51
|
Salzer CL, Kumar JP. Position dependent responses to discontinuities in the retinal determination network. Dev Biol 2009; 326:121-30. [PMID: 19061881 PMCID: PMC3968074 DOI: 10.1016/j.ydbio.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 10/05/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
The development of any cell and/or tissue is dependent upon interconnections between several signaling pathways and myriad transcription factors. It is becoming more apparent that these inputs are best studied, not as individual components, but rather as elements of a gene regulatory network. Over the last decade several networks governing the specification of single cells, individual organs and entire stages of development have been described. The current incarnations of these networks are the products of the continual addition of newly discovered genetic, molecular and biochemical interactions. However, as currently envisaged, network diagrams may not sufficiently describe the spatial and temporal dynamics that underlie developmental processes. We have conducted a developmental analysis of a sub circuit of the Drosophila retinal determination network. This sub circuit is comprised of three genes, two (sine oculis and dachshund) of which code for DNA binding proteins and one (eyes absent) that encodes a transcriptional co-activator. We demonstrate here that the nature of the regulatory relationships that exist between these three genes changes as retinal development progresses. We also demonstrate that the response of the tissue to the loss of any of these three RD genes is dependent upon the position of the mutant cells within the eye field. Depending upon its location, mutant tissue will either overproliferate itself or will signal to surrounding cells instructing them to propagate and compensate for the eventual loss through apoptosis of the mutant clone. Taken together these results suggest that the complexities of development are best appreciated when spatial and temporal information is incorporated when describing gene regulatory networks.
Collapse
Affiliation(s)
- Claire L Salzer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
52
|
Houl JH, Ng F, Taylor P, Hardin PE. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos. BMC Neurosci 2008; 9:119. [PMID: 19094242 PMCID: PMC2628352 DOI: 10.1186/1471-2202-9-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. RESULTS A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. CONCLUSION These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.
Collapse
Affiliation(s)
- Jerry H Houl
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
| | - Fanny Ng
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Pete Taylor
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | - Paul E Hardin
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
53
|
Kurusu M, Maruyama Y, Adachi Y, Okabe M, Suzuki E, Furukubo-Tokunaga K. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Dev Biol 2008; 326:224-36. [PMID: 19084514 DOI: 10.1016/j.ydbio.2008.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/25/2008] [Accepted: 11/17/2008] [Indexed: 12/25/2022]
Abstract
The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.
Collapse
Affiliation(s)
- Mitsuhiko Kurusu
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
54
|
Von Ohlen T, Syu LJ, Mellerick DM. Conserved properties of the Drosophila homeodomain protein, Ind. Mech Dev 2007; 124:925-34. [PMID: 17900877 DOI: 10.1016/j.mod.2007.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 07/11/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
Ind-Gsh-type homeodomain proteins are critical to patterning of intermediate domains in the developing CNS; yet, the molecular basis for the activities of these homeodomain proteins is not well understood. Here we identify domains within the Ind protein that are responsible for transcriptional repression, as well as those required for its interaction with the co-repressor, Groucho. To do this, we utilized a combination of chimeric transient transfection assays, co-immunoprecipitation and in vivo expression assays. We show that Ind's candidate Eh1 domain is essential to the embryonic repression activity of this protein, and that Groucho interacts with Ind via this domain. However, when activity is assayed in transient transfection assays using Ind-Gal4 DNA binding domain chimeras to determine domain activity, the repression activity of the Eh1 domain is minimal. This result is similar to previous results on the transcription factors, Vnd and Engrailed. Furthermore, the Eh1 domain is necessary, but not sufficient, for binding to Groucho; the C terminus of Ind, including the homeodomain also affects the interaction with this co-repressor in co-immunoprecipitations. Finally, we show that aspects of the cross-repressive activities of Ind/Gsh2-Ey/Pax6 are evolutionarily conserved. Taken together, these results point to conserved mechanisms used by Gsh/Ind-type homeodomain protein in regulating the expression of target genes.
Collapse
Affiliation(s)
- T Von Ohlen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
55
|
Fushima K, Tsujimura H. Precise control of fasciclin II expression is required for adult mushroom body development in Drosophila. Dev Growth Differ 2007; 49:215-27. [PMID: 17394600 DOI: 10.1111/j.1440-169x.2007.00922.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fasciclin II (FASII) is a cell adhesion molecule that participates in axonal pathfinding, fasciculation and divergence in the Drosophila nervous system. Here, we examined spatio-temporal control of fasII expression during the development of adult mushroom body (MB) and found that suppression of fasII in alpha'/beta' neurons is essential for the formation of adult alpha'/beta' and alpha/beta lobes. Of gamma, alpha'/beta' and alpha/beta neurons, which are derived sequentially from the same four MB neuroblasts, only gamma and alpha/beta neurons expressed fasII. When fasII was misexpressed in developing MB neurons, defects resulted, including loss or misdirection of adult alpha'/beta' lobes and concurrent misdirection of alpha/beta lobes. Although no gross anatomical defects were apparent in the larval MB lobes, alpha'/beta' lobes collapsed at the pupal stage when the larval lobe of gamma neurons degenerated. In addition, alpha/beta lobes, which developed at this time, were misdirected in close relationship with the collapse of alpha'/beta' lobes. These defects did not occur when fasII was overexpressed in only gamma and alpha/beta neurons, indicating that ectopic expression of fasII in alpha'/beta' neurons is required for the defects. Our findings also suggest that the alpha'/beta' lobe play a role in guiding the pathfinding by alpha/beta axons.
Collapse
Affiliation(s)
- Kazuma Fushima
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | |
Collapse
|
56
|
Lichtneckert R, Bello B, Reichert H. Cell lineage-specific expression and function of the empty spiracles gene in adult brain development of Drosophila melanogaster. Development 2007; 134:1291-300. [PMID: 17314131 DOI: 10.1242/dev.02814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The empty spiracles (ems) gene, encoding a homeodomain transcription factor, is a member of the cephalic gap gene family that acts in early specification of the anterior neuroectoderm in the embryonic brain of Drosophila. Here we show that ems is also expressed in the mature adult brain in the lineage-restricted clonal progeny of a single neuroblast in each brain hemisphere. These ems-expressing neuronal cells are located ventral to the antennal lobes and project a fascicle to the superior medial protocerebrum. All adult-specific secondary neurons in this lineage persistently express ems during postembryonic larval development and continue to do so throughout metamorphosis and into the adult. Mosaic-based MARCM mutant analysis and genetic rescue experiments demonstrate that ems function is autonomously required for the correct number of cells in the persistently expressing adult-specific lineage. Moreover, they indicate that ems is also required cell autonomously for the formation of the correct projections in this specific lineage. This analysis of ems expression and function reveals novel and unexpected roles of a cephalic gap gene in translating lineage information into cell number control and projection specificity in an individual clonal unit of the adult brain.
Collapse
Affiliation(s)
- Robert Lichtneckert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
57
|
Mills E, Price HP, Johner A, Emerson JE, Smith DF. Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania. Mol Biochem Parasitol 2007; 152:22-34. [PMID: 17169445 PMCID: PMC1885993 DOI: 10.1016/j.molbiopara.2006.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 11/02/2006] [Accepted: 11/14/2006] [Indexed: 12/02/2022]
Abstract
Bioinformatic analyses have been used to identify potential downstream targets of the essential enzyme N-myristoyl transferase in the TriTryp species, Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. These database searches predict approximately 60 putative N-myristoylated proteins with high confidence, including both previously characterised and novel molecules. One of the latter is an N-myristoylated protein phosphatase which has high sequence similarity to the Protein Phosphatase with EF-Hand (PPEF) proteins identified in sensory cells of higher eukaryotes. In L. major and T. brucei, the PPEF-like phosphatases are encoded by single-copy genes and are constitutively expressed in all parasite life cycle stages. The N-terminus of LmPPEF is a substrate for N-myristoyl transferase and is also palmitoylated in vivo. The wild type protein has been localised to the endocytic system by immunofluorescence. The catalytic and fused C-terminal domains of the kinetoplastid and other eukaryotic PPEFs share high sequence similarity, but unlike their higher eukaryotic relatives, the C-terminal parasite EF-hand domains are degenerate and do not bind calcium.
Collapse
Affiliation(s)
- Elena Mills
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Helen P. Price
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Andrea Johner
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Jenny E. Emerson
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Deborah F. Smith
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| |
Collapse
|
58
|
Benito J, Zheng H, Ng FS, Hardin PE. Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:437-44. [PMID: 18419302 PMCID: PMC2866010 DOI: 10.1101/sqb.2007.72.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila circadian oscillator is composed of interlocked period/timeless (per/tim) and Clock (Clk) transcriptional feedback loops. These feedback loops drive rhythmic transcription having peaks at dawn and dusk during the daily cycle and function in the brain and a variety of peripheral tissues. To understand how the circadian oscillator keeps time and controls metabolic, physiological, and behavioral rhythms, we must determine how these feedback loops regulate rhythmic transcription, determine the relative importance of the per/tim and Clk feedback loops with regard to circadian oscillator function, and determine how these feedback loops come to be expressed in only certain tissues. Substantial insight into each of these issues has been gained from experiments performed in our lab and others and is summarized here.
Collapse
Affiliation(s)
- J Benito
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
59
|
Callaerts P, Clements J, Francis C, Hens K. Pax6 and eye development in Arthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:379-391. [PMID: 18089082 DOI: 10.1016/j.asd.2006.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/16/2006] [Indexed: 05/25/2023]
Abstract
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.
Collapse
Affiliation(s)
- Patrick Callaerts
- Laboratory of Developmental Genetics, VIB-PRJ8, KULeuven, Center for Human Genetics, Onderwijs & Navorsing, Herestraat 49, bus 602, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
60
|
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:357-378. [PMID: 18089081 DOI: 10.1016/j.asd.2006.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/10/2006] [Indexed: 05/25/2023]
Abstract
Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
61
|
Anderson J, Salzer CL, Kumar JP. Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. Dev Biol 2006; 297:536-49. [PMID: 16780828 PMCID: PMC2717003 DOI: 10.1016/j.ydbio.2006.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 04/13/2006] [Accepted: 05/03/2006] [Indexed: 11/29/2022]
Abstract
The retinal determination gene dachshund is distantly related to the family of Ski/Sno proto-oncogenes and influences the development of a wide range of tissues including the embryonic head, optic lobes, brain, central nervous system as well as the post-embryonic leg, wing, genital and eye-antennal discs. We were interested in the regulatory mechanisms that control the dynamic expression pattern of dachshund and in this report we set out to ascertain how the transcription of dachshund is modulated in the embryonic head and developing eye-antennal imaginal disc. We demonstrate that the TGFbeta signaling cascade, the transcription factor zerknullt and several other patterning genes prevent dachshund from being expressed inappropriately within the embryonic head. Additionally, we show that several members of the eye specification cascade influence the transcription of dachshund during normal and ectopic eye development. Our results suggest that dachshund is regulated by a complex combinatorial code of transcription factors and signaling pathways. Unraveling this code may lead to an understanding of how dachshund regulates the development of many diverse tissue types including the eye.
Collapse
Affiliation(s)
- Jason Anderson
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| | - Claire L. Salzer
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| |
Collapse
|
62
|
Kobayashi M, Michaut L, Ino A, Honjo K, Nakajima T, Maruyama Y, Mochizuki H, Ando M, Ghangrekar I, Takahashi K, Saigo K, Ueda R, Gehring WJ, Furukubo-Tokunaga K. Differential microarray analysis of Drosophila mushroom body transcripts using chemical ablation. Proc Natl Acad Sci U S A 2006; 103:14417-22. [PMID: 16971484 PMCID: PMC1599978 DOI: 10.1073/pnas.0606571103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the Drosophila brain. As a way to systematically elucidate genes preferentially expressed in MBs, we have analyzed genome-wide alterations in transcript profiles associated with MB ablation by hydroxyurea. We selected 100 genes based on microarray data and examined their expression patterns in the brain by in situ hybridization. Seventy genes were found to be expressed in the posterodorsal cortex, which harbors the MB cell bodies. These genes encode proteins of diverse functions, including transcription, signaling, cell adhesion, channels, and transporters. Moreover, we have examined developmental functions of 40 of the microarray-identified genes by transgenic RNA interference; 8 genes were found to cause mild-to-strong MB defects when suppressed with a MB-Gal4 driver. These results provide important information not only on the repertoire of genes that control MB development but also on the repertoire of neural factors that may have important physiological functions in MB plasticity.
Collapse
Affiliation(s)
- Masatomo Kobayashi
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Lydia Michaut
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Ayako Ino
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Taiki Nakajima
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yasushi Maruyama
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Indrayani Ghangrekar
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kuniaki Takahashi
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan; and
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan; and
| | - Walter J. Gehring
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
- To whom correspondence may be addressed. E-mail:
or
| | - Katsuo Furukubo-Tokunaga
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
63
|
Martini SR, Davis RL. The dachshund gene is required for the proper guidance and branching of mushroom body axons in Drosophila melanogaster. ACTA ACUST UNITED AC 2005; 64:133-44. [PMID: 15818552 DOI: 10.1002/neu.20130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dachshund gene encodes a transcription factor required for the proper development of Drosophila eyes, legs, and mushroom bodies. The mushroom bodies of dachshund mutants exhibit a marked reduction in the size of the vertical lobes and disorganization of the horizontal lobes. In mosaic animals, mutant axons fail to contribute significantly to the mushroom body alpha lobe. Here we show that this defect is due to the misrouting of alphabeta axons to the region normally occupied by alpha'beta' axons. This defect is pronounced for clones generated in larval stages but not clones generated after pupariation, indicating that dachshund function is particularly important around the time of puparium formation. In addition, mushroom body axons exhibit excessive branching in dachshund mutant clones. Thus, dachshund is required in mushroom body neurons for proper axon guidance and branching.
Collapse
Affiliation(s)
- Sharyl R Martini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
64
|
Abstract
Pax6 is a highly conserved transcription factor essential for the development of the eyes in vertebrate and invertebrate species. It is also required for normal development of many regions of the central nervous system, including the mammalian forebrain, hindbrain and spinal cord. In the forebrain, it is expressed in a gradient in the dorsal telencephalon, where it is required for the expression of genes that confer dorsal characteristics and where it might play a role in regionalization of the cerebral cortex. It is expressed in the diencephalon, where it is essential for the specification of its derivatives. While the ancestral function of Pax6 may have been to specify a structure sensitive to light, it has been co-opted into the regulation of a broader range of processes in development of the vertebrate nervous system.
Collapse
Affiliation(s)
- Martine Manuel
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, UK
| | | |
Collapse
|
65
|
Pappu KS, Ostrin EJ, Middlebrooks BW, Sili BT, Chen R, Atkins MR, Gibbs R, Mardon G. Dual regulation and redundant function of two eye-specific enhancers of the Drosophila retinal determination gene dachshund. Development 2005; 132:2895-905. [PMID: 15930118 DOI: 10.1242/dev.01869] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila eye development is controlled by a conserved network of retinal determination (RD) genes. The RD genes encode nuclear proteins that form complexes and function in concert with extracellular signal-regulated transcription factors. Identification of the genomic regulatory elements that govern the eye-specific expression of the RD genes will allow us to better understand how spatial and temporal control of gene expression occurs during early eye development. We compared conserved non-coding sequences (CNCSs) between five Drosophilids along the approximately 40 kb genomic locus of the RD gene dachshund (dac). Our analysis uncovers two separate eye enhancers in intron eight and the 3' non-coding regions of the dac locus defined by clusters of highly conserved sequences. Loss- and gain-of-function analyses suggest that the 3' eye enhancer is synergistically activated by a combination of eya, so and dpp signaling, and only indirectly activated by ey, whereas the 5' eye enhancer is primarily regulated by ey, acting in concert with eya and so. Disrupting conserved So-binding sites in the 3' eye enhancer prevents reporter expression in vivo. Our results suggest that the two eye enhancers act redundantly and in concert with each other to integrate distinct upstream inputs and direct the eye-specific expression of dac.
Collapse
Affiliation(s)
- Kartik S Pappu
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Poulin F, Nobrega MA, Plajzer-Frick I, Holt A, Afzal V, Rubin EM, Pennacchio LA. In vivo characterization of a vertebrate ultraconserved enhancer. Genomics 2005; 85:774-81. [PMID: 15885503 DOI: 10.1016/j.ygeno.2005.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 02/03/2023]
Abstract
Genomic sequence comparisons among human, mouse, and pufferfish (Takifugu rubripes (Fugu)) have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2, located near the dachshund gene, which displays a human-Fugu identity of 84% over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical among human, mouse, chicken, zebrafish, and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424-bp Dc2-conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144-bp 100% conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16-bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144-bp 100% conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on the Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.
Collapse
Affiliation(s)
- Francis Poulin
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr Biol 2005; 14:2245-51. [PMID: 15620651 DOI: 10.1016/j.cub.2004.12.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/22/2022]
Abstract
Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.
Collapse
Affiliation(s)
- Marc E Colosimo
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Mizunami M, Yokohari F, Takahata M. Further exploration into the adaptive design of the arthropod "microbrain": I. Sensory and memory-processing systems. Zoolog Sci 2005; 21:1141-51. [PMID: 15613794 DOI: 10.2108/zsj.21.1141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arthropods have small but sophisticated brains that have enabled them to adapt their behavior to a diverse range of environments. In this review, we first discuss some of general characteristics of the arthropod "microbrain" in comparison with the mammalian "megalobrain". Then we discuss about recent progress in the study of sensory and memory-processing systems of the arthropod "microbrain". Results of recent studies have shown that (1) insects have excellent capability for elemental and context-dependent forms of olfactory learning, (2) mushroom bodies, higher olfactory and associative centers of arthropods, have much more elaborated internal structures than previously thought, (3) many genes involved in the formation of basic brain structures are common among arthropods and vertebrates, suggesting that common ancestors of arthropods and vertebrates already had organized head ganglia, and (4) the basic organization of sensori-motor pathways of the insect brain has features common to that of the mammalian brain. These findings provide a starting point for the study of brain mechanisms of elaborated behaviors of arthropods, many of which remain unexplored.
Collapse
Affiliation(s)
- Makoto Mizunami
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
69
|
Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A, Vezzani C, O'Brien-Jenkins A, Wang J, Ward MR, Courreges MC, Fracchioli S, Medina A, Katsaros D, Weber BL, Coukos G. Transcriptional Coactivator Drosophila Eyes Absent Homologue 2 Is Up-Regulated in Epithelial Ovarian Cancer and Promotes Tumor Growth. Cancer Res 2005. [DOI: 10.1158/0008-5472.925.65.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Epithelial ovarian cancer is the most frequent cause of gynecologic malignancy-related mortality in women. To identify genes up-regulated in ovarian cancer, PCR-select cDNA subtraction was done and Drosophila Eyes Absent Homologue 2 (EYA2) was isolated as a promising candidate. The transcriptional coactivator eya controls essential cellular functions during organogenesis of Drosophila. EYA2 mRNA was found to be up-regulated in ovarian cancer by real-time reverse transcription–PCR, whereas its protein product was detected in 93.6% of ovarian cancer specimens by immunohistochemistry (n = 140). EYA2 was amplified in 14.8% of ovarian carcinomas, as detected by array-based comparative genomic hybridization (n = 88). Most importantly, EYA2 overexpression was significantly associated with short overall survival in advanced ovarian cancer (n = 99, P = 0.0361). EYA2 was found to function as transcriptional activator in ovarian cancer cells by Gal4 assay and to promote tumor growth in vivo in xenograft models. Therefore, this study suggests an important role of EYA2 in ovarian cancer and its potential application as a therapeutic target.
Collapse
Affiliation(s)
- Lin Zhang
- 1Abramson Family Cancer Research Institute,
- 2Center for Research on Reproduction and Women's Health,
| | - Nuo Yang
- 4Department of Genetics and Cell and Molecular Biology Program, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania and
| | - Jia Huang
- 1Abramson Family Cancer Research Institute,
| | | | - Shun Liang
- 2Center for Research on Reproduction and Women's Health,
| | | | | | | | - Jennifer Wang
- 2Center for Research on Reproduction and Women's Health,
| | | | | | | | | | | | | | - George Coukos
- 1Abramson Family Cancer Research Institute,
- 2Center for Research on Reproduction and Women's Health,
- 3Department of Obstetrics and Gynecology, and
| |
Collapse
|
70
|
Miguel-Aliaga I, Allan DW, Thor S. Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification. Development 2004; 131:5837-48. [PMID: 15525669 DOI: 10.1242/dev.01447] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in this combinatorial code. Previous studies have revealed an intimate link between Dac and Eya during eye development. Here, by analyzing their function in neurons with multiple phenotypic markers, we demonstrate that they play independent roles in neuronal specification, even within single cells. dac is required for high-level Fmrf expression, and acts potently together with apterous and BMP signaling to trigger Fmrf expression ectopically, even in motoneurons. By contrast, eya regulates Fmrf expression by controlling both axon pathfinding and BMP signaling, but cannot trigger Fmrf ectopically. Thus, we show that dac and eya perform entirely different functions in a single cell type to ultimately regulate a single phenotypic outcome.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
71
|
Tavsanli BC, Ostrin EJ, Burgess HK, Middlebrooks BW, Pham TA, Mardon G. Structure–function analysis of the Drosophila retinal determination protein Dachshund. Dev Biol 2004; 272:231-47. [PMID: 15242803 DOI: 10.1016/j.ydbio.2004.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 11/25/2022]
Abstract
Dachshund (Dac) is a highly conserved nuclear protein that is distantly related to the Ski/Sno family of corepressor proteins. In Drosophila, Dac is necessary and sufficient for eye development and, along with Eyeless (Ey), Sine oculis (So), and Eyes absent (Eya), forms the core of the retinal determination (RD) network. In vivo and in vitro experiments suggest that members of the RD network function together in one or more complexes to regulate the expression of downstream targets. For example, Dac and Eya synergize in vivo to induce ectopic eye formation and they physically interact through conserved domains. Dac contains two highly conserved domains, named DD1 and DD2, but no function has been assigned to either of them in an in vivo context. We performed structure-function studies to understand the relationship between the conserved domains of Dac and the rest of the protein and to determine the function of each domain during development. We show that only DD1 is essential for Dac function and while DD2 facilitates DD1, it is not absolutely essential in spite of more than 500 million years of conservation. Moreover, the physical interaction between Eya and DD2 is not required for the genetic synergy between the two proteins. Finally, we show that DD1 also plays a central role for nuclear localization of Dac.
Collapse
Affiliation(s)
- Beril C Tavsanli
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
72
|
WEASNER BRANDONP, ANDERSON JASON, KUMAR JUSTINP. The Eye Specification Network in Drosophila. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY. PART B, BIOLOGICAL SCIENCES 2004; B70:517-530. [PMID: 25580038 PMCID: PMC4286332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the most exciting revelations in retinal biology is the realization that the molecules and mechanisms that regulate eye development have been conserved in all seeing animals including such diverse organisms as the fruit fly, mouse and man. The emerging commonality among mechanisms used in eye development allows for the use of model systems such as the fruit fly, Drosophila melanogaster, to provide key insights into the development and diseases of the mammalian eye. Eye specification in Drosophila is controlled, in part, by the concerted activities of eight nuclear proteins and several signal transduction cascades that together form a tightly woven regulatory network. Loss of function mutations in several components lead to the complete derailment of eye development while ectopic expression of threse genes in non-retinal tissues can direct the fates of these tissues towards eye formation. Here we will describe what is currently known about this remarkable regulatory cassettee highlight some of the outstanding questions that still need to be answered.
Collapse
Affiliation(s)
| | | | - JUSTIN P. KUMAR
- Corresponding address:; Tel: 812-856-2621; Fax: 812-856-1566
| |
Collapse
|
73
|
Urbach R, Technau GM. Neuroblast formation and patterning during early brain development inDrosophila. Bioessays 2004; 26:739-51. [PMID: 15221856 DOI: 10.1002/bies.20062] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the brain, our understanding of its development is still rudimentary. Recent investigations on the expression and function of proneural genes, segmentation genes, dorsoventral-patterning genes and a number of other genes have provided new insight into the principles of neuroblast formation and patterning during embryonic development of the fly brain. Comparisons with the same processes in the trunk help us to understand what makes the brain different from the ventral nerve cord. Several parallels in early brain patterning between the fly and the vertebrate systems have become evident.
Collapse
Affiliation(s)
- Rolf Urbach
- Institute of Genetics, University of Mainz, Germany
| | | |
Collapse
|
74
|
Adachi Y, Hauck B, Clements J, Kawauchi H, Kurusu M, Totani Y, Kang YY, Eggert T, Walldorf U, Furukubo-Tokunaga K, Callaerts P. Conserved cis-regulatory modules mediate complex neural expression patterns of the eyeless gene in the Drosophila brain. Mech Dev 2003; 120:1113-26. [PMID: 14568101 DOI: 10.1016/j.mod.2003.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Drosophila Pax-6 homologs eyeless (ey) and twin of eyeless (toy) are expressed in the eyes and in the central nervous system (CNS). In addition to the pivotal functions in eye development, previous studies revealed that ey also plays important roles in axonal development of the mushroom bodies, centers for associative learning and memory. It has been reported that a second intron enhancer that contains several Pax-6 binding sites mainly controls the eye-specific expression, but the DNA sequences that control CNS expression are unknown. In this work, we have dissected transcriptional enhancer elements of the ey gene that are required for the CNS expression in various developmental stages. We first show that CNS expression is independent of the eye-specific enhancer of the second intron. By systematic reporter studies, we have identified several discrete DNA elements in the 5' upstream region and in the second intron that cooperatively interact to generate most of the ey expression pattern in the CNS. DNA sequence comparison between the ey genes of distant Drosophila species has identified conserved modules that might be bound by the upstream regulatory factors of the ey gene in CNS development. Furthermore, by RNA interference and mutant studies, we show that ey expression in the brain is independent of the activity of toy and ey itself whereas in the eye primordia it requires both, supporting the notion that ey and toy are regulated by parallel and independent regulatory cascades in brain development.
Collapse
Affiliation(s)
- Yoshitsugu Adachi
- Institute of Biological Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Nicolaï M, Lasbleiz C, Dura JM. Gain-of-function screen identifies a role of theSrc64oncogene inDrosophilamushroom body development. ACTA ACUST UNITED AC 2003; 57:291-302. [PMID: 14608664 DOI: 10.1002/neu.10277] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mushroom bodies (MB) are substructures in the Drosophila brain that are essential for memory. At present, MB anatomy is rather well described when compared to other brain areas, and elucidation of the genetic control of the development and projection patterns of MB neurons will be important to the understanding of their functions. We have performed a gain-of-function screen in order to identify genes that are involved in MB development. We drove expression of genes in MB neurons by crossing 2407 GAL4-driven UY element lines to lines containing an MB GAL4 source and UAS-GFP elements, and looked for defects in the MB structure. We have molecularly identified the genomic regions adjacent to the 26 positive UY insertions and found 18 potential genes that exhibit adult MB gain-of-function phenotypes. The proteins encoded by these candidate genes include, as well as genes with yet unknown function, transcription factors (e.g., tramtrack), nanos RNA-binding protein, microtubule-severing protein, vesicle trafficking proteins, axon guidance receptor, and the Src64 cytoplasmic protein tyrosine kinase. These genes are involved in key features of neuron cell biology. In three cases, tramtrack, nanos, and Src64, we show that the open reading frame located directly downstream of the UY P element is indeed the expressed target gene. Loss-of-function mutations of both ttk and Src64 lead to MB phenotypes proving that these genes are involved in the genetic control of MB development. Moreover, Src64 is shown here to act in a cell-autonomous fashion and is likely to interact with the previously-identified linotte/derailed receptor tyrosine kinase in MB development.
Collapse
Affiliation(s)
- Maryse Nicolaï
- Institut de Génétique Humaine, CNRS UPR1142, 141, rue de la cardonille, 34396 Montpellier Cedex, France
| | | | | |
Collapse
|
76
|
Silver SJ, Davies EL, Doyon L, Rebay I. Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol 2003; 23:5989-99. [PMID: 12917324 PMCID: PMC180989 DOI: 10.1128/mcb.23.17.5989-5999.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinal determination (RD) gene network encodes a group of transcription factors and cofactors necessary for eye development. Transcriptional and posttranslational regulation of RD family members is achieved through interactions within the network and with extracellular signaling pathways, including epidermal growth factor receptor/RAS/mitogen-activated protein kinase (MAPK), transforming growth factor beta/DPP, Wingless, Hedgehog, and Notch. Here we present the results of structure-function analyses that reveal novel aspects of Eyes absent (EYA) function and regulation. We find that the conserved C-terminal EYA domain negatively regulates EYA transactivation potential, and that GROUCHO-SINE OCULIS (SO) interactions provide another mechanism for negative regulation of EYA-SO target genes. We have mapped the transactivation potential of EYA to an internal proline-, serine-, and threonine-rich region that includes the EYA domain 2 (ED2) and two MAPK phosphorylation consensus sites and demonstrate that activation of the RAS/MAPK pathway potentiates transcriptional output of EYA and the EYA-SO complex in certain contexts. Drosophila S2 cell two-hybrid assays were used to describe a novel homotypic interaction that is mediated by EYA's N terminus. Our data suggest that EYA requires homo- and heterotypic interactions and RAS/MAPK signaling responsiveness to ensure context-appropriate RD gene network activity.
Collapse
Affiliation(s)
- Serena J Silver
- Whitehead Institute for Biomedical Research. MIT Department of Biology, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
77
|
Prpic NM, Tautz D. The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 2003; 260:97-112. [PMID: 12885558 DOI: 10.1016/s0012-1606(03)00217-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.
Collapse
|
78
|
Urbach R, Schnabel R, Technau GM. The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 2003; 130:3589-606. [PMID: 12835378 DOI: 10.1242/dev.00528] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila embryo, studies on CNS development have so far mainly focused on the relatively simply structured ventral nerve cord. In the trunk, proneural genes become expressed in small cell clusters at specific positions of the ventral neuroectoderm. A lateral inhibition process mediated by the neurogenic genes ensures that only one cell within each proneural cluster delaminates as a neural stem cell (neuroblast). Thus, a fixed number of neuroblasts is formed, according to a stereotypical spatiotemporal and segmentally repeated pattern, each subsequently generating a specific cell lineage. Owing to higher complexity and hidden segmental organisation, the mechanisms underlying the development of the brain are much less understood. In order to pave the way towards gaining deeper insight into these mechanisms, we have undertaken a comprehensive survey of early brain development until embryonic stage 11, when all brain neuroblasts have formed. We describe the complete spatiotemporal pattern of formation of about 100 brain neuroblasts on either side building the trito-, deuto- and protocerebrum. Using 4D-microscopy, we have uncovered various modes of neuroblast formation that are related to specific mitotic domains of the procephalic neuroectoderm. Furthermore, a detailed description is provided of the dynamic expression patterns of proneural genes (achaete, scute, lethal of scute, atonal) in the procephalic neuroectoderm and the individual neuroblasts. Finally, we present direct evidence that, in contrast to the trunk, adjacent cells within specific domains of the procephalic neuroectoderm develop as neuroblasts, indicating that mechanisms controlling neuroblast formation differ between head and trunk.
Collapse
Affiliation(s)
- Rolf Urbach
- Institut für Genetik, Universität Mainz, D-55099 Mainz, Germany
| | | | | |
Collapse
|
79
|
Farris SM, Sinakevitch I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:79-101. [PMID: 18088997 DOI: 10.1016/s1467-8039(03)00009-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 03/10/2003] [Indexed: 05/25/2023]
Abstract
The insect mushroom bodies are prominent higher order neuropils consisting of thousands of approximately parallel projecting intrinsic neurons arising from the minute basophilic perikarya of globuli cells. Early studies described these structures as centers for intelligence and other higher functions; at present, the mushroom bodies are regarded as important models for the neural basis of learning and memory. The insect mushroom bodies share a similar general morphology, and the same basic sequence of developmental events is observed across a wide range of insect taxa. Globuli cell progenitors arise in the embryo and proliferate throughout the greater part of juvenile development. Discrete morphological and functional subpopulations of globuli cells (or Kenyon cells, as they are called in insects) are sequentially produced at distinct periods of development. Kenyon cell somata are arranged by age around the center of proliferation, as are their processes in the mushroom body neuropil. Other aspects of mushroom body development are more variable from species to species, such as the origin of specific Kenyon cell populations and neuropil substructures, as well as the timing and pace of the general developmental sequence.
Collapse
Affiliation(s)
- Sarah M Farris
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, 611 Gould-Simpson Building, Tucson, AZ 85721, USA
| | | |
Collapse
|
80
|
Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 2003; 130:3621-37. [PMID: 12835380 DOI: 10.1242/dev.00533] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila brain develops from the procephalic neurogenic region of the ectoderm. About 100 neural precursor cells (neuroblasts) delaminate from this region on either side in a reproducible spatiotemporal pattern. We provide neuroblast maps from different stages of the early embryo (stages 9, 10 and 11, when the entire population of neuroblasts has formed), in which about 40 molecular markers representing the expression patterns of 34 different genes are linked to individual neuroblasts. In particular, we present a detailed description of the spatiotemporal patterns of expression in the procephalic neuroectoderm and in the neuroblast layer of the gap genes empty spiracles, hunchback, huckebein, sloppy paired 1 and tailless; the homeotic gene labial; the early eye genes dachshund, eyeless and twin of eyeless; and several other marker genes (including castor, pdm1, fasciclin 2, klumpfuss, ladybird, runt and unplugged). We show that based on the combination of genes expressed, each brain neuroblast acquires a unique identity, and that it is possible to follow the fate of individual neuroblasts through early neurogenesis. Furthermore, despite the highly derived patterns of expression in the procephalic segments, the co-expression of specific molecular markers discloses the existence of serially homologous neuroblasts in neuromeres of the ventral nerve cord and the brain. Taking into consideration that all brain neuroblasts are now assigned to particular neuromeres and individually identified by their unique gene expression, and that the genes found to be expressed are likely candidates for controlling the development of the respective neuroblasts, our data provide a basic framework for studying the mechanisms leading to pattern and cell diversity in the Drosophila brain, and for addressing those mechanisms that make the brain different from the truncal CNS.
Collapse
Affiliation(s)
- Rolf Urbach
- Institut für Genetik, Universität Mainz, D-55099 Mainz, Germany
| | | |
Collapse
|
81
|
Urbach R, Technau GM, Breidbach O. Spatial and temporal pattern of neuroblasts, proliferation, and Engrailed expression during early brain development in Tenebrio molitor L. (Coleoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:125-140. [PMID: 18088999 DOI: 10.1016/s1467-8039(03)00043-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/28/2003] [Indexed: 05/25/2023]
Abstract
In insects, the knowledge of embryonic brain development is still fragmentary, and comparative data are scarce. In this study, we explored aspects of embryonic brain development in the coleopteran Tenebrio molitor. A detailed description is provided of the spatial and temporal pattern of the embryonic brain neuroblasts during 18-60% of embryonic development. Approximately 125 brain NBs have been identified in each hemisphere of the brain at about 40% of embryonic development. A subset of five neuroblasts, among them the two progenitors of the mushroom bodies and two progenitors of the larval antennal lobe, are morphologically identifiable by their larger size. As revealed by incorporation of BrdU, their mitotic behaviour is distinct from that of all other brain NBs, exhibiting an extended period of proliferation into postembryonic stages, and a significantly higher rate of division. To gain insight into the segmental organization of the T. molitor brain, Engrailed expression was examined in the head ectoderm and the deriving components of the CNS (including neuroblasts and their progeny) at different stages of embryonic development.
Collapse
Affiliation(s)
- Rolf Urbach
- Institute for Genetics, University of Mainz, D-55099 Saarstrasse 21, 55122 Mainz, Germany
| | | | | |
Collapse
|
82
|
Fabrizio JJ, Boyle M, DiNardo S. A somatic role for eyes absent (eya) and sine oculis (so) in Drosophila spermatocyte development. Dev Biol 2003; 258:117-28. [PMID: 12781687 DOI: 10.1016/s0012-1606(03)00127-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interactions between the soma and the germline are a conserved feature of spermatogenesis throughout the animal kingdom. In this report, we find that the transcription factors eyes absent (eya) and sine oculis (so), previously shown to play major roles during eye development [Cell 91 (1997), 881] are each required in the somatic cyst cells of the testis for proper Drosophila spermatocyte development. eya mutant testes exhibit degenerating young spermatocytes. Mosaic analysis reveals a somatic requirement for both eya and so, in that neither gene is required in the germline for spermatocyte development. Immunolocalization analysis supports this somatic role, since both proteins are localized within cyst cell nuclei as spermatocytes differentiate from amplifying spermatogonia. Using antibodies against known cyst cell markers, we demonstrate that cysts of degenerating spermatocytes in eya mutant testes are encysted, ruling out a role for eya in cyst cell viability. Finally, we have uncovered a genetic interaction between eya and so in the testis, suggesting that, as in the eye, eya and so may form a transcription complex responsible for the activation of target genes involved in cyst cell differentiation and spermatocyte development.
Collapse
Affiliation(s)
- James J Fabrizio
- Department of Cell and Developmental Biology, University of Pennsylvania Medical Center, 421 Curie Blvd. BRB II/III, Room 1220, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
83
|
Okada R, Sakura M, Mizunami M. Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 2003; 458:158-74. [PMID: 12596256 DOI: 10.1002/cne.10580] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine precisely the brain areas from which descending neurons (DNs) originate, we examined the distribution of somata and dendrites of DNs in the cockroach brain by retrogradely filling their axons from the cervical connective. At least 235 pairs of somata of DNs were stained, and most of these were grouped into 22 clusters. Their dendrites were distributed in most brain areas, including lateral and medial protocerebra, which are major termination areas of output neurons of the mushroom body, but not in the optic and antennal lobes, the mushroom body, the central complex, or the posteroventral part of the lateral horn. The last area is the termination area of major types of olfactory projection neurons from the antennal lobe, i.e., uni- and macroglomerular projection neurons, so these neurons have no direct connections with DNs. The distribution of axon terminals of ascending neurons overlaps with that of DN dendrites. We propose, based on these findings, that there are numerous parallel processing streams from cephalic sensory areas to thoracic locomotory centers, many of which are via premotor brain areas from which DNs originate. In addition, outputs from the mushroom body, central complex, and posteroventral part of the lateral horn converge on some of the premotor areas, presumably to modulate the activity of some sensorimotor pathways. We propose, based on our results and documented findings, that many parallel processing streams function in various forms of reflexive and relatively stereotyped behaviors, whereas indirect pathways govern some forms of experience-dependent modification of behavior.
Collapse
Affiliation(s)
- Ryuichi Okada
- Laboratory of Neuro-Cybernetics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
84
|
Benassayag C, Plaza S, Callaerts P, Clements J, Romeo Y, Gehring WJ, Cribbs DL. Evidence for a direct functional antagonism of the selector genes proboscipedia and eyeless in Drosophila head development. Development 2003; 130:575-86. [PMID: 12490563 DOI: 10.1242/dev.00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diversification of Drosophila segmental and cellular identities both require the combinatorial function of homeodomain-containing transcription factors. Ectopic expression of the mouthparts selector proboscipedia (pb) directs a homeotic antenna-to-maxillary palp transformation. It also induces a dosage-sensitive eye loss that we used to screen for dominant Enhancer mutations. Four such Enhancer mutations were alleles of the eyeless (ey) gene that encode truncated EY proteins. Apart from eye loss, these new eyeless alleles lead to defects in the adult olfactory appendages: the maxillary palps and antennae. In support of these observations, both ey and pb are expressed in cell subsets of the prepupal maxillary primordium of the antennal imaginal disc, beginning early in pupal development. Transient co-expression is detected early after this onset, but is apparently resolved to yield exclusive groups of cells expressing either PB or EY proteins. A combination of in vivo and in vitro approaches indicates that PB suppresses EY transactivation activity via protein-protein contacts of the PB homeodomain and EY Paired domain. The direct functional antagonism between PB and EY proteins suggests a novel crosstalk mechanism integrating known selector functions in Drosophila head morphogenesis.
Collapse
Affiliation(s)
- Corinne Benassayag
- Centre de Biologie du Développement-CNRS and Institut d'Exploration Fonctionnelle du Génome, 118 route de Narbonne, Bâtiment 4R3, F-31062 Toulouse Cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
85
|
Backman M, Machon O, Van Den Bout CJ, Krauss S. Targeted disruption of mouse Dach1 results in postnatal lethality. Dev Dyn 2003; 226:139-44. [PMID: 12508235 DOI: 10.1002/dvdy.10210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mouse Dach1 is a nuclear factor that is expressed during development in restricted areas of the central nervous system, neural crest, and limb buds. Its Drosophila homologue dachshund plays a role in differentiation of the eye imaginal disc, in leg morphogenesis, and in controlling neural differentiation in the mushroom bodies of the insect brain. Mouse Dach1 null homozygous survive pregnancy but become cyanotic after birth and subsequently die within 24 hr. In this report, the brain of Dach1 mutants was analyzed. Examination of mRNA expression of the central neuropeptides oxytocin, vasopressin, thyrotropin-releasing hormone, growth hormone releasing hormone, and somatostatin revealed no difference between wild-type and mutant newborn brains. Furthermore, no significant difference in cell proliferation as well as in the distribution of neurons, glia, radial glia, and neuronal progenitors was detected in the developing forebrain. Dach1-positive cells, which were visualized with Enhanced Green Fluorescent Protein (EGFP), show similar distribution and axonal projections in the cortex and hippocampus in mutants and wild-type controls. Neural stem cells derived from mutant and wild-type newborn brains display similar growth kinetics when cultivated in vitro.
Collapse
Affiliation(s)
- Mattias Backman
- Section of Genetic Therapy, The National Hospital 0027 Oslo, Norway
| | | | | | | |
Collapse
|
86
|
Bai J, Montell D. Eyes absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 2002; 129:5377-88. [PMID: 12403709 DOI: 10.1242/dev.00115] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.
Collapse
Affiliation(s)
- Jianwu Bai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, USA
| | | |
Collapse
|
87
|
Malaterre J, Strambi C, Chiang AS, Aouane A, Strambi A, Cayre M. Development of cricket mushroom bodies. J Comp Neurol 2002; 452:215-27. [PMID: 12353218 DOI: 10.1002/cne.10319] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mushroom bodies are recognized as a multimodal integrator for sensorial stimuli. The present study analyzes cricket mushroom body development from embryogenesis to adulthood. In the house cricket, Kenyon cells were born from a group of neuroblasts located at the apex of mushroom bodies. Our results demonstrate the sequential generation of Kenyon cells: The more external they are, the earlier they were produced. BrdU treatment on day 8 (57% stage) of embryonic life results, at the adult stage, in the labelling of the large Kenyon cells at the periphery of the mushroom body cortex. These cells have specific projections into the posterior calyx, the gamma lobe, and an enlargement at the inner part of the vertical lobe; they represent a part of mushroom bodies of strictly embryonic origin. The small Kenyon cells were formed from day 9 (65% stage) of the embryonic stage onward, and new interneurons are produced throughout the entire life of the insect. They send their projections into the anterior calyx and into the vertical and medial lobes. Mushroom body development of Acheta should be considered as a primitive template, and cross-taxonomic comparisons of the mushroom body development underscore the precocious origin of the gamma lobe. As a result of continuous neurogenesis, cricket mushroom bodies undergo remodeling throughout life, laying the foundation for future studies of the functional role of this developmental plasticity.
Collapse
Affiliation(s)
- Jordane Malaterre
- CNRS/NMDA, 31 Chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
88
|
Machon O, van den Bout CJ, Backman M, Røsok Ø, Caubit X, Fromm SH, Geronimo B, Krauss S. Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience 2002; 112:951-66. [PMID: 12088753 DOI: 10.1016/s0306-4522(02)00053-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drosophila dachshund is involved in development of eye and limbs and in the development of mushroom bodies, a brain structure required for learning and memory in flies. Its mouse homologue mDach1 is expressed in various embryonic tissues, including limbs, the eye, the dorsal spinal cord and the forebrain. We have isolated a forebrain-specific 2.5-kb enhancer element termed D6 from the mouse mDach1 gene and created D6-LacZ and D6-green fluorescent protein (GFP) reporter gene mouse lines. In embryonic stages, the D6 enhancer activity is first detected at embryonic day 10.5 in scattered cells of the outbuldging cortical vesicles. By embryonic day 12.5, D6 activity expands throughout the developing neocortex and the hippocampus. In the adult mouse brain, D6 enhancer is active in neurons of the cortical plate, in the CA1 layer of the hippocampus and in cells of the subventricular zone and the ventricular ependymal zone. Adult mice also show D6 activity in the olfactory bulb and in the mamillary nucleus. Cultured D6-positive cells, which were derived from embryonic and postnatal brains, show characteristics of neural stem cells. They form primary and secondary neurospheres that differentiate into neurons and astrocytes as examined by cell-specific markers.Our results show that D6 enhancer exerts highly tissue-specific activity in the neurons of the neocortex and hippocampus and in neural stem cells. Moreover, the fluorescence cell sorting of D6-GFP cells from embryonic and postnatal stages allows specific selection of primary neural progenitors and their analysis.
Collapse
Affiliation(s)
- O Machon
- The National Hospital, Institute of Microbiology, Section for Gene Therapy, Room A3.3013, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Niimi T, Clements J, Gehring WJ, Callaerts P. Dominant-negative form of the Pax6 homolog eyeless for tissue-specific loss-of-function studies in the developing eye and brain in drosophila. Genesis 2002; 34:74-5. [PMID: 12324952 DOI: 10.1002/gene.10140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- T Niimi
- Department of Cell Biology, Biozentrum, Basel, Switzerland
| | | | | | | |
Collapse
|
90
|
Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS. Structure of the retinal determination protein Dachshund reveals a DNA binding motif. Structure 2002; 10:787-95. [PMID: 12057194 DOI: 10.1016/s0969-2126(02)00769-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Dachshund proteins are essential components of a regulatory network controlling cell fate determination. They have been implicated in eye, limb, brain, and muscle development. These proteins cannot be assigned to any recognizable structural or functional class based on amino acid sequence analysis. The 1.65 A crystal structure of the most conserved domain of human DACHSHUND is reported here. The protein forms an alpha/beta structure containing a DNA binding motif similar to that found in the winged helix/forkhead subgroup of the helix-turn-helix family. This unexpected finding alters the previously proposed molecular models for the role of Dachshund in the eye determination pathway. Furthermore, it provides a rational framework for future mechanistic analyses of the Dachshund proteins in several developmental contexts.
Collapse
Affiliation(s)
- Seung-Sup Kim
- Structural Biology Program, Skirball Institute, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
91
|
Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, Gonzalez-Linares J, Deri P, Saló E. The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 2002; 129:1423-34. [PMID: 11880351 DOI: 10.1242/dev.129.6.1423] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the presence of two Pax6-related genes, Pax6A and Pax6B, which are highly conserved in two planarian species Dugesia japonica and Girardia tigrina (Platyhelminthes, Tricladida). Pax6A is more similar to other Pax6 proteins than Pax6B, which is the most divergent Pax6 described so far. The planarian Pax6 homologs do not show any clear orthology to the Drosophila duplicated Pax6 genes, eyeless and twin of eyeless, which suggests an independent Pax6 duplication in a triclad or platyhelminth ancestor. Pax6A is expressed in the central nervous system of intact planarians, labeling a subset of cells of both cephalic ganglia and nerve cords, and is activated during cephalic regeneration. Pax6B follows a similar pattern, but shows a lower level of expression. Pax6A and Pax6B transcripts are detected in visual cells only at the ultrastructural level, probably because a limited amount of transcripts is present in these cells. Inactivation of both Pax6A and Pax6B by RNA-mediated gene interference (RNAi) inhibits neither eye regeneration nor eye maintenance, suggesting that the genetic network that controls this process is not triggered by Pax6 in planarians.
Collapse
Affiliation(s)
- David Pineda
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Jefferis GSXE, Marin EC, Watts RJ, Luo L. Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr Opin Neurobiol 2002; 12:80-6. [PMID: 11861168 DOI: 10.1016/s0959-4388(02)00293-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent advances in the study of the connectivity of Drosophila olfactory system include the demonstration that olfactory receptor neurons project to specific glomeruli according to the receptor type they express, and that their projection neuron partners are prespecified to innervate particular glomeruli by birth order or time. This same theme of sequential generation has been observed in the generation of the three major types of mushroom body neurons.
Collapse
|
93
|
Heanue TA, Davis RJ, Rowitch DH, Kispert A, McMahon AP, Mardon G, Tabin CJ. Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes. Mech Dev 2002; 111:75-87. [PMID: 11804780 DOI: 10.1016/s0925-4773(01)00611-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.
Collapse
Affiliation(s)
- Tiffany A Heanue
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Kurusu M, Awasaki T, Masuda-Nakagawa LM, Kawauchi H, Ito K, Furukubo-Tokunaga K. Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II. Development 2002; 129:409-19. [PMID: 11807033 DOI: 10.1242/dev.129.2.409] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the arthropod brain. In order to understand the cellular and genetic processes that control the early development of MBs, we have performed high-resolution neuroanatomical studies of the embryonic and post-embryonic development of the Drosophila MBs. In the mid to late embryonic stages, the pioneer MB tracts extend along Fasciclin II (FAS II)-expressing cells to form the primordia for the peduncle and the medial lobe. As development proceeds, the axonal projections of the larval MBs are organized in layers surrounding a characteristic core, which harbors bundles of actin filaments. Mosaic analyses reveal sequential generation of the MB layers, in which newly produced Kenyon cells project into the core to shift to more distal layers as they undergo further differentiation. Whereas the initial extension of the embryonic MB tracts is intact, loss-of-function mutations of fas II causes abnormal formation of the larval lobes. Mosaic studies demonstrate that FAS II is intrinsically required for the formation of the coherent organization of the internal MB fascicles. Furthermore, we show that ectopic expression of FAS II in the developing MBs results in severe lobe defects, in which internal layers also are disrupted. These results uncover unexpected internal complexity of the larval MBs and demonstrate unique aspects of neural generation and axonal sorting processes during the development of the complex brain centers in the fruit fly brain.
Collapse
Affiliation(s)
- Mitsuhiko Kurusu
- Institute of Biological Sciences, and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Bonini NM, Fortini ME. Applications of the Drosophila retina to human disease modeling. Results Probl Cell Differ 2002; 37:257-75. [PMID: 25707079 DOI: 10.1007/978-3-540-45398-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nancy M Bonini
- Department of Biology, Howard Hughes Medical Institute, University of Pennsylvania, 415 S. University Avenue, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
96
|
Farris SM, Strausfeld NJ. Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. J Comp Neurol 2001; 439:331-51. [PMID: 11596058 DOI: 10.1002/cne.1354] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mushroom bodies of the insect brain are lobed integration centers made up of tens of thousands of parallel-projecting axons of intrinsic (Kenyon) cells. Most of the axons in the medial and vertical lobes of adult cockroach mushroom bodies derive from class I Kenyon cells and are organized into regular, alternating pairs (doublets) of pale and dark laminae. Organization of Kenyon cell axons into the adult pattern of laminae occurs gradually over the course of nymphal development. Newly hatched nymphs possess tiny mushroom bodies with lobes containing a posterior lamina of ingrowing axons, followed by a single doublet, which is flanked anteriorly by a gamma layer composed of class II Kenyon cells. Golgi impregnations show that throughout nymphal development, regardless of the number of doublets present, the most posterior lamina serves as the "ingrowth lamina" for axons of newborn Kenyon cells. Axons of the ingrowth lamina are taurine- and synaptotagmin-immunonegative. They produce fine growth cone tipped filaments and long perpendicularly oriented collaterals along their length. The maturation of these Kenyon cells and the formation of a new lamina are marked by the loss of filaments and collaterals, as well as the onset of taurine and synaptotagmin expression. Class I Kenyon cells thus show plasticity in both morphology and transmitter expression during development. In a hemimetabolous insect such as the cockroach, juvenile stages are morphologically and behaviorally similar to the adult. The mushroom bodies of these insects must be functional from hatching onward, while thousands of new neurons are added to the existing structure. The observed developmental plasticity may serve as a mechanism by which extensive postembryonic development of the mushroom bodies can occur without disrupting function. This contrasts with the more evolutionarily derived holometabolous insects, such as the honey bee and the fruit fly, in which nervous system development is accomplished in a behaviorally simple larval stage and a quiescent pupal stage.
Collapse
Affiliation(s)
- S M Farris
- Division of Neurobiology, Arizona Research Laboratories, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
97
|
Ayres JA, Shum L, Akarsu AN, Dashner R, Takahashi K, Ikura T, Slavkin HC, Nuckolls GH. DACH: genomic characterization, evaluation as a candidate for postaxial polydactyly type A2, and developmental expression pattern of the mouse homologue. Genomics 2001; 77:18-26. [PMID: 11543628 DOI: 10.1006/geno.2001.6618] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene DACH is a human homologue of Drosophila melanogaster dachshund (dac), which encodes a nuclear factor essential for determining cell fates in the eye, leg, and nervous system of the fly. To investigate possible connections between DACH and inherited developmental disorders, we have characterized the human DACH genomic structure and investigated the tissue and cellular distribution of the mouse DACH1 protein during development. DACH spans 400 kb and is encoded by 12 exons. The predominant DACH transcript is 5.2 kb and encodes a 706-amino-acid protein with an observed molecular weight of 97 kDa.DACH mRNA was detected in multiple adult human tissues including kidney and heart. The mouse DACH1 protein was immunolocalized to specific cell types within the developing kidneys, eyes, cochleae, and limb buds. Data suggest genetic linkage of the limb bud patterning defect postaxial polydactyly type A (designated PAP-A2, MIM 602085) to a 28-cM interval on chromosome 13 that includes DACH. However, mutation analysis of DACH in this PAP-A2 pedigree revealed no sequence differences in the coding region, splice sites, or proximal promoter region. The data presented will allow for the analysis of DACH as a candidate for other developmental disorders affecting the limbs, kidneys, eyes, ears, and other sites of DACH expression.
Collapse
Affiliation(s)
- J A Ayres
- Craniofacial Development Section, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-2745, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Hsiao FC, Williams A, Davies EL, Rebay I. Eyes absent mediates cross-talk between retinal determination genes and the receptor tyrosine kinase signaling pathway. Dev Cell 2001; 1:51-61. [PMID: 11703923 DOI: 10.1016/s1534-5807(01)00011-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eyes absent (eya) encodes a member of a network of nuclear transcription factors that promotes eye development in both vertebrates and invertebrates. Despite extensive studies, the molecular mechanisms whereby cell-cell signaling pathways coordinate the function of this retinal determination gene network remain unknown. Here, we report that Drosophila Eya function is positively regulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation and that this regulation extends to developmental contexts independent of eye determination. In vivo genetic analyses, together with in vitro kinase assay results, demonstrate that Eya is a substrate for extracellular signal-regulated kinase, the MAPK acting downstream in the receptor tyrosine kinase (RTK) signaling pathway. Thus, phosphorylation of Eya appears to provide a direct regulatory link between the RTK/Ras/MAPK signaling cascade and the retinal determination gene network.
Collapse
Affiliation(s)
- F C Hsiao
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | | | | | |
Collapse
|
99
|
Abstract
castor (cas) encodes a zink finger protein expressed in a subset of Drosophila embryonic neuroglioblasts where it controls neuronal differentiation. We show here that cas is expressed at larval and pupal stages in brain cell clusters where it participates in the elaboration of the adult structures. In particular using the MARCM system (mosaic analysis with a repressible cell marker), we show that cas is required postembryonically for correct axon pathfinding of the central complex (CX) and mushroom body (MB) neurons. The linotte (lio) gene encodes a transmembrane protein expressed at larval/pupal stage in a glial structure, the TIFR, and interacts with the no-bridge (nob) gene. We show that cas interacts genetically with lio and nob. These interactions do not involve direct transcription regulation but probably cellular communication processes.
Collapse
Affiliation(s)
- R Hitier
- D.E.P.S.N. Institut de Neurobiologie Alfred Fessard, C.N.R.S., 1 avenue de la terrasse, 91190 Gif/Yvette, France
| | | | | |
Collapse
|
100
|
Kammermeier L, Leemans R, Hirth F, Flister S, Wenger U, Walldorf U, Gehring WJ, Reichert H. Differential expression and function of the Drosophila Pax6 genes eyeless and twin of eyeless in embryonic central nervous system development. Mech Dev 2001; 103:71-8. [PMID: 11335113 DOI: 10.1016/s0925-4773(01)00328-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analyzed the expression and function of eyeless (ey) and twin of eyeless (toy) in the embryonic central nervous system (CNS) of Drosophila. Both genes are differentially expressed in specific neuronal subsets (but not in glia) in every CNS neuromere, and in the brain, specific cell populations co-expressing both proteins define a longitudinal domain which is intercalated between broad exclusive expression domains of ey and toy. Studies of genetic null alleles and dsRNA interference did not reveal any gross neuroanatomical effects of ey, toy, or ey/toy elimination in the embryonic CNS. In contrast, targeted misexpression of ey, but not of toy, resulted in profound axonal abnormalities in the embryonic ventral nerve cord and brain.
Collapse
Affiliation(s)
- L Kammermeier
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|