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the nervous system, influx of calcium and chloride ions into neurons regulates the signaling system by excitation and inhibition, respectively. In this study, we demonstrated the effects of the ion influx into epidermal keratinocytes in the permeability barrier repair process of the skin after damage. Topical application of the neurotransmitters glutamate and nicotine, which activate the calcium channel in neurons, delayed the barrier repair after tape stripping. In contrast, the neurotransmitters GABA and glycine, which activate the chloride channel in neurons, accelerated barrier repair. Topical application of the calcium ionophore ionomycin delayed barrier recovery and chloride ionophore 1 accelerated barrier repair after barrier disruption by tape stripping and acetone treatment. Ionomycin increased the intracellular calcium concentration in cultured keratinocytes whereas the chloride ionophore 1 increased the intracellular chloride ion concentration. In vivo light microscopy and electron microscopy observation showed acceleration of the exocytosis of lipid-containing lamellar bodies by the chloride ionophore and delay of the exocytosis by the calcium ionophore. These results suggest that, like the nervous system, influx of calcium and chloride ions into epidermal keratinocytes through ionotropic receptors plays a crucial role in cutaneous barrier homeostasis.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Shiseido Research Center, Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | |
Collapse
|
72
|
Fuziwara S, Inoue K, Denda M. NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J Invest Dermatol 2003; 120:1023-9. [PMID: 12787130 DOI: 10.1046/j.1523-1747.2003.12238.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamate receptors play an important role in the excitatory synaptic action of the central nervous system. In this study, effects of glutamate receptor agonists and antagonists on skin barrier homeostasis were studied using hairless mouse. Topical application of L-glutamic acid, L-aspartic acid (non-specific glutamate receptor agonists) and N-methyl-D-aspartate (NMDA, NMDA type receptor agonist) delayed the barrier recovery rate after barrier disruption with tape stripping. On the other hand, topical application of D-glutamic acid (non-specific antagonist of glutamate receptor), MK 801 and D-AP5, (NMDA-type receptor antagonists) accelerated the barrier repair. The non-NMDA type receptor agonist, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), did not affect the barrier recovery. Topical application of MK-801 also promoted the healing of epidermal hyperplasia induced by acetone treatment under low environmental humidity. Immediately after barrier disruption on skin organ culture, secretion of glutamic acid from skin was significantly increased. Immunohistochemistry, reverse transcription polymearse chain reaction (RT-PCR) and in situ hybridization showed an expression of NMDA-type receptor-like protein on hairless mouse epidermis. NMDA increased intercellular calcium in cultured human keratinocytes and the increase was blocked by MK 801. These results suggest that glutamate plays an important role as a signal of cutaneous barrier homeostasis and epidermal hyperplasia induced by barrier disruption.
Collapse
|
73
|
Cowan FM, Broomfield CA, Lenz DE, Smith WJ. Putative role of proteolysis and inflammatory response in the toxicity of nerve and blister chemical warfare agents: implications for multi-threat medical countermeasures. J Appl Toxicol 2003; 23:177-86. [PMID: 12794939 DOI: 10.1002/jat.901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the contrasts in chemistry and toxicity, for blister and nerve chemical warfare agents there may be some analogous proteolytic and inflammatory mediators and pathological pathways that can be pharmacological targets for a single-drug multi-threat medical countermeasure. The dermal-epidermal separation caused by proteases and bullous diseases compared with that observed following exposure to the blister agent sulfur mustard (2,2'-dichlorodiethyl sulfide) has fostered the hypothesis that sulfur mustard vesication involves proteolysis and inflammation. In conjunction with the paramount toxicological event of cholinergic crisis that causes acute toxicity and precipitates neuronal degeneration, both anaphylactoid reactions and pathological proteolytic activity have been reported in nerve-agent-intoxicated animals. Two classes of drugs already have demonstrated multi-threat activity for both nerve and blister agents. Serine protease inhibitors can prolong the survival of animals intoxicated with the nerve agent soman and can also protect against vesication caused by the blister agent sulfur mustard. Poly (ADP-ribose) polymerase (PARP) inhibitors can reduce both soman-induced neuronal degeneration and sulfur-mustard-induced epidermal necrosis. Protease and PARP inhibitors, like many of the other countermeasures for blister and nerve agents, have potent primary or secondary anti-inflammatory pharmacology. Accordingly, we hypothesize that drugs with anti-inflammatory actions against either nerve or blister agent might also display multi-threat efficacy for the inflammatory pathogenesis of both classes of chemical warfare agent.
Collapse
Affiliation(s)
- F M Cowan
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
74
|
Kanda N, Watanabe S. 17beta-estradiol inhibits the production of interferon-induced protein of 10 kDa by human keratinocytes. J Invest Dermatol 2003; 120:411-9. [PMID: 12603854 DOI: 10.1046/j.1523-1747.2003.12066.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The natural course of psoriasis is often modulated during pregnancy, indicating the regulatory effect of estrogen or progesterone on psoriasis. Interferon-induced protein of 10 kDa chemoattracts T helper 1 cells, and interferon-induced protein of 10 kDa production by keratinocytes is enhanced in psoriatic skin lesions. We examined in vitro effects of sex hormones on the interferon-induced protein of 10 kDa production by human keratinocytes. 17beta-estradiol inhibited interferon-gamma-induced interferon-induced protein of 10 kDa secretion, mRNA expression, and promoter activity. Interferon-stimulated response element on the promoter was responsible for the inhibition by 17beta-estradiol. Interferon-gamma-induced protein of 10 kDa production was also inhibited by anti-estrogens, ICI 182 780 and tamoxifen, and membrane-impermeable bovine serum albumin-conjugated 17beta-estradiol, suggesting the effects via membrane estrogen receptor, whereas 17alpha-estradiol, progesterone, and dihydrotestosterone had no effects. 17beta-estradiol and bovine serum albumin-conjugated 17beta-estradiol suppressed interferon-gamma-induced transcription through the interferon-stimulated response element and signal transducer and activator of transcription 1alpha binding to interferon-stimulated response element. 17beta-estradiol and bovine serum albumin-conjugated 17beta-estradiol suppressed interferon-gamma-induced tyrosine phosphorylation of signal transducer and activator of transcription 1alpha, and Janus tyrosine kinase 1 and 2. 17beta-estradiol-mediated suppression on the interferon-gamma-induced signal transducer and activator of transcription 1alpha activation and interferon-induced protein of 10 kDa synthesis was counteracted by adenylate cyclase inhibitor SQ22536. 17beta-estradiol, bovine serum albumin-conjugated 17beta-estradiol, ICI 182 780, and tamoxifen increased intracellular 3',5'-adenosine cyclic monophosphate level by activating adenylate cyclase in keratinocytes. Fluorescein isothiocyanate-labeled bovine serum albumin-conjugated 17beta-estradiol bound to the surface of keratinocytes, and mRNA for estrogen receptor beta but not for estrogen receptor alpha was detected in keratinocytes. These results suggest that 17beta-estradiol may interact with the membrane receptor on keratinocytes and generate 3',5'-adenosine cyclic monophosphate by activating adenylate cyclase, which may lead to the inhibition of interferon-gamma-induced signal transducer and activator of transcription 1alpha activation and interferon-induced protein of 10 kDa synthesis.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
75
|
Denda M, Inoue K, Fuziwara S, Denda S. P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced by skin barrier disruption. J Invest Dermatol 2002; 119:1034-40. [PMID: 12445189 DOI: 10.1046/j.1523-1747.2002.19505.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of ATP receptor agonists/antagonists on skin barrier recovery rate were evaluated in hairless mice. Topical application of ATP and alpha,beta-methylene ATP (agonist of P2X receptor) delayed barrier recovery. Topical application of suramin (nonspecific ATP receptor antagonist), pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (P2X receptor antagonist), and 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP) (P2X1, P2X3, P2X2/3 antagonist) after barrier disruption accelerated the barrier repair. The P2Y type receptor antagonist Reactive Blue 2 did not affect the barrier repair process. Moreover, topical application of TNP-ATP prevented epidermal hyperplasia induced by barrier insult under low environmental humidity. ATP was secreted immediately after tape stripping on skin in organ culture. alpha,beta-Methylene ATP increased intercellular calcium in cultured keratinocytes and the increase was blocked by TNP-ATP. Both reverse transcription polymerase chain reaction assay and immunohistochemical study showed the existence of protein that had a structure similar to P2X3 on hairless mouse epidermis. These results suggest that cutaneous barrier homeostasis can be regulated by cation flux through a P2X3-like ATP receptor.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Shiseido Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
76
|
Abstract
The uppermost thin layer, stratum corneum, plays a crucial role as a water impermeable barrier. After acute damage, it recovers automatically, but with aging or psychological stress, the recovery is delayed. Frequent damage, or damage under a dry environment, induces epidermal hyperplasia or inflammation. A specific protease inhibitor, histamine antagonist, and some magnesium salts have been demonstrated to accelerate the barrier recovery. These treatments also mitigated the epidermal hyperplasia induced by repeated barrier disruption or the damage under a dry condition. For the delay of the barrier repair induced by psychological stress, a glucocorticoid receptor antagonist or reduction of the stress by some specific odorant was significantly effective. Recently, the ion flux in the epidermis was found to be crucial for the barrier homeostasis. An external negative electric field accelerated the skin barrier recovery. These new methods to improve skin barrier homeostasis could be useful strategies to solve skin problems.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
| |
Collapse
|
77
|
Denda M, Inoue K, Inomata S, Denda S. gamma-Aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 2002; 119:1041-7. [PMID: 12445190 DOI: 10.1046/j.1523-1747.2002.19504.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
gamma-Aminobutyric acid, is an amino acid transmitter, which mediates rapid inhibition in the central nervous system. gamma-Aminobutyric acid (A) receptor is a ligand-gated chloride ion channel playing an important part in polarizing the cell membrane and reducing neuronal excitability in the neuron. In this study, we demonstrated the effects of gamma-aminobutyric acid (A) receptor agonists on the cutaneous barrier repair process after the barrier disruption of hairless mice. Topical application of gamma-aminobutyric acid and gamma-aminobutyric acid (A) receptor-specific agonists, musimol and isoguvacine, after barrier disruption accelerated the barrier recovery. The gamma-aminobutyric acid (B)-specific agonist, baclofen, did not affect the barrier recovery rate. The effect of gamma-aminobutyric acid on the barrier recovery was blocked by the gamma-aminobutyric acid (A)-receptor antagonist, bicuculline methobromide, but gamma-aminobutyric acid (B) receptor antagonist, saclofen, did not affect the effect of gamma-aminobutyric acid. Topical application of gamma-aminobutyric acid also prevented epidermal hyperplasia, which was induced by the barrier insults under low environmental humidity and bicuculline methobromide blocked the effect of gamma-aminobutyric acid on the epidermal hyperplasia. Immunoreactivity against gamma-aminobutyric acid (A) polyclonal antibody was observed in hairless mouse epidermis. The fluorescent probe of gamma-aminobutyric acid (A) receptor, TXR-musimol showed the localization of gamma-aminobutyric acid (A) receptor in the epidermis of the hairless mice. Elevation of intracellular chloride ion was induced by gamma-aminobutyric acid in cultured human keratinocytes and it was blocked by bicuculline methobromide. These results suggest that the gamma-aminobutyric acid (A)-like receptor is associated with skin barrier homeostasis and regulation of the receptor clinically effective for barrier dysfunctional or epidermal hyperproliferative diseases.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Shiseido Research Center, Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
78
|
Neugebauer V, Carlton SM. Peripheral metabotropic glutamate receptors as drug targets for pain relief. Expert Opin Ther Targets 2002; 6:349-61. [PMID: 12223072 DOI: 10.1517/14728222.6.3.349] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relatively new family of G-protein-coupled metabotropic glutamate receptors (mGluRs) is comprised of eight cloned subtypes, which are classified into three groups based on their sequence homology, signal transduction mechanisms and receptor pharmacology. It is now well-established that mGluRs in the central nervous system are essential for neuroplasticity associated with normal brain functions but are also critically involved in various neurological and psychiatric disorders. Recent anatomical and behavioural evidence suggests an important role of mGluRs in peripheral tissues in animal models of inflammatory and neuropathic pain. Once the cellular effects of peripheral mGluR activation and inhibition are better understood, certain peripheral mGluR subtypes may become important novel therapeutic targets for the relief of pain associated with peripheral tissue injury. Peripherally acting drugs that modulate nociceptive processing through mGluRs should have the advantage of lacking the central side effects commonly observed with drugs interfering with glutamatergic transmission in the central nervous system.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Axons/drug effects
- Axons/metabolism
- Drug Design
- Drug Evaluation, Preclinical
- Humans
- Inflammation/drug therapy
- Inflammation/physiopathology
- Ion Channels/drug effects
- Mice
- Neuralgia/drug therapy
- Neuralgia/physiopathology
- Pain/drug therapy
- Pain/physiopathology
- Rats
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/classification
- Receptors, Metabotropic Glutamate/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Anatomy & Neurosciences and Marine Biomedical Institute, University of Texas, Medical Branch, Galveston, TX 77555-1069, USA.
| | | |
Collapse
|
79
|
Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, Denda M. Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 2002; 291:124-9. [PMID: 11829471 DOI: 10.1006/bbrc.2002.6393] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vanilloid receptor subtype 1, VR1, is an ion channel that serves as a polymodal detector of pain-producing chemicals such as capsaicin and protons in primary afferent neurons. Here we showed that both capsaicin and acidification produced elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured human epidermal keratinocytes. The capsaicin- and acidification-evoked increases in [Ca(2+)](i) were inhibited by capsazepine, an antagonist to VR1. VR1-like immunoreactivity was observed in the cells. These findings suggest that functional VR1-like protein is present and functions as a sensor against noxious chemical stimuli, such as capsaicin or acidification, in epidermal keratinocytes.
Collapse
Affiliation(s)
- Kaori Inoue
- Shiseido Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
| | | | | | | | | | | |
Collapse
|
80
|
Marie H, Billups D, Bedford FK, Dumoulin A, Goyal RK, Longmore GD, Moss SJ, Attwell D. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol Cell Neurosci 2002; 19:152-64. [PMID: 11860269 DOI: 10.1006/mcne.2001.1066] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified a cytoplasmic LIM protein, Ajuba, which interacts with the amino terminus of GLT-1, the most abundant plasma membrane glutamate transporter in the brain. Ajuba has a cytoplasmic location when expressed alone in COS cells, but translocates to colocalize with GLT-1 at the plasma membrane when GLT-1 is coexpressed. Ajuba is expressed in cerebellum, cortex, hippocampus, and retina and also in organs outside the CNS. Ajuba is found with GLT-1 in astrocytes, cerebellar Bergmann glia and retinal neurons, and antibodies to Ajuba coimmunoprecipitate GLT-1 from brain. For GLT-1 expressed in COS cells, coexpression of Ajuba did not affect the transporter's K(m) or V(max) for glutamate. Since Ajuba is known to activate MAP kinase enzymes, and its homologue Zyxin binds to cytoskeletal proteins, we propose that Ajuba is a scaffolding protein allowing GLT-1 to regulate intracellular signaling or interact with the cytoskeleton.
Collapse
Affiliation(s)
- Hélène Marie
- Department of Physiology, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, Matsunaga K. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 2001; 285:1250-2. [PMID: 11478791 DOI: 10.1006/bbrc.2001.5299] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated the immunoreactivity of the receptor proteins, VR1, ion channels associated with pain sensation, on the epidermis of the human skin. Immunohistochemistry using antiserum against VR1 derived peptide showed immunoreactivity on the keratinocytes cell membrane of the human epidermis and cultured keratinocytes. The blocking peptide of the antiserum reduced the immunoreactivity on the epidermis. RT-PCR assay of cultured human keratinocyte also showed expression of VR1 mRNA. These results suggest the existence of VR1-like protein in epidermal keratinocytes of human skin.
Collapse
Affiliation(s)
- M Denda
- Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama, 236-8643, Japan.
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Since the discovery of its role in the CNS, glutamate, together with its involvement in signalling at synapses, has been the subject of a vast amount of research. More recently, it has become clear that glutamate signalling is also functional in non-neuronal tissues and occurs in sites as diverse as bone, pancreas and skin. These findings raise the possibility that glutamate acts as a more widespread 'cytokine' and is able to influence cellular activity in a range of tissue types. The impact of these discoveries is significant because they offer a rapid way to advance the development of therapeutics. Agents developed for use in neuroscience applications might be beneficial in the modulation of pathology peripherally, impacting on conditions such as osteoporosis, diabetes and wound healing.
Collapse
Affiliation(s)
- T M Skerry
- Dept of Biology, University of York, PO Box 373, YO10 5YW, UK.
| | | |
Collapse
|
83
|
Fagan BM, Cahusac PM. Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport 2001; 12:341-7. [PMID: 11209947 DOI: 10.1097/00001756-200102120-00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The functional role of Merkel cells in the mechanosensitivity of the slowly adapting type I responses has been a controversial issue for many years. Here we show, for the first time, that glutamate receptor-mediated transmission is largely responsible for the static component of the slowly adapting type I response. An isolated sinus hair preparation was used to study the two types (I and II) of slowly adapting units. A broad spectrum ionotropic glutamate receptor antagonist kynurenate (1-10 mM) caused reliable and dose-dependent reductions in the static component of type I unit responses to mechanical stimulation. In addition, an amino acid transmitter candidate aspartate applied to the preparation selectively increased responses in type I units but not responses in type II units. This evidence establishes that the Merkel cell is a mechano-electric transducer, and challenges prevailing views that the Merkel cell acts merely as a support or target cell in the epidermis.
Collapse
Affiliation(s)
- B M Fagan
- Department of Psychology, University of Stirling, UK
| | | |
Collapse
|
84
|
Abstract
Glutamate receptors (GluRs) are localized in the periphery on nociceptive primary afferent terminals. Studies in animal models of pain demonstrate that peripheral glutamate is involved in nociceptive transmission in the normal and the inflamed state and that modulation of peripheral GluRs reduces pain behaviors and nociceptor activity. These data provide strong motivation to develop new pharmacological agents that will target peripheral GluRs, offering novel approaches to treatment of pain of peripheral origin.
Collapse
Affiliation(s)
- S M Carlton
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1069, USA.
| |
Collapse
|
85
|
Abstract
The classical observations of the skin as a target for melanotropins have been complemented by the discovery of their actual production at the local level. In fact, all of the elements controlling the activity of the hypothalamus-pituitary-adrenal axis are expressed in the skin including CRH, urocortin, and POMC, with its products ACTH, alpha-MSH, and beta-endorphin. Demonstration of the corresponding receptors in the same cells suggests para- or autocrine mechanisms of action. These findings, together with the demonstration of cutaneous production of numerous other hormones including vitamin D3, PTH-related protein (PTHrP), catecholamines, and acetylcholine that share regulation by environmental stressors such as UV light, underlie a role for these agents in the skin response to stress. The endocrine mediators with their receptors are organized into dermal and epidermal units that allow precise control of their activity in a field-restricted manner. The skin neuroendocrine system communicates with itself and with the systemic level through humoral and neural pathways to induce vascular, immune, or pigmentary changes, to directly buffer noxious agents or neutralize the elicited local reactions. Therefore, we suggest that the skin neuroendocrine system acts by preserving and maintaining the skin structural and functional integrity and, by inference, systemic homeostasis.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology ,University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|
86
|
Frati C, Marchese C, Fisichella G, Copani A, Nasca MR, Storto M, Nicoletti F. Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes. J Cell Physiol 2000; 183:364-72. [PMID: 10797311 DOI: 10.1002/(sici)1097-4652(200006)183:3<364::aid-jcp9>3.0.co;2-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cultured human melanocytes express mGlu5 metabotropic glutamate (mGlu) receptors, as shown by RT-PCR, immunocytochemistry, Western blot analysis, and measurement of agonist-stimulated polyphosphoinositide hydrolysis. The mGlu5 receptor agonists (S)-3, 5-dihydroxyphenylglycine and quisqualate increased [(3)H-methyl]thymidine incorporation and melanocyte proliferation in subconfluent cultures, but impaired cell viability in confluent cultures. Both effects were prevented by 2-methyl-6-(2-phenyl-1-ethynyl)-pyridine, a potent and highly selective mGlu5 receptor antagonist. Agonists of other mGlu receptor subtypes (such as the mGlu2/3 receptor agonist, 2S,2'R,3'R-2-2', 3'-dicarboxycyclopropylglycine, or the mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate) or selective agonists of ionotropic glutamate receptors (N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, and kainate) did not affect melanocyte proliferation or viability. The presence of a receptor for glutamate, the major excitatory neurotransmitter, in human melanocytes is intriguing. mGlu5 receptors may be involved in the control of melanocyte proliferation (and perhaps in other functions), but harbor a potential toxicity and may therefore contribute to cell damage under pathological conditions.
Collapse
Affiliation(s)
- C Frati
- Department of Dermatology, Ospedale di Frosinone, Frosinone, Italy
| | | | | | | | | | | | | |
Collapse
|
87
|
Laketić-Ljubojević I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM. Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 1999; 25:631-7. [PMID: 10593407 DOI: 10.1016/s8756-3282(99)00224-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our recent identification of glutamate receptors in bone cells suggested a novel means of paracrine communication in the skeleton. To determine whether these receptors are functional, we investigated the effects of the excitatory amino acid, glutamate, and the pharmacological ligand, N-methyl-D-aspartic acid (NMDA), on glutamate-like receptors in the human osteoblastic cell lines MG63 and SaOS-2. Glutamate binds to osteoblasts, with a Kd of approximately 10(-4) mol/L and the NMDA receptor antagonist, D(L)-2-amino-5-phosphonovaleric acid (D-APV), inhibits binding. Using the patch-clamp technique, we measured whole-cell currents before and after addition of L-glutamate or NMDA and investigated the effects of the NMDA channel blockers, dizolcipine maleate (MK801), and Mg2+, and the competitive NMDA receptor antagonist, 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphoric acid (R-CPP), on agonist-induced currents. Both glutamate and NMDA induced significant increases in membrane currents. Application of Mg2+ (200 micromol/L) and MK801 (100 micromol/L) caused a significant decrease in inward currents elicited in response to agonist stimulation. The competitive NMDA receptor antagonist, R-CPP (100 micromol/L), also partially blocked the NMDA-induced currents in MG63 cells. This effect was reversed by addition of further NMDA (100 micromol/L). In Fura-2-loaded osteoblasts, glutamate induced elevation of intracellular free calcium, which was blocked by MK801. These results support the hypothesis that glutamate plays a role in bone cell signaling and suggest a possible role for glutamate agonists/antagonists in the treatment of bone diseases.
Collapse
|
88
|
Peet NM, Grabowski PS, Laketic-Ljubojevic I, Skerry TM. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J 1999; 13:2179-85. [PMID: 10593865 DOI: 10.1096/fasebj.13.15.2179] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent identification in bone of transporters, receptors, and components of synaptic signaling suggests a role for glutamate in the skeleton. We investigated effects of glutamate and its antagonist MK801 on osteoclasts in vitro. Glutamate applied to patch clamped osteoclasts induced significant increases in whole-cell membrane currents (P<0.01) in the presence of the coagonist glycine. Agonist-elicited currents were significantly decreased after application of MK801 (100 microM, P<0.01), but MK801 had no effect on actin ring formation necessary for osteoclast polarization, attachment, and resorption. In cocultures of bone marrow cells and osteoblasts in which osteoclasts develop, MK801 inhibited osteoclast differentiation and reduced resorption of pits in dentine (3 to 100 microM; P<0.001). MK801 added early in the culture (for as little as 2-4 days) was as effective as addition for the entire culture period. Addition of MK801 for any time after day 7 of culture was ineffective in reducing osteoclast activity. Using rat and rabbit mature osteoclasts cultured on dentine or explants of mouse calvariae prelabeled with (45)Ca, we could not detect significant effects of MK801 on osteoclastic resorption. These data show clearly that glutamate receptor function is critical during osteoclastogenesis and suggest that glutamate is less important in regulating mature osteoclast activity.-Peet, N. M., Grabowski, P. S., Laketic-Ljubojevic, I., Skerry, T. M. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation.
Collapse
Affiliation(s)
- N M Peet
- Department of Biology, University of York, U.K.
| | | | | | | |
Collapse
|
89
|
Abstract
Several lines of evidence suggest that sensory nerves ending at the skin have profound influences on their target, the epidermis. To test the hypothesis, we examined the consequences of denervation on the paw skin of rats by eliminating its innervation. We investigated temporal changes of nerve degeneration, keratinocyte proliferation and differentiation, gene expression, and epidermal thickness. Nerve terminals in the epidermis began to degenerate within 24 h after denervation. All epidermal nerves were completely degenerated by 2 d. During the interval of nerve degeneration, there was a significant reduction of bromodeoxyuridine incorporation from 24 h of nerve injury (39 +/- 7% of the control side, p 0.01). By 2 d, there was a further reduction of bromodeoxyuridine labeling (11 +/- 8%, p < 0. 0001). The incorporation of bromodeoxyuridine remained depressed when the skin was denervated (35 +/- 11%, p < 0.01). Four days after eliminating skin innervation, the denervated epidermis became thinner than the control epidermis (70 +/- 8% of the control, p < 0. 01). Epidermal thinning was associated with a significant decrease in expression of glyceraldehyde-3-phosphate dehydrogenase and beta-actin transcripts (33 +/- 8% of the control epidermis from postoperative day 4, p < 0.001). Other aspects of keratinocyte differentiation, including the patterns of keratin expression, and programmed cell death, were unaltered by skin denervation. These data indicate that skin denervation is sufficient to influence keratinocyte proliferation and therefore epidermal thickness.
Collapse
Affiliation(s)
- S T Hsieh
- Department of Anatomy and Neurology, National Taiwan University, Taipei.
| | | |
Collapse
|