51
|
Shuryak I. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:14-25. [PMID: 29883873 DOI: 10.1016/j.jenvrad.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 107 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 104-105 μGy/h for phytoplankton, and 103-104 μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information and easily interpretable model parameter estimates for the shapes and magnitudes of freshwater plankton responses to a wide range of radioactive contamination levels.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States.
| |
Collapse
|
52
|
Hecox-Lea BJ, Mark Welch DB. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers. BMC Evol Biol 2018; 18:177. [PMID: 30486781 PMCID: PMC6264785 DOI: 10.1186/s12862-018-1288-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022] Open
Abstract
Background Bdelloid rotifers are the oldest, most diverse and successful animal taxon for which males, hermaphrodites, and traditional meiosis are unknown. Their degenerate tetraploid genome, with 2–4 copies of most loci, includes thousands of genes acquired from all domains of life by horizontal transfer. Many bdelloid species thrive in ephemerally aquatic habitats by surviving desiccation at any life stage with no loss of fecundity or lifespan. Their unique genomic diversity and the intense selective pressure of desiccation provide an exceptional opportunity to study the evolution of diversity and novelty in genes involved in DNA repair. Results We used genomic data and RNA-Seq of the desiccation process in the bdelloid Adineta vaga to characterize DNA damage reversal, translesion synthesis, and the major DNA repair pathways: base, nucleotide, and alternate excision repair, mismatch repair (MMR), and double strand break repair by homologous recombination (HR) and classical non-homologous end joining (NHEJ). We identify multiple horizontally transferred DNA damage response genes otherwise unknown in animals (AlkD, Fpg, LigK UVDE), and the presence of genes often considered vertebrate specific, particularly in the NHEJ complex and X family polymerases. While 75–100% of genes involved in MMR and HR are present in 0–2 copies, genes involved in NHEJ, which are present in only a single copy in nearly all other animals, are retained in 3–8 copies. We present structural predictions and expression evidence of neo- or sub-functionalization of multiple copy genes involved in NHEJ and other repair processes. Conclusion The horizontally-acquired genes and duplicated genes in BER and NHEJ suggest resilience to oxidative damage is conferred in part by increased DNA damage recognition and efficient end repair capabilities. The pattern of gene loss and retention in MMR and HR may facilitate recombination and gene conversion between divergent sequences, thus providing at least some of the benefits of sex. The unique retention and divergence of duplicates genes in NHEJ may be facilitated by the lack of efficient selection in the absence of meiotic recombination and independent assortment, and may contribute to the evolutionary success of bdelloids. Electronic supplementary material The online version of this article (10.1186/s12862-018-1288-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
53
|
Milisavljevic M, Petkovic J, Samardzic J, Kojic M. Bioavailability of Nutritional Resources From Cells Killed by Oxidation Supports Expansion of Survivors in Ustilago maydis Populations. Front Microbiol 2018; 9:990. [PMID: 29867888 PMCID: PMC5967202 DOI: 10.3389/fmicb.2018.00990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
After heavy exposure of Ustilago maydis cells to clastogens, a great increase in viability was observed if the treated cells were kept under starvation conditions. This restitution of viability is based on cell multiplication at the expense of the intracellular compounds freed from the damaged cells. Analysis of the effect of the leaked material on the growth of undamaged cells revealed opposing biological activity, indicating that U. maydis must possess cellular mechanisms involved not only in reabsorption of the released compounds from external environment but also in contending with their treatment-induced toxicity. From a screen for mutants defective in the restitution of viability, we identified four genes (adr1, did4, kel1, and tbp1) that contribute to the process. The mutants in did4, kel1, and tbp1 exhibited sensitivity to different genotoxic agents implying that the gene products are in some overlapping fashion involved in the protection of genome integrity. The genetic determinants identified by our analysis have already been known to play roles in growth regulation, protein turnover, cytoskeleton structure, and transcription. We discuss ecological and evolutionary implications of these results.
Collapse
Affiliation(s)
- Mira Milisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Petkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Samardzic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milorad Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
54
|
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F. Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality. Genome Biol Evol 2018; 9:1781-1787. [PMID: 28854634 PMCID: PMC5570047 DOI: 10.1093/gbe/evx125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| |
Collapse
|
55
|
Nowell RW, Almeida P, Wilson CG, Smith TP, Fontaneto D, Crisp A, Micklem G, Tunnacliffe A, Boschetti C, Barraclough TG. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol 2018; 16:e2004830. [PMID: 29689044 PMCID: PMC5916493 DOI: 10.1371/journal.pbio.2004830] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer.
Collapse
Affiliation(s)
- Reuben W. Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Christopher G. Wilson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Thomas P. Smith
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Diego Fontaneto
- National Research Council of Italy, Institute of Ecosystem Study, Verbania Pallanza, Italy
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Gos Micklem
- Department of Genetics, Cambridge Systems Biology Centre, Downing Site, University of Cambridge, Cambridge, United Kingdom
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Marine Sciences, Plymouth University, Portland Square Building, Plymouth, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| |
Collapse
|
56
|
Bernstein H, Bernstein C, Michod RE. Sex in microbial pathogens. INFECTION GENETICS AND EVOLUTION 2018; 57:8-25. [DOI: 10.1016/j.meegid.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|
57
|
Jönsson KI, Levine EB, Wojcik A, Haghdoost S, Harms-Ringdahl M. Environmental Adaptations: Radiation Tolerance. WATER BEARS: THE BIOLOGY OF TARDIGRADES 2018. [DOI: 10.1007/978-3-319-95702-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
Toman J, Flegr J. General environmental heterogeneity as the explanation of sexuality? Comparative study shows that ancient asexual taxa are associated with both biotically and abiotically homogeneous environments. Ecol Evol 2018; 8:973-991. [PMID: 29375771 PMCID: PMC5773305 DOI: 10.1002/ece3.3716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022] Open
Abstract
Ecological theories of sexual reproduction assume that sexuality is advantageous in certain conditions, for example, in biotically or abiotically more heterogeneous environments. Such theories thus could be tested by comparative studies. However, the published results of these studies are rather unconvincing. Here, we present the results of a new comparative study based exclusively on the ancient asexual clades. The association with biotically or abiotically homogeneous environments in these asexual clades was compared with the same association in their sister, or closely related, sexual clades. Using the conservative definition of ancient asexuals (i.e., age >1 million years), we found eight pairs of taxa of sexual and asexual species, six differing in the heterogeneity of their inhabited environment on the basis of available data. The difference between the environmental type associated with the sexual and asexual species was then compared in an exact binomial test. The results showed that the majority of ancient asexual clades tend to be associated with biotically, abiotically, or both biotically and abiotically more homogeneous environments than their sexual controls. In the exploratory part of the study, we found that the ancient asexuals often have durable resting stages, enabling life in subjectively homogeneous environments, live in the absence of intense biotic interactions, and are very often sedentary, inhabiting benthos, and soil. The consequences of these findings for the ecological theories of sexual reproduction are discussed.
Collapse
Affiliation(s)
- Jan Toman
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| | - Jaroslav Flegr
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| |
Collapse
|
59
|
Arkhipova IR, Yushenova IA, Rodriguez F. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres. Mol Biol Evol 2017; 34:2245-2257. [PMID: 28575409 PMCID: PMC5850863 DOI: 10.1093/molbev/msx159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3′-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3′-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| |
Collapse
|
60
|
Across the tree of life, radiation resistance is governed by antioxidant Mn 2+, gauged by paramagnetic resonance. Proc Natl Acad Sci U S A 2017; 114:E9253-E9260. [PMID: 29042516 PMCID: PMC5676931 DOI: 10.1073/pnas.1713608114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite concerted functional genomic efforts to understand the complex phenotype of ionizing radiation (IR) resistance, a genome sequence cannot predict whether a cell is IR-resistant or not. Instead, we report that absorption-display electron paramagnetic resonance (EPR) spectroscopy of nonirradiated cells is highly diagnostic of IR survival and repair efficiency of DNA double-strand breaks (DSBs) caused by exposure to gamma radiation across archaea, bacteria, and eukaryotes, including fungi and human cells. IR-resistant cells, which are efficient at DSB repair, contain a high cellular content of manganous ions (Mn2+) in high-symmetry (H) antioxidant complexes with small metabolites (e.g., orthophosphate, peptides), which exhibit narrow EPR signals (small zero-field splitting). In contrast, Mn2+ ions in IR-sensitive cells, which are inefficient at DSB repair, exist largely as low-symmetry (L) complexes with substantially broadened spectra seen with enzymes and strongly chelating ligands. The fraction of cellular Mn2+ present as H-complexes (H-Mn2+), as measured by EPR of live, nonirradiated Mn-replete cells, is now the strongest known gauge of biological IR resistance between and within organisms representing all three domains of life: Antioxidant H-Mn2+ complexes, not antioxidant enzymes (e.g., Mn superoxide dismutase), govern IR survival. As the pool of intracellular metabolites needed to form H-Mn2+ complexes depends on the nutritional status of the cell, we conclude that IR resistance is predominantly a metabolic phenomenon. In a cross-kingdom analysis, the vast differences in taxonomic classification, genome size, and radioresistance between cell types studied here support that IR resistance is not controlled by the repertoire of DNA repair and antioxidant enzymes.
Collapse
|
61
|
Zadereev E, Lopatina T, Oskina N, Zotina T, Petrichenkov M, Dementyev D. Gamma irradiation of resting eggs of Moina macrocopa affects individual and population performance of hatchlings. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 175-176:126-134. [PMID: 28527881 DOI: 10.1016/j.jenvrad.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
We investigated the effects of γ-radiation on the survival of resting eggs of the cladoceran Moina macrocopa, on the parameters of the life cycle of neonates hatched from the irradiated eggs and on the performance of the population initiated from irradiated eggs. The study showed that γ-radiation in a range of doses from the background level to 100 Gy had no effect on survival of irradiated eggs. The absorbed dose of 200 Gy was lethal to resting eggs of M. macrocopa. The number of clutches and net reproductive rate (R0) of hatchlings from eggs exposed to radiation were the strongly affected parameters in experiments with individual females. The number of clutches per female was drastically reduced for females hatched from egg exposed to 80-100 Gy. The most sensitive parameter was the R0. The estimated ED50 for the R0 (effective dose that induces 50% R0 reduction) was 50 Gy. Population performance was also affected by the irradiation of the resting stage of animals that initiated population. Populations that was initiated from hatchlings from resting eggs exposed to 100 Gy was of smaller size and with fewer juvenile and parthenogenetic females in comparison with control populations. Thus, we determined the dose-response relationship for the effect of gamma radiation on survival of resting eggs and individual and population responses of hatchlings from irradiated resting eggs. We conclude that for highly polluted areas contamination of bottom sediments with radioactive materials could affect zooplankton communities through adverse chronic effects on resting eggs, which will be transmitted to hatchlings at individual or population levels.
Collapse
Affiliation(s)
- Egor Zadereev
- Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia; Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia.
| | - Tatiana Lopatina
- Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Natalia Oskina
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia
| | - Tatiana Zotina
- Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Mikhail Petrichenkov
- Budker Institute of Nuclear Physics, 11 Akademika Lavrent'eva Ave., Novosibirsk, 630090, Russia
| | - Dmitry Dementyev
- Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
62
|
Hashimoto T, Kunieda T. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades. Life (Basel) 2017; 7:life7020026. [PMID: 28617314 PMCID: PMC5492148 DOI: 10.3390/life7020026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 01/19/2023] Open
Abstract
Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Laboratory for Radiation Biology, School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
63
|
Rodriguez F, Kenefick AW, Arkhipova IR. LTR-Retrotransposons from Bdelloid Rotifers Capture Additional ORFs Shared between Highly Diverse Retroelement Types. Viruses 2017; 9:v9040078. [PMID: 28398238 PMCID: PMC5408684 DOI: 10.3390/v9040078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highlydiversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga. We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)retrotransposons, in addition to conserved open reading frame (ORF) 1 and ORF2 corresponding to gag and pol genes, code for an unusually high variety of ORF3 sequences. Retrovirus-like LTR families in A. vaga belong to four major lineages, three of which are rotiferspecific and encode a dUTPase domain. However only one lineage contains a canonical envlike fusion glycoprotein acquired from paramyxoviruses (non-segmented negative-strand RNA viruses), although smaller ORFs with transmembrane domains may perform similar roles. A different ORF3 type encodes a GDSL esterase/lipase, which was previously identified as ORF1 in several clades of non-LTR retrotransposons, and implicated in membrane targeting. Yet another ORF3 type appears in unrelated LTR-retrotransposon lineages, and displays strong homology to DEDDy-type exonucleases involved in 3'-end processing of RNA and single-stranded DNA. Unexpectedly, each of the enzymatic ORF3s is also associated with different subsets of Penelope-like Athena retroelement families. The unusual association of the same ORF types with retroelements from different classes reflects their modular structure with a high degree of flexibility, and points to gene sharing between different groups of retroelements.
Collapse
Affiliation(s)
- Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - Aubrey W Kenefick
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
- Present address: UC Davis Genome Center-GBSF, University of California, Davis, CA 95616, USA.
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
64
|
Jönsson KI, Wojcik A. Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola. ASTROBIOLOGY 2017; 17:163-167. [PMID: 28206820 DOI: 10.1089/ast.2015.1462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study was to analyze tolerance to heavy ions in desiccated animals of the eutardigrade Richtersius coronifer and the bdelloid rotifer Mniobia russeola within the STARLIFE project. Both species were exposed to iron (Fe) and helium (He) ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) in Chiba, Japan, and to X-rays at the German Aerospace Center (DLR) in Cologne, Germany. Results show no effect of Fe and He on viability up to 7 days post-rehydration in both R. coronifer and M. russeola, while X-rays tended to reduce viability in R. coronifer at the highest doses. Mean egg production rate tended to decline with higher doses in R. coronifer for all radiation types, but the pattern was not statistically confirmed. In M. russeola, there was no such tendency for a dose response in egg production rate. These results confirm the previously reported high tolerance to high linear energy transfer (LET) radiation in tardigrades and show for the first time that bdelloid rotifers are also very tolerant to high-LET radiation. These animal phyla represent the most desiccation- and radiation-tolerant animals on Earth and provide excellent eukaryotic models for astrobiological research. Key Words: Tardigrada-Rotifera-Radiation tolerance-Heavy ions-X-rays. Astrobiology 17, 163-167.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- 1 School of Education and Environment, Kristianstad University , Kristianstad, Sweden
| | - Andrzej Wojcik
- 2 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm, Sweden
| |
Collapse
|
65
|
Jönsson KI, Hygum TL, Andersen KN, Clausen LKB, Møbjerg N. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi. PLoS One 2016; 11:e0168884. [PMID: 27997621 PMCID: PMC5173286 DOI: 10.1371/journal.pone.0168884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022] Open
Abstract
Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.
Collapse
Affiliation(s)
- K. Ingemar Jönsson
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
- * E-mail: (KIJ); (NM)
| | - Thomas L. Hygum
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (KIJ); (NM)
| |
Collapse
|
66
|
Ryabova A, Mukae K, Cherkasov A, Cornette R, Shagimardanova E, Sakashita T, Okuda T, Kikawada T, Gusev O. Genetic background of enhanced radioresistance in an anhydrobiotic insect: transcriptional response to ionizing radiations and desiccation. Extremophiles 2016; 21:109-120. [PMID: 27807620 DOI: 10.1007/s00792-016-0888-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
It is assumed that resistance to ionizing radiation, as well as cross-resistance to other abiotic stresses, is a side effect of the evolutionary-based adaptation of anhydrobiotic animals to dehydration stress. Larvae of Polypedilum vanderplanki can withstand prolonged desiccation as well as high doses of ionizing radiation exposure. For a further understanding of the mechanisms of cross-tolerance to both types of stress exposure, we profiled genome-wide mRNA expression patterns using microarray techniques on the chironomid larvae collected at different stages of desiccation and after exposure to two types of ionizing radiation-70 Gy of high-linear energy transfer (LET) ions (4He) and the same dose of low-LET radiation (gamma rays). In expression profiles, a wide transcriptional response to desiccation stress that much exceeded the amount of up-regulated transcripts to irradiation exposure was observed. An extensive group of coincidently up-regulated overlapped transcripts in response to desiccation and ionizing radiation was found. Among this, overlapped set of transcripts was indicated anhydrobiosis-related genes: antioxidants, late embryogenesis abundant (LEA) proteins, and heat-shock proteins. The most overexpressed group was that of protein-L-isoaspartate/D-aspartate O-methyltransferase (PIMT), while probes, corresponding to LEA proteins, were the most represented. Performed functional analysis showed strongly enriched gene ontology terms associated with protein methylation. In addition, active processes of DNA repair were detected. We assume that the cross-tolerance of the sleeping chironomid to both desiccation and irradiation exposure comes from a complex mechanism of adaptation to anhydrobiosis.
Collapse
Affiliation(s)
- Alina Ryabova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Kyosuke Mukae
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan.,Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Alexander Cherkasov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Richard Cornette
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Elena Shagimardanova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Tetsuya Sakashita
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Takahiro Kikawada
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan. .,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Oleg Gusev
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia. .,Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan. .,Center for Life Science Technologies, RIKEN, Yokohama, Japan. .,RIKEN Innovation Center, RIKEN, Yokohama, Japan.
| |
Collapse
|
67
|
Rivasseau C, Farhi E, Compagnon E, de Gouvion Saint Cyr D, van Lis R, Falconet D, Kuntz M, Atteia A, Couté A. Coccomyxa actinabiotis sp. nov. (Trebouxiophyceae, Chlorophyta), a new green microalga living in the spent fuel cooling pool of a nuclear reactor. JOURNAL OF PHYCOLOGY 2016; 52:689-703. [PMID: 27470701 DOI: 10.1111/jpy.12442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Life can thrive in extreme environments where inhospitable conditions prevail. Organisms which resist, for example, acidity, pressure, low or high temperature, have been found in harsh environments. Most of them are bacteria and archaea. The bacterium Deinococcus radiodurans is considered to be a champion among all living organisms, surviving extreme ionizing radiation levels. We have discovered a new extremophile eukaryotic organism that possesses a resistance to ionizing radiations similar to that of D. radiodurans. This microorganism, an autotrophic freshwater green microalga, lives in a peculiar environment, namely the cooling pool of a nuclear reactor containing spent nuclear fuels, where it is continuously submitted to nutritive, metallic, and radiative stress. We investigated its morphology and its ultrastructure by light, fluorescence and electron microscopy as well as its biochemical properties. Its resistance to UV and gamma radiation was assessed. When submitted to different dose rates of the order of some tens of mGy · h-1 to several thousands of Gy · h-1 , the microalga revealed to be able to survive intense gamma-rays irradiation, up to 2,000 times the dose lethal to human. The nuclear genome region spanning the genes for small subunit ribosomal RNA-Internal Transcribed Spacer (ITS) 1-5.8S rRNA-ITS2-28S rRNA (beginning) was sequenced (4,065 bp). The phylogenetic position of the microalga was inferred from the 18S rRNA gene. All the revealed characteristics make the alga a new species of the genus Coccomyxa in the class Trebouxiophyceae, which we name Coccomyxa actinabiotis sp. nov.
Collapse
Affiliation(s)
- Corinne Rivasseau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, LPCV, CNRS, CEA, INRA, Univ. Grenoble-Alpes, BIG, F-38000, Grenoble, France
| | | | - Estelle Compagnon
- Institut Laue-Langevin, F-38009, Grenoble, France
- CEA, LPCV, CNRS, INRA, Univ. Grenoble-Alpes, F-38000, Grenoble, France
| | - Diane de Gouvion Saint Cyr
- Institut Laue-Langevin, F-38009, Grenoble, France
- CEA, LPCV, CNRS, INRA, Univ. Grenoble-Alpes, F-38000, Grenoble, France
| | - Robert van Lis
- CNRS, BIP, Univ. Aix-Marseille, F-13402, Marseille, France
| | - Denis Falconet
- CNRS, LPCV, CEA, INRA, Univ. Grenoble-Alpes, F-38000, Grenoble, France
| | - Marcel Kuntz
- CNRS, LPCV, CEA, INRA, Univ. Grenoble-Alpes, F-38000, Grenoble, France
| | - Ariane Atteia
- CNRS, Laboratoire de Bioénergétique et Ingénierie de Protéines, Univ. Aix-Marseille, F-13402, Marseille, France
| | - Alain Couté
- Muséum National d'Histoire Naturelle, UMR7245, F-75005, Paris, France
| |
Collapse
|
68
|
Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the "Ancient Asexual" Bdelloid Rotifer Philodina roseola. Life (Basel) 2016; 6:life6030038. [PMID: 27608044 PMCID: PMC5041014 DOI: 10.3390/life6030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of "ancient asexuals".
Collapse
|
69
|
Won EJ, Han J, Hagiwara A, Oda S, Mitani H, Lee JS. Acute Toxicity of Gamma Radiation to the Monogonont Rotifer Brachionus koreanus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:387-391. [PMID: 27230026 DOI: 10.1007/s00128-016-1843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
We examined the tolerance of the monogonont rotifer Brachionus koreanus in response to gamma radiation. In order to determine the median lethal dose (LD50) of rotifers against gamma radiation, we irradiated B. koreanus with gamma rays from 0 to 7000 grays (Gy). The LD50s were 2900 and 2300 Gy at 24 h (LD50-24 h) and 96 h (LD50-96 h) after irradiation, respectively. In addition, the no observed effect levels (NOEL) were 1500 and 1000 Gy at 24 and 96 h, respectively. This is the first determination of lethal doses of gamma radiation for B. koreanus, which could be useful in ecological assessment of gamma radiation toward aquatic life and could be useful for understanding toxic mechanisms over sublethal doses.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
70
|
|
71
|
Moreira RA, Mansano AS, Rocha O. Life cycle traits of Philodina roseola Ehrenberg, 1830 (Rotifera, Bdelloidea), a model organism for bioassays. AN ACAD BRAS CIENC 2016; 88 Suppl 1:579-88. [PMID: 27168371 DOI: 10.1590/0001-3765201620140729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
This paper describes experimental results on the life cycle of the rotifer Philodina roseola cultured in the laboratory. Detailed information on life-cycle parameters of a certain species provides a deep understanding and contributes to a better knowledge of the role of the species in the community, besides providing data that are basic to other ecological investigations such as secondary production estimates and knowledge for applications such as its utilization as test-organism in ecotoxicological studies. The average duration of embryonic development of P. roseola was 23.88 h, the age at maturity of primipara was 3.5 days and the maximum lifespan was 23 days. The average size of the rotifer neonate was 198.77 µm, the mean size of primipara was 395.56 µm and for adults 429.96 µm. The average fecundity was 1.22 eggs per female per day and the mean number of eggs produced per female during the entire life was 22.33. The deceleration of somatic growth from the start of the reproductive stage represents a trade-off between growth and reproduction that is often seen in micrometazoans. The life history of P. roseola follows the strategy of other bdelloid species characterized by a rapid pre-reproductive development and canalization of most assimilated energy to reproduction after reaching maturity. The differences observed in total fecundity and longevity between our P. roseola cultures and those from previous studies were probably due to differences of intrinsic adaptation of this species ecotypes to the conditions of their natural environments.
Collapse
Affiliation(s)
- Raquel A Moreira
- Post-Graduate Program of Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil, Universidade Federal de São Carlos, Federal University of São Carlos, São Carlos SP , Brazil
| | - Adrislaine S Mansano
- Post-Graduate Program of Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil, Universidade Federal de São Carlos, Federal University of São Carlos, São Carlos SP , Brazil
| | - Odete Rocha
- Post-Graduate Program of Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil, Universidade Federal de São Carlos, Federal University of São Carlos, São Carlos SP , Brazil.,Department of Ecology and Evolutionary Biology, Biological Sciences and Health Center, Federal University of São Carlos, Rodovia Washington Luis, Km 235, 13565-905 São Carlos, SP, Brazil, Universidade Federal de São Carlos, Federal University of São Carlos, Biological Sciences and Health Center, Department of Ecology and Evolutionary Biology, São Carlos SP , Brazil
| |
Collapse
|
72
|
Shain DH, Halldórsdóttir K, Pálsson F, Aðalgeirsdóttir G, Gunnarsson A, Jónsson Þ, Lang SA, Pálsson HS, Steinþórssson S, Arnason E. Colonization of maritime glacier ice by bdelloid Rotifera. Mol Phylogenet Evol 2016; 98:280-7. [DOI: 10.1016/j.ympev.2016.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
|
73
|
Moreira RA, Mansano ADS, Rocha O. TAXAS DE FILTRAÇÃO E INGESTÃO DE UMA MICROALGA POR Philodina roseola (Rotifera: Bdelloidea). ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n2.47837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
74
|
Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga. Genetics 2016; 203:255-68. [PMID: 27017627 DOI: 10.1534/genetics.116.186734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome.
Collapse
|
75
|
Abstract
Structural and functional characteristics of zooplankton as well as the results of biotesting were researched to indicate the ecological status of Mokraya Sura river sites. Zooplankton sampling was performed at the sites of Mokraya Sura river in autumn 2014 and in spring 2015. Species composition and abundance of zooplankton showed that zooplankton is most depressed at the upper sites of the river due to joint effect of slime accumulation eutrophication and industrial sewage. Biotesting results estimated water quality of the site near aeration plant sewage emergency discharge as most polluted of the river sites where large abundance and biomass of zooplankton were created mostly by planktonic rotifers. Large figures of filter-seeding crustaceans as well as low saprobity index indicate improvement in water quality at the sites 3 km and 2 km upstream from the river mouth.
Collapse
|
76
|
Forsdyke DR. Rebooting the Genome. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
77
|
Musilova M, Wright G, Ward JM, Dartnell LR. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance. ASTROBIOLOGY 2015; 15:1076-1090. [PMID: 26684506 PMCID: PMC4683558 DOI: 10.1089/ast.2014.1278] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 10/08/2015] [Indexed: 05/31/2023]
Abstract
UNLABELLED Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. KEY WORDS Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.
Collapse
Affiliation(s)
| | - Gary Wright
- Department of Engineering and Applied Science, Cranfield University, Shrivenham, Swindon, UK
| | - John M. Ward
- Department of Biochemical Engineering, University College London, London, UK
| | - Lewis R. Dartnell
- UCL Institute for Origins, University College London, London, UK
- The Centre for Planetary Sciences at UCL/Birkbeck, Earth Sciences, University College London, London, UK
| |
Collapse
|
78
|
Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. Proc Natl Acad Sci U S A 2015; 112:15976-81. [PMID: 26598659 DOI: 10.1073/pnas.1510461112] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.
Collapse
|
79
|
Unraveling the mechanisms of extreme radioresistance in prokaryotes: Lessons from nature. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:92-107. [PMID: 27036069 DOI: 10.1016/j.mrrev.2015.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
The last 50 years, a variety of archaea and bacteria able to withstand extremely high doses of ionizing radiation, have been discovered. Several lines of evidence suggest a variety of mechanisms explaining the extreme radioresistance of microorganisms found usually in isolated environments on Earth. These findings are discussed thoroughly in this study. Although none of the strategies discussed here, appear to be universal against ionizing radiation, a general trend was found. There are two cellular mechanisms by which radioresistance is achieved: (a) protection of the proteome and DNA from damage induced by ionizing radiation and (b) recruitment of advanced and highly sophisticated DNA repair mechanisms, in order to reconstruct a fully functional genome. In this review, we critically discuss various protecting (antioxidant enzymes, presence or absence of certain elements, high metal ion or salt concentration etc.) and repair (Homologous Recombination, Single-Strand Annealing, Extended Synthesis-Dependent Strand Annealing) mechanisms that have been proposed to account for the extraordinary abilities of radioresistant organisms and the homologous radioresistance signature genes in these organisms. In addition, and based on structural comparative analysis of major radioresistant organisms, we suggest future directions and how humans could innately improve their resistance to radiation-induced toxicity, based on this knowledge.
Collapse
|
80
|
Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, Barraclough TG. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 2015; 13:90. [PMID: 26537913 PMCID: PMC4632278 DOI: 10.1186/s12915-015-0202-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022] Open
Abstract
Background Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. Results Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with desiccation protection in the two non-desiccating species. Conclusions Nearly half of foreign genes were acquired before the divergence of bdelloid families over 60 Mya. Nonetheless, HGT is ongoing in bdelloids and has contributed to putative functional differences among species. Variation among our study species is consistent with the hypothesis that desiccating habitats promote HGT. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isobel Eyres
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.,Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Thomas P Smith
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania Pallanza, Italy
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
81
|
Won EJ, Dahms HU, Kumar KS, Shin KH, Lee JS. An integrated view of gamma radiation effects on marine fauna: from molecules to ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17443-17452. [PMID: 25382502 DOI: 10.1007/s11356-014-3797-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Accidental release of nuclides into the ocean is causing health risks to marine organisms and humans. All life forms are susceptible to gamma radiation with a high variation, depending on various physical factors such as dose, mode, and time of exposure and various biological factors such as species, vitality, age, and gender. Differences in sensitivity of gamma radiation are also associated with different efficiencies of mechanisms related to protection and repair systems. Gamma radiation may also affect various other integration levels: from gene, protein, cells and organs, population, and communities, disturbing the energy flow of food webs that will ultimately affect the structure and functioning of ecosystems. Depending on exposure levels, gamma radiation induces damages on growth and reproduction in various organisms such as zooplankton, benthos, and fish in aquatic ecosystems. In this paper, harmful effects of gamma-irradiated aquatic organisms are described and the potential of marine copepods in assessing the risk of gamma radiation is discussed with respect to physiological adverse effects that even affect the ecosystem level.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Hans-U Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan, Republic of China
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
| | - K Suresh Kumar
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan, 426-791, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
82
|
Abstract
The high prevalence of sexual reproduction is considered a paradox mainly for two reasons. First, asexuals should enjoy various growth benefits because they seemingly rid themselves of the many inefficiencies of sexual reproduction-the so-called costs of sex. Second, there seems to be no lack of asexual origins because losses of sexual reproduction have been described in almost every larger eukaryotic taxon. Current attempts to resolve this paradox concentrate on a few hypotheses that provide universal benefits that would compensate for these costs and give sexual reproduction a net advantage. However, are new asexual lineages really those powerful invaders that could quickly displace their sexual ancestors? Research on the costs of sex indicates that sex is often stabilized by highly lineage-specific mechanisms. Two main categories can be distinguished. First are beneficial traits that evolved within a particular species and became tightly associated with sex (e.g., a mating system that involves sexual selection, or a sexual diapausing stage that allows survival through harsh periods). If such traits are absent in asexuals, simple growth efficiency considerations will not capture the fitness benefits gained by skipping sexual reproduction. Second, lineage-specific factors might prevent asexuals from reaching their full potential (e.g., dependence on fertilization in sperm-dependent parthenogens). Such observations suggest that the costs of sex are highly variable and often lower than theoretical considerations suggest. This has implications for the magnitude of universal benefits required to resolve the paradox of sex.
Collapse
|
83
|
Badri H, Monsieurs P, Coninx I, Nauts R, Wattiez R, Leys N. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays. PLoS One 2015; 10:e0135565. [PMID: 26308624 PMCID: PMC4550399 DOI: 10.1371/journal.pone.0135565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Robin Nauts
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| |
Collapse
|
84
|
Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation. PLoS One 2015; 10:e0131313. [PMID: 26161530 PMCID: PMC4498783 DOI: 10.1371/journal.pone.0131313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/31/2015] [Indexed: 01/15/2023] Open
Abstract
The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process.
Collapse
|
85
|
Datkhile KD, Gaikwad PS, Ghaskadbi SS, Mukhopadhyaya R, Nath BB. Chironomus ramosus larvae exhibit DNA damage control in response to gamma radiation. Int J Radiat Biol 2015; 91:742-8. [DOI: 10.3109/09553002.2015.1062572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Signorovitch A, Hur J, Gladyshev E, Meselson M. Allele Sharing and Evidence for Sexuality in a Mitochondrial Clade of Bdelloid Rotifers. Genetics 2015; 200:581-90. [PMID: 25977472 PMCID: PMC4492381 DOI: 10.1534/genetics.115.176719] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
Rotifers of Class Bdelloidea are common freshwater invertebrates of ancient origin whose apparent asexuality has posed a challenge to the view that sexual reproduction is essential for long-term evolutionary success in eukaryotes and to hypotheses for the advantage of sex. The possibility nevertheless exists that bdelloids reproduce sexually under unknown or inadequately investigated conditions. Although certain methods of population genetics offer definitive means for detecting infrequent or atypical sex, they have not previously been applied to bdelloid rotifers. We conducted such a test with bdelloids belonging to a mitochondrial clade of Macrotrachela quadricornifera. This revealed a striking pattern of allele sharing consistent with sexual reproduction and with meiosis of an atypical sort, in which segregation occurs without requiring homologous chromosome pairs.
Collapse
Affiliation(s)
- Ana Signorovitch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jae Hur
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Biology, Harvey Mudd College, Claremont, California 91711
| | - Eugene Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Matthew Meselson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
87
|
Fontaneto D, Barraclough TG. Do Species Exist in Asexuals? Theory and Evidence from Bdelloid Rotifers. Integr Comp Biol 2015; 55:253-63. [PMID: 25912362 DOI: 10.1093/icb/icv024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The possibility for independently evolving entities to form and persist in the absence of sexual recombination in eukaryotes has been questioned; nevertheless, there are organisms that are known to be asexual and that have apparently diversified into multiple species as recognized by taxonomists. These organisms have therefore been identified as an evolutionary paradox. We explore three alternative hypotheses attempting to solve the apparent paradox, focusing on bdelloid rotifers, the most studied group of organisms in which all species are considered asexual: (1) they may have some hidden form of sex; (2) species do not represent biological entities but simply convenient names; and (3) sex may not be a necessary requirement for speciation. We provide ample evidence against the first two hypotheses, reporting several studies supporting (1) bdelloids asexuality from different approaches, and (2) the existence of species from genetics, jaw morphology, ecology, and physiology. Thus, we (3) explore the role of sex in speciation comparing bdelloid and monogonont rotifers, and conclude with some caveats that could still change our understanding of bdelloid species.
Collapse
Affiliation(s)
- Diego Fontaneto
- *National Research Council, Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy;
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
88
|
Bruch EM, de Groot A, Un S, Tabares LC. The effect of gamma-ray irradiation on the Mn(II) speciation in Deinococcus radiodurans and the potential role of Mn(II)-orthophosphates. Metallomics 2015; 7:908-16. [PMID: 25811292 DOI: 10.1039/c5mt00009b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
D. radiodurans accumulates large quantities of Mn(II), which is believed to form low molecular weight complexes with phosphate and metabolites that protect D. radiodurans from radiation damage. The concentration of Mn(II) species in D. radiodurans during the exponential and stationary phase was determined using high-field EPR and biochemical techniques. In the exponential growth phase cells a large fraction of the manganese was in the form of Mn(II)-orthophosphate complexes. By contrast, the intracellular concentration of these compounds in stationary phase cells was less than 16 μM, while that of Mn superoxide dismutase was 320 μM and that of another, yet unidentified, Mn(II) protein was 250 μM. Stationary cells were found to be equally resistant to irradiation as the exponential cells in spite of having significant lower Mn(II)-orthophosphate concentrations. Gamma irradiation induced no changes in the Mn(II) speciation. During stationary growth phase D. radiodurans favours the production of the two Mn-proteins over low molecular weight complexes suggesting that the latter were not essential for radio-resistance at this stage of growth.
Collapse
Affiliation(s)
- E M Bruch
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
89
|
Shuryak I, Bryan RA, Broitman J, Marino SA, Morgenstern A, Apostolidis C, Dadachova E. Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans. Nucl Med Biol 2015; 42:515-23. [PMID: 25800676 DOI: 10.1016/j.nucmedbio.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. METHODS We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by (213)Bi-labeled monoclonal antibodies), and sparsely-ionizing (137)Cs γ-rays, on Cryptococcus neoformans. RESULTS The best-fit linear-quadratic parameters for clonogenic survival were the following: α = 0.24 × 10(-2) Gy(-1) for γ-rays and 1.07 × 10(-2) Gy(-1) for external-beam α-particles, and β = 1.44 × 10(-5) Gy(-2) for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs. γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. CONCLUSIONS These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Medical Center, New York, New York
| | - Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Jack Broitman
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Stephen A Marino
- Radiological Research Accelerator Facility, Nevis Laboratories, Irvington, New York
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Christos Apostolidis
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Ekaterina Dadachova
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
90
|
Hespeels B, Knapen M, Hanot-Mambres D, Heuskin AC, Pineux F, LUCAS S, Koszul R, Van Doninck K. Gateway to genetic exchange? DNA double-strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation. J Evol Biol 2015; 27:1334-45. [PMID: 25105197 DOI: 10.1111/jeb.12326] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bdelloid rotifer lineage Adineta vaga inhabits temporary habitats subjected to frequent episodes of drought. The recently published draft sequence of the genome of A. vaga revealed a peculiar genomic structure incompatible with meiosis and suggesting that DNA damage induced by desiccation may have reshaped the genomic structure of these organisms. However, the causative link between DNA damage and desiccation has never been proven to date in rotifers. To test for the hypothesis that desiccation induces DNA double-strand breaks (DSBs), we developed a protocol allowing a high survival rate of desiccated A. vaga. Using pulsed-field gel electrophoresis to monitor genomic integrity, we followed the occurrence of DSBs in dried bdelloids and observed an accumulation of these breaks with time spent in dehydrated state. These DSBs are gradually repaired upon rehydration. Even when the genome was entirely shattered into small DNA fragments by proton radiation, A. vaga individuals were able to efficiently recover from desiccation and repair a large amount of DSBs. Interestingly, when investigating the influence of UV-A and UV-B exposure on the genomic integrity of desiccated bdelloids, we observed that these natural radiations also caused important DNA DSBs, suggesting that the genome is not protected during the desiccated stage but that the repair mechanisms are extremely efficient in these intriguing organisms.
Collapse
|
91
|
Badri H, Monsieurs P, Coninx I, Wattiez R, Leys N. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiologyopen 2015; 4:187-207. [PMID: 25678338 PMCID: PMC4398503 DOI: 10.1002/mbo3.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium.,Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| |
Collapse
|
92
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
93
|
Abstract
BACKGROUND Ionizing radiation causes the generation of damaging reactive oxygen species that lead to cellular damage and death. Organisms such as Deinococcus radiodurans have evolved mechanisms for extreme resistance to ionizing radiation, and resistance has been shown to be a consequence of protection of critical proteins from oxidative inactivation. OBJECTIVES D. radiodurans accumulates high levels of manganese and of small peptides that together are protective. Our aim was to rationally design antioxidant peptides. METHODS Amino acid analysis was utilized to determine the rates of loss of the 20 amino acids exposed to varying doses of irradiation. The activity of glutamine synthetase and methionine sulfoxide reductase was assayed to follow their inactivation by irradiation. RESULTS The ability of an amino acid to protect enzymes from inactivation by ionizing radiation paralleled its sensitivity to ionizing radiation. Based on this observation and the ability of histidine to confer water solubility, we synthesized the hexapeptide His-Met-His-Met-His-Met and found that it provided markedly increased protection against irradiation. DISCUSSION Small peptides containing histidine and methionine were readily soluble and provided enzymes with remarkable protection from inactivation by ionizing radiation.
Collapse
|
94
|
Wey-Fabrizius AR, Podsiadlowski L, Herlyn H, Hankeln T. Platyzoan mitochondrial genomes. Mol Phylogenet Evol 2013; 69:365-75. [DOI: 10.1016/j.ympev.2012.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/16/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
95
|
Rhee JS, Kim BM, Kim RO, Seo JS, Kim IC, Lee YM, Lee JS. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:58-67. [PMID: 23765029 DOI: 10.1016/j.aquatox.2013.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
96
|
Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development. PLoS One 2013; 8:e72098. [PMID: 24039737 PMCID: PMC3765152 DOI: 10.1371/journal.pone.0072098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/07/2013] [Indexed: 11/19/2022] Open
Abstract
Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.
Collapse
|
97
|
Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 2013; 500:453-7. [PMID: 23873043 DOI: 10.1038/nature12326] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/30/2013] [Indexed: 11/08/2022]
Abstract
Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.
Collapse
|
98
|
Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res 2013; 140:295-311. [PMID: 23899811 DOI: 10.1159/000352069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move only as DNA. Rapid advances in genome sequencing significantly improved our understanding of TE roles in genome shaping and restructuring, and studies of transcriptomes and epigenomes shed light on the previously unknown molecular mechanisms underlying genetic and epigenetic TE controls. Knowledge of these control systems may be important for better understanding of reticulate evolution and speciation in the context of bringing different genomes together by hybridization and perturbing the established regulatory balance by ploidy changes. See also sister article focusing on plants by Bento et al. in this themed issue.
Collapse
Affiliation(s)
- I R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA. iarkhipova @ mbl.edu
| | | |
Collapse
|
99
|
Qiao L, Luo S, Liu Y, Li X, Wang G, Huang Z. Reproductive and locomotory capacities of Caenorhabditis elegans were not affected by simulated variable gravities and spaceflight during the Shenzhou-8 mission. ASTROBIOLOGY 2013; 13:617-625. [PMID: 23837604 PMCID: PMC3713449 DOI: 10.1089/ast.2012.0962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/13/2013] [Indexed: 05/30/2023]
Abstract
Reproduction and locomotion are essential features of animals that help to facilitate their interaction with the surrounding environment. Previous studies have produced inconsistent results on behavioral response to spaceflight by the model animal Caenorhabditis elegans (C. elegans) in liquid culture. Using standard agar-based nematode growth medium (NGM), we show here that both reproductive and locomotory capacities of C. elegans were not significantly changed by centrifuge-produced hypergravity or clinostat-simulated microgravity. To investigate the effect of actual spaceflight on C. elegans, a nematode test unit was specifically designed to maintain its normal growth on solid NGM slides and to allow automatic RNA fixation on board the Shenzhou-8 spaceflight. We did not detect alteration in either brood size of immediate progenies from postflight nematodes or locomotory behavior, including speed of locomotion, frequency of reversals, and rate of body bends of space-flown nematodes collected directly from nematode test units. Our results provide clear evidence that the nematode test unit is an appropriate apparatus for nematode growth on standard NGM and can be used for on-orbit analysis of C. elegans, including onboard RNA fixation for molecular analysis and real-time video acquisition for behavioral analysis, which are critical for further studies in unmanned spaceflight and outer space exploration.
Collapse
Affiliation(s)
- Liang Qiao
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Sang Luo
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yongding Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| | - Xiaoyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| | - Zebo Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
100
|
Horikawa DD, Cumbers J, Sakakibara I, Rogoff D, Leuko S, Harnoto R, Arakawa K, Katayama T, Kunieda T, Toyoda A, Fujiyama A, Rothschild LJ. Analysis of DNA repair and protection in the Tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS One 2013; 8:e64793. [PMID: 23762256 PMCID: PMC3675078 DOI: 10.1371/journal.pone.0064793] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m2 of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.
Collapse
Affiliation(s)
- Daiki D. Horikawa
- Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- NASA Astrobiology Institute
- * E-mail: (DDH); (LJR)
| | - John Cumbers
- Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Iori Sakakibara
- INSERM U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dana Rogoff
- Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Stefan Leuko
- Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Raechel Harnoto
- California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa, Japan
| | - Toshiaki Katayama
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
| | - Lynn J. Rothschild
- Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- NASA Astrobiology Institute
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (DDH); (LJR)
| |
Collapse
|