51
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
52
|
Li Y, Loureiro A, Nguyen M, Laurent M, Bijani C, Benoit‐Vical F, Robert A, Liu Y, Meunier B. Synthesis and Antimalarial Activities of New Hybrid Atokel Molecules. ChemistryOpen 2022; 11:e202200064. [PMID: 35543215 PMCID: PMC9092290 DOI: 10.1002/open.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/31/2022] [Indexed: 11/11/2022] Open
Abstract
The currently spreading resistance of the malaria parasite Plasmodium falciparum to artemisinin-based combination therapies makes an urgent need for new efficient drugs. Aiming to kill artemisinin-resistant Plasmodium, a series of novel hybrid drugs named Atokels were synthesized and characterized. Atokels are based on an 8-amino- or 8-hydroxyquinoline entity covalently bound to a 1,4-naphthoquinone through a polyamine linker. These drugs have been designed to target the parasite mitochondrion by their naphthoquinone moiety reminiscent of the antimalarial drug atovaquone, and to trigger a damaging oxidative stress due to their ability to chelate metal ions in order to generate redox active complexes in situ. The most effective Atokel drug shown a promising antimalarial activity (IC50 =622 nm on an artemisinin-resistant P. falciparum strain) and no cytotoxicity at 50 μm indicating a specific antiplasmodial mode of action.
Collapse
Affiliation(s)
- Youzhi Li
- Guangdong University of TechnologySchool of Chemical Engineering and Light Industryno. 100 Waihuan Xi road Education Mega CenterGuangzhou510006P. R. China
| | - Anthony Loureiro
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
- Institut de Pharmacologie et de Biologie StructuraleIPBSCNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 6418231077Toulouse cedex 4France
| | - Marion Laurent
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
- Institut de Pharmacologie et de Biologie StructuraleIPBSCNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 6418231077Toulouse cedex 4France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
| | - Françoise Benoit‐Vical
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
- Institut de Pharmacologie et de Biologie StructuraleIPBSCNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 6418231077Toulouse cedex 4France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
| | - Yan Liu
- Guangdong University of TechnologySchool of Chemical Engineering and Light Industryno. 100 Waihuan Xi road Education Mega CenterGuangzhou510006P. R. China
| | - Bernard Meunier
- Guangdong University of TechnologySchool of Chemical Engineering and Light Industryno. 100 Waihuan Xi road Education Mega CenterGuangzhou510006P. R. China
- Laboratoire de Chimie de Coordination du CNRSLCC–CNRSUniversité de ToulouseUniversité Paul Sabatier205 route de Narbonne, BP 4409931077Toulouse cedex 4France
- New antimalarial molecules and pharmacological approachesMAAPInserm ER1289ToulouseFrance
| |
Collapse
|
53
|
In search of suitable protein targets for anti-malarial and anti-dengue drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Kouakou YI, Omorou R, Said IB, Lavoignat A, Bonnot G, Bienvenu AL, Picot S. Assessment of quantitative and semi-quantitative biological test methods of artesunate in vitro. Parasite 2022; 29:18. [PMID: 35348455 PMCID: PMC8962658 DOI: 10.1051/parasite/2022019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Artesunate is the current most potent antimalarial drug widely used for the treatment of malaria. Considering the emergence of artemisinin resistance, several situations may require a simple method for artesunate quantification. We thus developed a quantitative and a semi-quantitative biological method for the determination of artesunate in liquid samples. The tests are based on the measurement of samples’ antimalarial activity on Plasmodium falciparum 3D7 using a modified SYBR Green I drug susceptibility test. For the quantitative test, we established a standard curve that resulted from a dose–response curve and evaluated its performances using controls samples. Whereas the linear regression analysis between artesunate concentration and antimalarial activity showed promising results (linearity range 1.5–24.6 ng/mL, r2 = 0.9373), we found that artesunate content of the controls was significantly overestimated (p = 0.0313). For the semi-quantitative test, we compared the antimalarial activities of samples collected during permeation studies of artesunate to that of a reference (artesunate IC50) by statistical analysis. We demonstrated that antimalarial activities of samples from permeation tests using a powder formulation of artesunate were greater than those of samples from tests using a solution formulation. Bioassays can be simple techniques to assess artesunate in liquid samples, particularly in resource-limited settings. Comparison with reference methods is still recommended when accurate drug quantification is required.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France - Groupement Hospitalier Nord, Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, 69004 Lyon, France
| | - Roukayatou Omorou
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France
| | - Ibrahim Bin Said
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France
| | - Adeline Lavoignat
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France
| | - Guillaume Bonnot
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France
| | - Anne-Lise Bienvenu
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France - Groupement Hospitalier Nord, Service Pharmacie, Hospices Civils de Lyon, 69004 Lyon, France
| | - Stéphane Picot
- Université de Lyon, Malaria Research Unit, ICBMS, UMR 5246 CNRS-INSA-CPE-Université Lyon1, 69622 Villeurbanne, France - Groupement Hospitalier Nord, Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
55
|
Foster GJ, Sievert MAC, Button-Simons K, Vendrely KM, Romero-Severson J, Ferdig MT. Cyclical regression covariates remove the major confounding effect of cyclical developmental gene expression with strain-specific drug response in the malaria parasite Plasmodium falciparum. BMC Genomics 2022; 23:180. [PMID: 35247977 PMCID: PMC8897900 DOI: 10.1186/s12864-021-08281-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background The cyclical nature of gene expression in the intraerythrocytic development cycle (IDC) of the malaria parasite, Plasmodium falciparum, confounds the accurate detection of specific transcriptional differences, e.g. as provoked by the development of drug resistance. In lab-based studies, P. falciparum cultures are synchronized to remove this confounding factor, but the rapid detection of emerging resistance to artemisinin therapies requires rapid analysis of transcriptomes extracted directly from clinical samples. Here we propose the use of cyclical regression covariates (CRC) to eliminate the major confounding effect of developmentally driven transcriptional changes in clinical samples. We show that elimination of this confounding factor reduces both Type I and Type II errors and demonstrate the effectiveness of this approach using a published dataset of 1043 transcriptomes extracted directly from patient blood samples with different patient clearance times after treatment with artemisinin. Results We apply this method to two publicly available datasets and demonstrate its ability to reduce the confounding of differences in transcript levels due to misaligned intraerythrocytic development time. Adjusting the clinical 1043 transcriptomes dataset with CRC results in detection of fewer functional categories than previously reported from the same data set adjusted using other methods. We also detect mostly the same functional categories, but observe fewer genes within these categories. Finally, the CRC method identifies genes in a functional category that was absent from the results when the dataset was adjusted using other methods. Analysis of differential gene expression in the clinical data samples that vary broadly for developmental stage resulted in the detection of far fewer transcripts in fewer functional categories while, at the same time, identifying genes in two functional categories not present in the unadjusted data analysis. These differences are consistent with the expectation that CRC reduces both false positives and false negatives with the largest effect on datasets from samples with greater variance in developmental stage. Conclusions Cyclical regression covariates have immediate application to parasite transcriptome sequencing directly from clinical blood samples and to cost-constrained in vitro experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08281-y.
Collapse
|
56
|
Grube CD, Gill CP, Roy H. Development of a continuous assay for high throughput screening to identify inhibitors of the purine salvage pathway in Plasmodium falciparum. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:114-120. [PMID: 35058189 DOI: 10.1016/j.slasd.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Malaria, an infectious disease caused by protozoan parasites from the genus Plasmodium, represents a serious global health threat. The continued emergence of drug resistant strains has severely decreased current antimalarial drug efficacy and led to a perpetual race for drug discovery. Most protozoan parasites, including Plasmodium spp., are unable to synthesize purines de novo and instead rely on an essential purine salvage pathway for acquisition of purines from the infected host. Because purines are essential for Plasmodium growth and survival, the enzymes of the purine salvage pathway represent promising targets for drug discovery. Target-based high-throughput screening (HTS) assays traditionally focus on a single target, which severely limits the screening power of this type of approach. To circumvent this limitation, we have reconstituted the purine salvage pathway from Plasmodium falciparum in an assay combining four drug targets. This assay was developed for HTS and optimized to detect partial inhibition of any of the four enzymes in the pathway. Inhibitors of several enzymes in the pathway were identified in a pilot screen, with several compounds exhibiting effective inhibition when provided in micromolar amounts.
Collapse
Affiliation(s)
- Christopher D Grube
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cameron P Gill
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
| |
Collapse
|
57
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
58
|
Audu FE, Usman MA, Raphael FN, Abdulmutallab A, Jimoh FM, Ibrahim MA. High-carbohydrate diet lacked the potential to ameliorate parasitemia and oxidative stress in mice infected with Plasmodium berghei. Parasitol Res 2022; 121:737-742. [PMID: 35034199 DOI: 10.1007/s00436-021-07403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The search for a novel prophylactic agent against malaria is on the rise due to the negative socio-economic impact of the disease in tropical and subtropical regions of the world. Sequel to this, we evaluated the in vivo anti-Plasmodium berghei activity of a high-carbohydrate diet as well as the effects of the diet on parasite-associated anemia and organ damage. Mice were fed with either standard or a high-carbohydrate diet for 4 weeks and subsequently infected with chloroquine-sensitive strain of P. berghei. The levels of parasitemia, blood glucose, packed cell volume, and redox sensitive biomarkers of brain and liver tissues were measured. Data from this study showed that high-carbohydrate significantly (p < 0.05) aggravated the multiplication of P. berghei in the animals. Furthermore, our result demonstrated that blood glucose level in P. berghei-infected mice fed with a high-carbohydrate diet was insignificantly (p > 0.05) depleted. Additionally, our findings revealed that high-carbohydrate did not demonstrate a significant (p < 0.05) ameliorative potentials against P. berghei-induced anemia and oxidative stress in the brain and liver tissues. We concluded that high-carbohydrate diet was unable to suppress P. berghei upsurge and accordingly could not mitigate certain pathological alterations induced by P. berghei infection.
Collapse
|
59
|
Manirakiza G, Kassaza K, Taremwa IM, Bazira J, Byarugaba F. Molecular identification and anti-malarial drug resistance profile of Plasmodium falciparum from patients attending Kisoro Hospital, southwestern Uganda. Malar J 2022; 21:21. [PMID: 35033082 PMCID: PMC8761270 DOI: 10.1186/s12936-021-04023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background The evolution of malaria infection has necessitated the development of highly sensitive diagnostic assays, as well as the use of dried blood spots (DBS) as a potential source of deoxyribonucleic acid (DNA) yield for polymerase chain reaction (PCR) assays. This study identified the different Plasmodium species in malaria-positive patients, and the anti-malarial drug resistance profile for Plasmodium falciparum using DBS samples collected from patients attending Kisoro Hospital in Kisoro district, Southwestern Uganda. Methods The blood samples were prospectively collected from patients diagnosed with malaria to make DBS, which were then used to extract DNA for real-time PCR and high-resolution melting (HRM) analysis. Plasmodium species were identified by comparing the control and test samples using HRM-PCR derivative curves. Plasmodium falciparum chloroquine (CQ) resistance transporter (pfcrt) and kelch13 to screen the samples for anti-malarial resistance markers. The HRM-PCR derivative curve was used to present a summary distribution of the different Plasmodium species as well as the anti-malarial drug profile. Results Of the 152 participants sampled, 98 (64.5%) were females. The average age of the participants was 34.9 years (range: 2 months–81 years). There were 134 samples that showed PCR amplification, confirming the species as Plasmodium. Plasmodium falciparum (N = 122), Plasmodium malariae (N = 6), Plasmodium ovale (N = 4), and Plasmodium vivax (N = 2) were the various Plasmodium species and their proportions. The results showed that 87 (71.3%) of the samples were sensitive strains/wild type (CVMNK), 4 (3.3%) were resistant haplotypes (SVMNT), and 31 (25.4%) were resistant haplotypes (CVIET). Kelch13 C580Y mutation was not detected. Conclusion The community served by Kisoro hospital has a high Plasmodium species burden, according to this study. Plasmodium falciparum was the dominant species, and it has shown that resistance to chloroquine is decreasing in the region. Based on this, molecular identification of Plasmodium species is critical for better clinical management. Besides, DBS is an appropriate medium for DNA preservation and storage for future epidemiological studies.
Collapse
Affiliation(s)
- Godfrey Manirakiza
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Kennedy Kassaza
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Mugisha Taremwa
- Institute of Allied Health Sciences, Clarke International University, Kampala, Uganda
| | - Joel Bazira
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Fredrick Byarugaba
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
60
|
Srivastava A, Garg S, Karan S, Kaushik S, Ranganathan A, Pati S, Garg LC, Singh S. Plasmodium falciparum Antigen Expression in Leishmania Parasite: A Way Forward for Live Attenuated Vaccine Development. Methods Mol Biol 2022; 2410:555-566. [PMID: 34914067 DOI: 10.1007/978-1-0716-1884-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Live attenuated vaccines (LAVs) are among the most critical interventions in modern medicine and have already proven their potential to save millions of lives. LAVs are always explored as potential vaccine candidates since they induce an immune response, which is as good as the wild type pathogen. For parasitic diseases, the efficacy of LAVs is still under investigation and needs extensive research to mark their presence in the field. In malaria, live attenuated sporozoites have been evaluated for a vaccine against the liver stage. This vaccine approach is limited due to the highly cumbersome technique of sporozoite isolation and related relapse issues. We have developed a novel vaccine against malaria by expressing Plasmodium falciparum antigens in Leishmania donovani promastigotes. These hybrid, recombinant L. donovani parasites mimicking P. falciparum parasite antigens were analyzed for their anti-malarial efficacy in preclinical studies. We demonstrate the potential of Leishmania spp. parasites in developing an important live vector vaccine against malaria for the induction of protective immune responses. Herein, we describe a method to express malaria parasite antigens in L. donovani promastigotes and analyze its potential for a vaccine against malaria. This methodology can be extended to live, attenuated Leishmania promastigotes parasites to develop LAV against malaria.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Dadri, UP, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sweta Karan
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Dadri, UP, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
61
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
62
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
63
|
Ikegbunam M, Ojo JA, Kokou K, Morikwe U, Nworu C, Uba C, Esimone C, Velavan TP, Ojurongbe O. Absence of Plasmodium falciparum artemisinin resistance gene mutations eleven years after the adoption of artemisinin-based combination therapy in Nigeria. Malar J 2021; 20:434. [PMID: 34758836 PMCID: PMC8579633 DOI: 10.1186/s12936-021-03968-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background The occurrence of artemisinin resistance (ART)-associated polymorphism of Plasmodium falciparum K13-propeller (pfk13) gene before and after the introduction of artemisinin-based combination therapy (ACT) in two regions of Nigeria was investigated in this study. Regular surveillance is necessary to make a definite conclusion on the emergence and pattern of possible resistance to ART. Methods This cross-sectional study was carried out in the Southwestern and Southeastern geopolitical zones of Nigeria. A total of 150, 217, and 475 participants were enrolled for the study in the Southwest (2004_Group A), Southwest (2015_Group B), and southeast (2015_Group C), respectively. Blood samples were collected from the study participants for DNA extraction and a nested PCR for P. falciparum identification. Samples that were positive for P. falciparum were genotyped for the pfk13 gene using the Sanger sequencing method. The single nucleotide polymorphisms were analysed using the Bioedit software. Results A total of 116, 125, and 83 samples were positive for P. falciparum, respectively for the samples collected from the Southwest (2004 and 2015) and southeast (2015). Parasite DNA samples collected from febrile children in 2004 (Group A; n = 71) and 2015 (Group B; n = 73) in Osogbo Western Nigeria and 2015_Group C (n = 36) in southeast Nigeria were sequenced successfully. This study did not observe mutations associated with the in vitro resistance in southeast Asia, such as Y493H, R539T, I543T, and C580Y. Two new polymorphisms V520A and V581I were observed in two samples collected in Osogbo, Southwest Nigeria. These two mutations occurred in the year 2004 (Group A) before the introduction of ACT. Six mutations were identified in 17% of the samples collected in southeast Nigeria. One of these mutations (D547G) was non-synonymous, while the remaining (V510V, R515R, Q613Q, E688E, and N458N) were synonymous. Also, one (2%) heterozygote allele was identified at codon 458 in the 2015 (Group C) samples. Conclusions None of the mutations observed in this study were previously validated to be associated with ART resistance. These results, therefore, suggest that artemisinin is likely to remain highly effective in treating malaria in the study areas that are malarious zone.
Collapse
Affiliation(s)
- Moses Ikegbunam
- Institute for Tropical Medicine, Tübingen, Germany. .,Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria. .,Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria.
| | - Johnson A Ojo
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Kossiwa Kokou
- Molecular Research Foundation for Students and Scientists, Nnamdi Azikiwe University, Awka, Nigeria
| | | | - Chukwuemeka Nworu
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Chibuzo Uba
- Institute for Tropical Medicine, Tübingen, Germany
| | - Charles Esimone
- Institute for Tropical Medicine, Tübingen, Germany.,Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Thirumalaisamy P Velavan
- Institute for Tropical Medicine, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Olusola Ojurongbe
- Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
64
|
Oladoyinbo TO, Adeogun AO, Babalola AS, Babatunde M, Ladipo OT, Olarinde TI, Oyedemi ID. Factors Affecting Willingness to Use Indoor Residual Spraying Among Pregnant Women Attending Antenatal Care in Hyperendemic State of West Africa: A Random Survey. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2368-2375. [PMID: 34327539 DOI: 10.1093/jme/tjab132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 06/13/2023]
Abstract
This study assessed the perception of pregnant women on indoor residual spraying (IRS), documented acceptability, and factors that significantly dictate willingness to use IRS among the pregnant women attending antenatal clinic in Ibadan Nigeria. A structured questionnaire was used to obtain relevant information from 500 pregnant women. Descriptive and principal component analysis (PCA) were done at 5% level of significance. Majority of the pregnant women had between good and fair knowledge of IRS. Less than 70% of the respondents were willing to allow IRS in their homes. Our PCA revealed that major factors responsible for acceptance and willingness to use IRS were associated with perceived benefits, advantages, and disadvantages of IRS rather than overall knowledge of IRS among the respondents. The analysis revealed that these factors were responsible for at least 80% of the reasons for a pregnant woman to willingly accept IRS or not. The factors that positively influenced willingness to use IRS include its benefit in controlling mosquitoes and other insects, reducing malaria incidence, and prolonged effects of IRS which is an added advantage over continuous purchase of aerosols. One major factor that may negatively affect the acceptance of IRS is the fact that you may have to pack out of the house and wait for more than 3 d before entering. This current study has identified some specific factors that seem to promote and/or reduce willingness to accept IRS as a malaria control intervention among pregnant women in South Western Nigeria.
Collapse
Affiliation(s)
| | - Adedapo Olufemi Adeogun
- Public Health and Epidemiology Department, Nigerian Insitute of Medical Research, Yaba Lagos, Nigeria
- Department of Biological Sciences, Lead City University, Ibadan Oyo State, Nigeria
| | - Ayodele Samuel Babalola
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olabode Taiwo Ladipo
- Ministry of Health, Oyo State, Nigeria
- Malaria Elimination Programme, Oyo State, Nigeria
| | | | | |
Collapse
|
65
|
Na J, Zhang J, Choe YL, Lim CS, Park YH. An in vitro study on the differentiated metabolic mechanism of chloroquine-resistant Plasmodium falciparum using high-resolution metabolomics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:859-874. [PMID: 34338159 DOI: 10.1080/15287394.2021.1944945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroquine (CQ) is an important drug used therapeutically for treatment of malaria. However, due to limited number of studies on metabolic targets of chloroquine (CQ), it is difficult to attribute mechanisms underlying resistance associated with usage of this drug. The present study aimed to investigate the metabolic signatures of CQ-resistant Plasmodium falciparum (PfDd2) compared to CQ-sensitive Plasmodium falciparum (Pf3D7). Both Pf3D7 and PfDd2 were treated with CQ at 200 nM for 48 hr; thereafter, the harvested red blood cells (RBCs) and media were subjected to microscopy and high-resolution metabolomics (HRM). Glutathione, γ-L-glutamyl-L-cysteine, spermidine, inosine monophosphate, alanine, and fructose-1,6-bisphosphate were markedly altered in PfDd2 of RBC. In the media, cysteine, cysteic acid, spermidine, phenylacetaldehyde, and phenylacetic acid were significantly altered in PfDd2. These differential metabolic signatures related signaling pathways of PfDd2, such as oxidative stress pathway and glycolysis may provide evidence for understanding the resistance mechanism and pathogenesis of the CQ-resistant parasite.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jian Zhang
- Omics Research Center, Sejong, Republic of Korea
| | - Young Lan Choe
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Youngja Hwang Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Sejong, Republic of Korea
| |
Collapse
|
66
|
Girma M, Ball HS, Wang X, Brothers RC, Jackson ER, Meyers MJ, Dowd CS, Couch RD. Mechanism of Action of N-Acyl and N-Alkoxy Fosmidomycin Analogs: Mono- and Bisubstrate Inhibition of IspC from Plasmodium falciparum, a Causative Agent of Malaria. ACS OMEGA 2021; 6:27630-27639. [PMID: 34722963 PMCID: PMC8552233 DOI: 10.1021/acsomega.1c01711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 06/01/2023]
Abstract
Malaria is a global health threat that requires immediate attention. Malaria is caused by the protozoan parasite Plasmodium, the most severe form of which is Plasmodium falciparum. The methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential to the survival of many human pathogens, including P. falciparum, but is absent in humans, and thus shows promise as a new antimalarial drug target. The enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the MEP pathway. In addition to a divalent cation (Mg2+), the enzyme requires the substrates 1-deoxy-D-xylulose 5-phosphate (DXP) and NADPH to catalyze its reaction. We designed N-alkoxy and N-acyl fosmidomycin analogs to inhibit the activity of P. falciparum IspC in a bisubstrate manner. Enzyme assays reveal that the N-alkoxy fosmidomycin analogs have a competitive mode of inhibition relative to both the DXP- and NADPH-binding sites, confirming a bisubstrate mode of inhibition. In contrast, the N-acyl fosmidomycin analogs demonstrate competitive inhibition with respect to DXP but uncompetitive inhibition with respect to NADPH, indicating monosubstrate inhibitory activity. Our results will have a positive impact on the discovery of novel antimalarial drugs.
Collapse
Affiliation(s)
- Misgina
B. Girma
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| | - Haley S. Ball
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| | - Xu Wang
- Progenra
Inc., Malvern, Pennsylvania 19355, United States
| | - Robert C. Brothers
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Emily R. Jackson
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
| | - Cynthia S. Dowd
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| |
Collapse
|
67
|
Agamah FE, Damena D, Skelton M, Ghansah A, Mazandu GK, Chimusa ER. Network-driven analysis of human-Plasmodium falciparum interactome: processes for malaria drug discovery and extracting in silico targets. Malar J 2021; 20:421. [PMID: 34702263 PMCID: PMC8547565 DOI: 10.1186/s12936-021-03955-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/16/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence and spread of malaria drug resistance have resulted in the need to understand disease mechanisms and importantly identify essential targets and potential drug candidates. Malaria infection involves the complex interaction between the host and pathogen, thus, functional interactions between human and Plasmodium falciparum is essential to obtain a holistic view of the genetic architecture of malaria. Several functional interaction studies have extended the understanding of malaria disease and integrating such datasets would provide further insights towards understanding drug resistance and/or genetic resistance/susceptibility, disease pathogenesis, and drug discovery. METHODS This study curated and analysed data including pathogen and host selective genes, host and pathogen protein sequence data, protein-protein interaction datasets, and drug data from literature and databases to perform human-host and P. falciparum network-based analysis. An integrative computational framework is presented that was developed and found to be reasonably accurate based on various evaluations, applications, and experimental evidence of outputs produced, from data-driven analysis. RESULTS This approach revealed 8 hub protein targets essential for parasite and human host-directed malaria drug therapy. In a semantic similarity approach, 26 potential repurposable drugs involved in regulating host immune response to inflammatory-driven disorders and/or inhibiting residual malaria infection that can be appropriated for malaria treatment. Further analysis of host-pathogen network shortest paths enabled the prediction of immune-related biological processes and pathways subverted by P. falciparum to increase its within-host survival. CONCLUSIONS Host-pathogen network analysis reveals potential drug targets and biological processes and pathways subverted by P. falciparum to enhance its within malaria host survival. The results presented have implications for drug discovery and will inform experimental studies.
Collapse
Affiliation(s)
- Francis E Agamah
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Delesa Damena
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michelle Skelton
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anita Ghansah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Gaston K Mazandu
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- African Institute for Mathematical Sciences, 5-7 Melrose Road, Muizenberg, Cape Town, 7945, South Africa.
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
68
|
Chidimatembue A, Svigel SS, Mayor A, Aíde P, Nhama A, Nhamussua L, Nhacolo A, Bassat Q, Salvador C, Enosse S, Saifodine A, De Carvalho E, Candrinho B, Zulliger R, Goldman I, Udhayakumar V, Lucchi NW, Halsey ES, Macete E. Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in Plasmodium falciparum isolates collected in Mozambique, 2018. Malar J 2021; 20:398. [PMID: 34641867 PMCID: PMC8507114 DOI: 10.1186/s12936-021-03930-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. Methods Children aged 6–59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. Results No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72–76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. Conclusion In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.
Collapse
Affiliation(s)
| | - Samaly S Svigel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Pedro Aíde
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abel Nhama
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Lídia Nhamussua
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsénio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Crizólgo Salvador
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sónia Enosse
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Abuchahama Saifodine
- United States President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | | | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Rose Zulliger
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Centers for Disease Control and Prevention, Maputo, Mozambique
| | - Ira Goldman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric S Halsey
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,United States President's Malaria Initiative, Atlanta, GA, USA
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique. .,National Directorate of Public Health, Ministry of Health, Maputo, Mozambique.
| |
Collapse
|
69
|
Ceravolo IP, Aguiar AC, Adebayo JO, Krettli AU. Studies on Activities and Chemical Characterization of Medicinal Plants in Search for New Antimalarials: A Ten Year Review on Ethnopharmacology. Front Pharmacol 2021; 12:734263. [PMID: 34630109 PMCID: PMC8493299 DOI: 10.3389/fphar.2021.734263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Malaria is an endemic disease that affected 229 million people and caused 409 thousand deaths, in 2019. Disease control is based on early diagnosis and specific treatment with antimalarial drugs since no effective vaccines are commercially available to prevent the disease. Drug chemotherapy has a strong historical link to the use of traditional plant infusions and other natural products in various cultures. The research based on such knowledge has yielded two drugs in medicine: the alkaloid quinine from Cinchona species, native in the Amazon highland rain forest in South America, and artemisinin from Artemisia annua, a species from the millenary Chinese medicine. The artemisinin-based combination therapies (ACTs), proven to be highly effective against malaria parasites, and considered as “the last bullet to fight drug-resistant malaria parasites,” have limited use now due to the emergence of multidrug resistance. In addition, the limited number of therapeutic options makes urgent the development of new antimalarial drugs. This review focuses on the antimalarial activities of 90 plant species obtained from a search using Pubmed database with keywords “antimalarials,” “plants” and “natural products.” We selected only papers published in the last 10 years (2011–2020), with a further analysis of those which were tested experimentally in malaria infected mice. Most plant species studied were from the African continent, followed by Asia and South America; their antimalarial activities were evaluated against asexual blood parasites, and only one species was evaluated for transmission blocking activity. Only a few compounds isolated from these plants were active and had their mechanisms of action delineated, thereby limiting the contribution of these medicinal plants as sources of novel antimalarial pharmacophores, which are highly necessary for the development of effective drugs. Nevertheless, the search for bioactive compounds remains as a promising strategy for the development of new antimalarials and the validation of traditional treatments against malaria. One species native in South America, Ampelozyzyphus amazonicus, and is largely used against human malaria in Brazil has a prophylactic effect, interfering with the viability of sporozoites in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Isabela P Ceravolo
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Anna C Aguiar
- Departamento de Biociência, Universidade Federal de São Paulo, Santos, Brazil
| | - Joseph O Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Antoniana U Krettli
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| |
Collapse
|
70
|
Collins JE, Lee JW, Bohmer MJ, Welden JD, Arshadi AK, Du L, Cichewicz RH, Chakrabarti D. Cyclic Tetrapeptide HDAC Inhibitors with Improved Plasmodium falciparum Selectivity and Killing Profile. ACS Infect Dis 2021; 7:2889-2903. [PMID: 34491031 DOI: 10.1021/acsinfecdis.1c00341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic tetrapeptide histone deacetylase inhibitors represent a promising class of antiplasmodial agents that epigenetically disrupt a wide range of cellular processes in Plasmodium falciparum. Unfortunately, certain limitations, including reversible killing effects and host cell toxicity, prevented these inhibitors from further development and clinical use as antimalarials. In this study, we present a series of cyclic tetrapeptide analogues derived primarily from the fungus Wardomyces dimerus that inhibit P. falciparum with low nanomolar potency and high selectivity. This cyclic tetrapeptide scaffold was diversified further via semisynthesis, leading to the identification of several key structural changes that positively impacted the selectivity, potency, and in vitro killing profiles of these compounds. We confirmed their effectiveness as HDAC inhibitors through the inhibition of PfHDAC1 catalytic activity, in silico modeling, and the hyperacetylation of histone H4. Additional analysis revealed the in vitro inhibition of the most active epoxide-containing analogue was plasmodistatic, exhibiting reversible inhibitory effects upon compound withdrawal after 24 or 48 h. In contrast, one of the new diacetyloxy semisynthetic analogues, CTP-NPDG 19, displayed a rapid and irreversible action against the parasite following compound exposure for 24 h.
Collapse
Affiliation(s)
- Jennifer E. Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Monica J. Bohmer
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Joshua D. Welden
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Arash K. Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Lin Du
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
71
|
Chien HD, Pantaleo A, Kesely KR, Noomuna P, Putt KS, Tuan TA, Low PS, Turrini FM. Imatinib augments standard malaria combination therapy without added toxicity. THE JOURNAL OF EXPERIMENTAL MEDICINE 2021; 218:212603. [PMID: 34436509 PMCID: PMC8404470 DOI: 10.1084/jem.20210724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
To egress from its erythrocyte host, the malaria parasite, Plasmodium falciparum, must destabilize the erythrocyte membrane by activating an erythrocyte tyrosine kinase. Because imatinib inhibits erythrocyte tyrosine kinases and because imatinib has a good safety profile, we elected to determine whether coadministration of imatinib with standard of care (SOC) might be both well tolerated and therapeutically efficacious in malaria patients. Patients with uncomplicated P. falciparum malaria from a region in Vietnam where one third of patients experience delayed parasite clearance (DPC; continued parasitemia after 3 d of therapy) were treated for 3 d with either the region’s SOC (40 mg dihydroartemisinin + 320 mg piperaquine/d) or imatinib (400 mg/d) + SOC. Imatinib + SOC–treated participants exhibited no increase in number or severity of adverse events, a significantly accelerated decline in parasite density and pyrexia, and no DPC. Surprisingly, these improvements were most pronounced in patients with the highest parasite density, where serious complications and death are most frequent. Imatinib therefore appears to improve SOC therapy, with no obvious drug-related toxicities.
Collapse
Affiliation(s)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Tran Anh Tuan
- Huong Hoa District Health Center, Quang Tri, Vietnam
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN.,Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | | |
Collapse
|
72
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
73
|
Ali F, Wali H, Jan S, Zia A, Aslam M, Ahmad I, Afridi SG, Shams S, Khan A. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar J 2021; 20:335. [PMID: 34344361 PMCID: PMC8336052 DOI: 10.1186/s12936-021-03865-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. Falciparum malaria is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat. METHODS The P. falciparum essential proteins were retrieved from the recently published studies. These proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analysed for druggability potential via in silico methods to possibly identify novel therapeutic targets. Finally, the PfAp4AH target was prioritized for pharmacophore modelling based virtual screening and molecular docking analyses to identify potent inhibitors from drug-like compounds databases. RESULTS The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not been catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein-protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. The pharmacophore features based virtual screening of Pharmit resource predicted a lead compound i.e. MolPort-045-917-542 as a promising inhibitor of PfAp4AH among prioritized targets. CONCLUSION The prioritized protein targets may worthy to test in malarial drug discovery programme to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.
Collapse
Affiliation(s)
- Fawad Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.,Department of Biochemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Hira Wali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Saadia Jan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asad Zia
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Imtiaz Ahmad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
74
|
Liana D, Rungsihirunrat K. Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery. J Adv Pharm Technol Res 2021; 12:254-260. [PMID: 34345604 PMCID: PMC8300331 DOI: 10.4103/japtr.japtr_238_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC50μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC506.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.
Collapse
Affiliation(s)
- Desy Liana
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Rungsihirunrat
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
75
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
76
|
Coronado L, Zhang XQ, Dorta D, Escala N, Pineda LM, Ng MG, Del Olmo E, Wang CY, Gu YC, Shao CL, Spadafora C. Semisynthesis, Antiplasmodial Activity, and Mechanism of Action Studies of Isocoumarin Derivatives. JOURNAL OF NATURAL PRODUCTS 2021; 84:1434-1441. [PMID: 33979168 DOI: 10.1021/acs.jnatprod.0c01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, eight natural isocoumarins (1-8) were isolated from a marine-derived Exserohilum sp. fungus. To explore their structure-activity relationship and discover potent antimalarial leads, a small library of 22 new derivatives (1a-1n, 2a, 3a-3c, 4a-4c, and 7a) were semisynthesized by varying the substituents of the aromatic ring and the aliphatic side chains. The natural compound (1) and three semisynthetic derivatives (1d, 1n, and 2a), possessing an all-cis stereochemistry, exhibited strong antiplasmodial activity with IC50 values of 1.1, 0.8, 0.4, and 2.6 μM, respectively. Mechanism studies show that 1n inhibits hemozoin polymerization and decreases the mitochondrial membrane potential but also inhibits P. falciparum DNA gyrase. 1n not only combines different mechanisms of action but also exhibits a high therapeutic index (CC50/IC50 = 675), high selectivity, and a notable drug-like profile.
Collapse
Affiliation(s)
- Lorena Coronado
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
| | - Xue-Qing Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
- Hubei Key Laboratory of Natural Product Research and Development (China Three Gorges University), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Doriana Dorta
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
| | - Nerea Escala
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
- Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, s/n, E-37007 Salamanca, Spain
| | - Laura M Pineda
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
| | - Michelle G Ng
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
| | - Esther Del Olmo
- Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, s/n, E-37007 Salamanca, Spain
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado 0816-02852, Panama
| |
Collapse
|
77
|
Duong MC, Pham OKN, Nguyen PT, Nguyen VVC, Nguyen PH. Predictors of treatment failures of plasmodium falciparum malaria in Vietnam: a 4-year single-centre retrospective study. Malar J 2021; 20:205. [PMID: 33926479 PMCID: PMC8082636 DOI: 10.1186/s12936-021-03720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Drug-resistant falciparum malaria is an increasing public health burden. This study examined the magnitude of Plasmodium falciparum infection and the patterns and predictors of treatment failure in Vietnam. Methods Medical records of all 443 patients with malaria infection admitted to the Hospital for Tropical Diseases between January 2015 and December 2018 were used to extract information on demographics, risk factors, symptoms, laboratory tests, treatment, and outcome. Results More than half (59.8%, 265/443, CI 55.1–64.4%) of patients acquired Plasmodium falciparum infection of whom 21.9% (58/265, CI 17.1–27.4%) had severe malaria, while 7.2% (19/265, CI 4.6–10.9%) and 19.2% (51/265, CI 14.7–24.5%) developed early treatment failure (ETF) and late treatment failure (LTF) respectively. Among 58 patients with severe malaria, 14 (24.1%) acquired infection in regions where artemisinin resistance has been documented including Binh Phuoc (11 patients), Dak Nong (2 patients) and Gia Lai (1 patient). Under treatment with intravenous artesunate, the median (IQR) parasite half-life of 11 patients coming from Binh Phuoc was 3 h (2.3 to 8.3 h), two patients coming from Dak Nong was 2.8 and 5.7 h, and a patient coming from Gia Lai was 6.5 h. Most patients (98.5%, 261/265) recovered completely. Four patients with severe malaria died. Severe malaria was statistically associated with receiving treatment at previous hospitals (P < 0.001), hepatomegaly (P < 0.001) and number of inpatient days (P < 0.001). Having severe malaria was a predictor of ETF (AOR 6.96, CI 2.55–19.02, P < 0.001). No predictor of LTF was identified. Conclusions Plasmodium falciparum remains the prevalent malaria parasite. Despite low mortality rate, severe malaria is not rare and is a significant predictor of ETF. To reduce the risk for ETF, studies are needed to examine the effectiveness of combination therapy including parenteral artesunate and a parenteral partner drug for severe malaria. The study alerts the possibility of drug-resistant malaria in Africa and other areas in Vietnam, which are known as non-endemic areas of anti-malarial drug resistance. A more comprehensive study using molecular technique in these regions is required to completely understand the magnitude of drug-resistant malaria and to design appropriate control strategies.
Collapse
Affiliation(s)
- Minh Cuong Duong
- School of Population Health, University of New South Wales, Sydney, Australia
| | | | | | | | - Phu Hoan Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam. .,Medical School, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
78
|
Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol Drugs Drug Resist 2021; 15:43-56. [PMID: 33556786 PMCID: PMC7887327 DOI: 10.1016/j.ijpddr.2020.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022]
Abstract
Artemisinin-based combination therapies (ACT) are currently used as a first-line malaria therapy in endemic countries worldwide. This systematic review aims at presenting the current scenario of drug resistance molecular markers, either selected or involved in treatment failures (TF) during in vivo ACT efficacy studies from sub-Saharan Africa (sSA) and India. Eight electronic databases were comprehensively used to search relevant articles and finally a total of 28 studies were included in the review, 21 from sSA and seven from India. On analysis, Artemether + lumefantrine (AL) and artesunate + sulfadoxine-pyrimethamine (AS + SP) are the main ACT in African and Indian regions with a 28-day efficacy range of 54.3-100% for AL and 63-100% for AS + SP respectively. It was observed that mutations in the Pfcrt (76T), Pfdhfr (51I, 59R, 108N), Pfdhps (437G) and Pfmdr1 (86Y, 184F, 1246Y) genes were involved in TF, which varied with respect to ACTs. Based on studies that have genotyped the Pfk13 gene, the reported TF cases, were mainly linked with mutations in genes associated with resistance to ACT partner drugs; indicating that the protection of the partner drug efficacy is crucial for maintaining the efficacy of ACT. This review reveals that ACT are largely efficacious in India and sSA despite the fact that some clinical efficacy and epidemiological studies have reported some validated mutations (i.e., 476I, 539T and 561H) in circulation in these two regions. Also, the role of PfATPase6 in ART resistance is controversial still, while P. falciparum plasmepsin 2 (Pfpm2) in piperaquine (PPQ) resistance and dihydroartemisinin (DHA) + PPQ failures is well documented in Southeast Asian countries but studied less in sSA. Hence, there is a need for continuous molecular surveillance of Pfk13 mutations for emergence of artemisinin (ART) resistance in these countries.
Collapse
Affiliation(s)
- Aditi Arya
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
79
|
Usman MA, Usman FI, Abubakar MS, Salman AA, Adamu A, Ibrahim MA. Phytol suppresses parasitemia and ameliorates anaemia and oxidative brain damage in mice infected with Plasmodium berghei. Exp Parasitol 2021; 224:108097. [PMID: 33736972 DOI: 10.1016/j.exppara.2021.108097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 01/15/2023]
Abstract
The quest for the development of a novel antimalarial drug informed the decision to subject phytol to in vivo trials following a demonstration of therapeutic potential against chloroquine sensitive strain of Plasmodium falciparum under in vitro condition. On this basis, the in vivo anti-Plasmodium berghei activity of phytol including the ameliorative effects of the compound on P. berghei-associated anaemia and organ damage were investigated. Mice were infected with chloroquine-sensitive strain of P. berghei and were treated with phytol at a dose of 10 and 20 mg/kg body weight (BW) for four days. The levels of parasitemia, packed cell volume and redox sensitive biomarkers of liver, brain and spleen tissues were determined. Our result revealed that phytol significantly (p < 0.05) suppressed the multiplication of P. berghei in a dose-dependent manner. Additionally, the phytol significantly (p < 0.05) ameliorated the P. berghei-induced anaemia and brain damage. Data from the present study demonstrated that phytol has suppressive effect on P. berghei and could ameliorate some P. berghei-induced pathological changes.
Collapse
Affiliation(s)
| | | | | | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
80
|
Kishoyian G, Njagi ENM, Orinda GO, Kimani FT, Thiongo K, Matoke-Muhia D. Efficacy of artemisinin-lumefantrine for treatment of uncomplicated malaria after more than a decade of its use in Kenya. Epidemiol Infect 2021; 149:e27. [PMID: 33397548 PMCID: PMC8057502 DOI: 10.1017/s0950268820003167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The resistance of Plasmodium falciparum to antimalarial drugs remains a major impairment in the treatment and eradication of malaria globally. Following the introduction of artemisinin-based combination therapy (ACT), there have been reports of delayed parasite clearance. In Kenya, artemether-lumefantrine (AL) is the recommended first-line treatment of uncomplicated malaria. This study sought to assess the efficacy of AL after a decade of use as the preferred method of managing malarial infections in Kenya. We assessed clinical and parasitological responses of children under 5 years between May and November 2015 in Chulaimbo sub-County, Kisumu, Kenya. Patients aged between 6 and 60 months with uncomplicated P. falciparum mono-infection, confirmed through microscopy, were enrolled in the study. The patients were admitted at the facility for 3 days, treated with a standard dose of AL, and then put under observation for the next 28 days for the assessment of clinical and parasitological responses. Of the 90 patients enrolled, 14 were lost to follow-up while 76 were followed through to the end of the study period. Seventy-five patients (98.7%) cleared the parasitaemia within a period of 48 h while one patient (1.3%) cleared on day 3. There was 100% adequate clinical and parasitological response. All the patients cleared the parasites on day 3 and there were no re-infections observed during the stated follow-up period. This study, therefore, concludes that AL is highly efficacious in clearing P. falciparum parasites in children aged ≥6 and ≤60 months. The study, however, underscores the need for continued monitoring of the drug to forestall both gradual ineffectiveness and possible resistance to the drug in all target users.
Collapse
Affiliation(s)
- Gabriel Kishoyian
- Department of Medical Laboratory Sciences, Kenya Medical Training College, P.O. Box2268-40100, Kisumu, Kenya
| | - Eliud N. M. Njagi
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O.BOX 43844-00100, Nairobi, Kenya
| | - George O. Orinda
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O.BOX 43844-00100, Nairobi, Kenya
| | - Francis T. Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Kevin Thiongo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
81
|
Mustière R, Vanelle P, Primas N. Plasmodial Kinase Inhibitors Targeting Malaria: Recent Developments. Molecules 2020; 25:E5949. [PMID: 33334080 PMCID: PMC7765515 DOI: 10.3390/molecules25245949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Recent progress in reducing malaria cases and ensuing deaths is threatened by factors like mutations that induce resistance to artemisinin derivatives. Multiple drugs are currently in clinical trials for malaria treatment, including some with novel mechanisms of action. One of these, MMV390048, is a plasmodial kinase inhibitor. This review lists the recently developed molecules which target plasmodial kinases. A systematic review of the literature was performed using CAPLUS and MEDLINE databases from 2005 to 2020. It covers a total of 60 articles and describes about one hundred compounds targeting 22 plasmodial kinases. This work highlights the strong potential of compounds targeting plasmodial kinases for future drug therapies. However, the majority of the Plasmodium kinome remains to be explored.
Collapse
Affiliation(s)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| |
Collapse
|
82
|
de Souza Pereira C, Costa Quadros H, Magalhaes Moreira DR, Castro W, Santos De Deus Da Silva RI, Botelho Pereira Soares M, Fontinha D, Prudêncio M, Schmitz V, Dos Santos HF, Gendrot M, Fonta I, Mosnier J, Pradines B, Navarro M. A Novel Hybrid of Chloroquine and Primaquine Linked by Gold(I): Multitarget and Multiphase Antiplasmodial Agent. ChemMedChem 2020; 16:662-678. [PMID: 33231370 DOI: 10.1002/cmdc.202000653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits β-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent in vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy in vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.
Collapse
Affiliation(s)
- Caroline de Souza Pereira
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Helenita Costa Quadros
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Av. Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brasil
| | | | - William Castro
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Química, Carretera Panamericana, Km 11, Altos de Pipe, San Antonio de los Altos Miranda, 1020-A, Caracas, Venezuela
| | | | | | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa <, Lisboa, Portugal
| | - Vinicius Schmitz
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Hélio F Dos Santos
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| | - Mathieu Gendrot
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Institut de recherche biomédicale des armées, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,Centre National de Référence du Paludisme, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Maribel Navarro
- Departamento de Química, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro Martelos, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
| |
Collapse
|
83
|
Kesely K, Noomuna P, Vieth M, Hipskind P, Haldar K, Pantaleo A, Turrini F, Low PS. Identification of tyrosine kinase inhibitors that halt Plasmodium falciparum parasitemia. PLoS One 2020; 15:e0242372. [PMID: 33180822 PMCID: PMC7660480 DOI: 10.1371/journal.pone.0242372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/31/2020] [Indexed: 01/23/2023] Open
Abstract
Although current malaria therapies inhibit pathways encoded in the parasite’s genome, we have looked for anti-malaria drugs that can target an erythrocyte component because development of drug resistance might be suppressed if the parasite cannot mutate the drug’s target. In search for such erythrocyte targets, we noted that human erythrocytes express tyrosine kinases, whereas the Plasmodium falciparum genome encodes no obvious tyrosine kinases. We therefore screened a library of tyrosine kinase inhibitors from Eli Lilly and Co. in a search for inhibitors with possible antimalarial activity. We report that although most tyrosine kinase inhibitors exerted no effect on parasite survival, a subset of tyrosine kinase inhibitors displayed potent anti-malarial activity. Moreover, all inhibitors found to block tyrosine phosphorylation of band 3 specifically suppressed P. falciparum survival at the parasite egress stage of its intra-erythrocyte life cycle. Conversely, tyrosine kinase inhibitors that failed to block band 3 tyrosine phosphorylation but still terminated the parasitemia were observed to halt parasite proliferation at other stages of the parasite’s life cycle. Taken together these results suggest that certain erythrocyte tyrosine kinases may be important to P. falciparum maturation and that inhibitors that block these kinases may contribute to novel therapies for P. falciparum malaria.
Collapse
Affiliation(s)
- Kristina Kesely
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Michal Vieth
- Eli Lilly and Company, San Diego, CA, United States of America
| | - Philip Hipskind
- School of Medicine, Indiana University, Bloomington, IN, United States of America.,Clinical Pharmacology R2 402 MDEP, Indianapolis, IN, United States of America
| | - Kasturi Haldar
- Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, United States of America
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
84
|
Valissery P, Thapa R, Singh J, Gaur D, Bhattacharya J, Singh AP, Dhar SK. Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Adv 2020; 10:36201-36211. [PMID: 35517081 PMCID: PMC9057047 DOI: 10.1039/d0ra05597b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively. Both nanoformulations exhibit in vitro parasite killing activity against Plasmodium falciparum with the ART-LIPO performing at comparable efficacy to the control drug solubilized in ethanol. These water-soluble formulations showed potent in vivo antimalarial activity as well in the mouse model of malaria at equivalent doses of the parent drug. Additionally, the artemisinin-PCL nanoformulation used in combination with either pyrimethamine or chloroquine increased the survival of the Plasmodium berghei infected mice for more than 34 days and effectively cured the mice of the infection. We highlight the potential for polymer and liposome-based nanocarriers in improving not only the aqueous phase solubility of artemisinin but also concomitantly retaining its therapeutic efficacy in vivo as well.
Collapse
Affiliation(s)
- Praveesh Valissery
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Roshni Thapa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Jyoti Singh
- National Institute of Immunology New Delhi 110067 India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University New Delhi 110067 India
| | | | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
85
|
Hassan IA, Adegbola AJ, Soyinka JO, Onyeji CO, Bolaji OO. Post-Marketing Surveillance of Quality of Artemether Injection Marketed in Southwest Nigeria. Am J Trop Med Hyg 2020; 103:1258-1265. [PMID: 32588802 PMCID: PMC7470523 DOI: 10.4269/ajtmh.20-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 11/07/2022] Open
Abstract
Access to good-quality medicines remains a contentious issue in developing countries. This development is worrisome, particularly in a setting with a high incidence of malaria. Monitoring of antimalarial drugs in the commercial domain becomes necessary; thus, we evaluated the quality of artemether injection marketed in Southwest Nigeria. A cross-sectional survey was conducted to obtain 22 different brands of artemether injections within Southwest Nigeria. The samples were examined for their sources, lot numbers, containers for injection, oil base used for preparation, and dates of expiration. Further analysis involved visual inspection, assessment of extractable volume, identity tests, and an assay of active pharmaceutical ingredient. The pharmaceutical quality of each sample was determined according to the criteria set in the International Pharmacopoeia 2019. None of the products had any particulate matter, but there were certain irregularities in their presentation. Eighteen of the 22 products (81.7%) were packaged in plain instead of amber-colored ampoules, and 77.3% (17/22) did not indicate the oil base used as the vehicle on the label as against the pharmacopoeial standard. Sixteen products (72.7%) passed the extractable volume test, although the remaining 22.3% did not conform to the extractable volume per unit dose. Artemether was present in all the samples, although only 40.9% (9/22) met the recommended percentage content of 90-110% of artemether. The study revealed the presence of a high percentage of substandard artemether injection products marketed in Nigeria. Further surveillance is warranted to confirm the quality of artemether injection circulated in other regions within Nigeria.
Collapse
Affiliation(s)
- Ibrahim A. Hassan
- Department of Pharmacy, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Adebanjo J. Adegbola
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Julius O. Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Cyprian O. Onyeji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Oluseye O. Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
86
|
Zhang K, Zhao Y, Zhang Z, Zhang M, Wu X, Bian H, Zhu P, Chen Z. Nonclinical safety, tolerance and pharmacodynamics evaluation for meplazumab treating chloroquine-resistant Plasmodium falciparum. Acta Pharm Sin B 2020; 10:1680-1693. [PMID: 33088688 PMCID: PMC7564037 DOI: 10.1016/j.apsb.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Meplazumab is an anti-CD147 humanized IgG2 antibody. The purpose of this study was to characterize the nonclinical safety, tolerance and efficacy evaluation of meplazumab treating chloroquine resistant Plasmodium falciparum. Meplazumab was well tolerated in repeat-dose toxicology studies in cynomolgus monkeys. No observed adverse effect level was 12 mg/kg. No difference between genders in the primary toxicokinetic parameters after repeat intravenous injection of meplazumab. No increased levels of drug exposure and drug accumulation were observed in different gender and dose groups. Meplazumab had a low cross-reactivity rate in various tissues and did not cause hemolysis or aggregation of red blood cells. The biodistribution and excretion results indicated that meplazumab was mainly distributed in the plasma, whole blood, and hemocytes, and excreted in the urine. Moreover, meplazumab effectively inhibited the parasites from invading erythrocytes in humanized mice in a time-dependent manner and the efficacy is superior to that of chloroquine. All these studies suggested that meplazumab is safe and well tolerated in cynomolgus monkeys, and effectively inhibits P. falciparum from invading into human red blood cells. These nonclinical data facilitated the initiation of an ongoing clinical trial of meplazumab for antimalarial therapy.
Collapse
Key Words
- ADA, anti-drug antibody
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Antimalarial therapy
- CD147
- Efficacy
- FFPE, formalin-fixed paraffin-embedded
- Fab, variable region of monoclonal antibody
- Fc, crystalline region of monoclonal antibody
- HPLC, high-performance liquid chromatography
- HRP, horseradish peroxidase
- IR, inhibition rate
- Meplazumab
- NOG mice, NOD/Shi-scid/IL-2Rγ null mice
- Nonclinical
- PBS, phosphate buffered saline
- PC50, median parasite clearance time
- Plasmodium falciparum
- Pr, parasitemia
- RAP2, rhoptry-associated protein 2
- RBCs, red blood cells
- RH5, reticulocyte-binding protein homolog 5
- RO, receptor occupancy
- SD rats, Sprague–Dawley rats
- Safety
- TCA, trichloroacetic acid
- Tolerance
- WHO, World Health Organization
- huRBCs, human red blood cells
- mAbs, monoclonal antibodies
Collapse
|
87
|
Hodoameda P, Duah-Quashie NO, Hagan CO, Matrevi S, Abuaku B, Koram K, Quashie NB. Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana. Malar J 2020; 19:255. [PMID: 32669113 PMCID: PMC7362516 DOI: 10.1186/s12936-020-03320-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) partner drugs, currently used in Ghana are lumefantrine, amodiaquine and piperaquine. Plasmodium falciparum isolates with reduced susceptibility to these partner drugs may affect treatment outcome. Mutations in pfmdr1 gene is linked to reduced parasite susceptibility to amodiaquine and lumefantrine. In addition, the potency of the partner drugs in vivo depends on the metabolism by the cytochrome P450 (CYP) enzyme in the host. Mutations in the CYP2C8 and CYP3A4 genes are linked to reduced metabolism of amodiaquine and lumefantrine in vitro, respectively. This study investigated the host and parasite genetic factors affecting the susceptibility of the malaria parasite to ACT partner drugs. Methods Archived samples from 240 patients age ≤ 9 years participating in anti-malarial drug resistance survey in Ghana, and given artemether with lumefantrine (AL) or artesunate with amodiaquine (AA), were selected and analysed. Polymerase chain reaction (PCR) followed by Sanger sequencing was used to determine the polymorphisms in CYP2C8, CYP3A4 and pfmdr1 genes. Results For CYP3A4, all had wild type alleles, suggesting that the hosts are good metabolizers of lumefantrine. For CYP2C8 60% had wild type alleles, 35% heterozygous and 5% homozygous recessive alleles suggesting efficient metabolism of amodiaquine by the hosts. For pfmdr1 gene, at codon 86, 95% were wild type (N86) and 5% mutant (Y86). For codon 184, 36% were wild type (Y184) and 64% mutant (F184) while for codons 1034, 1042 and 1246, 100% (all) were wild type. The high prevalence of N86-F184-D1246 haplotype (NFD) suggest presence of parasites with reduced susceptibility to lumefantrine and not amodiaquine. Delayed clearance was observed in individuals with mutations in the pfmdr1 gene and not cytochrome 450 gene. Both synonymous and non-synonymous mutations were observed in the pfmdr1 at low prevalence. Conclusion The outcome of this study indicates that the parasite's genetic factors rather than the host’s are likely to drive resistance to ACT in Ghana.
Collapse
Affiliation(s)
- Peter Hodoameda
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG54, Legon, Ghana
| | - Nancy Odurowah Duah-Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | | | - Sena Matrevi
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Kwadwo Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Neils Ben Quashie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG54, Legon, Ghana. .,Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana. .,Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, P. O. Box GP4236, Accra, Ghana.
| |
Collapse
|
88
|
Adebayo JO, Tijjani H, Adegunloye AP, Ishola AA, Balogun EA, Malomo SO. Enhancing the antimalarial activity of artesunate. Parasitol Res 2020; 119:2749-2764. [PMID: 32638101 PMCID: PMC7340003 DOI: 10.1007/s00436-020-06786-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/25/2020] [Indexed: 12/05/2022]
Abstract
The global challenge to the treatment of malaria is mainly the occurrence of resistance of malaria parasites to conventionally used antimalarials. Artesunate, a semisynthetic artemisinin compound, and other artemisinin derivatives are currently used in combination with selected active antimalarial drugs in order to prevent or delay the emergence of resistance to artemisinin derivatives. Several methods, such as preparation of hybrid compounds, combination therapy, chemical modification and the use of synthetic materials to enhance solubility and delivery of artesunate, have been employed over the years to improve the antimalarial activity of artesunate. Each of these methods has advantages it bestows on the efficacy of artesunate. This review discussed the various methods employed in enhancing the antimalarial activity of artesunate and delaying the emergence of resistance of parasite to it.
Collapse
Affiliation(s)
- J O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - H Tijjani
- Department of Biochemistry, Bauchi State University, Gadau, Bauchi State, Nigeria
| | - A P Adegunloye
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - A A Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - E A Balogun
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - S O Malomo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
89
|
Niu G, Hao Y, Wang X, Gao JM, Li J. Fungal Metabolite Asperaculane B Inhibits Malaria Infection and Transmission. Molecules 2020; 25:E3018. [PMID: 32630339 PMCID: PMC7412362 DOI: 10.3390/molecules25133018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Mosquito-transmitted Plasmodium parasites cause millions of people worldwide to suffer malaria every year. Drug-resistant Plasmodium parasites and insecticide-resistant mosquitoes make malaria hard to control. Thus, the next generation of antimalarial drugs that inhibit malaria infection and transmission are needed. We screened our Global Fungal Extract Library (GFEL) and obtained a candidate that completely inhibited Plasmodium falciparum transmission to Anopheles gambiae. The candidate fungal strain was determined as Aspergillus aculeatus. The bioactive compound was purified and identified as asperaculane B. The concentration of 50% inhibition on P. falciparum transmission (IC50) is 7.89 µM. Notably, asperaculane B also inhibited the development of asexual P. falciparum with IC50 of 3 µM, and it is nontoxic to human cells. Therefore, asperaculane B is a new dual-functional antimalarial lead that has the potential to treat malaria and block malaria transmission.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; (G.N.); (X.W.)
| | - Yue Hao
- College of Public Health, South China University, Hengyang, Hunan 421001, China;
| | - Xiaohong Wang
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; (G.N.); (X.W.)
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China;
| | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; (G.N.); (X.W.)
| |
Collapse
|
90
|
Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood ( Artemisia absinthium). Antibiotics (Basel) 2020; 9:antibiotics9060353. [PMID: 32585887 PMCID: PMC7345338 DOI: 10.3390/antibiotics9060353] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Plants have been used since ancient times to cure certain infectious diseases, and some of them are now standard treatments for several diseases. Due to the side effects and resistance of pathogenic microorganisms to antibiotics and most drugs on the market, a great deal of attention has been paid to extracts and biologically active compounds isolated from plant species used in herbal medicine. Artemisia absinthium is an important perennial shrubby plant that has been widely used for the treatment of several ailments. Traditionally, A. absinthium has always been of pharmaceutical and botanical importance and used to manage several disorders including hepatocyte enlargement, hepatitis, gastritis, jaundice, wound healing, splenomegaly, dyspepsia, indigestion, flatulence, gastric pain, anemia, and anorexia. It has also been documented to possess antioxidant, antifungal, antimicrobial, anthelmintic, anti-ulcer, anticarcinogenic, hepatoprotective, neuroprotective, antidepressant, analgesic, immunomodulatory, and cytotoxic activity. Long-term use of A. absinthium essential oil may cause toxic and mental disorders in humans with clinical manifestations including convulsions, sleeplessness, and hallucinations. Combination chemotherapies of artemisia extract or its isolated active constituents with the currently available antibabesial or anti-malarial drugs are now documented to relieve malaria and piroplasmosis infections. The current review examines the phytoconstituents, toxic and biological activities of A. absinthium.
Collapse
|
91
|
Hybrid Gold(I) NHC-Artemether Complexes to Target Falciparum Malaria Parasites. Molecules 2020; 25:molecules25122817. [PMID: 32570872 PMCID: PMC7356589 DOI: 10.3390/molecules25122817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
The emergence of Plasmodium falciparum parasites, responsible for malaria disease, resistant to antiplasmodial drugs including the artemisinins, represents a major threat to public health. Therefore, the development of new antimalarial drugs or combinations is urgently required. In this context, several hybrid molecules combining a dihydroartemisinin derivative and gold(I) N-heterocyclic carbene (NHC) complexes have been synthesized based on the different modes of action of the two compounds. The antiplasmodial activity of these molecules was assessed in vitro as well as their cytotoxicity against mammalian cells. All the hybrid molecules tested showed efficacy against P. falciparum, in a nanomolar range for the most active, associated with a low cytotoxicity. However, cross-resistance between artemisinin and these hybrid molecules was evidenced. These results underline a fear about the risk of cross-resistance between artemisinins and new antimalarial drugs based on an endoperoxide part. This study thus raises concerns about the use of such molecules in future therapeutic malaria policies.
Collapse
|
92
|
Soré H, Lopatriello A, Ebstie YA, Tenoh Guedoung AR, Hilou A, Pereira JA, Kijjoa A, Habluetzel A, Taglialatela-Scafati O. Plasmodium stage-selective antimalarials from Lophira lanceolata stem bark. PHYTOCHEMISTRY 2020; 174:112336. [PMID: 32192964 DOI: 10.1016/j.phytochem.2020.112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Targeting the transmissible stages of the Plasmodium parasite that develop in the human and mosquito host is a crucial strategy for malaria control and elimination. Medicinal plants offer a prolific source for the discovery of new antimalarial compounds. The recent identification of the gametocytocidal activity of lophirone E, obtained from the African plant Lophira lanceolata (Ochnaceae), inspired the evaluation of the plant also against early sporogonic stages of the parasite development. The bioassay-guided phytochemical study led to the isolation of two known lanceolins and of a new glycosylated bichalcone, named glucolophirone C. Its stereostructure, including absolute configuration of the bichalcone moiety, was elucidated by means of NMR, HRMS, ECD and computational calculations. Lanceolin B proved to be a potent inhibitor of the development of Plasmodium early sporogonic stages indicating that the plant produces two different stage-specific antimalarial agents acting on transmissible stages in the human and mosquito host.
Collapse
Affiliation(s)
- Harouna Soré
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso; Laboratoire de Biochimie et Chimie Appliquées (LABIOCA), Université Joseph Ki Zerbo de Ouagadougou, 03 BP: 7021, Burkina Faso
| | - Annalisa Lopatriello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Yehenew A Ebstie
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino Macerata, Via Madonna delle Carceri 9, 62032, Camerino, Italy
| | - Alain R Tenoh Guedoung
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino Macerata, Via Madonna delle Carceri 9, 62032, Camerino, Italy
| | - Adama Hilou
- Laboratoire de Biochimie et Chimie Appliquées (LABIOCA), Université Joseph Ki Zerbo de Ouagadougou, 03 BP: 7021, Burkina Faso
| | - José A Pereira
- ICBAS-Instituto de Ciencias Biomedicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Anake Kijjoa
- ICBAS-Instituto de Ciencias Biomedicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Annette Habluetzel
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino Macerata, Via Madonna delle Carceri 9, 62032, Camerino, Italy; Centro Interuniversitario di Ricerca Sulla Malaria / Italian Malaria Network, University of Milan, Milan, Italy.
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Centro Interuniversitario di Ricerca Sulla Malaria / Italian Malaria Network, University of Milan, Milan, Italy.
| |
Collapse
|
93
|
Ezenyi IC, Verma V, Singh S, Okhale SE, Adzu B. Ethnopharmacology-aided antiplasmodial evaluation of six selected plants used for malaria treatment in Nigeria. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112694. [PMID: 32092499 DOI: 10.1016/j.jep.2020.112694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sub - Saharan Africa has a high malaria burden and Nigeria accounts for majority of malaria cases worldwide. The aim of this study was to evaluate selected plants extracts used against malaria in Nigeria for antiplasmodial activity. MATERIALS AND METHODS An ethnomedicinal based - approach by literature survey was used to identify plants used in the study. The parts of the plant used were collected and extracted with 70% v/v ethanol; a portion of each extract was used to prepare successive solvent and residual fractions. Chloroquine-sensitive (3D7) P. falciparum strain and human embryonic kidney cells (HEK293) were used for antiplasmodial and cytotoxicity screening respectively. Hemolysis assay was also carried out on red blood cells (RBCs). Test for in vivo efficacy of an active extract was conducted in a mouse model of established P. berghei ANKA-infection. RESULTS A total of six plants; Andropogon schirensis, Celtis durandii, Chasmanthera dependens, Daniellia ogea, Icacina trichantha and Triumfetta cordifolia were selected and screened. Triumfetta cordifolia leaf extract was observed to display moderate in vitro antiplasmodial activity (IC50 = 48.09 μg/ml) and was non-toxic to HEK293 cells and erythrocytes. At a dose of 400 mg/kg, T. cordifolia significantly (p<0.001) suppressed parasitemia, significantly (p<0.001) inhibited RBC depletion and prolonged survival in infected mice. CONCLUSIONS T. cordifolia ethanol extract possesses antiplasmodial efficacy and this is the first report of its kind on the plant. It is a potential candidate for further studies to identify its mechanism of action.
Collapse
Affiliation(s)
- I C Ezenyi
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja, Nigeria.
| | - V Verma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, Delhi, 110067, India
| | - S Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, Delhi, 110067, India.
| | - S E Okhale
- Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja, Nigeria
| | - B Adzu
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja, Nigeria
| |
Collapse
|
94
|
Pepe DA, Toumpa D, André-Barrès C, Menendez C, Mouray E, Baltas M, Grellier P, Papaioannou D, Athanassopoulos CM. Synthesis of Novel G Factor or Chloroquine-Artemisinin Hybrids and Conjugates with Potent Antiplasmodial Activity. ACS Med Chem Lett 2020; 11:921-927. [PMID: 32435406 DOI: 10.1021/acsmedchemlett.9b00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022] Open
Abstract
A series of novel hybrids of artemisinin (ART) with either a phytormone endoperoxide G factor analogue (GMeP) or chloroquine (CQ) and conjugates of the same compounds with the polyamines (PAs), spermidine (Spd), and homospermidine (Hsd) were synthesized and their antiplasmodial activity was evaluated using the CQ-resistant P. falciparum FcB1/Colombia strain. The ART-GMeP hybrid 5 and compounds 9 and 10 which are conjugates of Spd and Hsd with two molecules of ART and one molecule of GMeP, were the most potent with IC50 values of 2.6, 8.4, and 10.6 nM, respectively. The same compounds also presented the highest selectivity indexes against the primary human fibroblast cell line AB943 ranging from 16 372 for the hybrid 5 to 983 for the conjugate 10 of Hsd.
Collapse
Affiliation(s)
- Dionissia A. Pepe
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Dimitra Toumpa
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Christiane André-Barrès
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Christophe Menendez
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Elisabeth Mouray
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Michel Baltas
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Philippe Grellier
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Dionissios Papaioannou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | | |
Collapse
|
95
|
Mwaiswelo R, Ngasala B. Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J 2020; 19:162. [PMID: 32316974 PMCID: PMC7175519 DOI: 10.1186/s12936-020-03235-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum resistance against artemisinin has not emerged in Africa; however, there are reports of the presence of polymerase chain reaction-determined residual submicroscopic parasitaemia detected on day 3 after artemisinin-based combination therapy (ACT). These residual submicroscopic parasites are thought to represent tolerant/resistant parasites against artemisinin, the fast-acting component of the combination. This review focused on residual submicroscopic parasitaemia, what it represents, and its significance on the emergence and spread of artemisinin resistance in Africa. Presence of residual submicroscopic parasitemia on day 3 after treatment initiation leaves question on whether successful treatment is attained with ACT. Thus there is a need to determine the potential public health implication of the PCR-determined residual submicroscopic parasitaemia observed on day 3 after ACT. Robust techniques, such as in vitro cultivation, should be used to evaluate if the residual submicroscopic parasites detected on day 3 after ACT are viable asexual parasites, or gametocytes, or the DNA of the dead parasites waiting to be cleared from the circulation. Such techniques would also evaluate the transmissibility of these residual parasites.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Bill Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
96
|
IBOI ENAHOROA, GUMEL ABBAB, TAYLOR JESSEE. MATHEMATICAL MODELING OF THE IMPACT OF PERIODIC RELEASE OF STERILE MALE MOSQUITOES AND SEASONALITY ON THE POPULATION ABUNDANCE OF MALARIA MOSQUITOES. J BIOL SYST 2020. [DOI: 10.1142/s0218339020400033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study presents a new mathematical model for assessing the impact of sterile insect technology (SIT) and seasonal variation in local temperature on the population abundance of malaria mosquitoes in an endemic setting. Simulations of the model, using temperature data from Kipsamoite area of Kenya, show that a peak abundance of the mosquito population is attained in the Kipsamoite area when the mean monthly temperature reaches [Formula: see text]. Furthermore, in the absence of seasonal variation in local temperature, our results show that releasing more sterile male mosquitoes (e.g., 100,000) over a one year period with relatively short duration between releases (e.g., weekly, bi-weekly or even monthly) is more effective than releasing smaller numbers of the sterile male mosquitoes (e.g., 10,000) over the same implementation period and frequency of release. It is also shown that density-dependent larval mortality plays an important role in determining the threshold number of sterile male mosquitoes that need to be released in order to achieve effective control (or elimination) of the mosquito population in the community. In particular, low(high) density-dependent mortality requires high(low) numbers of sterile male mosquitoes to be released to achieve such control. In the presence of seasonal variation in local temperature, effective control of the mosquito population using SIT is only feasible if a large number of the sterile male mosquitoes (e.g., 100,000) is periodically released within a very short time interval (at most weekly). In other words, seasonal variation in temperature necessitates more frequent releases (of a large number) of sterile male mosquitoes to ensure the effectiveness of the SIT intervention in curtailing the targeted mosquito population.
Collapse
Affiliation(s)
- ENAHORO A. IBOI
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, USA
| | - ABBA B. GUMEL
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| | - JESSE E. TAYLOR
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine & School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
97
|
Kilonzi M, Minzi O, Mutagonda R, Baraka V, Sasi P, Aklillu E, Kamuhabwa A. Usefulness of day 7 lumefantrine plasma concentration as a predictor of malaria treatment outcome in under-fives children treated with artemether-lumefantrine in Tanzania. Malar J 2020; 19:66. [PMID: 32046718 PMCID: PMC7014606 DOI: 10.1186/s12936-020-3150-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Day 7 plasma lumefantrine concentration is suggested as a predictor for malaria treatment outcomes and a cut-off of ≥ 200 ng/ml is associated with day 28 cure rate in the general population. However, day 7 lumefantrine plasma concentration can be affected by age, the extent of fever, baseline parasitaemia, and bodyweight. Therefore, this study assessed the usefulness of day 7 lumefantrine plasma concentration as a predictor of malaria treatment outcome in under-fives children treated with generic or innovator drug-containing artemether-lumefantrine (ALu) in Tanzania. Methods This study was nested in an equivalence prospective study that aimed at determining the effectiveness of a generic ALu (Artefan®) in comparison with the innovator’s product (Coartem®). Children with uncomplicated malaria aged 6–59 months were recruited and randomized to receive either generic or innovator’s product. Children were treated with ALu as per World Health Organization recommendations. The clinical and parasitological outcomes were assessed after 28 days of follow up. PCR was performed to distinguish recrudescence and re-infections among children with recurrent malaria. Analysis of day 7 lumefantrine plasma concentration was carried out using a high-performance liquid chromatographic method with UV detection. Results The PCR corrected cure rates were 98.7% for children treated with generic and 98.6% for those treated with the innovator product (p = 1.00). The geometric mean (± SD) of day 7 plasma lumefantrine concentration was 159.3 (± 2.4) ng/ml for the generic and 164 (± 2.5) ng/ml for the innovator groups, p = 0.87. Geometric mean (± SD) day 7 lumefantrine plasma concentration between cured and recurrent malaria was not statistically different in both treatment arms [158.5 (± 2.4) vs 100.0 (± 1.5) ng/ml, (p = 0.28) for generic arm and 158.5 (± 2.3) vs 251.2 (± 4.2) ng/ml, (p = 0.24) for innovator arm]. Nutritional status was found to be a determinant of recurrent malaria (adjusted hazardous ratio (95% confidence interval) = 3(1.1–8.2), p = 0.029. Conclusion Using the recommended cut-off point of ≥ 200 ng/ml, day 7 plasma lumefantrine concentration failed to predict malaria treatment outcome in children treated with ALu in Tanzania. Further studies are recommended to establish the day 7 plasma lumefantrine concentration cut-off point to predict malaria treatment outcome in children.
Collapse
Affiliation(s)
- Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania.
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Ritah Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Vito Baraka
- Department of Research, National Institute of Medical Research, Tanga Centre, P O Box 5004, Tanga, Tanzania
| | - Philip Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, P. O. BOX 6515, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, C1:68, SE-141 86, Stockholm, Sweden
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| |
Collapse
|
98
|
Discovery of 6′-chloro-N-methyl-5’-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur J Med Chem 2020; 188:112012. [DOI: 10.1016/j.ejmech.2019.112012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 11/20/2022]
|
99
|
Camara A, Haddad M, Reybier K, Traoré MS, Baldé MA, Royo J, Baldé AO, Batigne P, Haidara M, Baldé ES, Coste A, Baldé AM, Aubouy A. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J 2019; 18:431. [PMID: 31852507 PMCID: PMC6921526 DOI: 10.1186/s12936-019-3071-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful in treating cases of severe malaria. METHODS In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7-8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns. RESULTS In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 μg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dose-dependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids. CONCLUSION The traditional use of Terminalia albida in the treatment of malaria was validated through the combination of in vitro and in vivo studies.
Collapse
Affiliation(s)
- Aissata Camara
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France.
- Institute for Research and Development of Medicinal and Food Plants of Guinea (IRDPMAG), Dubréka, Guinea.
| | - Mohamed Haddad
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Karine Reybier
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Mohamed Sahar Traoré
- Institute for Research and Development of Medicinal and Food Plants of Guinea (IRDPMAG), Dubréka, Guinea
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry, Guinea
| | - Mamadou Aliou Baldé
- Institute for Research and Development of Medicinal and Food Plants of Guinea (IRDPMAG), Dubréka, Guinea
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry, Guinea
| | - Jade Royo
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Alpha Omar Baldé
- Institute for Research and Development of Medicinal and Food Plants of Guinea (IRDPMAG), Dubréka, Guinea
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry, Guinea
| | - Philippe Batigne
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Mahamane Haidara
- Department of Pharmacy, University of Sciences, Technics and Technologies (USTTB) of Bamako, Bamako, Mali
| | - Elhadj Saidou Baldé
- Institute for Research and Development of Medicinal and Food Plants of Guinea (IRDPMAG), Dubréka, Guinea
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry, Guinea
| | - Agnès Coste
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| | - Aliou Mamadou Baldé
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, Conakry, Guinea
| | - Agnès Aubouy
- UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
100
|
Depoix D, Marques SR, Ferguson DJP, Chaouch S, Duguet T, Sinden RE, Grellier P, Kohl L. Vital role for
Plasmodium berghei
Kinesin8B in axoneme assembly during male gamete formation and mosquito transmission. Cell Microbiol 2019; 22:e13121. [DOI: 10.1111/cmi.13121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Delphine Depoix
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245 CNRS Muséum National d'Histoire Naturelle Paris Cedex 05 France
| | | | - David JP Ferguson
- Nuffield Department of Clinical Laboratory Science University of Oxford Oxford UK
| | - Soraya Chaouch
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245 CNRS Muséum National d'Histoire Naturelle Paris Cedex 05 France
| | - Thomas Duguet
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245 CNRS Muséum National d'Histoire Naturelle Paris Cedex 05 France
- Institute of Parasitology, Macdonald Campus McGill University 21, 111 Lakeshore road Sainte‐Anne‐de‐Bellevue QC Canada
| | - Robert E Sinden
- Department of Life Sciences Imperial College of London London UK
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245 CNRS Muséum National d'Histoire Naturelle Paris Cedex 05 France
| | - Linda Kohl
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245 CNRS Muséum National d'Histoire Naturelle Paris Cedex 05 France
| |
Collapse
|