51
|
Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. F2-isoprostanes are not just markers of oxidative stress. Free Radic Biol Med 2008; 44:247-56. [PMID: 17997380 DOI: 10.1016/j.freeradbiomed.2007.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 01/30/2023]
Abstract
F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature. In addition to the F(2)-IsoPs, E(2)- and D(2)-IsoPs can be formed by rearrangement of H(2)-IsoP endoperoxides and can give rise to cyclopentenone IsoPs, which are very reactive alpha,beta-unsaturated aldehydes. The same type of reactivity is also shown by acyclic gamma-ketoaldehydes formed as products of the IsoP pathway. Because previous studies suggested a relation between oxidative stress and collagen hyperproduction, it was investigated whether collagen synthesis is induced by F(2)-IsoPs, the most proximal products of lipid peroxidation. In contrast to aldehydes, F(2)-IsoPs act through receptors able to elicit definite signal transduction pathways. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma F(2)-IsoPs were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of smooth muscle alpha-actin) and then treated with F(2)-IsoPs in the concentration range found in the in vivo studies (10(-9) to 10(-8) M), a striking increase in DNA synthesis, cell proliferation, and collagen synthesis was observed. Total collagen content was similarly increased. All these stimulatory effects were reversed by the specific antagonist of the thromboxane A(2) receptor, SQ 29 548, whereas the receptor agonist, I-BOP, also had a stimulatory effect. Therefore F(2)-IsoPs generated by lipid peroxidation in hepatocytes may mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.
Collapse
Affiliation(s)
- Mario Comporti
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
52
|
Roberts LJ. Inhibition of heme protein redox cycling: reduction of ferryl heme by iron chelators and the role of a novel through-protein electron transfer pathway. Free Radic Biol Med 2008; 44:257-60. [PMID: 18067870 DOI: 10.1016/j.freeradbiomed.2007.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 01/19/2023]
Affiliation(s)
- L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
53
|
Gardi C, Arezzini B, Monaco B, De Montis MG, Vecchio D, Comporti M. F2-isoprostane receptors on hepatic stellate cells. J Transl Med 2008; 88:124-31. [PMID: 18158556 DOI: 10.1038/labinvest.3700712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
F2-isoprostanes are considered as the most reliable markers of oxidative stress and can be used to evaluate the oxidative status in a number of human pathologies. Besides being markers of oxidative stress, F2-isoprostanes proved to be mediators of important biological effects and would act through the activation of receptors analogous to those for thromboxane A2. In a previous work, we provided evidence that F(2)-isoprostanes, generated during carbon tetrachloride-induced hepatic fibrosis, mediate hepatic stellate cell (HSC) proliferation and collagen hyperproduction. To investigate whether TxA2 receptor (TxA2r or TPr) is involved in the effects of F2-isoprostanes on HSC, experiments on DNA synthesis were carried out in the presence of 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)) or the TxA2r-specific agonist I-BOP ([1S-[1alpha,2alpha(Z),3beta(1E,3S*), 4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid). Both agonists significantly stimulated DNA synthesis, which was almost completely inhibited by the TxA2r-specific antagonist SQ29548 ([1S-[1alpha,2alpha(Z),3alpha,4alpha]]-7-[3-[[2-[(phenylamino)carbonyl] hydrazino] methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptanoic acid), suggesting that much of the effect of 8-epi-PGF(2alpha) is mediated by the TxA2r. Further studies showed that increasing concentrations of SQ29548 progressively inhibit DNA synthesis, suggesting a possible competitive antagonism between the two molecules. In addition, we demonstrated that the stimulatory effect of 8-epi-PGF(2alpha) on collagen synthesis could be mediated by TxA2r. The occurrence of TxA2r on HSC was also investigated using western blotting analysis and immunocytochemistry, which reveals that TP is distributed both on plasma membranes and within the cells. Moreover, binding studies indicated the presence of a specific binding site for 3H-SQ29548 on HSC. Competition binding studies indicated that 8-epi-PGF(2alpha) and I-BOP were both able to displace 3H-SQ29548 binding with a very different affinity (K(i)=4.14+/-1.9 x 10(-6) M and K(i)=1.15+/-0.3 x 10(-9) M, respectively), suggesting the involvement of a modified form of isoprostane receptor, homologous to the classic thromboxane A2-binding site in F2-isoprostanes-evoked responses on HSC.
Collapse
Affiliation(s)
- Concetta Gardi
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
54
|
Long-term nebivolol administration reduces renal fibrosis and prevents endothelial dysfunction in rats with hypertension induced by renal mass reduction. J Hypertens 2008; 25:2486-96. [PMID: 17984671 DOI: 10.1097/hjh.0b013e3282efeecb] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES D/L-Nebivolol is a lypophilic beta1-adrenergic antagonist which is devoid of intrinsic sympathomimetic activity and can increase nitric oxide (NO) bioavailability with its subsequent vasodilating properties. The purpose of the present work was to assess the effect of long-term nebivolol administration on both renal damage and endothelial dysfunction induced by renal mass reduction (RMR) in rats. Atenolol, which does not increase NO bioavailability, was included in the study as a comparative beta-adrenoceptor antagonist. METHODS Rats were subjected to both right nephrectomy and surgical removal of two-thirds of the left kidney in order to retain approximately one-sixth of the total renal mass. One week after ablation, rats were distributed randomly according to the following experimental groups: control group containing RMR rats without treatment; RMR rats treated daily with nebivolol for 6 months (drinking water, 8 mg/kg per day); and RMR rats treated daily with atenolol for 6 months (drinking water, 80 mg/kg per day). A group of sham-operated animals was also included. RESULTS Administration of either nebivolol or atenolol similarly reduced arterial pressure in comparison with RMR untreated animals; however, animals receiving nebivolol presented lower levels of collagen type I expression as well as lower glomerular and interstitial fibrosis than those receiving atenolol. Urinary excretion of oxidative stress markers were also lower in animals receiving nebivolol than in rats treated with atenolol. Furthermore, nebivolol prevented RMR-induced endothelial dysfunction more efficiently than atenolol. CONCLUSIONS Nebivolol protects against renal fibrosis, oxidative stress and endothelial dysfunction better than equivalent doses, in terms of arterial pressure reduction, of atenolol in a hypertensive model of renal damage induced by RMR.
Collapse
|
55
|
Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. Isoprostanes and hepatic fibrosis. Mol Aspects Med 2007; 29:43-9. [PMID: 18061254 DOI: 10.1016/j.mam.2007.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023]
Abstract
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.
Collapse
Affiliation(s)
- Mario Comporti
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
56
|
Rogers MS. Prediction of pre-eclampsia in early pregnancy. WOMEN'S HEALTH (LONDON, ENGLAND) 2007; 3:571-582. [PMID: 19804034 DOI: 10.2217/17455057.3.5.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pre-eclampsia is a multisystem disorder of pregnancy, usually characterized by the appearance of high blood pressure and the excretion of protein in the urine of a previously healthy woman. Symptoms and signs vary in intensity from woman to woman; from a borderline rise in blood pressure, to convulsions (eclampsia), stroke and death. The disease remits following removal of the placenta and so the mainstay of current treatment is timely delivery. A pathophysiological framework of the disease has been established, beginning with failures in placental development, inducing oxidative stress and release of compounds that lead to endothelial activation, vasoconstriction and glomerular endotheliosis. A combination of epidemiological, biophysical and biochemical tests now allow most patients at-risk to be identified by midpregnancy, whilst minimizing false-positive prediction. It is hoped that earlier classification of patients at-risk of the disease, on the basis of pathophysiological changes, will enable specific therapies to be developed targeting these changes.
Collapse
Affiliation(s)
- Mike S Rogers
- The Chinese University of Hong Kong, Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| |
Collapse
|
57
|
Daray FM, Colombo JR, Kibrik JR, Errasti AE, Pelorosso FG, Nowak W, Cracowski JL, Rothlin RP. Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 373:367-75. [PMID: 16738877 DOI: 10.1007/s00210-006-0074-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 04/13/2006] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 microM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 microM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 microM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pKb values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 microM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 microM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 microM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.
Collapse
Affiliation(s)
- Federico Manuel Daray
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 9, CP 1121 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Yagci R, Ersöz I, Erdurmuş M, Gürel A, Duman S. Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye (Lond) 2007; 22:128-31. [PMID: 17293783 DOI: 10.1038/sj.eye.6702751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Protein oxidation is an oxidative stress marker and the oxidation of proteins is analysed by measuring the carbonyl groups. Protein oxidation can have a role in the physiopathology of pseudoexfoliation (PEX) syndrome. The aim of this study was to investigate the protein oxidation in the aqueous humour and serum of cataract patients with and without PEX. METHODS A multicenter study was carried out. Aqueous humour and serum samples were collected from patients who underwent routine cataract surgery. Patients were divided into PEX (n=29) and control (n=27) groups. Patients had no elevated intraocular pressure or glaucoma. Spectrophotometer was used to measure protein carbonyl (PC) levels in the samples. RESULTS Mean PC concentration in the PEX aqueous (2.18+/-1.51 nmol/l) and serum (119.62+/-13.2 nmol/l) samples was significantly higher than that measured in the control aqueous (1.31+/-0.47 nmol/l) and serum (105.85+/-11.76 nmol/l) samples, respectively (P< 0.001). CONCLUSION The increased PC levels in the aqueous humour and serum of PEX patients suggest that protein oxidation may play a role in the physiopathology of PEX.
Collapse
Affiliation(s)
- R Yagci
- Department of Ophthalmology, Medical School, Fatih University, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
59
|
Girsh E, Plaks V, Gilad AA, Nevo N, Schechtman E, Neeman M, Dekel N. Cloprostenol, a prostaglandin F(2alpha) analog, induces hypoxia in rat placenta: BOLD contrast MRI. NMR IN BIOMEDICINE 2007; 20:28-39. [PMID: 16947426 DOI: 10.1002/nbm.1087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Blood oxygen level dependent (BOLD) contrast was used to monitor hypoxia induced by cloprostenol, a prostaglandin F(2alpha) (PGF(2alpha)) analog, in the rat embryo-placental unit (EPU). It is shown that administration of cloprostenol (0.025 mg/rat) at mid-gestation (day 16) reduced EPU oxygenation, as detected by BOLD contrast MRI, in correlation with induction of vascular endothelial growth factor (VEGF) gene (Vegfa) expression in the corresponding placenta (r = 0.56, p = 0.03). Elevated VEGF mRNA expression in response to cloprostenol treatment was also observed at early gestation (day 9) in the forming placenta (p = 0.04) and uterus (p = 0.03). Cloprostenol increased the expression levels of endothelin-1 (ET-1) gene (Edn1) (p = 0.03) and its corresponding peptide (p = 0.02) in the forming placenta, as well as the expression of the endothelin receptor type A (ETA) gene (Ednra) in both the forming placenta (p = 0.009) and the uterus (p = 0.01). The levels of the endothelin receptor type B (ETB) gene (Ednrb) were not affected in response to cloprostenol, but a significant elevation in the expression level of this receptor was observed in the uterus at mid- and late gestation (day 22) (p = 0.04 and 0.01 respectively), suggesting a role for ETB in the vasodilatory status of the pregnant uterus. It is suggested that PGF(2alpha) induces uteroplacental vasoconstriction in the rat, and that ET-1 may take part in mediating this effect, probably via activation of ETA receptor. The uteroplacental vasoconstriction induces hypoxia, as manifested by significant changes in BOLD MRI and by upregulation of VEGF.
Collapse
Affiliation(s)
- Eliezer Girsh
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
60
|
Alcaraz A, Iyú D, Atucha NM, García-Estañ J, Ortiz MC. Vitamin E supplementation reverses renal altered vascular reactivity in chronic bile duct-ligated rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1486-93. [PMID: 17158269 DOI: 10.1152/ajpregu.00309.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An altered vascular reactivity is an important manifestation of the hemodynamic and renal dysfunction during liver cirrhosis. Oxidative stress-derived substances and nitric oxide (NO) have been shown to be involved in those alterations. In fact, both can affect vascular contractile function, directly or by influencing intracellular signaling pathways. Nevertheless, it is unknown whether oxidative stress contributes to the impaired systemic and renal vascular reactivity observed in cirrhosis. To test this, we evaluated the effect of vitamin E supplementation (5,000 IU/kg diet) on the vasoconstrictor and vasodilator responses of isolated perfused kidneys and aortic rings of rats with cirrhosis induced by bile duct ligation (BDL), and on the expression of renal and aortic phospho-extracellular regulated kinase 1/2 (p-ERK1/2). BDL induced a blunted renal vascular response to phenylephrine and ACh, while BDL aortic rings responded less to phenylephrine but normally to ACh. Cirrhotic rats had higher levels of oxidative stress-derived substances [measured as thiobarbituric acid-reactive substances (TBARS)] and NO (measured as urinary nitrite excretion) than controls. Vitamin E supplementation normalized the renal hyporesponse to phenylephrine and ACh in BDL, although failed to modify it in aortic rings. Furthermore, vitamin E decreased levels of TBARS, increased levels of NO, and normalized the increased kidney expression of p-ERK1/2 of the BDL rats. In conclusion, BDL rats showed a blunted vascular reactivity to phenylephrine and ACh, more pronounced in the kidney and reversed by vitamin E pretreatment, suggesting a role for oxidative stress in those abnormalities.
Collapse
Affiliation(s)
- A Alcaraz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
61
|
Simoni J, Simoni G, Griswold JA, Moeller JF, Tsikouris JP, Khanna A, Roongsritong C, Wesson DE. Role of Free Hemoglobin in 8-Iso Prostaglandin F2-Alpha Synthesis in Chronic Renal Failure and Its Impact on CD163-Hb Scavenger Receptor and on Coronary Artery Endothelium. ASAIO J 2006; 52:652-61. [PMID: 17117055 DOI: 10.1097/01.mat.0000235282.89757.9f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Free hemoglobin (Hb) during autoxidation increases 8-iso-prostaglandin-F2-alpha (8-isoprostane) formation in vitro. Because 8-isoprostane and plasma Hb are elevated in chronic renal failure (CRF), we evaluated the role of Hb in this isoprostane synthesis in vivo. By monitoring correlations between Hb, haptoglobin (Hp), CD163-Hb-scavenger receptor, and 8-isoprostane that is known to induce CD163 shedding, we examined whether 8-isoprostane blocks Hb catabolism in CRF. Additionally, by studying the effect of 8-isoprostane on human coronary artery endothelium (HCAEC) in vitro and its impact on intercellular adhesion molecule-1 (ICAM-1) in vivo, we tested its role in promotion of cardiovascular events in CRF. Twenty-two never-dialyzed CRF patients and 18 control patients were screened for renal function, plasma and urine 8-isoprostane, and plasma Hb, Hp, thiobarbituric-acid-reactants (TBARS), C-reactive-protein (CRP), and soluble (s) ICAM-1 and sCD163. HCAEC exposed to 8-isoprostane were tested for ICAM-1 and apoptosis. In CRF, urine 8-isoprostane was significantly elevated and correlated with free-Hb and TBARS. The increased free-Hb, Hp, and sCD163 in CRF suggested 8-isoprostane-mediated suppression of Hb catabolism through CD163 receptor shedding. 8-Isoprostane enhanced ICAM-1 expression and apoptosis in HCAEC. CRF patients showed elevated sICAM-1. In conclusion, free-Hb, via 8-isoprostane, paradoxically blocks its own catabolism. Free-Hb and/or 8-isoprostane may intensify cardiovascular events in CRF.
Collapse
Affiliation(s)
- Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Hung TH, Burton GJ. Hypoxia and Reoxygenation: a Possible Mechanism for Placental Oxidative Stress in Preeclampsia. Taiwan J Obstet Gynecol 2006; 45:189-200. [PMID: 17175463 DOI: 10.1016/s1028-4559(09)60224-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Preeclampsia is a human pregnancy-specific disorder that is diagnosed by the new appearance of hypertension and proteinuria after 20 weeks' gestation. It is a leading cause of perinatal morbidity and mortality, and the only intervention that effectively reverses the syndrome is delivery. Oxidative stress of the placenta is considered to be a key intermediary step in the pathogenesis of preeclampsia, but the cause for the stress remains unknown. Hypoxia-reoxygenation (H/R) injury, as a result of intermittent placental perfusion secondary to deficient trophoblast invasion of the endometrial arteries, is a possible mechanism. In this review, we present evidence to show that there is a plausible basis from which to assume that blood flow in the intervillous space will be intermittent in all normal pregnancies. The intermittency will be exacerbated by impaired conversion of the spiral arteries, or by the presence of atherotic changes that reduce their caliber as seen in preeclampsia. Placental oxidative stress can be the consequences of fluctuations in oxygen concentrations after H/R through the actions of reactive oxygen species. On this basis, there will be a complete spectrum of placental changes among the normal, the late onset and the early onset preeclamptic states. Viewing the syndrome as a continuum of H/R insults provides new insight into the pathophysiology of pregnancy that will hope fully lead to improved clinical interventions.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taipei, Taiwan.
| | | |
Collapse
|
63
|
Comporti M, Arezzini B, Signorini C, Sgherri C, Monaco B, Gardi C. F2-isoprostanes stimulate collagen synthesis in activated hepatic stellate cells: a link with liver fibrosis? J Transl Med 2005; 85:1381-91. [PMID: 16127424 DOI: 10.1038/labinvest.3700332] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbon tetrachloride (CCl4)-induced hepatic fibrosis has been considered to be linked to oxidative stress and mediated by aldehydic lipid peroxidation products. In the present study, we investigated whether collagen synthesis is induced by F2-isoprostanes, the most proximal products of lipid peroxidation and known mediators of important biological effects. By contrast with aldehydes, F2-isoprostanes act through receptors able to elicit definite signal transduction pathways. In a rat model of CCl4-induced hepatic fibrosis, plasma F2-isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content also increased. When hepatic stellate cells (HSCs) from normal liver were cultured with F2-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8) M), a striking increase in DNA synthesis (reversed by the thromboxane A2 antagonist SQ 29 548), in cell proliferation and in collagen synthesis was observed. Total collagen content was similarly increased. Moreover, F2-isoprostanes markedly increased the production of transforming growth factor-beta1 by U937 cells, considered a model of liver macrophages. The data provide evidence for the possibility that F2-isoprostanes generated by lipid peroxidation in hepatocytes mediate HSC proliferation and collagen production seen in hepatic fibrosis.
Collapse
Affiliation(s)
- Mario Comporti
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
64
|
Rodrigo R, Parra M, Bosco C, Fernández V, Barja P, Guajardo J, Messina R. Pathophysiological basis for the prophylaxis of preeclampsia through early supplementation with antioxidant vitamins. Pharmacol Ther 2005; 107:177-97. [PMID: 15896847 DOI: 10.1016/j.pharmthera.2005.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 11/27/2022]
Abstract
Preeclampsia (PE) is a multisystem disorder that remains a major cause of maternal and foetal morbidity and death. To date, no treatment has been found that prevents the development of the disease. Endothelial dysfunction is considered to underlie its clinical manifestations, such as maternal hypertension, proteinuria, and edema; however, the precise biochemical pathways involved remain unclear. A current hypothesis invokes the occurrence of oxidative stress as pathogenically important, as suggested by the fact that in PE, the placental and circulating levels of lipid peroxidation products (F2-isoprostanes and malondialdehyde [MDA]) are increased and endothelial cells are activated. A potential mechanism for endothelial dysfunction may occur via nuclear transcription factor kappa B (NF-kappaB) activation by oxidative stress. Alternatively, the idea that the antiangiogenic placental soluble fms-like tyrosine kinase 1 factor (sFlt1) is involved in the pathogenesis of this disease is just emerging; however, other pathophysiological events seem to precede its increased production. This review is focused on evidence providing a pathophysiological basis for the beneficial effect of early antioxidant therapy in the prevention of PE, mainly supported by the biological effects of vitamins C and E.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile.
| | | | | | | | | | | | | |
Collapse
|
65
|
Afanas'ev IB. Free Radical Mechanisms of Aging Processes Under Physiological Conditions. Biogerontology 2005; 6:283-90. [PMID: 16333762 DOI: 10.1007/s10522-005-2626-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/03/2005] [Indexed: 01/22/2023]
Abstract
Free radical theory of aging predicts crucial role for free radicals produced by external factors (environmental contamination, irradiation, etc.) or pathological disorders (hereditary diseases or infections) in the initiation of aging. Does it mean that under hypothetical completely physiological conditions aging processes could be fully suppressed? To answer this question, we will consider the possible mechanisms of free radical formation in such hypothetical state. There are two major mechanisms, which are responsible for free radical-mediated damage in a living organism: superoxide overproduction by mitochondria and nonenzymatic lipid peroxidation. Superoxide overproduction causes the inhibition of nitric oxide formation and bioavailability, one of principal characteristics of aging, while nonenzymatic lipid peroxidation, which is already demonstrated at physiological conditions, produces toxic isoprostanes. We suggest that major initiators of free radical-mediated damaging processes leading to aging at physiological state are oxidizable components of diet. The possibility of inhibition of aging processes by supplementation of nontoxic antioxidants and calorie restriction is discussed. Scheme demonstrating the potential mechanisms of starting the free radical-mediated aging processes is presented, which are discussed on the grounds of known literature data.
Collapse
Affiliation(s)
- Igor B Afanas'ev
- Vitamin Research Institute, Nauchny pr. 14A, 117820, Moscow, Russia.
| |
Collapse
|
66
|
Buffoli B, Pechánová O, Kojšová S, Andriantsitohaina R, Giugno L, Bianchi R, Rezzani R. Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS, and NF-kB expression. J Histochem Cytochem 2005; 53:1459-68. [PMID: 15956028 PMCID: PMC3957541 DOI: 10.1369/jhc.5a6623.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclosporine A (CsA) use is associated with several side effects, the most important of which is nephrotoxicity that includes, as we previously showed, tubular injury and interstitial fibrosis. Recently, many researchers have been interested in minimizing these effects by pharmacological interventions. To do this, we tested whether the administration of a red wine polyphenol, Provinol (PV), prevents the development of CsA-induced nephrotoxicity. Rats were treated for 21 days and divided into four groups: control; group treated with PV (40 mg/kg/day by oral administration in tap water); group treated with CsA (15 mg/kg/day by subcutaneous injection); group treated with CsA plus PV. CsA produced a significant increase of systolic blood pressure; it did not affect urinary output, but caused a significant decrease in creatinine clearance. These side effects were associated with an increase in conjugated dienes, which are lipid peroxidation products, inducible NO-synthase (iNOS), and nuclear factor (NF)-kB, which are involved in antioxidant damage. However, PV prevented these negative effects through a protective mechanism that involved reduction of both oxidative stress and increased iNOS and NF-kB expression induced by CsA. These results provide a pharmacological basis for the beneficial effects of plant-derived polyphenols against CsA-induced renal damage associated with CsA.
Collapse
Affiliation(s)
- Barbara Buffoli
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy (BB, LG, RB, RR)
| | - Olga Pechánová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (OP, SK)
| | - Stanislava Kojšová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (OP, SK)
| | - Ramaroson Andriantsitohaina
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, Université Louis Pasteur de Strasbourg, Illkirch, France (RA)
| | - Lorena Giugno
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy (BB, LG, RB, RR)
| | - Rossella Bianchi
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy (BB, LG, RB, RR)
| | - Rita Rezzani
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy (BB, LG, RB, RR)
- Correspondence to: Prof. Rita Rezzani, Department of Biomedical Sciences and Biotechnology, Division of Human Anatomy, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy. E-mail:
| |
Collapse
|
67
|
Wolfram R, Oguogho A, Palumbo B, Sinzinger H. Enhanced oxidative stress in coronary heart disease and chronic heart failure as indicated by an increased 8-epi-PGF(2alpha). Eur J Heart Fail 2005; 7:167-72. [PMID: 15701462 DOI: 10.1016/j.ejheart.2004.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/25/2004] [Accepted: 05/05/2004] [Indexed: 01/07/2023] Open
Abstract
The role of oxidation injury as an important factor in the pathophysiology of cardiomyopathy (CMP) has recently gained increasing interest. Semiquantitative analysis for isoprostane, 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)), and oxidised low-density lipoprotein (ox-LDL) of coronary vascular tissue samples derived from CMP patients revealed an increased extent and intensity of uptake as compared to the respective controls. To evaluate oxidative stress in vivo, we examined plasma, serum, salivary, and urinary 8-epi-PGF(2alpha) in patients with dilated CMP (n=20) and ischemic CMP (n=20) with decreased left ventricular ejection fraction (LVEF). Patients with coronary heart disease (CHD) (n=20) and 20 healthy, age-matched, and sex-matched controls were investigated in parallel. 8-Epi-PGF(2alpha) levels were correlated with the functional severity of heart failure [New York Heart Association (NYHA) classification] and LVEF. 8-Epi-PGF(2alpha) levels were matched according to risk factors (smoking and hypercholesterolemia) and were significantly higher in patients with CMP as compared to healthy controls and patients with CHD in all investigated compartments. A positive correlation between NYHA stages and 8-epi-PGF(2alpha), as well as a negative correlation to LVEF, could be demonstrated in a subgroup analysis. These findings reflect the enhanced oxidation injury in patients with CMP and, to a lesser extent, in CHD as compared to healthy controls, thus highly indicating the relevance of oxidative stress for the pathogenesis and progression of cardiovascular disease.
Collapse
Affiliation(s)
- Roswitha Wolfram
- Department of Angiology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
68
|
Abstract
Some years ago it was discovered that prostaglandin F2-like compounds are formed in vivo by nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Because these compounds are a series of isomers that contain the prostane ring of prostaglandins, they were termed F2-isoprostanes. Intermediates in the isoprostane pathway are prostaglandin H2-like compounds that become reduced to form F2-isoprostanes but also undergo rearrangement in vivo to form E2-, D2-, A2-, J2-isoprostanes, isothromboxanes, and highly reactive gamma-ketoaldehydes, termed isoketals. Analogous compounds have also been shown to be formed from free radical mediated oxidation of docosoahexaenoic acid. Because docosahexaenoic acid is highly enriched in neurons, these compounds have been termed neuroprostanes and neuroketals. An important aspect of the discovery of isoprostanes is that measurement of F2-isoprostanes has emerged as one of the most reliable approaches to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease. Measurement of F4-neuroprostanes has also proved of value in exploring the role of oxidative stress in neurodegenerative diseases. Products of the isoprostane pathway have been found to exert potent biological actions and therefore may participate as physiological mediators of disease.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
69
|
Affiliation(s)
- David M Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
| |
Collapse
|
70
|
Robbins IM, Morrow JD, Christman BW. Oxidant stress but not thromboxane decreases with epoprostenol therapy. Free Radic Biol Med 2005; 38:568-74. [PMID: 15683712 DOI: 10.1016/j.freeradbiomed.2004.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/22/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
Epoprostenol has improved the outcome of patients with primary pulmonary hypertension (PPH); however, its mechanism of action remains poorly understood. Isoprostanes are easily measured markers of oxidant stress and can activate platelets leading to increased thromboxane A2 (TxA2) production. We hypothesized that oxidant stress is associated with increased TxA2 synthesis and that epoprostenol decreases oxidant stress and TxA2 production in patients with PPH. Morning urine samples were obtained from 19 patients with PPH. We measured urinary metabolites of the isoprostane, 8-iso-PGF2alpha (F2-IsoP-M), and of TxA2 (Tx-M) before and after treatment with epoprostenol in patients with PPH. Mean (+/-SE) levels of F2-IsoP-M were elevated at baseline in our patients, 863 +/- 97 pg/mg creatinine. During treatment with epoprostenol, values decreased to 636 +/- 77 pg/mg creatinine (P = 0.011), and there was a strong correlation between the change in F2-IsoP-M and follow-up pulmonary vascular resistance (R2 = 0.69, P < 0.001). Tx-M levels were markedly elevated at baseline and were unchanged with therapy. These results indicate that oxidant stress decreases with epoprostenol therapy and is associated with hemodynamic and clinical improvement. The failure of Tx-M to decrease with therapy suggests that epoprostenol does not exert a beneficial effect through inhibition of TxA2 production in patients with PPH.
Collapse
Affiliation(s)
- Ivan M Robbins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, 1161 21st Avenue S., T-1217 MCN, Nashville, TN 37232-2650, USA.
| | | | | |
Collapse
|
71
|
Kumar A, Kingdon E, Norman J. The isoprostane 8-iso-PGF2alpha suppresses monocyte adhesion to human microvascular endothelial cells via two independent mechanisms. FASEB J 2005; 19:443-5. [PMID: 15640282 DOI: 10.1096/fj.03-1364fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isoprostanes, produced in vivo by non-enzymatic free-radical-induced lipid peroxidation, are markers of oxidative stress. Elevated serum and urine levels of 8-iso-PGF2alpha have been reported in a variety of diseases, many of which are characterized by early perivascular inflammatory infiltrates. It has been suggested that, in addition to being markers of oxidative stress, isoprostanes may have pathogenic functions. In this study, we investigated the potential role of 8-iso-PGF2alpha in inflammation, focusing on its effects on adhesion of monocytes to microvascular endothelial cells, an early event in the inflammatory response. In monocyte adhesion assays, 8-iso-PGF2alpha (>10(-8) M) suppressed both basal and TNF-alpha-induced monocyte adhesion to quiescent or proliferating human dermal (HMEC) and rat renal microvascular endothelial cells. In contrast, 8-iso-PGF2alpha stimulated monocyte adhesion to human umbilical vein endothelial cells (HUVEC) as also reported by others. 8-Iso-PGF2alpha had no effect on the viability (Trypan Blue exclusion) of U937 monocytes or HMEC. 8-Iso-PGF2alpha also had no effect on HMEC surface expression of ICAM-1 or VCAM-1. Exposure of HMEC to 8-iso-PGF2alpha for 1-2 h was sufficient to reduce monocyte adhesion to the cell surface, and this effect was independent of de novo protein synthesis by HMEC. The effect of 8-iso-PGF2alpha was mimicked by a thromboxane receptor (TP) agonist (U46619) and blocked by a TP antagonist (SQ29548), indicating a TP-mediated process. Signal transduction pathway inhibitors (SB203580, curcumin, and PD98059) implicated p38 and JNK, but not ERK, in 8-iso-PGF2alpha-induced suppression of monocyte adhesion. In addition to a direct effect, conditioned medium (CM) transfer experiments suggest that 8-iso-PGF2alpha induces a secondary mediator, which also suppresses monocyte adhesion but via an alternative mechanism initiated between 3-4 h, which is TP-independent, requires new protein synthesis, and is primarily dependent on activation of p38. The data show that 8-iso-PGF2alpha can suppress the attachment of monocytes to HMECs via two independent pathways, indicating a potential anti-inflammatory effect of 8-iso-PGF2alpha in the microvasculature.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic
- Cell Adhesion/drug effects
- Cell Line
- Culture Media, Conditioned
- Dinoprost/analogs & derivatives
- Dinoprost/pharmacology
- Dinoprost/physiology
- Dose-Response Relationship, Drug
- Endothelial Cells/chemistry
- Endothelial Cells/physiology
- Fatty Acids, Unsaturated
- Humans
- Hydrazines/pharmacology
- Inflammation/pathology
- Intercellular Adhesion Molecule-1/analysis
- JNK Mitogen-Activated Protein Kinases/metabolism
- Kidney/blood supply
- MAP Kinase Kinase 4
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Monocytes/physiology
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Signal Transduction
- Skin/blood supply
- Tumor Necrosis Factor-alpha/pharmacology
- U937 Cells
- Umbilical Veins
- Vascular Cell Adhesion Molecule-1/analysis
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Anila Kumar
- Centre for Nephrology, Division of Medicine, Royal Free and University College Medical School, London, UK
| | | | | |
Collapse
|
72
|
Abstract
Worldwide, more people die of the complications of atherosclerosis than of any other cause. It is not surprising, therefore, that enormous resources have been devoted to studying the pathogenesis of this condition. This article attempts to summarize present knowledge on the events that take place within the arterial wall during atherogenesis. Classical risk factors are not dealt with as they are the subjects of other parts of this book. First, we deal with the role of endothelial dysfunction and infection in initiating the atherosclerotic lesion. Then we describe the development of the lesion itself, with particular emphasis on the cell types involved and the interactions between them. The next section of the chapter deals with the events leading to thrombotic occlusion of the atherosclerotic vessel, the cause of heart attack and stroke. Finally, we describe the advantages--and limitations--of current animal models as they contribute to our understanding of atherosclerosis and its complications.
Collapse
Affiliation(s)
- P Cullen
- Institute of Arteriosclerosis Research, Münster, Germany.
| | | | | |
Collapse
|
73
|
Abstract
Isoprostanes are not mere bystanders of oxidative injury, but possess potent biological activity and may thus contribute to the pathophysiology of various disorders associated with an increase in free radical formation. 15-F2t-IsoP (8-iso-prostaglandin F2) and 15-E2t-IsoP (8-iso-prostaglandin E2), two of the most abundant isoprostanes, are potent vasoconstrictors in various vascular beds, including the kidney. Since their discovery, numerous studies have aimed to define the receptors through which isoprostanes exert their effects. Whether the thromboxane receptor and/or other prostaglandin receptors mediate the actions of isoprostanes, or whether these compounds interact with their own unique receptors, remains to be clarified. Regardless of their exact mode of action, isoprostanes are being implicated in the pathophysiology of a variety of diseases, and their discovery might give rise to novel therapies for these diseases. Here we describe early studies that defined the vasoactive properties of isoprostanes in the kidney, and subsequent discoveries relating to their renal actions and pathophysiologic significance.
Collapse
Affiliation(s)
- Kamal F Badr
- Department of Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
74
|
|
75
|
Koliakos GG, Konstas AGP, Schlötzer-Schrehardt U, Hollo G, Mitova D, Kovatchev D, Maloutas S, Georgiadis N. Endothelin-1 concentration is increased in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 2004; 88:523-7. [PMID: 15031170 PMCID: PMC1772069 DOI: 10.1136/bjo.2003.028290] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND /aim: Endothelin 1 (ET-1) is considered the most potent vasoconstrictor in the body and the eye. This molecule may play a significant role in the pathobiology of exfoliation syndrome (XFS), a disorder characterised by a progressive iris vasculopathy. The purpose of this study was to investigate the concentration of ET-1 in the aqueous humour of cataract patients with and without XFS. METHODS Aqueous humour samples were obtained from 25 consecutive eyes of 25 cataract patients with XFS and an equal number of age matched controls during phacoemulsification cataract surgery. None of the subjects had elevated intraocular pressure or glaucoma. ET-1 concentration in the aqueous was measured using a specific immunoassay with 100% immunoreactivity for ET-1. Total aqueous humour protein concentration was measured with a microplate Coomassie blue based method and was correlated with ET-1 concentration. RESULTS Mean ET-1 concentration in the XFS aqueous samples (4.6 (SD 2.3) pg/ml) was significantly higher than that measured in the age matched control samples (2.8 (SD 1.71) pg/ml); (p = 0.006). Although total protein concentration was significantly elevated in the XFS samples (0.380 (SD 0.159) v 0.279 (SD 0.144) mg/ml in the controls); (p = 0.023), no correlation was found between aqueous ET-1 and total protein concentration (p = 0.730). CONCLUSION The increased concentration of ET-1 in the aqueous humour of XFS patients suggests that ET-1 may play a role in the pathobiology of XFS.
Collapse
Affiliation(s)
- G G Koliakos
- Dept of Biological Chemistry, Aristotle University, Thessaloniki, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Homocysteine and essential hypertension. J Clin Pharmacol 2004; 43:1299-306. [PMID: 14615465 DOI: 10.1177/0091270003258190] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The authors examine the available clinical and experimental data supporting the view that homocysteine, an alternative risk factor of cardiovascular disease, may play a role in the pathogenesis of essential hypertension. The mechanism of this disease has not been elucidated, but it may be related to impairment of vascular endothelial and smooth muscle cell function. Therefore, the occurrence of endothelial dysfunction could contribute to alterations of the endothelium-dependent vasomotor regulation. Elevated homocysteinemia diminishes the vasodilation by nitric oxide, increases oxidative stress, stimulates the proliferation of vascular smooth muscle cells, and alters the elastic properties of the vascular wall. Thus, homocysteine contributes to elevate the blood pressure. Also it is known that elevated plasma levels of homocysteine could lead to oxidant injury to the endothelium. The correction of elevated homocysteinemia by administration of vitamins B12 and B6 plus folic acid, could be a useful adjuvant therapy of hypertension. However, further controlled randomized trials are necessary to establish the efficacy and tolerability of these potentially therapeutic agents.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Instituto de Ciencias Biomédicas, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
77
|
Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension. J Cardiovasc Pharmacol 2004; 42:453-61. [PMID: 14508229 DOI: 10.1097/00005344-200310000-00001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review examines the clinical and experimental data to support the view that homocysteine and oxidative stress, two alternative risk factors of vascular disease, may play a role in the pathogenesis of primary or essential hypertension. Although the precise mechanism of this disease has not been elucidated, it may be related to impairment of vascular endothelial and smooth muscle cell function. Thus, the occurrence of endothelial dysfunction could contribute to alterations of the endothelium-dependent vasomotor regulation. Hyperhomocysteinemia limits the bioavailability of nitric oxide, increases oxidative stress, stimulates the proliferation of vascular smooth muscle cells, and alters the elastic properties of the vascular wall. The link between oxidative stress and hyperhomocysteinemia is also biologically plausible, because homocysteine promotes oxidant injury to the endothelium. Cumulated evidence suggests that the diminution of oxidative stress with antioxidants or the correction of hyperhomocysteinemia with vitamins-B plus folic acid, could be useful as an adjuvant therapy for essential hypertension. Further studies involving long-term trials could help to assess the tolerability and efficacy of the use of these therapeutic agents.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Instituto de Ciencias Biomédicas, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
78
|
Ajayi AA, Ogungbade GO, Hercule HC, Oyekan AO, Mutembei L. Alteration in endothelin receptor sub-type responsiveness and in the endothelin-TXA(2) mimetic U46619 interaction, in type-2 hypertensive diabetic Zucker rats. Diabetes Res Clin Pract 2004; 63:155-69. [PMID: 14757287 DOI: 10.1016/j.diabres.2003.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type-2 diabetes is characterized by endotheliopathy, which increases target organ damage and mortality. There is excessive endothelin-1 and TXA(2) production, and abnormal vascular reactivity to endothelin-1, manifested as a paradoxical hypotensive action in Zucker diabetic, but not lean rats. We examined the hypothesis that there is an alteration in the ET-A/ET-B receptor subtype sensitivity, and/or the interaction or cross-talk between ET-1 and TXA(2) in type-2 diabetes, using Zucker diabetic rats and their lean littermates. MATERIALS AND METHODS Hemodynamic studies were performed in lean and Zucker fatty diabetic rats of both sexes. Laser doppler flowmetry was used to measure renal cortical (RCF) and medullary blood flow (MBF) responses. Dose response curves for mean arterial blood pressure (MAP), MBF and RCF in response to ET-1, U46619, acetylcholine, and L-NAME (25mg/kg) were constructed after pre-treatment of the rats with either BQ610 1mg/kg i.v. or BQ788 0.5mg/kg i.v. The effects of BQ610 and BQ788 on whole blood impedance aggregation were also assessed. RESULTS BQ788, but not BQ610 abolished both the paradoxical hypotensive action of ET-1 in Zucker diabetic rats (n=7 each, P<0.001 ANOVA) as well as the dose-dependent rise in MBF (P<0.001 ANOVA). BQ788, but not BQ610 abolished the difference in response to ET-1 between lean and diabetic Zucker rats. U46619 caused a hypotensive action in male Zucker rats which was abolished by L-NAME 25mg/kg or indomethacin 10mg/kg i.v. The U46619 interaction with BQ788 on both MAP and MBF was significantly (P<0.03 ANOVA) different between lean and diabetic Zucker rats. BQ788, but not BQ610 attenuated both the MAP and MBF responses to acetylcholine or L-NAME P<0.02 ANOVA). However, BQ610 dose-dependently attenuated the slope of platelet aggregation in both lean and Zucker diabetic rats (P<0.02 ANOVA). CONCLUSION ET-B receptor antagonism abolished the abnormal vascular reactivity and MBF responses to ET-1, and also normalized the vasoactive responses to the level seen in healthy lean Zucker rats. ET-1 receptor blockade influences the responses to TXA(2) receptor activation. In the systemic and renal circulation, this interaction appears to be mostly ET-B receptor mediated, whilst in platelets, ET-A receptor role may be predominant. The interaction or cross-talk between ET-1 and TXA(2) is altered in the type-2 diabetic state. Collectively, these pathophysiological changes may contribute to the vicious circle of diabetic endotheliopathy.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Blood Flow Velocity/drug effects
- Blood Pressure/drug effects
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/physiopathology
- Drug Interactions
- Endothelin A Receptor Antagonists
- Endothelin B Receptor Antagonists
- Endothelin-1/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension/complications
- Hypertension/physiopathology
- Kidney Cortex/blood supply
- Kidney Medulla/blood supply
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Oligopeptides/pharmacology
- Piperidines/pharmacology
- Platelet Aggregation/drug effects
- Rats
- Rats, Sprague-Dawley
- Rats, Zucker
- Receptor Cross-Talk
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/physiology
- Receptor, Endothelin B/drug effects
- Receptor, Endothelin B/physiology
- Receptors, Endothelin/drug effects
- Receptors, Endothelin/physiology
- Thromboxane A2/pharmacology
Collapse
Affiliation(s)
- A A Ajayi
- Center for Cardiovascular Diseases, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, USA.
| | | | | | | | | |
Collapse
|
79
|
Abstract
Isoprostanes are marker of lipid peroxidation and are produced after free-radical attack of membrane lipids. In addition, they are biologically active and are essentially vaso- and broncho-constrictor. Their smooth muscle constrictor actions are closely linked to the activation of the thromboxane A(2) receptor, but also involve a distinct receptor not yet identified. The response of vascular smooth muscle to isoprostanes is subclass-specific (F-series versus E-series isoprostanes) and cell- and species-related. In this review, we will address the vascular actions of isoprostanes and their possible role in vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Aïda Habib
- Department of Internal Medicine, American University of Beirut, P.O. Box 11-236, Beirut, Lebanon.
| | | |
Collapse
|
80
|
Abstract
The liver has been central to our understanding of the physiology and biology of the F2-isoprostanes. The discovery of F2-IsoPs and the initial demonstration that they could be used to localize oxidative stress was first demonstrated in a rat model of oxidative liver injury (carbon tetrachloride), and the first demonstration that plasma concentrations are increased in a human disease was in patients with liver failure and the hepatorenal syndrome [J. Clin. Invest. 90 (6) (1992b) 2502; J. Lipid Mediat. 6 (1/3) (1993) 417]. This article will cover the measurement of F2-IsoPs as markers of lipid peroxidation in vivo in liver disease, and review their biological activity as mediators of disease.
Collapse
Affiliation(s)
- Kevin Moore
- Centre for Hepatology, Royal Free and University College Medical School, University College London, London, UK.
| |
Collapse
|
81
|
Belik J, Jankov RP, Pan J, Yi M, Pace-Asciak CR, Tanswell AK. Effect of 8-isoprostaglandin F2alpha on the newborn rat pulmonary arterial muscle and endothelium. J Appl Physiol (1985) 2003; 95:1979-85. [PMID: 12857766 DOI: 10.1152/japplphysiol.00420.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
8-Isoprostaglandin F2alpha (8-iso-PGF2alpha) is a bioactive lipid peroxidation product that is a vasoconstrictor at high concentrations. Paradoxically, at lower, and possibly physiological, concentrations, it is a pulmonary vascular muscle's relaxant. Its effects on newborn pulmonary vasculature are unknown. We hypothesized that the pulmonary arterial 8-iso-PGF2alpha responses may be developmentally regulated. Therefore, the purpose of this study was to evaluate and compare 8-iso-PGF2alpha effects between 1- and 2-wk-old newborn and adult rat isolated intrapulmonary arteries (100 microm) mounted on a myograph. Force after 8-iso-PGF2alpha stimulation was greatest in the adult (P < 0.01). In newborns, force was significantly increased by the nitric oxide (NO) synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) (P < 0.01) and was suppressed by blockade of the thromboxane (Tx) A2 receptor. Whereas 8-iso-PGF2alpha induced a significant dose-dependent relaxation of adult precontracted vessels in the presence of a TxA2 mimetic (U-46619; 1 microM), contraction was observed in the 1-wk-old rat. This 8-iso-PGF2alpha-induced contraction was abolished by endothelium removal and l-NAME and was attenuated by the cyclooxygenase inhibitor ibuprofen. In the presence of a TxA2/prostaglandin H2 receptor blocker, 8-iso-PGF2alpha induced NO-mediated relaxation, the magnitude of which was greater in the newborn, compared with the adult (P < 0.01). When exposed to 8-iso-PGF2alpha in vitro, only the newborn lung secreted TxB2. We conclude that, in contrast to its relaxant effect in the adult, 8-iso-PGF2alpha induces contraction of the pulmonary arteries in the early postnatal period, which is likely to be mediated by endothelium-derived TxA2. This phenomenon may contribute to the maintenance of a higher pulmonary vascular resistance in the early postnatal period.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Age Factors
- Animals
- Animals, Newborn
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Prostaglandins A/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Rats
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- J Belik
- Canadian Institutes of Health Research Group in Lung Development, Lung Biology and Integrative Biology Programmes, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
82
|
Jiang J, Jiang J, Backx PH, Teoh H, Ward ME. Role of Cl− currents in rat aortic smooth muscle activation by prostaglandin F2α. Eur J Pharmacol 2003; 481:133-40. [PMID: 14642777 DOI: 10.1016/j.ejphar.2003.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to determine the role of Cl(-) channel activation in prostaglandin F(2 alpha)-stimulated aortic contraction and in membrane depolarization during stimulation with prostaglandin F(2 alpha) in an aortic smooth muscle cell line (A7r5). The Cl(-) channel antagonists 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), indanyloxyacetic acid-94 (IAA-94) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) were found to decrease (P<0.05) the maximum tension generated by rat thoracic aortic segments during stimulation with prostaglandin F(2 alpha) and to shift the concentration-response relationship to the right. In the presence of Nifedipine and Cesium, rat aorta-derived A7r5 smooth muscle cells demonstrated outwardly rectifying voltage-dependent currents that were inhibited by NPPB, IAA-94 and DIDS. Both inward and outward currents were enhanced (P<0.05) following addition of prostaglandin F(2 alpha) (4 micromol/l, final concentration) to the bath solution and this increase was completely inhibited by NPPB. In the absence of Cesium, the addition of prostaglandin F(2 alpha) (4 micromol/l) to the extracellular bath solution either depolarized or hyperpolarized the cell membrane depending on the equilibrium potential for Cl(-) ions. Our results indicate that altered Cl(-) conductance is an important mechanism mediating membrane depolarization and contraction of aortic smooth muscle cells during stimulation with prostaglandin F(2 alpha). Given the significant role that prostaglandin F(2 alpha) and its biologically active isomers, the F(2) isoprostanes, play in the control of vascular tone during hypoxic and oxidative stress in the systemic circulation, alterations in Cl(-) channel function and expression may represent an important mechanism in the pathogenesis of abnormal blood flow regulation in disease states.
Collapse
Affiliation(s)
- Jiahua Jiang
- The Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Department of Physiology and Medicine and Division of Cardiology, University Health Network, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | | | | | | | | |
Collapse
|
83
|
|
84
|
Ortiz MC, Manriquez MC, Nath KA, Lager DJ, Romero JC, Juncos LA. Vitamin E prevents renal dysfunction induced by experimental chronic bile duct ligation. Kidney Int 2003; 64:950-61. [PMID: 12911545 DOI: 10.1046/j.1523-1755.2003.00168.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mechanisms by which prolonged cholestasis alters renal hemodynamics and excretory function are unknown but may be related to increased oxidative stress, with subsequent formation of lipid peroxidation-derived products (e.g., F2-isoprostanes) and endothelin (ET). We investigated whether antioxidant therapy prevents chronic bile duct ligation (CBDL)-induced alterations in systemic and renal hemodynamics, and reduces F2-isoprostane and ET levels. METHODS Sprague-Dawley rats were placed on either a normal or a high vitamin E diet for 7 days and then underwent either CBDL or sham surgery. They were then maintained on their respective diets for 21 more days, at which time the physiologic studies were performed. RESULTS Thirty-three percent of the CBDL rats died by day 21. The remaining rats had a lower mean arterial pressure (MAP), renal blood flow (RBF), glomerular filtration rate (GFR), and sodium and water excretion than control rats. CBDL rats had higher portal pressure, renal venous pressure, and renal vascular resistance (RVR). These changes were associated with increased levels of systemic and renal venous F2-isoprostanes and ET. Vitamin E normalized MAP, RBF, GFR, RVR, and sodium and water excretion, and improved the 21-day survival without altering portal or renal venous pressures. Surprisingly, vitamin E did not alter the systemic levels of F2-isoprostanes but markedly reduced their levels in the renal venous circulation. CONCLUSION Vitamin E improves MAP and renal function in CBDL rats, and selectively decreases renal levels of oxidative stress and ET, suggesting that local redox balance is implicated in CBDL-induced renal dysfunction.
Collapse
Affiliation(s)
- M Clara Ortiz
- Department of Physiology and Biophysics, Mayo School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
85
|
Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL. Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 2003; 42:49-55. [PMID: 12782645 DOI: 10.1161/01.hyp.0000078357.92682.ec] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin A (ETA) receptor blockade has prevented vascular remodeling in aldosterone and salt-induced hypertension. To evaluate effects of the ETA receptor antagonist, BMS 182874, compared with the aldosterone antagonist, spironolactone, on vascular remodeling in aldosterone-infused rats not exposed to a high salt diet, Sprague-Dawley rats were infused subcutaneously with aldosterone (0.75 microg/h) and treated with BMS 182874 (40 mg. kg-1. d-1), spironolactone, or hydralazine (both 25 mg. kg-1. d-1) while receiving a normal salt diet for 6 weeks. Aldosterone increased systolic BP (P<0.01), plasma endothelin (3.33+/-0.32 versus 1.85+/-0.40 pmol/L in control, P<0.05), systemic oxidative stress as shown by plasma thiobarbituric acid-reacting substances and vascular nicotinamide adenine dinucleotide phosphate (NADPH) activity. Aldosterone increased small artery media thickness (17.7+/-0.9 versus 13.6+/-0.8 microm in control, P<0.05) and media/lumen ratio (7.6+/-0.4 versus 5.5+/-0.4% in control, P<0.05), with growth index of 21% indicating hypertrophic remodeling. Laser confocal microscopy showed increased collagen and fibronectin deposition and intercellular adhesion molecule-1 (ICAM-1) content in the vessel wall of aldosterone-infused rats. The 3 treatments lowered BP, although hydralazine was slightly less effective. BMS 182874 and spironolactone decreased oxidative stress, normalized the hypertrophic remodeling, decreased collagen and fibronectin deposition, and reduced ICAM-1 abundance in the vascular wall of aldosterone-infused rats, whereas hydralazine only reduced NADPH activity in aorta but did not affect the remaining parameters. Vascular remodeling of small arteries occurs in aldosterone-infused rats exposed to a normal salt diet and may be mediated in part by ET-1 via stimulation of ETA receptors. Endothelin blockade may exert beneficial effects on vascular remodeling, fibrosis, oxidative stress, and adhesion molecule expression in aldosterone-induced hypertension.
Collapse
Affiliation(s)
- Qian Pu
- Canadian Institutes of Health Research Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
86
|
Weber TJ, Markillie LM. Regulation of activator protein-1 by 8-iso-prostaglandin E2 in a thromboxane A2 receptor-dependent and -independent manner. Mol Pharmacol 2003; 63:1075-81. [PMID: 12695536 DOI: 10.1124/mol.63.5.1075] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thromboxane (TX) A(2) receptor (TP) encompasses two alternatively spliced forms, termed the platelet/placental (TP-P) and endothelial (TP-E) type receptors. Experimental evidence suggests that TP activity may be modulated by novel ligands, termed the isoprostanes, that paradoxically act as TP agonists in smooth muscle and TP antagonists in platelet preparations. Here we have investigated whether prototypical isoprostanes 8-iso-prostaglandin (PG)F(2 alpha) and 8-iso-PGE(2) regulate the activity of TP isoforms expressed in Chinese hamster ovary (CHO) cells using activator protein-1 (AP-1)-luciferase activity as a reporter. AP-1-luciferase activity was increased by a TP agonist [9,11-dideoxy-9 alpha,11 alpha-methanoepoxy PGF(2 alpha) (U46619)] in CHO cells transfected with the human TP-P and TP-E receptors, and this response was fully inhibited by TP antagonists [1S-[1 alpha,2 beta(Z),3 alpha,5 alpha]]-7-[3-[[4-iodophenyl)sulfonyl]amino]-6,6-dimethylbicyclo[3.1.1]hept-2-yl]-5-heptenoic acid (I-SAP) and [1S-[1 alpha,2 alpha(Z),3 alpha,4 alpha]]-7-[[2-[(phenylamino) carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1] hept-2-yl]-5-heptenoic acid (SQ 29,548)]. AP-1-luciferase activity was potently (nanomolar concentrations) increased by 8-iso-PGE(2) in CHO TP-P and TP-E cells, and this response was partially inhibited by cotreatment of cells with TP antagonists, whereas 8-iso-PGF(2 alpha) was without effect. Cyclooxygenase inhibitors did not abolish 8-iso-PGE(2) mediated AP-1-luciferase activity, indicating that this response is not dependent on de novo TXA(2) biosynthesis. Interestingly, 8-iso-PGE(2)-mediated AP-1-luciferase activity was near maximal in naive cells between 1 and 10 nM concentrations, and this response was not inhibited by TP antagonist or reproduced by agonists for TP or EP(1)/EP(3) receptors. These observations 1) support a role for novel ligands in the regulation of TP-dependent signaling, 2) indicate that TP-P and TP-E couple to AP-1, 3) provide further evidence that isoprostanes function as TP agonists in a cell-type specific fashion, and 4) indicate that additional targets regulated by 8-iso-PGE(2) couple to AP-1.
Collapse
Affiliation(s)
- Thomas J Weber
- Cell Biology, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
87
|
Bachschmid M, Thurau S, Zou MH, Ullrich V. Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. FASEB J 2003; 17:914-6. [PMID: 12670882 DOI: 10.1096/fj.02-0530fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In bovine coronary artery segments, peroxynitrite inhibits prostacyclin (PGI2) synthase by tyrosine nitration. Using this pharmacological model, we show that a 1 h exposure of bovine coronary artery segments to endotoxin (lipopolysaccharide [LPS]) inhibits the relaxation phase following angiotensin II (Ang II) stimulation and causes a vasospasm that can be suppressed by a thromboxane A2 (TxA2) receptor blocker. In parallel, PGI2 synthesis decreases in favor of prostaglandin E2 formation. Immunoprecipitation and costaining with an anti-nitrotyrosine antibody identified PGI2 synthase as the main nitrated protein in the endothelium. All effects of LPS could be prevented in the presence of the nitric oxide (NO) synthase inhibitor Nomega-mono-methyl-L-arginine and polyethylene-glycolated Cu/Zn- superoxide dismutase. Thus, the early phase of endothelial cell activation in bovine coronary arteries by inflammatory agents proceeds by a protein synthesis-independent priming process for a source of superoxide that we tentatively attribute to xanthine oxidase. Upon receptor activation, Ang II stimulates NO and superoxide production, resulting in a peroxynitrite-mediated nitration and inhibition of PGI2 synthase. The remaining 15-hydroxy-prostaglandin 9,11-endoperoxide (PGH2) first activates the TxA2/PGH2 receptor and then is converted to prostaglandin E2 (PGE2) by smooth muscle cells. PGE2 together with a lack of NO and PGI2 is known to promote the adhesion of white blood cells and their immigration to the inflammatory locus.
Collapse
|
88
|
Fortepiani LA, Zhang H, Racusen L, Roberts LJ, Reckelhoff JF. Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 2003; 41:640-5. [PMID: 12623972 DOI: 10.1161/01.hyp.0000046924.94886.ef] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blood pressure (BP) increases in postmenopausal women. The mechanisms responsible are unknown. The present study was performed to characterize a model of postmenopausal hypertension in the rat and to determine the role that oxidative stress may play in mediating the postmenopausal hypertension. Spontaneously hypertensive rats were ovariectomized (ovx) or left intact (PMR) at 8 months and were aged to 18 months. These animals were compared with young females (YF; 4 or 8 months of age) and old males (18 months) for some measurements. Estradiol levels were decreased in PMR rats to levels not different from YF rats in proestrous or from old males. BP increased progressively with age in PMR rats but not in ovx or male rats, such that the gender difference in hypertension disappeared by 18 months. Glomerular filtration rate was lower in ovx and PMR rats than in YF rats. Renal plasma flow and renal vascular resistance were similar between YF and ovx rats, but lower and higher, respectively, in PMR rats. Serum testosterone increased by 60% in ovx rats and 400% in PMR rats compared with YF rats. Plasma renin activity also increased in PMR rats but not in ovx rats. Chronic treatment (for 8 months beginning at 8 months of age) of PMR rats with vitamins E and C, but not tempol, resulted in a significant reduction in BP and excretion of F2-isoprostanes. In contrast, tempol, but not vitamins E and C, reduced BP in old males. These data suggest that the PMR rats, but not ovx rats, may be a suitable model for the study of postmenopausal hypertension, and that oxidative stress plays a role in the increased BP.
Collapse
Affiliation(s)
- Lourdes A Fortepiani
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
89
|
Koliakos GG, Konstas AGP, Schlötzer-Schrehardt U, Hollo G, Katsimbris IE, Georgiadis N, Ritch R. 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 2003; 87:353-6. [PMID: 12598453 PMCID: PMC1771526 DOI: 10.1136/bjo.87.3.353] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS The authors investigated the concentrations of 8-isoprostaglandin F(2a), a marker of oxidative stress in vivo, and ascorbic acid, a protectant against oxidative damage, in the aqueous humour of patients with exfoliation syndrome (XFS) and cataract and compared the results with those in age matched patients with cataract, but without XFS, to determine whether XFS is associated with increased oxidative stress. METHODS Aqueous humour was aspirated at the beginning of phacoemulsification cataract surgery from 27 eyes of 27 cataract patients with XFS and 27 eyes of 27 age matched cataract patients without XFS. 8-Isoprostaglandin F(2a)concentration in the aqueous was determined with a commercial immunoassay; ascorbic acid concentration was measured with a microplate assay method. RESULTS The mean concentration of 8-isoprostaglandin F(2a)in the aqueous from patients with XFS (2429 (SD 2940) pg/ml; range 400-10500 pg/ml) was significantly higher than that measured in the aqueous of age matched control patients (529.1 (226.8) pg/ml; range 325-1000 pg/ml); (p = 0.0028). Furthermore, mean ascorbic acid concentration in XFS patients (0.75 (0.39) mM; range 0.28-1.70 mM) was significantly lower than that found in control patients (1.19 (0.47) mM; range 0.53-2.4 mM); (p = 0.0005). There was a reverse correlation between 8-isoprostaglandin F(2a)and ascorbic acid concentration. CONCLUSION 8-Isoprostaglandin F(2a)was significantly increased in the aqueous of patients with XFS, and ascorbic acid was decreased, providing evidence of a role for free radical induced oxidative damage in the pathobiology of XFS.
Collapse
Affiliation(s)
- G G Koliakos
- Department of Biological Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Endothelial dysfunction is a systemic disorder and a key variable in the pathogenesis of atherosclerosis and its complications. Current evidence suggests that endothelial status is not determined solely by the individual risk factor burden but rather, may be regarded as an integrated index of all atherogenic and atheroprotective factors present in an individual, including known as well as yet-unknown variables and genetic predisposition. Endothelial dysfunction reflects a vascular phenotype prone to atherogenesis and may therefore serve as a marker of the inherent atherosclerotic risk in an individual. In line with this hypothesis, dysfunction of either the coronary or peripheral vascular endothelium was shown to constitute an independent predictor of cardiovascular events, providing valuable prognostic information additional to that derived from conventional risk factor assessment. Interventions like risk factor modification and treatment with various drugs, including statins and angiotensin-converting enzyme inhibitors, may improve endothelial function and thereby, potentially prognosis. Hence, given its reversibility and granted the availability of a diagnostic tool to identify patients at risk and to control the efficacy of therapy in clinical practice, endothelial dysfunction may be an attractive primary target in the effort to optimize individualized therapeutic strategies to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Piero O Bonetti
- Center for Coronary Physiology and Imaging, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
91
|
Carlucci F, Tabucchi A, Biagioli B, Simeone F, Scolletta S, Rosi F, Marinello E. Cardiac surgery: myocardial energy balance, antioxidant status and endothelial function after ischemia-reperfusion. Biomed Pharmacother 2002; 56:483-91. [PMID: 12504269 DOI: 10.1016/s0753-3322(02)00286-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Myocardial and endothelial damage is still a widely debated problem during the ischemia-reperfusion sequence in heart surgery. We evaluated myocardial purine metabolites, antioxidant defense mechanisms, oxidative status and endothelial dysfunction markers in 14 patients undergoing coronary artery by-pass graft (CABG). Heart biopsies were taken before aortic cross-clamping (t1), before clamp removal (t2) and 30 min after reperfusion (t3); perchloric extracts of the tissue were analyzed for glutathione, NAD, nucleotide nucleoside and base content by capillary electrophoresis (CE). In plasma samples from the coronary sinus we evaluated: nitrate and nitrite concentrations by CE, plasma glutathione peroxidase (plGPx) by ELISA, endothelin-1 (ET-1) by RIA and reactive oxygen metabolites (ROM) by colorimetric assay. During the ischemic period (t2) we observed a reduction in cellular NAD and GSH levels, as well as nitrate, nitrite and plGPx. ATP and GTP levels decreased and their catabolic products AMP, GMP, IMP, adenosine, inosine and hypoxanthine accumulated. The energy charge, ATP/ADP ratio, and nucleotide/(nucleoside + base) ratios decreased. At t3, levels of plasma ET-1 increased and monophosphate nucleotides tended to return to basal values. The energy charge did not increase but the nucleotide/(nucleoside + nucleobase) ratio recovered to some extent. Levels of nitrates plus nitrites continued to decrease. No significant variation in ROM levels was observed. Our data indicate that oxidative stress and endothelial damage are major events during CABG, overwhelming the scavenging capacity of the myocyte and preventing restoration of the normal energy balance for 30 min after reperfusion. The AMP deaminase pathway leading to IMP production is active during ischemia and adenosine is not the main compound derived from ATP break-down in the human heart. The possible role of extracorporeal circulation is also discussed.
Collapse
Affiliation(s)
- F Carlucci
- Institute of Biochemistry and Enzymology, University of Siena, Nuovi Istituti Biologici, Via Aldo Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
92
|
Weber TJ, Markillie LM, Chrisler WB, Vielhauer GA, Regan JW. Modulation of JB6 mouse epidermal cell transformation response by the prostaglandin F2alpha receptor. Mol Carcinog 2002; 35:163-72. [PMID: 12489107 DOI: 10.1002/mc.10079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)) modulates clonal selection processes in the mouse skin model of carcinogenesis. In this study we investigated whether JB6 mouse epidermal cells expressed a functional PGF(2alpha) receptor (FP) coupled with a cell-transformation response. Treatment of JB6 cells with an FP agonist (fluprostenol) potently (pM-nM) increased anchorage-dependent and anchorage-independent growth. Inositol phospholipid accumulation and extracellular signal-regulated kinase (Erk) activity were increased in cells treated with FP agonists, consistent with established FP-related signal transduction. FP mRNA was detected by reverse transcription-polymerase chain reaction, and the average specific [(3)H]PGF(2alpha) binding was 8.25 +/- 0.95 fmol/mg protein. Erk activity and colony size were increased by cotreatment of JB6 cells with epidermal growth factor (EGF) and fluprostenol to a greater extent than with either treatment alone, whereas the cotreatment effect on colony number appeared to be simply additive. Collectively, our data indicated that JB6 cells expressed a functional FP coupled with transformation-related signal transduction and the regulation of clonal selection processes. Erk activity appears to be a convergence point in the EGF and FP pathways. The data raise the possibility that the FP contributes to clonal selection processes but probably plays a more important role as a response modifier.
Collapse
Affiliation(s)
- Thomas J Weber
- Molecular Biosciences, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
93
|
Patten GS, Bird AR, Topping DL, Abeywardena MY. Dietary fish oil alters the sensitivity of guinea pig ileum to electrically driven contractions and 8-iso-PGE2. Nutr Res 2002. [DOI: 10.1016/s0271-5317(02)00458-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
94
|
Hermenegildo C, García-Martínez MC, Tarín JJ, Cano A. Estradiol reduces F2alpha-isoprostane production in cultured human endothelial cells. Am J Physiol Heart Circ Physiol 2002; 283:H2644-9. [PMID: 12388318 DOI: 10.1152/ajpheart.00369.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free radical-generated F(2alpha)-isoprostanes are a group of compounds with vasoconstrictor properties. To investigate whether estradiol exerts antioxidant actions modifying F(2alpha)-isoprostane production, cultured human umbilical vein endothelial cells were exposed to estradiol and other compounds and F(2alpha)-isoprostanes were measured in culture medium. Exposure to 1 and 10 nM estradiol for 24 h reduced F(2alpha)-isoprostane production by 36 and 49%, respectively (P < 0.001 vs. control). Exposure to antiestrogens alone (ICI-182780 or EM-652) slightly reduced F(2alpha)-isoprostanes (P < 0.05 vs. control), but much less than exposure to estradiol (P < 0.05). ICI-182780 reversed the estradiol-induced reduction of F(2alpha)-isoprostane concentration (P < 0.05). Along with time-course analysis, these results suggest that estradiol effects were mediated through estrogen receptor-dependent and -independent mechanisms. Progestogens alone (progesterone or medroxyprogesterone acetate) did not modify F(2alpha)-isoprostane production at any of the tested concentrations (1, 10, and 100 nM). Progesterone completely reversed estradiol-induced reduction of F(2alpha)-isoprostane production (P < 0.05 vs. control and estradiol), but medroxyprogesterone acetate did not (P < 0.05 vs. control).
Collapse
|
95
|
Jankov RP, Belcastro R, Ovcina E, Lee J, Massaeli H, Lye SJ, Tanswell AK. Thromboxane A(2) receptors mediate pulmonary hypertension in 60% oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism. Am J Respir Crit Care Med 2002; 166:208-14. [PMID: 12119234 DOI: 10.1164/rccm.200112-124oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Endothelin-1 (ET-1) mediates the development of pulmonary hypertension (PHT) in newborn rats exposed to 60% O(2) for 14 days, a model for human chronic neonatal lung injury. ET-1 production by d-14 rat pulmonary artery smooth muscle cells in vitro was markedly increased by thromboxane (TX) A(2) receptor agonists and inhibited by a competitive antagonist. We hypothesized that stimulation of the TX A(2) receptor contributed to O(2)-mediated PHT in vivo. Newborn rat pups received daily intraperitoneal injections of L670596, a competitive TX A(2) receptor antagonist, or 5,5-dimethyl-3-(3-fluorophenyl)4-(4-methylsulfonyl)phenyl-2(5H)-furanone (DFU), a cyclooxygenase-2 inhibitor, during 14 days of 60% O(2) or air exposure. L670596, but not DFU, prevented 60% O(2)-mediated right ventricular and small pulmonary vessel smooth muscle hypertrophy. Lung ET-1 content was significantly reduced by L670596 in 60% O(2)-exposed animals. We conclude that TX A(2) receptor activation, though not by TX A(2), caused upregulation of ET-1 and PHT in this model. A likely mediator is the stable lipid peroxidation product, 8-iso-prostane, which acts as an incidental ligand of the TX A(2) receptor and is a potent inducer of ET-1 production by cultured d-14 rat pulmonary artery smooth muscle cells in vitro.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western
- Carbazoles/pharmacology
- Cells, Cultured
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprost/analogs & derivatives
- Endothelin-1/metabolism
- F2-Isoprostanes/metabolism
- F2-Isoprostanes/pharmacology
- Furans/pharmacology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/physiopathology
- Immunohistochemistry
- Lung/metabolism
- Muscle, Smooth, Vascular/metabolism
- Oxygen/physiology
- Oxygen/toxicity
- Prostaglandin Antagonists/pharmacology
- Prostaglandin-Endoperoxide Synthases/physiology
- Pulmonary Artery/metabolism
- Rats
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/physiology
- Thromboxane B2/metabolism
- Up-Regulation
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Robert P Jankov
- Canadian Institutes of Health Research Group in Lung Development, Lung Biology Programme, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
96
|
Janssen LJ, Tazzeo T. Involvement of TP and EP3 receptors in vasoconstrictor responses to isoprostanes in pulmonary vasculature. J Pharmacol Exp Ther 2002; 301:1060-6. [PMID: 12023538 DOI: 10.1124/jpet.301.3.1060] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although isoprostanes generally act on smooth muscle via TXA(2)-selective prostanoid receptors (TPs), some suggest other prostanoid receptors or possibly even a novel isoprostane-selective receptor might be involved. We studied contractions to several isoprostanes in porcine pulmonary vasculature using organ bath techniques. 8-iso-prostaglandin E(2) (PGE(2)) was the most potent and efficacious of the isoprostanes, with a log EC(50) of -7.0 +/- 0.2 in the pulmonary artery and -6.8 +/- 0.2 in the pulmonary vein. The responses to all the isoprostanes were essentially completely blocked by the TP receptor antagonist ICI 192605 [4(Z)-6-[(2,4,5-cis)2-(2-chlorophenyl)-4-(2-hydroxyphenyl)1,3-dioxan-5-yl]hexenoic acid], and the equilibrium dissociation constants for ICI 192605 competing with U46619 or 8-iso-PGE(2) were both approximately 2 nM, indicating that isoprostane-evoked responses involve primarily TP receptors. Only 8-iso-PGE(2) was able to evoke substantial contractions in the presence of ICI 192605 and only in the pulmonary vein. The EC(50) of these ICI 192605-insensitive responses was -6.1 +/- 0.2. Using a variety of prostanoid agonists, we found the pulmonary vein lacked excitatory PGF(2alpha)-selective prostanoid receptor (FP) or PGD(2)-selective prostanoid receptor (DP) but expressed excitatory EP(3) receptors. The ICI 192605-insensitive responses to 8-iso-PGE(2) were unaffected by the EP(1) antagonist SC-19220 [8-chloro-debenz[b,f][1,4]oxazepine-10(11H)-carboxy-(2-acetyl) hydrazine; 10(-5) M] but were antagonized by the less selective DP/EP(1)/EP(2) antagonist AH6809 (6-isopropoxy-9-oxoxanthene-2-carboxylic acid; 10(-5) M) or by cyclopiazonic acid (10(-5) M; depletes the internal Ca(2+) store). Our data indicate that, whereas 8-iso-PGE(2) constricts pulmonary vasculature primarily through TP receptors, a substantial portion of this response is also directed through EP(3) receptors or possibly a novel isoprostane receptor.
Collapse
MESH Headings
- Animals
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- In Vitro Techniques
- Isoprostanes/pharmacology
- Isoprostanes/physiology
- Lung/blood supply
- Lung/drug effects
- Lung/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pulmonary Veins/drug effects
- Pulmonary Veins/physiology
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/physiology
- Swine
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Luke J Janssen
- Asthma Research Group, Department of Medicine, McMaster University, St. Joseph's Hospital, 50 Charlton Avenue East, Hamilton, Ontario, L8N 4A6, Canada.
| | | |
Collapse
|
97
|
Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem 2002; 277:14221-6. [PMID: 11827970 DOI: 10.1074/jbc.m111551200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid oxidation products promote atherosclerosis and may also affect osteoporosis. We showed previously that oxidized lipids including 8-isoprostaglandin E2 (isoPGE2) inhibit osteoblastic differentiation of preosteoblasts. Since osteoporosis is mediated both by decreased osteoblastic bone formation and by increased osteoclastic bone resorption, we assessed whether oxidized lipids regulate the osteoclastic potential of marrow hematopoietic cells. Treatment of marrow-derived preosteoclasts with isoPGE2 enhanced osteoclastic differentiation as evidenced by increased tartrate-resistant acid phosphatase (TRAP) activity and multinucleation, which were inhibited by calcitonin, and increased numbers of resorption pits. The enhanced osteoclastic differentiation by isoPGE2 was observed whether preosteoclasts were in coculture with stromal cells or in monoculture in the presence of receptor-activated NFkappaB ligand (RANKL) and macrophage colony-stimulating factor. Receptor antagonist studies suggest that isoPGE2 effects were mediated by prostaglandin receptor subtypes EP2/DP on preosteoclasts and subtype EP1 and thromboxane receptors on stromal/osteoblast cells. The enhanced TRAP activity was also inhibited by cAMP-dependent protein kinase inhibitors, and isoPGE2 elevated intracellular cAMP levels of preosteoclast monocultures. Other oxidized lipids also enhanced the TRAP activity of preosteoclast monocultures. These data suggest that isoPGE2 enhances osteoclastic differentiation of marrow preosteoclasts and that this regulation occurs via the cAMP-dependent protein kinase pathway.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, School of Medicine, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Sampson MJ, Gopaul N, Davies IR, Hughes DA, Carrier MJ. Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care 2002; 25:537-41. [PMID: 11874943 DOI: 10.2337/diacare.25.3.537] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Acute hyperglycemia in type 2 diabetes increases the generation of plasma 8-epi-prostaglandin F2 (8-epi-PGF2alpha) isoprostane, a sensitive direct marker of in vivo free radical oxidative damage to membrane phospholipids. RESEARCH DESIGN AND METHODS A total of 21 patients with type 2 diabetes underwent an oral 75-g glucose tolerance test. Plasma 8-epi-PGF2alpha isoprostane concentrations (by gas chromatography [GC]/mass spectrometry [MS]), intralymphocyte reduced-to-oxidized glutathione ratios, and plasma total antioxidant capacity were measured at baseline and 90 min after glucose loading. RESULTS Plasma 8-epi-PGF2alpha isoprostane concentrations rose significantly (P=0. 010) from 0.241 +/- 0.1 to 0.326 +/- 0.17 ng/l after 90 min. Intracellular oxidative balance and plasma antioxidant capacity did not change in either group. CONCLUSIONS Plasma concentrations of 8-epi-PGF2alpha isoprostane increase during acute hyperglycemia in type 2 diabetes, providing direct evidence of free radical-mediated oxidative damage and demonstrating a pathway for an association between acute rather than fasting hyperglycemia and macrovascular risk in type 2 diabetes.
Collapse
Affiliation(s)
- Michael J Sampson
- Bertram Diabetes Research Unit, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK.
| | | | | | | | | |
Collapse
|
99
|
Zou MH, Shi C, Cohen RA. High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 2002; 51:198-203. [PMID: 11756341 DOI: 10.2337/diabetes.51.1.198] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Loss of the modulatory role of the endothelium may be a critical initial factor in the development of diabetic vascular diseases. Exposure of human aortic endothelial cells (HAECs) to high glucose (30 or 44 mmol/l) for 7-10 days significantly increased the release of superoxide anion in response to the calcium ionophore A23187. Nitrate, a breakdown product of peroxynitrite (ONOO(-)), was substantially increased in parallel with a decline in cyclic guanosine monophosphate (GMP). Using immunochemical techniques and high-performance liquid chromatography, an increase in tyrosine nitration of prostacyclin (PGI(2)) synthase (PGIS) associated with a decrease in its activity was found in cells exposed to high glucose. Both the increase in tyrosine nitration and the decrease in PGIS activity were lessened by decreasing either nitric oxide or superoxide anion, suggesting that ONOO(-) was responsible. Furthermore, SQ29548, a thromboxane/prostaglandin (PG) H(2) (TP) receptor antagonist, significantly reduced the increased endothelial cell apoptosis and the expression of soluble intercellular adhesion molecule-1 that occurred in cells exposed to high glucose, without affecting the decrease in PGIS activity. Thus, exposure of HAECs to high glucose increases formation of ONOO(-), which causes tyrosine nitration and inhibition of PGIS. The shunting of arachidonic acid to the PGI(2) precursor PGH(2) or other eicosanoids likely results in TP receptor stimulation. These observations can explain several abnormalities in diabetes, including 1) increased free radicals, 2) decreased bioactivity of NO, 3) PGI(2) deficiency, and 4) increased vasoconstriction, endothelial apoptosis, and inflammation via TP receptor stimulation.
Collapse
Affiliation(s)
- Ming-Hui Zou
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
100
|
Ortiz MC, Manriquez MC, Romero JC, Juncos LA. Antioxidants block angiotensin II-induced increases in blood pressure and endothelin. Hypertension 2001; 38:655-9. [PMID: 11566950 DOI: 10.1161/01.hyp.38.3.655] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronically infusing a subpressor dose of angiotensin (Ang) II increases blood pressure via poorly defined mechanisms. We found that this hypertensive response is accompanied by increased oxidant stress and is prevented by blocking endothelin (ET) receptors. Thus, we now tested whether blocking oxidant stress decreases both blood pressure and ET levels. We infused Sprague-Dawley rats (via osmotic pumps) with either vehicle (group 1) or Ang II (5 ng. kg(-1). min(-1); groups 2 to 4) for 15 days. Groups 3 and 4 also received either tempol in the drinking water (1 mmol/L) or vitamin E (5000 IU/kg diet), respectively, for 15 days. We measured systolic blood pressure (SBP) and urinary nitrite excretion every 3 days, and on day 15 we measured systemic and renal venous plasma levels of ET, isoprostanes, and thiobarbituric acid reactive substances (TBARS). SBP in Group 1 did not change throughout the study, whereas Ang II increased SBP (from 132+/-5 to 151+/-7 mm Hg). In addition, Ang II increased the systemic and renal venous levels of isoprostanes, TBARS, and ET and caused a transient decrease in urinary nitrites (that returned to control levels by day 9). Both tempol and vitamin E prevented Ang II-induced hypertension and either prevented or tended to blunt the increase in systemic and renal isoprostanes, TBARS, and ET. Finally, both antioxidants abolished the transient decrease in urinary nitrites. These results together with our previous study suggest that subpressor-dose Ang II increases oxidant stress (and isoprostanes). This in turn increases ET levels, which participate in the hypertensive response to Ang II.
Collapse
Affiliation(s)
- M C Ortiz
- Department of Physiology, Division of Nephrology, Mayo School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|