51
|
Abstract
Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) has become the gold standard for whole-genome mapping of protein-DNA interactions. However, conventional ChIP protocols necessitate the use of large numbers of cells, and library preparation steps associated with current high-throughput sequencing platforms require substantial amounts of DNA; both of these factors preclude the application of ChIP-seq technology to many biologically important but rare cell types. Here we describe a nano-ChIP-seq protocol that combines a high-sensitivity small-scale ChIP assay and a tailored procedure for generating high-throughput sequencing libraries from scarce amounts of ChIP DNA. In terms of the numbers of cells required, the method provides two to three orders of magnitude of improvement over the conventional ChIP-seq method and the entire procedure can be completed within 4 d.
Collapse
|
52
|
Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return. Semin Immunol 2011; 23:335-40. [PMID: 21944938 DOI: 10.1016/j.smim.2011.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 08/19/2011] [Indexed: 02/07/2023]
Abstract
Even though B-lymphocyte development is one of the best understood models for cell differentiation in the hematopoetic system, recent advances in cell sorting and functional genomics has increased this understanding further. This has suggested that already early lymphoid primed multipotent progenitor cells (LMPPs) express low levels of lymphoid restricted transcripts. The expression of these genes becomes more pronounced when cells enter the FLT-3/IL-7 receptor positive common lymphoid progenitor (CLP) stage. However, the expression of B-lineage specific genes is limited to a B-cell restricted Ly6D surface positive subpopulation of the CLP compartment. The gene expression patterns also reflect differences in lineage potential and while Ly6D negative FLT-3/IL-7 receptor positive cells represents true CLPs with an ability to generate B/T and NK cells, the Ly6D positive cells lack NK cell potential and display a reduced T-cell potential in vivo. These recent findings suggest that the CLP compartment is highly heterogenous and that the point of no return in B-cell development may occur already in B220(-)CD19(-) cells. These findings have allowed for a better understanding of the interplay between transcription factors like EBF-1, PAX-5 and E47, all known as crucial for normal B-cell development. In this review, we aim to provide a comprehensive overview of B-cell fate specification and commitment based on the recent advances in the understanding of molecular networks as well as functional properties of early progenitor populations.
Collapse
Affiliation(s)
- Eva Welinder
- Lund Stem Cell Center, BMC B10, 221 84 Lund, Sweden
| | | | | |
Collapse
|
53
|
Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol Cell 2011; 44:17-28. [PMID: 21924933 DOI: 10.1016/j.molcel.2011.08.026] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/19/2011] [Accepted: 08/26/2011] [Indexed: 01/11/2023]
Abstract
DNA methylation has been implicated as an epigenetic component of mechanisms that stabilize cell-fate decisions. Here, we have characterized the methylomes of human female hematopoietic stem/progenitor cells (HSPCs) and mature cells from the myeloid and lymphoid lineages. Hypomethylated regions (HMRs) associated with lineage-specific genes were often methylated in the opposing lineage. In HSPCs, these sites tended to show intermediate, complex patterns that resolve to uniformity upon differentiation, by increased or decreased methylation. Promoter HMRs shared across diverse cell types typically display a constitutive core that expands and contracts in a lineage-specific manner to fine-tune the expression of associated genes. Many newly identified intergenic HMRs, both constitutive and lineage specific, were enriched for factor binding sites with an implied role in genome organization and regulation of gene expression, respectively. Overall, our studies represent an important reference data set and provide insights into directional changes in DNA methylation as cells adopt terminal fates.
Collapse
|
54
|
Geng T, Bao N, Litt MD, Glaros TG, Li L, Lu C. Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. LAB ON A CHIP 2011; 11:2842-8. [PMID: 21750827 DOI: 10.1039/c1lc20253g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Histone modifications are important epigenetic mechanisms involved in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) assay serves as the primary technique to characterize the genomic locations associated with histone modifications. However, traditional tube-based ChIP assays rely on large numbers of cells as well as laborious and time-consuming procedures. Here we demonstrate a novel microfluidics-based native ChIP assay which dramatically reduces the required cell number and the assay time by conducting cell collection, lysis, chromatin fragmentation, immunoprecipitation, and washing on a microchip. Coupled with real-time PCR, our assay permits the analysis of histone modifications from as few as ~50 cells within 8.5 h. We envision that our method will provide a new approach for the analysis of epigenetic regulations and protein-DNA interactions in general, based on scarce cell samples such as those derived from animals and patients.
Collapse
Affiliation(s)
- Tao Geng
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
55
|
Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K, Mulloy JC, Hsi E, Maciejewski J, Saunthararajah Y. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 2011; 26:244-54. [PMID: 21836612 PMCID: PMC3217177 DOI: 10.1038/leu.2011.207] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine.
Collapse
Affiliation(s)
- S Negrotto
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Recent advances in epigenetics have enhanced our knowledge of how environmental factors (UV radiation, drugs, infections, etc.) contribute to the development of autoimmune diseases (AID) in genetically predisposed individuals. Studies conducted in monozygotic twins discordant for AID and spontaneous autoimmune animal models have highlighted the importance of DNA methylation changes and histone modifications. Alterations in the epigenetic pattern seem to be cell specific, as CD4+ T cells and B cells are dysregulated in systemic lupus erythematosus, synovial fibroblasts in rheumatoid arthritis and cerebral cells in multiple sclerosis. With regard to lymphocytes, the control of tolerance is affected, leading to the development of autoreactive cells. Other epigenetic processes, such as the newly described miRNAs, and post-translational protein modifications may also be suspected. Altogether, a conceptual revolution is in progress, in AID, with potential new therapeutic strategies targeting epigenetic patterns.
Collapse
|
57
|
Abstract
Cells of the immune system are generated through a developmental cascade that begins in haematopoietic stem cells. During this process, gene expression patterns are programmed in a series of stages that bring about the restriction of cell potential, ultimately leading to the formation of specialized innate immune cells and mature lymphocytes that express antigen receptors. These events involve the regulation of both gene expression and DNA recombination, mainly through the control of chromatin accessibility. In this Review, we describe the epigenetic changes that mediate this complex differentiation process and try to understand the logic of the programming mechanism.
Collapse
|
58
|
Obier N, Uhlemann CF, Müller AM. Inhibition of histone deacetylases by Trichostatin A leads to a HoxB4-independent increase of hematopoietic progenitor/stem cell frequencies as a result of selective survival. Cytotherapy 2011; 12:899-908. [PMID: 20210674 DOI: 10.3109/14653240903580254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND DNA and chromatin modifications are critical mediators in the establishment and maintenance of cell type-specific gene expression patterns that constitute cellular identities. One type of modification, the acetylation and deacetylation of histones, occurs reversibly on lysine ε-NH₃(+) groups of core histones via histone acetyl transferases (HAT) and histone deacetylases (HDAC). Hyperacetylated histones are associated with active chromatin domains, whereas hypoacetylated histones are enriched in non-transcribed loci. METHODS We analyzed global histone H4 acetylation and HDAC activity levels in mature lineage marker-positive (Lin(+)) and progenitor lineage marker-negative (Lin⁻) hematopoietic cells from murine bone marrow (BM). In addition, we studied the effects of HDAC inhibition on hematopoietic progenitor/stem cell (HPSC) frequencies, cell survival, differentiation and HoxB4 dependence. RESULTS We observed that Lin⁻ and Lin(+) cells do not differ in global histone H4 acetylation but in HDAC activity levels. Further, we saw that augmented histone acetylation achieved by transient Trichostatin A (TSA) treatment increased the frequency of cells with HPSC immunophenotype and function in the heterogeneous pool of BM cells. Induction of histone hyperacetylation in differentiated BM cells was detrimental, as evidenced by preferential death of mature BM cells upon HDAC inhibition. Finally, TSA treatment of BM cells from HoxB4(-/-) mice revealed that the HDAC inhibitor-mediated increase in HPSC frequencies was independent of HoxB4. CONCLUSIONS Overall, these data indicate the potential of chromatin modifications for the regulation of HPSC. Chromatin-modifying agents may provide potential strategies for ex vivo expansion of HPSC.
Collapse
Affiliation(s)
- Nadine Obier
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
59
|
AFT024 cell line in co-culture system using high pore density insert (HPDI) maintains hematopoietic stem/progenitor cells (HSCs/HPCs) as more primitive state through histone modification. Transplant Proc 2011; 42:4611-8. [PMID: 21168747 DOI: 10.1016/j.transproceed.2010.09.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 08/20/2010] [Accepted: 09/28/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND It has been shown that the AFT024 stromal cell line sustains the engraftment capacity of human hematopoietic progenitor cells (HPCs) in vitro. However, the process by which AFT024 cell line maintains human HPCs is a more primitive state ex vivo remains unclear. METHODS Human umbilical cord blood (UCB)-derived fluorescent activated cell sorter (FACS)-purified CD34(+) CD38(-)hsc/HPCs were cultured with cytokines on hpdi (0.4 micron pore size) coated with irradiated AFT024 cells. The HSC/HPC and AFT024 cells contacted each other through 0.4 micron pores on HPDI membranes; the irradiated AFT024 cells could not migrate through the HPDI to contaminate the HSC/HPC. The frequency of CD34(+)Lin(-) cells was determined as HSCs/HPCs using flow cytometry. To evaluate their engraftment potential in vivo, the co-cultured cells were assayed as Long Term Culture-Initiating Cells (LTC-IC). To understand the process whereby AFT024 cells govern enhanced engraftment, we employed Western blot analysis for histone modifications. RESULTS There was a 30-fold increase in frequency of CD34(+)Lin(-) cells in co-cultures on HPDI coated on the outer bottom surface with irradiated AFT024 cells and cytokines in contrast to 6-fold among controls. Total colonies from LTC-IC increased approximately 1.5-fold among cells cultured with AFT024, compared with controls. More importantly, cells co-cultured with AFT024 showed a more primitive state with over-methylated h3k4 (Me-H3K4), under-methylated h3k9 (Di-Me-H3K4), and over-acetylated h4 (Ac-H4) compared with controls. CONCLUSION Our results suggested that co-culture of the AFT024 cell line with HPDI maintained hematopoietic progenitors as a more primitive state through histone modification.
Collapse
|
60
|
Profiling epigenetic alterations in disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:162-77. [PMID: 21627049 DOI: 10.1007/978-1-4419-8216-2_12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nowadays, epigenetics is one of the fastest growing research areas in biomedicine. Studies have demonstrated that changes in the epigenome are not only common in cancer, but are also involved in the pathogenesis of noncancerous diseases like immunological, cardiovascular, developmental and neurological/psychiatric disorders. At the same time, during the last years, a technological revolution has taken place in the field of epigenomics, which is defined as the study of epigenetic changes throughout the whole genome. Microarray technologies and more recently, the development of next generation sequencing devices are now providing researchers with tools to draw high-resolution maps of DNA methylation and histone modifications in normal tissues and diseases. This chapter will review the currently available high-throughput techniques for studying the epigenome and their applications for characterizing human diseases.
Collapse
|
61
|
Lopez-Granados E. Epigenetic Control of Lymphocyte Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:26-35. [DOI: 10.1007/978-1-4419-8216-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
62
|
Abstract
Chromatin immunoprecipitation (ChIP) is a widely used technique to get a snap-shot of protein-DNA interactions in cells. ChIP has notably been used for mapping the location of modified histones, transcription factors, or chromatin remodeling enzymes in the genome, often in relation to transcription or differentiation. Conventional ChIP protocols however, have for a long time required large numbers of cells, which has limited the applicability of ChIP to rare or small cell samples. In recent years, ChIP assays for small cell numbers (in the 10,000-100,000 range) have been recently reported by us and others. This chapter describes a micro (μ)ChIP procedure for multiple parallel ChIPs from a single chromatin batch from 1,000 cells.
Collapse
Affiliation(s)
- Philippe Collas
- University of Oslo, Institute of Basic Medical Sciences & Norwegian Center for Stem Cell Research, Oslo, Norway.
| |
Collapse
|
63
|
Abstract
AbstractNumerous epigenetic modifications have been identified and correlated with transcriptionally active euchromatin or repressed heterochromatin and many enzymes responsible for the addition and removal of these marks have been characterized. However, less is known regarding how these enzymes are regulated and targeted to appropriate genomic locations. Mammalian CXXC finger protein 1 is an epigenetic regulator that was originally identified as a protein that binds specifically to any DNA sequence containing an unmethylated CpG dinucleotide. Mouse embryos lacking CXXC finger protein 1 die prior to gastrulation, and embryonic stem cells lacking CXXC finger protein 1 are viable but are unable to achieve cellular differentiation and lineage commitment. CXXC finger protein 1 is a regulator of both cytosine and histone methylation. It physically interacts with DNA methyltransferase 1 and facilitates maintenance cytosine methylation. Rescue studies reveal that CXXC finger protein 1 contains redundant functional domains that are sufficient to support cellular differentiation and proper levels of cytosine methylation. CXXC finger protein 1 is also a component of the Setd1 histone H3-Lys4 methyltransferase complexes and functions to target these enzymes to unmethylated CpG islands. Depletion of CXXC finger protein 1 leads to loss of histone H3-Lys4 tri-methylation at CpG islands and inappropriate drifting of this euchromatin mark into areas of hetero-chromatin. Thus, one function of CXXC finger protein 1 is to serve as an effector protein that interprets cytosine methylation patterns and facilitates crosstalk with histone-modifying enzymes.
Collapse
Affiliation(s)
- David G. Skalnik
- 1Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
64
|
Huang K, Fan G. DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med 2010; 5:531-44. [PMID: 20632857 DOI: 10.2217/rme.10.35] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells have the unique ability to indefinitely self-renew and differentiate into any cell type found in the adult body. Differentiated cells can, in turn, be reprogrammed to embryonic stem-like induced pluripotent stem cells, providing exciting opportunities for achieving patient-specific stem cell therapy while circumventing immunological obstacles and ethical controversies. Since both differentiation and reprogramming are governed by major changes in the epigenome, current directions in the field aim to uncover the epigenetic signals that give pluripotent cells their unique properties. DNA methylation is one of the major epigenetic factors that regulates gene expression in mammals and is essential for establishing cellular identity. Recent analyses of pluripotent and somatic cell methylomes have provided important insights into the extensive role of DNA methylation during cell-fate commitment and reprogramming. In this article, the recent progress of differentiation and reprogramming research illuminated by high-throughput studies is discussed in the context of DNA methylation.
Collapse
Affiliation(s)
- Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7088, USA
| | | |
Collapse
|
65
|
Zandi S, Bryder D, Sigvardsson M. Load and lock: the molecular mechanisms of B-lymphocyte commitment. Immunol Rev 2010; 238:47-62. [DOI: 10.1111/j.1600-065x.2010.00950.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
66
|
Abstract
The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large numbers of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify sample handling and make ChIP amenable to small numbers of cells. In addition, the combination of ChIP with DNA microarray and high-throughput sequencing technologies has in recent years enabled the profiling of histone modification, histone variants, and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.
Collapse
|
67
|
|
68
|
Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 2010; 8:1074-83. [PMID: 20663859 PMCID: PMC2923682 DOI: 10.1158/1541-7786.mcr-09-0495] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major obstacle for the effective treatment of cancer is the invasive capacity of the tumor cells. Previous studies have shown the capability of mesenchymal stem cells (MSC) to target these disseminated tumor cells and to serve as therapeutic delivery vehicles. However, the molecular mechanisms that would enhance the migration of MSCs toward tumor areas are not well understood. In particular, very little is known about the role that epigenetic mechanisms play in cell migration and tropism of MSCs. In this study, we investigated whether histone deacetylation was involved in the repression of urokinase plasminogen activator (uPA) expression in MSCs derived from umbilical cord blood (CB) and bone marrow (BM). Induction of uPA expression by histone deacetylase inhibitors trichostatin A and sodium butyrate was observed in CB- and BM-derived MSCs examined. In vitro migration assays showed that induction of uPA expression by histone deacetylase inhibitors in CB- and BM-derived MSCs significantly enhanced tumor tropism of these cells. Furthermore, overexpression of uPA in CB-MSCs induced migration capacity toward human cancer cells in vitro. In addition, our results showed that uPA-uPAR knockdown in PC3 prostate cancer cells significantly inhibited tumor-specific migration of uPA-overexpressing MSCs. These results have significant implications for the development of MSC-mediated, tumor-selective gene therapies.
Collapse
Affiliation(s)
- Sai Murali Krishna Pulukuri
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
| | - Bharathi Gorantla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
| | - Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
| | - Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605
| |
Collapse
|
69
|
Adli M, Zhu J, Bernstein BE. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 2010; 7:615-8. [PMID: 20622861 PMCID: PMC2924612 DOI: 10.1038/nmeth.1478] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/28/2010] [Indexed: 12/15/2022]
Abstract
Current methods for whole-genome mapping of protein-DNA interactions, performed by coupling chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), require large amounts of starting materials, which precludes their application to rare cell types. Here we combine a high-sensitivity ChIP assay with a new library preparation procedure to map histone modifications in as few as 10,000 cells. We used the technique to characterize mouse hematopoietic progenitors and thereby gain insight into their developmental program.
Collapse
Affiliation(s)
- Mazhar Adli
- Howard Hughes Medical Institute, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
70
|
Akizu N, Estarás C, Guerrero L, Martí E, Martínez-Balbás MA. H3K27me3 regulates BMP activity in developing spinal cord. Development 2010; 137:2915-25. [PMID: 20667911 DOI: 10.1242/dev.049395] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During spinal cord development, the combination of secreted signaling proteins and transcription factors provides information for each neural type differentiation. Studies using embryonic stem cells show that trimethylation of lysine 27 of histone H3 (H3K27me3) contributes to repression of many genes key for neural development. However, it remains unclear how H3K27me3-mediated mechanisms control neurogenesis in developing spinal cord. Here, we demonstrate that H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. Our study indicates that expression of Noggin, a BMP extracellular inhibitor, is repressed by H3K27me3. Moreover, we show that Noggin expression is induced by BMP pathway signaling, generating a negative-feedback regulatory loop. In response to BMP pathway activation, JMJD3 histone demethylase interacts with the Smad1/Smad4 complex to demethylate and activate the Noggin promoter. Together, our data reveal how the BMP signaling pathway restricts its own activity in developing spinal cord by modulating H3K27me3 levels at the Noggin promoter.
Collapse
Affiliation(s)
- Naiara Akizu
- Department of Genomic Regulation, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Baldiri i Reixac 15-21, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
71
|
Stem cells and the aging hematopoietic system. Curr Opin Immunol 2010; 22:500-6. [PMID: 20650622 DOI: 10.1016/j.coi.2010.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/15/2010] [Indexed: 12/26/2022]
Abstract
Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.
Collapse
|
72
|
Weishaupt H, Attema JL. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP-Chip. Biol Proced Online 2010; 12:1-17. [PMID: 21406121 PMCID: PMC3396287 DOI: 10.1007/s12575-010-9031-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/21/2010] [Indexed: 12/18/2022] Open
Abstract
Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip), we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions.
Collapse
Affiliation(s)
- Holger Weishaupt
- Immunology Unit, Institute for Experimental Medical Science, BMC D14, Lund University, 221 84, Lund, Sweden.
| | | |
Collapse
|
73
|
Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 2010; 2009:pdb.prot5279. [PMID: 20147264 DOI: 10.1101/pdb.prot5279] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Papathanasiou P, Attema JL, Karsunky H, Hosen N, Sontani Y, Hoyne GF, Tunningley R, Smale ST, Weissman IL. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 2010; 27:3082-92. [PMID: 19816952 DOI: 10.1002/stem.232] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cells (HSCs) are rare, ancestral cells that underlie the development, homeostasis, aging, and regeneration of the blood. Here we show that the chromatin-associated protein Ikaros is a crucial self-renewal regulator of the long-term (LT) reconstituting subset of HSCs. Ikaros, and associated family member proteins, are highly expressed in self-renewing populations of stem cells. Ikaros point mutant mice initially develop LT-HSCs with the surface phenotype cKit+Thy1.1(lo)Lin(-/lo)Sca1+Flk2-CD150+ during fetal ontogeny but are unable to maintain this pool, rapidly losing it within two days of embryonic development. A synchronous loss of megakaryocyte/erythrocyte progenitors results, along with a fatal, fetal anemia. At this time, mutation of Ikaros exerts a differentiation defect upon common lymphoid progenitors that cannot be rescued with an ectopic Notch signal in vitro, with hematopoietic cells preferentially committing to the NK lineage. Althoughdispensable for the initial embryonic development of blood, Ikaros is clearly needed for maintenance of this tissue. Achieving successful clinical tissue regeneration necessitates understanding degeneration, and these data provide a striking example by a discrete genetic lesion in the cells underpinning tissue integrity during a pivotal timeframe of organogenesis.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Walter K, Cockerill PN, Barlow R, Clarke D, Hoogenkamp M, Follows GA, Richards SJ, Cullen MJ, Bonifer C, Tagoh H. Aberrant expression of CD19 in AML with t(8;21) involves a poised chromatin structure and PAX5. Oncogene 2010; 29:2927-37. [DOI: 10.1038/onc.2010.56] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
76
|
Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A, Rus H. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol 2010; 88:67-76. [PMID: 19883641 PMCID: PMC2815209 DOI: 10.1016/j.yexmp.2009.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
First described as a cell cycle activator, RGC-32 is both an activator and a substrate for CDC2. Deregulation of RGC-32 expression has been detected in a wide variety of human cancers. We have now shown that RGC-32 is expressed in precancerous states, and its expression is significantly higher in adenomas than in normal colon tissue. The expression of RGC-32 was higher in advanced stages of colon cancer than in precancerous states or the initial stages of colon cancer. In order to identify the genes that are regulated by RGC-32, we used gene array analysis to investigate the effect of RGC-32 knockdown on gene expression in the SW480 colon cancer cell line. Of the 230 genes that were differentially regulated after RGC-32 knockdown, a group of genes involved in chromatin assembly were the most significantly regulated in these cells: RGC-32 knockdown induced an increase in acetylation of histones H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. RGC-32 silencing was also associated with decreased expression of SIRT1 and decreased trimethylation of histone H3K27 (H3K27me3). In addition, RGC-32 knockdown caused a significantly higher percentage of SW480 cells to enter S phase and subsequently G2/M. These data suggest that RGC-32 may contribute to the development of colon cancer by regulating chromatin assembly.
Collapse
Affiliation(s)
- Sonia I. Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cosmin A. Tegla
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cornelia D. Cudrici
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Fosbrink
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vingh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philippe Azimzadeh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Abulkalam Shamsuddin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
77
|
Park SW, Huang WH, Persaud SD, Wei LN. RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acids Res 2010; 37:7085-94. [PMID: 19778926 PMCID: PMC2790899 DOI: 10.1093/nar/gkp780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular retinoic acid binding protein 1 (Crabp1) gene is biphasically (proliferation versus differentiation) regulated by thyroid hormone (T3) in 3T3-L1 cells. This study examines T3-repression of Crabp1 gene during adipocyte differentiation. T3 repression of Crabp1 requires receptor interacting protein 140 (RIP140). During differentiation, the juxtaposed chromatin configuration of Crabp1 promoter with its upstream region is maintained, but the 6-nucleosomes spanning thyroid hormone response element to transcription initiation site slide bi-directionally, with the third nucleosome remaining at the same position throughout differentiation. On the basal promoter, RIP140 replaces coactivators GRIP1 and PCAF and forms a repressive complex with CtBP1, HDAC3 and G9a. Initially active chromatin marks on this promoter, histone modifications H3-Ac and H3K4-me3, are weakened whereas repressive chromatin marks, H3K9-me3 and H3K27-me3 modification and recruitment of G9a, HP1α, HP1γ and H1, are intensified. This is the first study to examine chromatin remodeling, during the phase of hormone repression, of a bi-directionally regulated hormone target gene, and provides evidence for a functional role of RIP140 in chromatin remodeling to repress hormone target gene expression.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
78
|
Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 2010; 5:e8785. [PMID: 20098702 PMCID: PMC2808351 DOI: 10.1371/journal.pone.0008785] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/20/2009] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) are rare, multipotent cells capable of generating all specialized cells of the blood system. Appropriate regulation of HSC quiescence is thought to be crucial to maintain their lifelong function; however, the molecular pathways controlling stem cell quiescence remain poorly characterized. Likewise, the molecular events driving leukemogenesis remain elusive. In this study, we compare the gene expression profiles of steady-state bone marrow HSC to non-self-renewing multipotent progenitors; to HSC treated with mobilizing drugs that expand the HSC pool and induce egress from the marrow; and to leukemic HSC in a mouse model of chronic myelogenous leukemia. By intersecting the resulting lists of differentially regulated genes we identify a subset of molecules that are downregulated in all three circumstances, and thus may be particularly important for the maintenance and function of normal, quiescent HSC. These results identify potential key regulators of HSC and give insights into the clinically important processes of HSC mobilization for transplantation and leukemic development from cancer stem cells.
Collapse
|
79
|
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, Denardo D, Bernstein HS, Ritner C, Golovko D, Lu Y, Zhao S, Daldrup-Link HE. Labeling Human Embryonic Stem Cell-Derived Cardiomyocytes with Indocyanine Green for Noninvasive Tracking with Optical Imaging: An FDA-Compatible Alternative to Firefly Luciferase. Cell Transplant 2010. [DOI: 10.3727/096368909x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have demonstrated the ability to improve myocardial function following transplantation into an ischemic heart; however, the functional benefits are transient possibly due to poor cell retention. A diagnostic technique that could visualize transplanted hESC-CMs could help to optimize stem cell delivery techniques. Thus, the purpose of this study was to develop a labeling technique for hESCs and hESC-CMs with the FDA-approved contrast agent indocyanine green (ICG) for optical imaging (OI). hESCs were labeled with 0.5, 1.0, 2.0, and 2.5 mg/ml of ICG for 30, 45, and 60 min at 37°C. Longitudinal OI studies were performed with both hESCs and hESC-CMs. The expression of surface proteins was assessed with immunofluorescent staining. hESCs labeled with 2 mg ICG/ml for 60 min achieved maximum fluorescence. Longitudinal studies revealed that the fluorescent signal was equivalent to controls at 120 h postlabeling. The fluorescence signal of hESCs and hESC-CMs at 1, 24, and 48 h was significantly higher compared to precontrast data ( p < 0.05). Immunocytochemistry revealed retention of cell-specific surface and nuclear markers postlabeling. These data demonstrate that hESCs and hESC-CMs labeled with ICG show a significant fluorescence up to 48 h and can be visualized with OI. The labeling procedure does not impair the viability or functional integrity of the cells. The technique may be useful for assessing different delivery routes in order to improve the engraftment of transplanted hESC-CMs or other stem cell progenitors.
Collapse
Affiliation(s)
| | - Tobias D. Henning
- Department of Radiology, University of California, San Francisco, CA, USA
- Department of Radiology, Technical University of Munich, Munich, Germany
| | - Priyanka Jha
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Christopher R. Schlieve
- Gladstone Institute of Cardiovascular Disease, Gladstone Stem Cell Core, University of California, San Francisco, CA, USA
| | - Lydia Mandrussow
- Department of Radiology, University of California, San Francisco, CA, USA
| | - David Denardo
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carissa Ritner
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Daniel Golovko
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Ying Lu
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Shoujun Zhao
- Department of Radiology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
80
|
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, DeNardo D, Bernstein HS, Ritner C, Golovko D, Lu Y, Zhao S, Daldrup-Link HE. Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 2010; 19:55-65. [PMID: 20370988 PMCID: PMC2939828 DOI: 10.3727/096368909x478579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have demonstrated the ability to improve myocardial function following transplantation into an ischemic heart; however, the functional benefits are transient possibly due to poor cell retention. A diagnostic technique that could visualize transplanted hESC-CMs could help to optimize stem cell delivery techniques. Thus, the purpose of this study was to develop a labeling technique for hESCs and hESC-CMs with the FDA-approved contrast agent indocyanine green (ICG) for optical imaging (OI). hESCs were labeled with 0.5, 1.0, 2.0, and 2.5 mg/ml of ICG for 30, 45, and 60 min at 37 degrees C. Longitudinal OI studies were performed with both hESCs and hESC-CMs. The expression of surface proteins was assessed with immunofluorescent staining. hESCs labeled with 2 mg ICG/ml for 60 min achieved maximum fluorescence. Longitudinal studies revealed that the fluorescent signal was equivalent to controls at 120 h postlabeling. The fluorescence signal of hESCs and hESC-CMs at 1, 24, and 48 h was significantly higher compared to precontrast data (p < 0.05). Immunocytochemistry revealed retention of cell-specific surface and nuclear markers postlabeling. These data demonstrate that hESCs and hESC-CMs labeled with ICG show a significant fluorescence up to 48 h and can be visualized with OI. The labeling procedure does not impair the viability or functional integrity of the cells. The technique may be useful for assessing different delivery routes in order to improve the engraftment of transplanted hESC-CMs or other stem cell progenitors.
Collapse
Affiliation(s)
- Sophie E Boddington
- Department of Radiology, University of California, San Francisco, CA 94107-0946, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Urodele amphibians and teleost fish regenerate amputated body parts via a process called epimorphic regeneration. A hallmark of this phenomenon is the reactivation of silenced developmental regulatory genes that previously functioned during embryonic patterning. We demonstrate that histone modifications silence promoters of numerous genes involved in zebrafish caudal fin regeneration. Silenced developmental regulatory genes contain bivalent me(3)K4/me(3)K27 H3 histone modifications created by the concerted action of Polycomb (PcG) and Trithorax histone methyltransferases. During regeneration, this silent, bivalent chromatin is converted to an active state by loss of repressive me(3)K27 H3 modifications, occurring at numerous genes that appear to function during regeneration. Loss-of-function studies demonstrate a requirement for a me(3)K27 H3 demethylase during fin regeneration. These results indicate that histone modifications at discreet genomic positions may serve as a crucial regulatory event in the initiation of fin regeneration.
Collapse
|
82
|
Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 2009; 115:247-56. [PMID: 19887676 DOI: 10.1182/blood-2009-07-235176] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heritable epigenetic signatures are proposed to serve as an important regulatory mechanism in lineage fate determination. To investigate this, we profiled chromatin modifications in murine hematopoietic stem cells, lineage-restricted progenitors, and CD4(+) T cells using modified genome-scale mini-chromatin immunoprecipitation technology. We show that genes involved in mature hematopoietic cell function associate with distinct chromatin states in stem and progenitor cells, before their activation or silencing upon cellular maturation. Many lineage-restricted promoters are associated with bivalent histone methylation and highly combinatorial histone modification patterns, which may determine their selective priming of gene expression during lineage commitment. These bivalent chromatin states are conserved in mammalian evolution, with a particular overrepresentation of promoters encoding key regulators of hematopoiesis. After differentiation into progenitors and T cells, activating histone modifications persist at transcriptionally repressed promoters, suggesting that these transcriptional programs might be reactivated after lineage restriction. Collectively, our data reveal the epigenetic framework that underlies the cell fate options of hematopoietic stem cells.
Collapse
|
83
|
Skvortsova YV, Azhikina TL, Stukacheva EA, Sverdlov ED. Studies on functional role of DNA methylation within the FXYD5-COX7A1 region of human chromosome 19. BIOCHEMISTRY (MOSCOW) 2009; 74:874-81. [PMID: 19817687 DOI: 10.1134/s0006297909080082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used the Rapid Identification of Genomic Splits technique to get a detailed methylation landscape of a 1-megabase-long human genome region (FXYD5-COX7A1, chromosome 19) in normal and tumor lung tissues and in the A549 lung cancer cell line. All three samples were characterized by an essentially uneven density of unmethylated sites along the fragment. Strikingly enough, the distribution of hypomethylated regions did not correlate with gene locations within the fragment. We also demonstrated that the methylation pattern of this long genomic DNA fragment was rather stable and practically unchanged in human lung cancer tissue as compared with its normal counterpart. On the other hand, the methylation landscape obtained for the A549 cell line (human lung carcinoma) in the USF2-MAG locus showed clear differences from that of the tissues mentioned above. A comparative analysis of transcriptional activity of the genes in this region demonstrated the general absence of direct correlation between methylation and expression, although some data suggest a possible role of methylation in the regulation of MAG expression through cis-regulatory elements. In total, our data provide new evidence for the necessity of revising currently prevailing views on the functional significance of methyl groups in genomic DNA.
Collapse
Affiliation(s)
- Y V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | |
Collapse
|
84
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
85
|
Papathanasiou P, Attema JL, Karsunky H, Xu J, Smale ST, Weissman IL. Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150. Stem Cells 2009; 27:2498-508. [PMID: 19593793 PMCID: PMC2783507 DOI: 10.1002/stem.170] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood is a tissue with a high cell turnover rate that is constantly being replenished by bone marrow hematopoietic stem cells (HSCs) seeded during fetal ontogeny from the liver. Here we show that the long-term (LT) reconstituting subset of cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) HSCs is CD150(+). HSCs sourced from the fetal liver show LT, multilineage engraftment from E14.5 onward, and the CD150 cell surface molecule can readily substitute Thy1.1 as a positive marker of LT-HSCs in this tissue. From both fetal liver and adult bone marrow, cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) CD150(+) cells exhibit robust LT competitive engraftment, self-renewal, multilineage differentiation capacity, and an accessible chromatin configuration consistent with high expression of erythroid/megakaryoid genes in purified cell subsets. Our data show that, with appropriate combinations of cell surface markers, stem cells can be accurately isolated to high purity and characterized. This is important for the clarification of lineage relationships and the identification of bona fide regulators of stem cell self-renewal and differentiation both in normal and neoplastic tissues.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Undifferentiated hematopoietic cells are characterized by a genome-wide undermethylation dip around the transcription start site and a hierarchical epigenetic plasticity. Blood 2009; 114:4968-78. [PMID: 19752395 DOI: 10.1182/blood-2009-01-197780] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence for the epigenetic regulation of hematopoietic stem cells (HSCs) is growing, but the genome-wide epigenetic signature of HSCs and its functional significance remain unclear. In this study, from a genome-wide comparison of CpG methylation in human CD34(+) and CD34(-) cells, we identified a characteristic undermethylation dip around the transcription start site of promoters and an overmethylation of flanking regions in undifferentiated CD34(+) cells. This "bivalent-like" CpG methylation pattern around the transcription start site was more prominent in genes not associated with CpG islands (CGI(-)) than CGI(+) genes. Undifferentiated hematopoietic cells also exhibited dynamic chromatin associated with active transcription and a higher turnover of histone acetylation than terminally differentiated cells. Interestingly, inhibition of chromatin condensation by chemical treatment (5-azacytidine, trichostatin A) enhanced the self-renewal of "stimulated" HSCs in reconstituting bone marrows but not "steady-state" HSCs in stationary phase bone marrows. In contrast, similar treatments on more mature cells caused partial phenotypic dedifferentiation and apoptosis at levels correlated with their hematopoietic differentiation. Taken together, our study reveals that the undifferentiated state of hematopoietic cells is characterized by a unique epigenetic signature, which includes dynamic chromatin structures and an epigenetic plasticity that correlates to level of undifferentiation.
Collapse
|
87
|
Abstract
A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-seq. This Review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome. It also suggests future experiments that may further our understanding of the causes and consequences of transcription factor-genome interactions.
Collapse
Affiliation(s)
- Peggy J Farnham
- Department of Pharmacology and the Genome Center, University of California Davis, Davis, California 95616, USA.
| |
Collapse
|
88
|
Noer A, Lindeman LC, Collas P. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells Dev 2009; 18:725-36. [PMID: 18771397 DOI: 10.1089/scd.2008.0189] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Long-term culture of mesenchymal stem cells leads to a loss of differentiation capacity, the molecular mechanism of which remains not understood. We show here that expansion of adipose stem cells (ASCs) to late passage (replicative senescence) is associated with promoter-specific and global changes in epigenetic histone modifications. In undifferentiated ASCs, inactive adipogenic and myogenic promoters are enriched in a repressive combination of trimethylated H3K4 (H3K4m3) and H3K27m3 in the absence of H3K9m3, a heterochromatin mark. Sequential chromatin immunoprecipitation assays indicate that H3K4m3 and H3K27m3 co-occupy a fraction of nucleosomes on some but not all lineage-specific promoters examined. However in cultured primary keratinocytes, adipogenic and myogenic promoters are enriched in trimethylated H3K4, K27, and K9, illustrating two distinct epigenetic states of inactive promoters related to potential for activation. H3K4m3 and H3K27m3 stably mark promoters during long-term ASC culture indicating that loss of differentiation capacity is not due to alterations in these histone modifications on these loci. Adipogenic differentiation in early passage results in H3K27 demethylation and H3K9 acetylation specifically on adipogenic promoters. On induction of differentiation in late passage, however, transcriptional upregulation is impaired, H3K27 trimethylation is maintained and H3K9 acetylation is inhibited on promoters. In addition, the polycomb proteins Ezh2 and Bmi1 are targeted to promoters. This correlates with global cellular Ezh2 increase and H3K9 deacetylation. Promoter targeting by Ezh2 and Bmi1 in late passage ASCs suggests the establishment of a polycomb-mediated epigenetic program aiming at repressing transcription.
Collapse
Affiliation(s)
- Agate Noer
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
89
|
Hoogenkamp M, Lichtinger M, Krysinska H, Lancrin C, Clarke D, Williamson A, Mazzarella L, Ingram R, Jorgensen H, Fisher A, Tenen DG, Kouskoff V, Lacaud G, Bonifer C. Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 2009; 114:299-309. [PMID: 19339695 PMCID: PMC2714206 DOI: 10.1182/blood-2008-11-191890] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/14/2009] [Indexed: 11/20/2022] Open
Abstract
At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.
Collapse
Affiliation(s)
- Maarten Hoogenkamp
- Leeds Institute for Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Tang H, Chen F, Tan Q, Tan S, Liu L, Zhang F. Regulation of CD11b transcription by decreasing PRC2 and increased acH4 level during ATRA-induced HL-60 differentiation. Acta Biochim Biophys Sin (Shanghai) 2009; 41:588-93. [PMID: 19578722 DOI: 10.1093/abbs/gmp046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2), which mediates trimethylation of lysine 27 on histone H3 (K27me3), plays an important role in many types of stem cell differentiation. Here, we try to reveal how PRC2, PRC2-mediated repressive histone marker H3K27me3, and active histone marker histone H4 acetylation (acH4) regulate the CD11b transcription during alltrans retinoic acid (ATRA)-induced HL-60 leukemia cell differentiation. By using quantitative real-time polymerase chain reaction (qPCR) and western blot analysis, we found that the mRNA and protein expression levels of two members of PRC2 were decreased during ATRA-induced HL-60 differentiation, respectively. When treated with ATRA for 72 h, the EZH2 and SUZ12 mRNA levels were decreased to 35% and 38% of the control group, respectively. At the same time, the granulocytic mature surface marker CD11b expression was increased significantly at mRNA level detected by qPCR and protein level detected by flow cytometry. By using chromatin immunoprecipitation assay, we compared the local changes in SUZ12 binding and PRC2-mediated H3K27me3 at the promoter of CD11b during ATRA-induced HL-60 differentiation. Both the levels of SUZ12 binding and PRC2-mediated H3K27me3 at the promoter of CD11b were decreased for 4.1 and 3.8 folds, respectively. And we also found the increase in the acH4 level up to 4 folds after 72 h of ATRA treatment. These results suggested that the histone modification including PRC2-mediated repressive histone marker H3K27me3 and active histone marker acH4 may involve in CD11b transcription during HL-60 leukemia cells reprogramming to terminal differentiation.
Collapse
Affiliation(s)
- Huarong Tang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | |
Collapse
|
91
|
Guillemin C, Maleszewska M, Guais A, Maës J, Rouyez MC, Yacia A, Fichelson S, Goodhardt M, Francastel C. Chromatin modifications in hematopoietic multipotent and committed progenitors are independent of gene subnuclear positioning relative to repressive compartments. Stem Cells 2009; 27:108-15. [PMID: 18974210 DOI: 10.1634/stemcells.2008-0755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To further clarify the contribution of nuclear architecture in the regulation of gene expression patterns during differentiation of human multipotent cells, we analyzed expression status, histone modifications, and subnuclear positioning relative to repressive compartments, of hematopoietic loci in multipotent and lineage-committed primary human hematopoietic progenitors. We report here that positioning of lineage-affiliated loci relative to pericentromeric heterochromatin compartments (PCH) is identical in multipotent cells from various origins and is unchanged between multipotent and lineage-committed hematopoietic progenitors. However, during differentiation of multipotent hematopoietic progenitors, changes in gene expression and histone modifications at these loci occur in committed progenitors, prior to changes in gene positioning relative to pericentromeric heterochromatin compartments, detected at later stages in precursor and mature cells. Therefore, during normal human hematopoietic differentiation, changes in gene subnuclear location relative to pericentromeric heterochromatin appear to be dictated by whether the gene will be permanently silenced or activated, rather than being predictive of commitment toward a given lineage.
Collapse
Affiliation(s)
- Claire Guillemin
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, UMR, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Kundu S, Peterson CL. Role of chromatin states in transcriptional memory. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:445-55. [PMID: 19236904 PMCID: PMC2692360 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
Affiliation(s)
- Sharmistha Kundu
- Interdisciplinary Graduate Program, University of Massachusetts Medical School
| | - Craig L. Peterson
- Interdisciplinary Graduate Program, University of Massachusetts Medical School
| |
Collapse
|
93
|
Wu AR, Hiatt JB, Lu R, Attema JL, Lobo NA, Weissman IL, Clarke MF, Quake SR. Automated microfluidic chromatin immunoprecipitation from 2,000 cells. LAB ON A CHIP 2009; 9:1365-70. [PMID: 19417902 PMCID: PMC4123551 DOI: 10.1039/b819648f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a powerful assay used to probe DNA-protein interactions. Traditional methods of implementing this assay are lengthy, cumbersome and require a large number of cells, making it difficult to study rare cell types such as certain cancer and stem cells. We have designed a microfluidic device to perform sensitive ChIP analysis on low cell numbers in a rapid, automated fashion while preserving the specificity of the assay. Comparing ChIP results for two modified histone protein targets, we showed our automated microfluidic ChIP (AutoChIP) from 2,000 cells to be comparable to that of conventional ChIP methods using 50,000-500,000 cells. This technology may provide a solution to the need for a high sensitivity, rapid, and automated ChIP assay, and in doing so facilitate the use of ChIP for many interesting and valuable applications.
Collapse
Affiliation(s)
- Angela R Wu
- Dept. of Bioengineering, Stanford University, Stanford and Howard Hughes Medical Institute, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Kumar D, Shadrach JL, Wagers AJ, Lassar AB. Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells. Mol Biol Cell 2009; 20:3170-7. [PMID: 19458195 DOI: 10.1091/mbc.e08-12-1185] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pax7 is a key regulator of skeletal muscle stem cells and is required along with Pax3 to generate skeletal muscle precursors. We have identified a collection of genes induced by either Pax3 or Pax7 in C2C12 muscle cells. Two notable Pax3/7 targets are the inhibitory helix-loop-helix (HLH) proteins inhibitor of DNA binding (Id) 2 and Id3, both of which are coordinately expressed with Pax7 in quiescent satellite cells and are induced in quiescent C2C12 myogenic cells after ectopic expression of either Pax3 or Pax7. Ectopic Pax7 activates expression of a luciferase reporter driven by the Id3 promoter, and maximal induction of this reporter requires a conserved Pax7 binding site located upstream of the Id3 gene. Chromatin immunoprecipitation indicated that Pax7 is bound upstream of the Id3 promoter in quiescent satellite cells. In addition, short hairpin RNA-mediated knockdown of Pax7 expression in cultured satellite cells coordinately decreased both Id2 and Id3 expression. Together, these findings indicate that Id3 is a direct transcriptional target for Pax7 in quiescent satellite cells, and they suggest that Pax7 acts to block premature differentiation of quiescent satellite cells by inducing the expression of Id2 and Id3, which in turn may act to block either the precocious induction of myogenic basic (b)HLH proteins, the activity of myogenic bHLH proteins, or both.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
95
|
Sikes ML, Bradshaw JM, Ivory WT, Lunsford JL, McMillan RE, Morrison CR. A streamlined method for rapid and sensitive chromatin immunoprecipitation. J Immunol Methods 2009; 344:58-63. [PMID: 19328803 PMCID: PMC2692951 DOI: 10.1016/j.jim.2009.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
We report a streamlined procedure to efficiently carry samples from chromatin to qPCR-compatible DNA in as little as 4 h. We use this streamlined ChIP to quantify histone H3 modifications at active (cad) and repressed (T early alpha) promoters in a Rag1-deficient pro-T cell line after 1-2 h IP. We further show that the protocol readily quantified histone modifications in chromatin from 10(4) Rag-deficient DN thymocytes. Taken together, these data outline a simple, cost-effective procedure for efficient ChIP analysis.
Collapse
Affiliation(s)
- Michael L Sikes
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Attema JL, Pronk CJH, Norddahl GL, Nygren JM, Bryder D. Hematopoietic stem cell ageing is uncoupled from p16INK4A-mediated senescence. Oncogene 2009; 28:2238-43. [DOI: 10.1038/onc.2009.94] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Gargiulo G, Levy S, Bucci G, Romanenghi M, Fornasari L, Beeson KY, Goldberg SM, Cesaroni M, Ballarini M, Santoro F, Bezman N, Frigè G, Gregory PD, Holmes MC, Strausberg RL, Pelicci PG, Urnov FD, Minucci S. NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation. Dev Cell 2009; 16:466-81. [PMID: 19289091 DOI: 10.1016/j.devcel.2009.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 12/19/2008] [Accepted: 02/06/2009] [Indexed: 12/19/2022]
Abstract
It is well established that epigenetic modulation of genome accessibility in chromatin occurs during biological processes. Here we describe a method based on restriction enzymes and next-generation sequencing for identifying accessible DNA elements using a small amount of starting material, and use it to examine myeloid differentiation of primary human CD34+ cells. The accessibility of several classes of cis-regulatory elements was a predictive marker of in vivo DNA binding by transcription factors, and was associated with distinct patterns of histone posttranslational modifications. We also mapped large chromosomal domains with differential accessibility in progenitors and maturing cells. Accessibility became restricted during differentiation, correlating with a decreased number of expressed genes and loss of regulatory potential. Our data suggest that a permissive chromatin structure in multipotent cells is progressively and selectively closed during differentiation, and illustrate the use of our method for the identification of functional cis-regulatory elements.
Collapse
Affiliation(s)
- Gaetano Gargiulo
- Department of Experimental Oncology, IFOM-IEO Campus, European Institute of Oncology (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Recent years have seen great advances in the understanding of epigenetic gene regulation. Many of the molecular players involved have recently been identified and are rapidly being characterized in detail. Genome scale studies, using chromatin immunoprecipitation followed by expression arrays ('ChIP-Chip') or next generation sequencing ('ChIP-Seq'), have been applied to the study of transcription factor binding, DNA methylation, alternative histone use, and covalent histone modifications such as acetylation, ubiquitination and methylation. Initial studies focused on yeast, and embryonic stem cells. Genome-wide studies are now also being employed to characterize cancer and specifically leukemia genomes, with the prospect of improved diagnostic accuracy and discovery of novel therapeutic strategies. Here, we review some of the epigenetic modifications and their relevance for leukemia.
Collapse
|
99
|
Abstract
The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large number of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify the sample handling, and make the ChIP amenable to small number of cells. In addition, the combination of ChIP with DNA microarray, paired-end ditag, and high-throughput sequencing technologies has in recent years enabled the profiling of histone modifications and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.
Collapse
Affiliation(s)
- Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
100
|
Abstract
Eukaryotic genomes are packaged into a nucleoprotein complex known as chromatin, which affects most processes that occur on DNA. Along with genetic and biochemical studies of resident chromatin proteins and their modifying enzymes, mapping of chromatin structure in vivo is one of the main pillars in our understanding of how chromatin relates to cellular processes. In this review, we discuss the use of genomic technologies to characterize chromatin structure in vivo, with a focus on data from budding yeast and humans. The picture emerging from these studies is the detailed chromatin structure of a typical gene, where the typical behavior gives insight into the mechanisms and deep rules that establish chromatin structure. Important deviation from the archetype is also observed, usually as a consequence of unique regulatory mechanisms at special genomic loci. Chromatin structure shows substantial conservation from yeast to humans, but mammalian chromatin has additional layers of complexity that likely relate to the requirements of multicellularity such as the need to establish faithful gene regulatory mechanisms for cell differentiation.
Collapse
Affiliation(s)
- Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Howard Y. Chang
- Program in Epithelial Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|