51
|
Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 2020; 57:3307-3333. [DOI: 10.1007/s12035-020-01944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
|
52
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
53
|
Elekofehinti OO, Lawal AO, Ejelonu OC, Molehin OR, Famusiwa CD. Involvement of fat mass and obesity gene (FTO) in the anti-obesity action of Annona muricata Annonaceae: in silico and in vivo studies. J Diabetes Metab Disord 2020; 19:197-204. [PMID: 32420297 PMCID: PMC7223953 DOI: 10.1007/s40200-020-00491-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/05/2020] [Indexed: 01/15/2023]
Abstract
Background Annona muricata (Annonaceae) known as soursop is a common tropical plant species known for its numerous medicinal properties including obesity. The underlying mechanism of anti-obesity effect of A. muricata was investigated. The fat mass and obesity associated protein (FTO) is a validated potential target for anti-obesity drugs. Methods The interaction of compounds previously characterized from A. muricata was investigated against FTO using Autodock Vina. Also, modulation of FTO and STAT-3 mRNA expression by A. muricata was investigated in high fat diet induced obese rats (HFDR) using RT-PCR. Results A significant up-regulation of FTO gene was observed in HFDR when compared to control rats, while administration of A. muricata (200 mg/kg) significantly (p < 0.05) down-regulated FTO gene expression when compared to HFDR group. The effect of obesity on STAT-3 gene expression was also reversed by A. muricata (200 mg/kg). In silico study revealed annonaine and annonioside (−9.2 kcal/mol) exhibited the highest binding affinity with FTO, followed by anonaine and isolaureline (−8.6 kcal/mol). Arg-96 is a critical amino acid enhancing anonaine, isolaureline-FTO binding. Conclusion This study suggests the possible anti-obesity mechanism of A. muricata is via down-regulation of FTO with concomitant up-regulation of STAT-3 genes. This study confirmed the use of this plant in the management of obesity and the probable compounds responsible for its antiobesity effect are annonaine and annonioside.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- 1Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, P.M.B 704, Akure, Ondo State Nigeria
| | - Akeem Olalekan Lawal
- 1Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, P.M.B 704, Akure, Ondo State Nigeria
| | | | - Olorunfemi Raphael Molehin
- 3Department of Biochemistry, Faculty of Science, Ekiti State University, P.M.B. 5363, Ado-Ekiti, 360001 Nigeria
| | - Courage Dele Famusiwa
- 1Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, P.M.B 704, Akure, Ondo State Nigeria
| |
Collapse
|
54
|
Xu H, Wu B, Wang J, Cao H, Yang J, Hao K, Chen S, Ye S, Shen Z. Label-free detection of cancer related gene based on target recycling and palindrome-mediated strand displacement amplification. Talanta 2020; 215:120897. [PMID: 32312442 DOI: 10.1016/j.talanta.2020.120897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
STAT3 plays an important role in regulating gene expression and is closely related with cancer. Thus, the sensitive and specific detection of the STAT3 biomarker is of great importance for disease diagnosis and therapeutics. In this study, by combining the target recycling amplification (TRA) with strand displacement amplification (SDA), we have developed a label-free and highly sensitive method for the dual-amplified detection of STAT3. The assay system consists of polymerization primer and label-free hairpin probe (HP) containing palindromic fragment and nicking site. In the presence of STAT3, the stem of the HP is opened, followed by the primer binding to initiate TRA and SDA with the help of Klenow Fragment (KF) and nickase. After multiple replication, nicking, and strand displacement, STAT3 was released and initiated the next round of reactions, generating a large number of terminal palindrome-contained fragments. Subsequently, the intermolecular hybridization between palindromic fragments occurred and the bidirectional extension by polymerase takes place, forming the dsDNAs. The double-stranded DNA products can be quantified by measuring the fluorescence intensity of SYBR Green I. The proposed strategy shows the excellent specificity and high sensitivity with a detection limit as low as 50 pM. In addition, this designed protocol can be successfully applied to detect the STAT3 in human serum, indicating great potential for the practical application in early diagnosis and prognosis.
Collapse
Affiliation(s)
- Huo Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Cancer Metastasis Alert and Prevention Center, Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, And Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jue Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Cancer Metastasis Alert and Prevention Center, Biopharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, And Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Hongwen Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaixuan Hao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sheng Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, And Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
55
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2020; 15:367-385. [PMID: 31015582 DOI: 10.1038/s41581-019-0145-4] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive adiposity raises blood pressure and accounts for 65-75% of primary hypertension, which is a major driver of cardiovascular and kidney diseases. In obesity, abnormal kidney function and associated increases in tubular sodium reabsorption initiate hypertension, which is often mild before the development of target organ injury. Factors that contribute to increased sodium reabsorption in obesity include kidney compression by visceral, perirenal and renal sinus fat; increased renal sympathetic nerve activity (RSNA); increased levels of anti-natriuretic hormones, such as angiotensin II and aldosterone; and adipokines, particularly leptin. The renal and neurohormonal pathways of obesity and hypertension are intertwined. For example, leptin increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway, and kidney compression and RSNA contribute to renin-angiotensin-aldosterone system activation. Glucocorticoids and/or oxidative stress may also contribute to mineralocorticoid receptor activation in obesity. Prolonged obesity and progressive renal injury often lead to the development of treatment-resistant hypertension. Patient management therefore often requires multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes and inflammation. If more effective strategies for the prevention and control of obesity are not developed, cardiorenal, metabolic and other obesity-associated diseases could overwhelm health-care systems in the future.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
56
|
Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020; 12:nu12020472. [PMID: 32069871 PMCID: PMC7071158 DOI: 10.3390/nu12020472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023] Open
Abstract
Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin’s satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| |
Collapse
|
57
|
Modifiable Lifestyle and Medical Risk Factors Associated With Myeloproliferative Neoplasms. Hemasphere 2020; 4:e327. [PMID: 32072143 PMCID: PMC7000482 DOI: 10.1097/hs9.0000000000000327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the identification of acquired genetic mutations associated with Myeloproliferative Neoplasms (MPNs) there is a paucity of information relating to modifiable risk factors that may lead to these mutations. The MOSAICC Study was an exploratory case-control study of polycythemia vera (PV), essential thrombocythemia (ET), and Myelofibrosis (MF). MPN patients and population controls (identified by General Practitioners) and non-blood relative/friend controls were recruited from 2 large UK centers. Participants completed a telephone-based questionnaire analyzed by unconditional logistic regression analysis adjusting for potential confounders. Risk factors for MPNs identified included increasing childhood household density [odds ratio (OR) 2.55, 95% confidence interval (CI) 1.16–5.62], low childhood socioeconomic status (OR 2.30, 95%CI 1.02–5.18) and high pack years smoking (OR 2.19, 95%CI 1.03–4.66) and current smoking restricted to JAK2 positive PV cases (OR 3.73, 95%CI 1.06–13.15). Obesity was linked with ET (OR 2.59, 95%CI 1.02–6.58) confirming results in previous cohort studies. Receipt of multiple CT scans was associated with a strongly increased risk of MPN although with wide confidence intervals (OR 5.38, 95%CI 1.67–17.3). Alcohol intake was inversely associated with risk of PV (OR 0.41, 95%CI 0.19–0.92) and ET (OR 0.48, 95%CI 0.24–0.98). The associations with childhood household density, high pack years smoking and alcohol were also seen in multivariate analysis. This is the largest case control study in MPNs to date and confirms the previously reported associations with obesity and cigarette smoking from cohort studies in addition to novel associations. In particular, the role of smoking and JAK2 mutation cases merits further evaluation.
Collapse
|
58
|
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal Models of Diabetes-Associated Renal Injury. J Diabetes Res 2020; 2020:9416419. [PMID: 32566684 PMCID: PMC7256713 DOI: 10.1155/2020/9416419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the main factor leading to end-stage renal disease (ESRD) and subsequent morbidity and mortality. Importantly, the prevalence of DN is continuously increasing in developed countries. Many rodent models of type 1 and type 2 diabetes have been established to elucidate the pathogenesis of diabetes and examine novel therapies against DN. These models are developed by chemical, surgical, genetic, drug, and diet/nutrition interventions or combination of two or more methods. The main characteristics of DN including a decrease in renal function, albuminuria and mesangiolysis, mesangial expansion, and nodular glomerulosclerosis should be exhibited by an animal model of DN. However, a rodent model possessing all of the abovementioned features of human DN has not yet been developed. Furthermore, mice of different genetic backgrounds and strains show different levels of susceptibility to DN with respect to albuminuria and development of glomerular and tubulointerstitial lesions. Therefore, the type of diabetes, development of nephropathy, duration of the study, cost of maintaining and breeding, and animals' mortality rate are important factors that might be affected by the type of DN model. In this review, we discuss the pros and cons of different rodent models of diabetes that are being used to study DN.
Collapse
Affiliation(s)
- Zahra Samadi Noshahr
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Abstract
The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms 'type 1 obesity' and 'type 2 obesity': type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
60
|
de Git KC, den Outer JA, Wolterink‐Donselaar IG, Luijendijk MCM, Schéle E, Dickson SL, Adan RAH. Rats that are predisposed to excessive obesity show reduced (leptin-induced) thermoregulation even in the preobese state. Physiol Rep 2019; 7:e14102. [PMID: 31342663 PMCID: PMC6656864 DOI: 10.14814/phy2.14102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Both feeding behavior and thermogenesis are regulated by leptin. The sensitivity to leptin's anorexigenic effects on chow diet was previously shown to predict the development of diet-induced obesity. In this study, we determined whether the sensitivity to leptin's anorexigenic effects correlates with leptin's thermogenic response, and if this response is exerted at the level of the dorsomedial hypothalamus (DMH), a brain area that plays an important role in thermoregulation. Based on the feeding response to injected leptin on a chow diet, rats were divided into leptin-sensitive (LS) and leptin-resistant (LR) groups. The effects of leptin on core body, brown adipose tissue (BAT) and tail temperature were compared after intravenous versus intra-DMH leptin administration. After intravenous leptin injection, LS rats increased their BAT thermogenesis and reduced heat loss via the tail, resulting in a modest increase in core body temperature. The induction of these thermoregulatory mechanisms with intra-DMH leptin was smaller, but in the same direction as with intravenous leptin administration. In contrast, LR rats did not show any thermogenic response to either intravenous or intra-DMH leptin. These differences in the thermogenic response to leptin were associated with a 1°C lower BAT temperature and reduced UCP1 expression in LR rats under ad libitum feeding. The preexisting sensitivity to the anorexigenic effects of leptin, a predictor for obesity, correlates with the sensitivity to the thermoregulatory effects of leptin, which appears to be exerted, at least in part, at the level of the DMH.
Collapse
Affiliation(s)
- Kathy C.G. de Git
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Johannes A. den Outer
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Inge G. Wolterink‐Donselaar
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Erik Schéle
- Institute for Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Suzanne L. Dickson
- Institute for Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Roger A. H. Adan
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
61
|
Andreoli MF, Donato J, Cakir I, Perello M. Leptin resensitisation: a reversion of leptin-resistant states. J Endocrinol 2019; 241:R81-R96. [PMID: 30959481 DOI: 10.1530/joe-18-0606] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Leptin resistance refers to states in which leptin fails to promote its anticipated effects, frequently coexisting with hyperleptinaemia. Leptin resistance is closely associated with obesity and also observed in physiological situations such as pregnancy and in seasonal animals. Leptin resensitisation refers to the reversion of leptin-resistant states and is associated with improvement in endocrine and metabolic disturbances commonly observed in obesity and a sustained decrease of plasma leptin levels, possibly below a critical threshold level. In obesity, leptin resensitisation can be achieved with treatments that reduce body adiposity and leptinaemia, or with some pharmacological compounds, while physiological leptin resistance reverts spontaneously. The restoration of leptin sensitivity could be a useful strategy to treat obesity, maintain weight loss and/or reduce the recidivism rate for weight regain after dieting. This review provides an update and discussion about reversion of leptin-resistant states and modulation of the molecular mechanisms involved in each situation.
Collapse
Affiliation(s)
- María F Andreoli
- Laboratory of Experimental Neurodevelopment, Institute of Development and Paediatric Research (IDIP), La Plata Children's Hospital and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
- Argentine Research Council (CONICET), La Plata, Buenos Aires, Argentina
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Isin Cakir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology (IMBICE, Argentine Research Council (CONICET), National University of La Plata and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)), La Plata, Buenos Aires, Argentina
| |
Collapse
|
62
|
Hristov M, Landzhov B, Nikolov R, Yakimova K. Central, but not systemic, thermoregulatory effects of leptin are impaired in rats with obesity: interactions with GABAB agonist and antagonist. Amino Acids 2019; 51:1055-1063. [DOI: 10.1007/s00726-019-02746-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 05/18/2019] [Indexed: 11/30/2022]
|
63
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
64
|
Pan W, Allison MB, Sabatini P, Rupp A, Adams J, Patterson C, Jones JC, Olson DP, Myers MG. Transcriptional and physiological roles for STAT proteins in leptin action. Mol Metab 2019; 22:121-131. [PMID: 30718218 PMCID: PMC6437596 DOI: 10.1016/j.molmet.2019.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Leptin acts via its receptor LepRb on specialized neurons in the brain to modulate food intake, energy expenditure, and body weight. LepRb activates signal transducers and activators of transcription (STATs, including STAT1, STAT3, and STAT5) to control gene expression. METHODS Because STAT3 is crucial for physiologic leptin action, we used TRAP-seq to examine gene expression in LepRb neurons of mice ablated for Stat3 in LepRb neurons (Stat3LepRbKO mice), revealing the STAT3-dependent transcriptional targets of leptin. To understand roles for STAT proteins in leptin action, we also ablated STAT1 or STAT5 from LepRb neurons and expressed a constitutively-active STAT3 (CASTAT3) in LepRb neurons. RESULTS While we also found increased Stat1 expression and STAT1-mediated transcription of leptin-regulated genes in Stat3LepRbKO mice, ablating Stat1 in LepRb neurons failed to alter energy balance (even on the Stat3LepRbKO background); ablating Stat5 in LepRb neurons also failed to alter energy balance. Importantly, expression of a constitutively-active STAT3 (CASTAT3) in LepRb neurons decreased food intake and body weight and improved metabolic parameters in leptin-deficient (ob/ob) mice, as well as in wild-type animals. CONCLUSIONS Thus, STAT3 represents the unique STAT protein required for leptin action and STAT3 suffices to mediate important components of leptin action in the absence of other LepRb signals.
Collapse
Affiliation(s)
- Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Margaret B Allison
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Sabatini
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alan Rupp
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Adams
- Division of Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Christa Patterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Justin C Jones
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
|
66
|
Leptin regulates neuropeptides associated with food intake and GnRH secretion. ANNALES D'ENDOCRINOLOGIE 2019; 80:38-46. [DOI: 10.1016/j.ando.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
|
67
|
Joseph B, Shimojo G, Li Z, Thompson-Bonilla MDR, Shah R, Kanashiro A, Salgado HC, Ulloa L. Glucose Activates Vagal Control of Hyperglycemia and Inflammation in Fasted Mice. Sci Rep 2019; 9:1012. [PMID: 30700738 PMCID: PMC6354016 DOI: 10.1038/s41598-018-36298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a leading cause of death in hospitalized patients. Many experimental treatments may have failed in clinical trials for sepsis, in part, because they focused on immune responses of healthy animals that did not mimic the metabolic settings of septic patients. Epidemiological studies show an association between metabolic and immune alterations and over 1/3 of septic patients are diabetic, but the mechanism linking these systems is unknown. Here, we report that metabolic fasting increased systemic inflammation and worsened survival in experimental sepsis. Feeding and administration of glucose in fasted mice activated the vagal tone without affecting blood pressure. Vagal stimulation attenuated hyperglycemia and serum TNF levels in sham but only hyperglycemia in splenectomized mice. Vagal stimulation induced the production of dopamine from the adrenal glands. Experimental diabetes increased hyperglycemia and systemic inflammation in experimental sepsis. Fenoldopam, a specific dopaminergic type-1 agonist, attenuated hyperglycemia and systemic inflammation in diabetic endotoxemic mice. These results indicate that glucose activates vagal control of hyperglycemia and inflammation in fasted septic mice via dopamine.
Collapse
Affiliation(s)
- Biju Joseph
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Guilherme Shimojo
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Zhifeng Li
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Maria Del Rocio Thompson-Bonilla
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
- Hospital "October 1st", ISSSTE", 1669 National Polytechnic Institute Ave, Mexico City, Mexico
| | - Roshan Shah
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alexandre Kanashiro
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Physiology, Medical School - University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Helio C Salgado
- Department of Physiology, Medical School - University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luis Ulloa
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
- Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
68
|
Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, Mounien L. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics 2018; 13:1127-1140. [PMID: 30395773 DOI: 10.1080/15592294.2018.1543507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity. Pomc gene expression is tightly controlled by different mechanisms. Interestingly, recent studies pointed to a key role for micro ribonucleic acid (miRNAs) in the regulation of gene expression. However, the role of miRNAs in the leptin sensitivity in hypothalamic melanocortin system has never been assessed. We developed a transgenic mouse model (PDKO) with a partial deletion of the miRNA processing enzyme DICER specifically in POMC neurons. PDKO mice exhibited a normal body weight but a decrease of food intake. Interestingly, PDKO mice had decreased metabolic rate by reduction of VO2 consumption and CO2 production which could explain that PDKO mice have normal weight while eating less. Interestingly, we observed an increase of leptin sensitivity in the POMC neurons of PDKO mice which could explain the decrease of food intake in this model. We also observed an increase in the expression of genes involved in the function of brown adipose tissue that is in polysynaptic contact with the POMC neurons. In summary, these results support the hypothesis that Dicer-derived miRNAs may be involved in the effect of leptin on POMC neurons activity.
Collapse
Affiliation(s)
- Adel Derghal
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| | - Mehdi Djelloul
- b Department of Cell and Molecular Biology , Karolinska Institute , Stockholm , Sweden
| | | | | | - Franck Tourniaire
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Jean-François Landrier
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Lourdes Mounien
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| |
Collapse
|
69
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
70
|
Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch Toxicol 2018; 93:547-558. [PMID: 30377736 DOI: 10.1007/s00204-018-2338-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Triclosan (TCS), as a broad spectrum antibacterial agent, is commonly utilized in personal care and household products. Maternal urinary TCS level has been associated with changes in birth weight of infants. We in the present study investigated whether exposure of mice to 8 mg/kg TCS from gestational day (GD) 6 to GD14 alters prenatal and postnatal growth and development, and metabolic phenotypes in male and female offspring (TCS-offspring). Compared with control offspring, body weight in postnatal day (PND) 1 male or female TCS-offspring was reduced, but body weight gain was faster within postnatal 5 days. PND30 and PND60 TCS-offspring showed overweight with increases in visceral fat and adipocyte size. PND60 TCS-offspring displayed delayed glucose clearance and insulin resistance. PND30 TCS-offspring showed an increase in food intake without the changes in the oxygen consumption and respiratory exchange ratio (RER). The expression levels of proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH) and single-minded 1 (SIM1) in hypothalamus arcuate nucleus (ARC) and paraventricular nucleus (PVN), respectively, were significantly reduced in PND30 TCS-offspring compared to controls. The hypermethylation of CpG sites at the POMC promoter was observed in PND30 TCS-offspring, while the concentration of serum leptin was elevated and the level of STAT3 phosphorylation in ARC had no significant difference from control. This study demonstrates that TCS exposure during early/mid-gestation through the hypermethylation of the POMC promoter reduces the expression of anorexigenic neuropeptides to cause the postnatal hyperphagic obesity, leading to metabolic syndrome in adulthood.
Collapse
|
71
|
Hua H, Yang J, Lin H, Xi Y, Dai M, Xu G, Wang F, Liu L, Zhao T, Huang J, Gonzalez FJ, Liu A. PPARα-independent action against metabolic syndrome development by fibrates is mediated by inhibition of STAT3 signalling. J Pharm Pharmacol 2018; 70:1630-1642. [PMID: 30251457 DOI: 10.1111/jphp.13014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Metabolic syndrome (MS) is the concurrence of at least three of five medical conditions: obesity, high blood pressure, insulin resistance, high serum triglyceride (TG) and low serum high-density lipoprotein levels. While fibrates are used to treat disorders other than the lowering serum TG, the mechanism by which fibrates decrease MS has not been established. METHODS In this study, wild-type and Ppara-null mice fed a medium-fat diet (MFD) were administered gemfibrozil and fenofibrate for 3 months respectively, to explore the effect and action mechanism. KEY FINDINGS In Ppara-null mice, MFD treatment increased body weight, adipose tissue, serum TG and impaired glucose tolerance. These phenotypes were attenuated in two groups treated with gemfibrozil and fenofibrate. The STAT3 pathway was activated in adipose and hepatic tissues in positive control, and inhibited in groups treated with gemfibrozil and fenofibrate. The above phenotypes and inflammation were not observed in any wild-type group. In 3T3-L1 adipogenic stem cells treated with high glucose, STAT3 knockdown greatly decreased the number of lipid droplets. CONCLUSIONS Low dose of clinical fibrates was effective against MS development independent of PPARα, and this action was mediated by STAT3 signalling inhibition in adipose tissue and, to a lesser extent, in hepatic tissues.
Collapse
Affiliation(s)
- Huiying Hua
- Medical School of Ningbo University, Ningbo, China
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Hante Lin
- Medical School of Ningbo University, Ningbo, China
| | - Yang Xi
- Medical School of Ningbo University, Ningbo, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo, China
| | - Gangming Xu
- Medical School of Ningbo University, Ningbo, China
| | - Fuyan Wang
- Medical School of Ningbo University, Ningbo, China
| | - Lihong Liu
- Medical School of Ningbo University, Ningbo, China
| | - Tingqi Zhao
- Medical School of Ningbo University, Ningbo, China
| | - Jing Huang
- Medical School of Ningbo University, Ningbo, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
72
|
Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3628121. [PMID: 29789785 PMCID: PMC5896338 DOI: 10.1155/2018/3628121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Nonnutritive sweetener use is a common practice worldwide. Although considered safe for human consumption, accumulating evidence suggests these compounds may affect metabolic homeostasis; however, there is no consensus on the role of frequent sweetener intake in appetite and weight loss. We sought to determine whether frequent intake of commercial sweeteners induces changes in the JAK2/STAT3 signaling pathway in the brain of mice, as it is involved in the regulation of appetite and body composition. We supplemented adult BALB/c mice with sucrose, steviol glycosides (SG), or sucralose, daily, for 6 weeks. After supplementation, we evaluated body composition and expression of total and phosphorylated JAK2, STAT3, and Akt, as well as SOCS3 and ObRb, in brain tissue. Our results show that frequent intake of commercial SG decreases energy intake, adiposity, and weight gain in male animals, while increasing the expression of pJAK2 and pSTAT3 in the brain, whereas sucralose increases weight gain and pJAK2 expression in females. Our results suggest that chronic intake of commercial sweeteners elicits changes in signaling pathways that have been related to the control of appetite and energy balance in vivo, which may have relevant consequences for the nutritional state and long term health of the organism.
Collapse
|
73
|
Is leptin resistance the cause or the consequence of diet-induced obesity? Int J Obes (Lond) 2018; 42:1445-1457. [PMID: 29789721 DOI: 10.1038/s41366-018-0111-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is strongly associated with leptin resistance. It is unclear whether leptin resistance results from the (over)consumption of energy-dense diets or if reduced leptin sensitivity is also a pre-existing factor in rodent models of diet-induced obesity (DIO). We here tested whether leptin sensitivity on a chow diet predicts subsequent weight gain and leptin sensitivity on a free choice high-fat high-sucrose (fcHFHS) diet. METHODS Based upon individual leptin sensitivity on chow diet, rats were grouped in leptin sensitive (LS, n = 22) and leptin resistant (LR, n = 19) rats (P = 0.000), and the development of DIO on a fcHFHS diet was compared. The time-course of leptin sensitivity was measured over weeks in individual rats. RESULTS Both on a chow and a fcHFHS diet, high variability in leptin sensitivity was observed between rats, but not over time per individual rat. Exposure to the fcHFHS diet revealed that LR rats were more prone to develop DIO (P = 0.013), which was independent of caloric intake (p ≥ 0.320) and the development of diet-induced leptin resistance (P = 0.769). Reduced leptin sensitivity in LR compared with LS rats before fcHFHS diet exposure, was associated with reduced leptin-induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the dorsomedial and ventromedial hypothalamus (P ≤ 0.049), but not the arcuate nucleus (P = 0.558). CONCLUSIONS A pre-existing reduction in leptin sensitivity determines the susceptibility to develop excessive DIO after fcHFHS diet exposure. Rats with a pre-existing reduction in leptin sensitivity develop excessive DIO without eating more calories or altering their leptin sensitivity.
Collapse
|
74
|
Wu S, Wang Y, Ning Y, Guo H, Wang X, Zhang L, Khan R, Cheng G, Wang H, Zan L. Genetic Variants in STAT3 Promoter Regions and Their Application in Molecular Breeding for Body Size Traits in Qinchuan Cattle. Int J Mol Sci 2018; 19:ijms19041035. [PMID: 29596388 PMCID: PMC5979584 DOI: 10.3390/ijms19041035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in leptin-mediated regulation of energy metabolism. This study investigated genetic variation in STAT3 promoter regions and verified their contribution to bovine body size traits. We first estimated the degree of conservation in STAT3, followed by measurements of its mRNA expression during fetal and adult stages of Qinchuan cattle. We then sequenced the STAT3 promoter region to determine genetic variants and evaluate their association with body size traits. From fetus to adult, STAT3 expression increased significantly in muscle, fat, heart, liver, and spleen tissues (p < 0.01), but decreased in the intestine, lung, and rumen (p < 0.01). We identified and named five single nucleotide polymorphisms (SNPs): SNP1-304A>C, SNP2-285G>A, SNP3-209A>C, SNP4-203A>G, and SNP5-188T>C. These five mutations fell significantly outside the Hardy-Weinberg equilibrium (HWE) (Chi-squared test, p < 0.05) and significantly associated with body size traits (p < 0.05). Individuals with haplotype H3H3 (CC-GG-CC-GG-CC) were larger in body size than other haplotypes. Therefore, variations in the STAT3 gene promoter regions, most notably haplotype H3H3, may benefit marker-assisted breeding of Qinchuan cattle.
Collapse
Affiliation(s)
- Sen Wu
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Yue Ning
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Hongfang Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Le Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
- National Beef Cattle Improvement Center of Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
75
|
Brain STAT5 signaling modulates learning and memory formation. Brain Struct Funct 2018; 223:2229-2241. [PMID: 29460051 DOI: 10.1007/s00429-018-1627-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.
Collapse
|
76
|
Chu SC, Chen PN, Chen JR, Yu CH, Hsieh YS, Kuo DY. Role of hypothalamic leptin-LepRb signaling in NPY-CART-mediated appetite suppression in amphetamine-treated rats. Horm Behav 2018; 98:173-182. [PMID: 29307696 DOI: 10.1016/j.yhbeh.2017.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
Abstract
Leptin is an adipose tissue hormone which plays an important role in regulating energy homeostasis. Amphetamine (AMPH) is a drug of appetite suppressant, which exerts its effect by decreasing the expression of hypothalamic neuropeptide Y (NPY) and increasing that of cocaine- and amphetamine-regulated transcript (CART). This study investigated whether leptin, the leptin receptor (LepRb) and the signal transducer and activator of transcription-3 (STAT3) were involved in NPY/CART-mediated appetite suppression in AMPH-treated rats. Rats were given AMPH daily for four days, and changes in the levels of blood leptin and hypothalamic NPY, CART, LepRb, Janus kinases 2 (JAK2), and STAT3 were assessed and compared. During the AMPH treatment, blood leptin levels and hypothalamic NPY expression decreased, with the largest reduction observed on Day 2. By contrast, the expression of hypothalamic CART, LepRb, JAK2, and STAT3 increased, with the maximum response on Day 2. Furthermore, the binding activity of pSTAT3/DNA increased and was expressed in similar pattern to that of CART, LepRb, and JAK2. An intracerebroventricular infusion of NPY antisense 60min prior to AMPH treatment increased the levels of leptin, as well as the expression in LepRb, JAK2, and CART, whereas an infusion of STAT3 antisense decreased these levels and the expression of these parameters. The results suggest that blood leptin and hypothalamic LepRb-JAK2-STAT3 signaling involved in NPY-CART-regulated appetite suppression in AMPH-treated rats. The findings may aid understanding the role of leptin-LepRb during the treatment of anorectic drugs.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City 406, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 40201, Taiwan
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.
| |
Collapse
|
77
|
Trujillo-Güiza ML, Señarís R. Leptin resistance during pregnancy is also exerted at the periphery†. Biol Reprod 2018; 98:654-663. [DOI: 10.1093/biolre/ioy024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/28/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Rosa Señarís
- CIMUS, Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
78
|
Liu J, Yang X, Yu S, Zheng R. The Leptin Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:123-144. [PMID: 30390288 DOI: 10.1007/978-981-13-1286-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin plays a critical role in the regulation of energy balance and metabolic homeostasis. Impairment of leptin signaling is closely involved in the pathogenesis of obesity and metabolic diseases, including diabetes, cardiovascular disease, etc. Leptin initiates its intracellular signaling in the leptin-receptor-expressing neurons in the central nervous system to exert physiological function, thereby leading to a suppression of appetite, a reduction of food intake, a promotion of mitochondrial oxidation, an enhancement of thermogenesis, and a decrease in body weight. In this review, the studies on leptin neural and cellular pathways are summarized with an emphasis on the progress made during the last 10 years, for better understanding the molecular mechanism of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China.,Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China.,Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China
| | - Xiaoning Yang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Siwang Yu
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China. .,Neuroscience Research Institute, Peking University, Beijing, China. .,Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China. .,Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China.
| |
Collapse
|
79
|
Pinos H, Carrillo B, Díaz F, Chowen JA, Collado P. Differential vulnerability to adverse nutritional conditions in male and female rats: Modulatory role of estradiol during development. Front Neuroendocrinol 2018; 48:13-22. [PMID: 28754628 DOI: 10.1016/j.yfrne.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Abstract
Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized.
Collapse
Affiliation(s)
- Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain.
| |
Collapse
|
80
|
Kaneko K, Xu P, Cordonier EL, Chen SS, Ng A, Xu Y, Morozov A, Fukuda M. Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions. Cell Rep 2017; 16:3003-3015. [PMID: 27626668 DOI: 10.1016/j.celrep.2016.08.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022] Open
Abstract
The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth L Cordonier
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Siyu S Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy Ng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
81
|
Swarnalatha NB, Roy N, Gouda MM, Moger R, Abraham A. High-fat, simple-carbohydrate diet intake induces hypothalamic-pituitary-thyroid axis dysregulation in C57BL/6J male mice. Appl Physiol Nutr Metab 2017; 43:371-380. [PMID: 29099999 DOI: 10.1139/apnm-2017-0410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Given the association between subclinical hypothyroidism and metabolic syndrome, we wanted to explore if high-fat, simple-carbohydrate (HFSC) diet affects hypothalamus-pituitary-thyroid axis. One-month-old male C57BL/6J mice were fed with control (C) and HFSC (T) feed (n = 18 each), respectively, for 5 months. There was a significant increase in triiodothyronine in the T group (13.5%) compared with the age-matched C group by the fifth month. Thyroid-stimulating hormone was significantly higher (1 month: 1.9-fold; 3 months: 2.66-fold; 5 months: 3.5-fold) from the first to fifth months in the T group compared with age-matched C group. Thyrotropin-releasing hormone (TRH) gene expression showed significant decrease (1 month: 83.2%; 5 months: 40.7%) in the T group compared with the age-matched C group. TRHR1 showed significant decrease in the T group compared with the age-matched C group throughout the study (1 month: 82.8%; 3 months: 45.7%; 5 months: 75.2%). However, TRHR2 showed dynamic change during the study. Initially there was significant (1 month: 0.104-fold) downregulation, followed by significant upregulation (3 months: 3.6-fold) and downregulation (0.73-fold) by the fifth month in the T group compared with the age-matched C group. There was marked depletion of functional follicular cells and colloid substance in the thyroid glands of the T group by the fifth month compared with the C group. Leptin receptors ObRa (1 month: 48.25%; 5 months: 88%) and ObRb (1 month: 46.9%; 5 months: 63.3%) were significantly downregulated in the T group compared with the age-matched C group in the first and fifth months of feeding the respective diets. The expression of p-STAT3, a transcription factor known to have a role in energy balance, intermediate metabolism, and leptin signalling was seen to decrease significantly (6.25-fold) in the hypothalamus of the T group compared with the age-matched C group. In conclusion, HFSC feed disrupts the hypothalamus-pituitary-thyroid axis in male C57BL/6J mice.
Collapse
Affiliation(s)
- Nagaraj Banavara Swarnalatha
- a Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Postgraduate Studies and Research in Biotechnology, St Aloysius College (Autonomous), Mangaluru-575003, India.,b PG Department of Biochemistry, St Aloysius College (Autonomous), Mangaluru-575003, India
| | - Neena Roy
- a Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Postgraduate Studies and Research in Biotechnology, St Aloysius College (Autonomous), Mangaluru-575003, India
| | | | - Rajeish Moger
- d Department Fisheries Microbiology, College of Fisheries, Mangaluru-575002, India
| | - Asha Abraham
- a Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Postgraduate Studies and Research in Biotechnology, St Aloysius College (Autonomous), Mangaluru-575003, India
| |
Collapse
|
82
|
McGregor G, Harvey J. Food for thought: Leptin regulation of hippocampal function and its role in Alzheimer's disease. Neuropharmacology 2017; 136:298-306. [PMID: 28987937 DOI: 10.1016/j.neuropharm.2017.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023]
Abstract
Accumulating evidence indicates that diet and body weight are important factors associated with Alzheimer's disease (AD), with a significant increase in AD risk linked to mid-life obesity, and weight loss frequently occurring in the early stages of AD. This has fuelled interest in the hormone leptin, as it is an important hypothalamic regulator of food intake and body weight, but leptin also markedly influences the functioning of the hippocampus; a key brain region that degenerates in AD. Increasing evidence indicates that leptin has cognitive enhancing properties as it facilitates the cellular events that underlie hippocampal-dependent learning and memory. However, significant reductions in leptin's capacity to regulate hippocampal synaptic function occurs with age and dysfunctions in the leptin system are associated with an increased risk of AD. Moreover, leptin is a potential novel target in AD as leptin treatment has beneficial effects in various models of AD. Here we summarise recent advances in leptin neurobiology with particular focus on regulation of hippocampal synaptic function by leptin and the implications of this for neurodegenerative disorders like AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
83
|
Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice. Int J Obes (Lond) 2017; 42:252-259. [PMID: 28925407 DOI: 10.1038/ijo.2017.208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/20/2017] [Accepted: 08/13/2017] [Indexed: 12/19/2022]
Abstract
AIMS The objective of this study is to characterize the relationship between forkhead box C2 protein (Foxc2) and leptin under adipose inflammatory response. METHODS Lipopolysaccharide (LPS)-induced inflammatory model was conducted. Data from wild-type and ob/ob mice were used to compare the alternative role of leptin on Foxc2-mediated inflammation and browning. Transcriptional regulation and protein-protein interaction were analyzed by bioinformatics and proved by chromatin immunoprecipitation and co-immunoprecipitation experiment. RESULTS Foxc2 and leptin correlated with inflammation and browning of white adipose tissue (WAT) in LPS-treated mice. Moreover, Foxc2-mediated inhibition of inflammation involved downstream activation of leptin signal and promoted WAT browning. We then determined CREB, the potential transcriptional factor of leptin, was required for Foxc2-mediated inflammation in the regulation of WAT browning. Foxc2 alleviated adipocyte inflammation by reducing leptin-mediated Janus-activated kinase 2/signal transducer and activator of transcription 3 (STAT3) pathway. Importantly, STAT3 physically interacted with PRDM16 and formed a complex to promote WAT browning. Exogenous Foxc2 overexpression also ameliorated inflammation and promoted adipose browning in high fat diet (HFD)-induced obese mice. CONCLUSIONS Our results indicated that Foxc2 inhibited inflammation and promoted browning of WAT through positive regulation of leptin signal and the STAT3-PRDM16 complex. These findings identify a new potential means to prevent and treat obese caused metabolic syndrome of mammals.
Collapse
|
84
|
Abstract
Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension.
Collapse
|
85
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Islas-Trejo A, Porto-Neto LR, Lehnert SA, Medrano JF, Moore SS, Fortes MRS. Global differential gene expression in the pituitary gland and the ovaries of pre- and postpubertal Brahman heifers. J Anim Sci 2017; 95:599-615. [PMID: 28380590 DOI: 10.2527/jas.2016.0921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand genes, pathways, and networks related to puberty, we characterized the transcriptome of two tissues: the pituitary gland and ovaries. Samples were harvested from pre- and postpubertal Brahman heifers (same age group). Brahman heifers () are older at puberty compared with , a productivity issue. With RNA sequencing, we identified differentially expressed (DEx) genes and important transcription factors (TF) and predicted coexpression networks. The number of DEx genes detected in the pituitary gland was 284 ( < 0.05), and was the most DEx gene (fold change = 4.12, = 0.01). The gene promotes bone mineralization through transforming growth factor-β (TGFβ) signaling. Further studies of the link between bone mineralization and puberty could target . In ovaries, 3,871 genes were DEx ( < 0.05). Four highly DEx genes were noteworthy for their function: (a γ-aminobutyric acid [GABA] transporter), (), and () and its receptor . These genes had higher ovarian expression in postpubertal heifers. The GABA and its receptors and transporters were expressed in the ovaries of many mammals, suggesting a role for this pathway beyond the brain. The pathway has been known to influence the timing of puberty in rats, via modulation of GnRH. The effects of at the hypothalamus, pituitary gland, and ovaries have been documented. and its receptors are known factors in the release of GnRH, similar to and GABA, although their roles in ovarian tissue are less clear. Pathways previously related to puberty such as TGFβ signaling ( = 6.71 × 10), Wnt signaling ( = 4.1 × 10), and peroxisome proliferator-activated receptor (PPAR) signaling ( = 4.84 × 10) were enriched in our data set. Seven genes were identified as key TF in both tissues: , , , , , , and a novel gene. An ovarian subnetwork created with TF and significant ovarian DEx genes revealed five zinc fingers as regulators: , , , , and . Recent work of hypothalamic gene expression also pointed to zinc fingers as TF for bovine puberty. Although some zinc fingers may be ubiquitously expressed, the identification of DEx genes in common across tissues points to key regulators of puberty. The hypothalamus and pituitary gland had eight DEx genes in common. The hypothalamus and ovaries had 89 DEx genes in common. The pituitary gland and ovaries had 48 DEx genes in common. Our study confirmed the complexity of puberty and suggested further investigation on genes that code zinc fingers.
Collapse
|
86
|
Ramos-Lobo AM, Donato J. The role of leptin in health and disease. Temperature (Austin) 2017; 4:258-291. [PMID: 28944270 DOI: 10.1080/23328940.2017.1327003] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Leptin is a master regulator of energy balance and body adiposity. Additionally, leptin exerts important control on glucose homeostasis, thermogenesis, autonomic nervous system and neuroendocrine axes. In metabolic diseases, such as obesity and diabetes mellitus, leptin signaling may be compromised, indicating the important role of this hormone in the etiology and pathophysiological manifestations of these conditions. In the present manuscript, we reviewed important concepts of leptin signaling, as well as about the effects of leptin on several biologic functions. We also discussed the possible therapeutic use of leptin administration and how our current obesogenic environment contributes to the development of leptin resistance. Our objective was to provide a comprehensive and state-of-the-art review about the importance of leptin to maintain the homeostasis and during pathological conditions.
Collapse
Affiliation(s)
- Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
87
|
Xie G, Swiderska-Syn M, Jewell ML, Machado MV, Michelotti GA, Premont RT, Diehl AM. Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biol 2017; 18:20. [PMID: 28427343 PMCID: PMC5399438 DOI: 10.1186/s12860-017-0135-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. RESULTS We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. CONCLUSIONS Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.
Collapse
Affiliation(s)
- Guanhua Xie
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
| | - Marzena Swiderska-Syn
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
- Current address: Medical University of South Carolina, Charleston, SC 29425 USA
| | - Mark L. Jewell
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
| | - Mariana Verdelho Machado
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
- Current address: Santa Maria Hospital, University of Lisbon, Lisbon, Portugal
| | - Gregory A. Michelotti
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
- Current address: Metabolon Inc, Research Triangle Park, NC 27709 USA
| | - Richard T. Premont
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University, 905 S. LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710 USA
| |
Collapse
|
88
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
89
|
Abstract
The aim of this study was to investigate whether neonatal maternal separation (MS) - chronic stress experience in early life - affects the anorectic efficacy of leptin in the offspring at adolescence. Sprague-Dawley pups were separated from the dam daily for 3 h during postnatal day 1-14 or left undisturbed as non-handled controls (NH). NH and MS male pups received an intraperitoneal leptin (100 μg/kg) or saline on postnatal day (PND) 28, and then food intake and body weight gain were recorded. The hypothalamic levels of leptin-signalling-related genes, phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein-tyrosine phosphatase 1B (PTP1B) were examined at 40 min after a single injection of leptin on PND 39 by immunohistochemistry and Western blot analysis. Leptin-induced suppressions in food intake and weight gain was observed in NH pups, but not in MS. Leptin increased pSTAT3 in the hypothalamic arcuate nucleus of NH pups, but not of MS. Interestingly, basal levels of the hypothalamic PTP1B and pSTAT3 were increased in MS pups compared with NH controls. The results suggest that neonatal MS experience may blunt the anorectic efficacy of leptin later in life, possibly in relation with increased expressions of PTP1B and/or pSTAT3 in the hypothalamus.
Collapse
|
90
|
Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 2017; 58:R107-R128. [PMID: 28057770 DOI: 10.1530/jme-16-0212] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
91
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
92
|
Abstract
Hypertension and associated cardiovascular diseases represent the most common health complication of obesity and the leading cause of morbidity and mortality in overweight and obese patients. Emerging evidence suggests a critical role for the central nervous system particularly the brain action of the adipocyte-derived hormone leptin in linking obesity and hypertension. The preserved ability of leptin to cause cardiovascular sympathetic nerve activation despite the resistance to the metabolic actions of the hormone appears essential in this pathological process. This review describes the evidence supporting the neurogenic bases for obesity-associated hypertension with a particular focus on the neuronal and molecular signaling pathways underlying leptin's effects on sympathetic nerve activity and blood pressure.
Collapse
Affiliation(s)
- Balyssa B Bell
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
93
|
Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation. Int J Mol Sci 2016; 17:1853. [PMID: 27834824 PMCID: PMC5133853 DOI: 10.3390/ijms17111853] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
Diabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded. We described the potential involvement of diabetes-induced platelet-endothelial interactions in perpetuating vascular inflammation and oxidative injury leading to fibrotic changes in the lung. Changes in nitric oxide synthase (NOS) activation and decreased NO bioavailability in the diabetic lung increase platelet activation and vascular injury and may account for platelet hyperreactivity reported in diabetic patients. Additionally, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has been reported to mediate pancreatic islet damage, and is implicated in the onset of diabetes, inflammation and vascular injury. Many growth factors and diabetes-induced agonists act via the JAK/STAT pathway. Other studies reported the contribution of the JAK/STAT pathway to the regulation of the pulmonary fibrotic process but the role of this pathway in the development of diabetic lung fibrosis has not been considered. These observations may open new therapeutic perspectives for modulating multiple pathways to mitigate diabetes onset or its pulmonary consequences.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Madhavi J Rane
- Medicine/Nephrology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Xingyu Lin
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Andrew M Roberts
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Physiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, USA.
| | - Lu Cai
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Evelyne Gozal
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Physiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
94
|
Cui J, Ding Y, Chen S, Zhu X, Wu Y, Zhang M, Zhao Y, Li TRR, Sun LV, Zhao S, Zhuang Y, Jia W, Xue L, Han M, Xu T, Wu X. Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. J Clin Invest 2016; 126:3192-206. [PMID: 27500489 DOI: 10.1172/jci85676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 01/16/2023] Open
Abstract
A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.
Collapse
|
95
|
Blankenship K, Gilley A, Piekarski A, Orlowski S, Greene E, Bottje W, Anthony N, Dridi S. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency. Neuropeptides 2016; 58:31-40. [PMID: 26707635 DOI: 10.1016/j.npep.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed between the two lines. Of particular interest, we provided novel insights into central AMPK-mTOR-ACC transcriptional differences between low and high FE quail which may open new research avenues on their roles in the regulation of energy balance and FE in poultry and livestock species.
Collapse
Affiliation(s)
- Kaley Blankenship
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alex Gilley
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sara Orlowski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Walter Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Nicholas Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
96
|
Kim JS, Rizwan MZ, Clegg DJ, Anderson GM. Leptin Signaling Is Not Required for Anorexigenic Estradiol Effects in Female Mice. Endocrinology 2016; 157:1991-2001. [PMID: 26937712 DOI: 10.1210/en.2015-1594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Estradiol and leptin are critical hormones in the regulation of body weight. The aim of this study was to determine whether this cross talk between leptin receptor (LepRb) and estrogen receptor-α (ERα) signaling is critical for estradiol's anorexigenic effects. Leprb-Cre mice were crossed with Cre-dependent Tau-green fluorescent protein (GFP) reporter, Stat3-flox or Erα-flox mice to generate female mice with GFP expression, signal transducer and activator of transcription 3 (STAT3) knockout (KO), or ERα KO, specifically in LepRb-expressing cells. The proportion of Leprb-GFP cells colocalizing ERα was high (∼80%) in the preoptic area but low (∼10%) in the mediobasal hypothalamus, suggesting that intracellular cross talk between these receptors is minimal for metabolic regulation. To test whether estradiol enhanced arcuate leptin sensitivity, ovarectomized mice received varying levels of estradiol replacement. Increasing estrogenic states did not increase the degree of leptin-induced STAT3 phosphorylation. LepRb-specific STAT3 KO mice and controls were ovarectomized and given either chronic estradiol or vehicle treatment to test whether STAT3 is required for estrogen-induced body weight suppression. Both groups of estradiol-treated mice showed an equivalent reduction in body weight and fat content compared with vehicle controls. Finally, mice lacking ERα specifically in LepRb-expressing neurons also showed no increase in body weight or impairments in metabolic function compared with controls, indicating that estradiol acts independently of leptin-responsive cells to regulate body weight. However, fecundity was impaired in in Leprb-ERα KO females. Contrary to the current dogma, we report that estradiol has minimal direct actions on LepRb cells in the mediodasal hypothalamus and that its anorexigenic effects can occur entirely independently of LepRb-STAT3 signaling in female mice.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology and Department of Anatomy (J.S.K, M.Z.R, G.M.A.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand; and Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research (D.J.C.), Los Angeles, California 90048
| | - Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy (J.S.K, M.Z.R, G.M.A.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand; and Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research (D.J.C.), Los Angeles, California 90048
| | - Deborah J Clegg
- Centre for Neuroendocrinology and Department of Anatomy (J.S.K, M.Z.R, G.M.A.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand; and Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research (D.J.C.), Los Angeles, California 90048
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy (J.S.K, M.Z.R, G.M.A.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand; and Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research (D.J.C.), Los Angeles, California 90048
| |
Collapse
|
97
|
Steelman AJ, Zhou Y, Koito H, Kim S, Payne HR, Lu QR, Li J. Activation of oligodendroglial Stat3 is required for efficient remyelination. Neurobiol Dis 2016; 91:336-46. [PMID: 27060559 DOI: 10.1016/j.nbd.2016.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 01/26/2023] Open
Abstract
Multiple sclerosis is the most prevalent demyelinating disease of the central nervous system (CNS) and is histologically characterized by perivascular demyelination as well as neurodegeneration. While the degree of axonal damage is correlated with clinical disability, it is believed that remyelination can protect axons from degeneration and slow disease progression. Therefore, understanding the intricacies associated with myelination and remyelination may lead to therapeutics that can enhance the remyelination process and slow axon degeneration and loss of function. Ciliary neurotrophic factor (CNTF) family cytokines such as leukemia inhibitory factor (LIF) and interleukin 11 (IL-11) are known to promote oligodendrocyte maturation and remyelination in experimental models of demyelination. Because CNTF family member binding to the gp130 receptor results in activation of the JAK2/Stat3 pathway we investigated the necessity of oligodendroglial Stat3 in transducing the signal required for myelination and remyelination. We found that Stat3 activation in the CNS coincides with myelination during development. Stimulation of oligodendrocyte precursor cells (OPCs) with CNTF or LIF promoted OPC survival and final differentiation, which was completely abolished by pharmacologic blockade of Stat3 activation with JAK2 inhibitor. Similarly, genetic ablation of Stat3 in oligodendrocyte lineage cells prevented CNTF-induced OPC differentiation in culture. In vivo, while oligodendroglial Stat3 signaling appears to be dispensable for developmental CNS myelination, it is required for oligodendrocyte regeneration and efficient remyelination after toxin-induced focal demyelination in the adult brain. Our data suggest a critical function for oligodendroglial Stat3 signaling in myelin repair.
Collapse
Affiliation(s)
- Andrew J Steelman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - Yun Zhou
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States
| | - Hisami Koito
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States
| | - SunJa Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - H Ross Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, United States
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, United States
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
98
|
Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and diabetes. FEBS J 2016; 283:3002-15. [PMID: 26972840 DOI: 10.1111/febs.13709] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/14/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Esteban N Gurzov
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - William J Stanley
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Evan G Pappas
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Helen E Thomas
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
99
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
100
|
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 2016; 48:e216. [PMID: 26964832 PMCID: PMC4892882 DOI: 10.1038/emm.2016.4] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.
Collapse
|