51
|
Ozturk SE, Isci R, Faraji S, Sütay B, Majewski LA, Ozturk T. Synthesis, Photophysical Properties and OFET Application of Thienothiophene and Benzothiadiazole Based Donor-π-Acceptor- π (D- π -A- π) Type Conjugated Polymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
52
|
Nath S, Puthukkudi A, Mohapatra J, Bommakanti S, Chandrasekhar N, Biswal BP. Carbon-Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromol Rapid Commun 2023; 44:e2200950. [PMID: 36625406 DOI: 10.1002/marc.202200950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Organic frameworks with carbon-carbon (CC) linkage are an important class of materials owing to their outstanding chemical stability and extended π-electron delocalization resulting in unique optoelectronic properties. In the first part of this review article, the design principles for the bottom-up synthesis of 2D and 3D sp/sp2 CC linked organic frameworks are summarized. Representative reaction methodologies, such as Knoevenagel condensation, Aldol condensation, Horner-Wadsworth-Emmons reaction, Wittig reaction, and coupling reactions (Ullmann, Suzuki, Heck, Yamamoto, etc.) are included. This is discussed in the context of their reaction mechanism, reaction dynamics, and whether and why resulting in an amorphous or crystalline product. This is followed by a discussion of different state-of-the art bottom-up synthesis methodologies, like solvothermal, interfacial, and solid-state synthesis. In the second part, the structure-property relationships in CC linked organic frameworks with representative examples of organocatalysis, photo(electro)catalysis, energy storage and conversion, magnetism, and molecular storage and separation are analyzed. The importance of linkage type, building blocks, topology, and crystallinity of the framework material in connection with the structure-property relationship is highlighted. Finally, brief concluding remarks are presented based on the key development of bottom-up synthetic methods and provide perspectives for future development in this field.
Collapse
Affiliation(s)
- Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Naisa Chandrasekhar
- Centre for Advancing Electronics Dresden (cfaed), Department of Chemistry and Food Chemistry, Dresden University of Technology, Momenstrasse 4, 01069, Dresden, Germany
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
53
|
Fijahi L, Li J, Tamayo A, Volpi M, Schweicher G, Geerts YH, Mas-Torrent M. High throughput processing of dinaphtho[2,3- b:2',3'- f]thieno[3,2- b]thiophene (DNTT) organic semiconductors. NANOSCALE 2022; 15:230-236. [PMID: 36472089 DOI: 10.1039/d2nr05625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The deposition of organic semiconductors (OSCs) using solution shearing deposition techniques is highly appealing for device implementation. However, when using high deposition speeds, it is necessary to use very concentrated OSC solutions. The OSCs based on the family of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have been shown to be excellent OSCs due to their high mobility and stability. However, their limited solubility hinders the processing of these materials at high speed. Here, we report the conditions to process alkylated DNTT and the S-shaped π-core derivative S-DNTT by bar-assisted meniscus shearing (BAMS) at high speed (i.e., 10 mm s-1). In all the cases, homogeneous thin films were successfully prepared, although we found that the gain in solubility achieved with the S-DNTT derivative strongly facilitated solution processing, achieving a field-effect mobility of 2.1 cm2 V-1 s-1, which is two orders of magnitude higher than the mobility found for the less soluble linear derivatives.
Collapse
Affiliation(s)
- Lamiaa Fijahi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Jinghai Li
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Adrián Tamayo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Martina Volpi
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
| | - Yves H Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, 1050 Bruxelles, Belgium
- International Solvay Institutes for Physics and Chemistry, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 231, 1050 Bruxelles, Belgium
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
54
|
Sakaino H, Meskers SCJ, Meijer EW, Vantomme G. Charge transport in liquid crystal network of terthiophene-siloxane block molecules. Chem Commun (Camb) 2022; 58:12819-12822. [PMID: 36317540 PMCID: PMC9670865 DOI: 10.1039/d2cc04911b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024]
Abstract
In their thermotropic liquid-crystalline state, molecular semiconductors can show charge transport with high carrier mobility. Polymerization of the corresponding mesogens into a cross-linked network often deteriorates the charge transport. Here, we report that mesogens consisting of a terthiophene core and discrete oligodimethylsiloxane side-chains terminated by acrylate units can be photopolymerized in the columnar phase with retention of nanoscale order and charge transport capabilities. We argue that the strong tendency for microphase segregation protects the semiconducting block from reacting with free radicals during polymerization. This work provides new insights into the design of electroactive materials with charge transport properties.
Collapse
Affiliation(s)
- Hirotoshi Sakaino
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Electronic & Imaging Materials Research Laboratories, Toray Industries, Inc., 3-1-2 Sonoyama, Otsu, Shiga 520-0842, Japan
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
55
|
Fayaz-Torshizi M, Graham EJ, Adjiman CS, Galindo A, Jackson G, Müller EA. SAFT- γ Force Field for the Simulation of Molecular Fluids 9: Coarse-Grained Models for Polyaromatic Hydrocarbons Describing Thermodynamic, Interfacial, Structural, and Transport Properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
56
|
Wang PH, Liu BW, Wang GQ, Sun C. Photochromic Semiconductors: Bottom-Up Strategy to Construct Type II-Stacking Viologen π-Aggregates. Inorg Chem 2022; 61:17196-17201. [PMID: 36265225 DOI: 10.1021/acs.inorgchem.2c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semiconductor conductivities depend largely on the crystal structures and the associated electronic structures. If the electronic structures can be switched reversibly in the same crystal structure, then a drastic conductivity change may be controllable. The effect of electron transfer (ET) on semiconductor conductivity remained elusive so far. In this work, a series of two pillared inorganicorganic hybrid photochromic semiconductors (PSCs), [(CQ)Pb3X6(H2O)]·2H2O [X = Cl (1) and Br (2), CQ = N-4,4'-bipyridiniopropionate (viologen)], with II-stacking viologen π-aggregates, are constructed by a bottom-up self-assembly strategy through inorganic skeleton-directed intercalation and intermolecular noncovalent interaction. The conductivities are abnormally "invariant" after photoinduced ET, breaking the convention that the generation of radicals favors conductivity. The abnormally "invariant" conductivities are mainly derived from approximate electronic couplings before and after ET between II-stacking viologen π-aggregates.
Collapse
Affiliation(s)
- Peng-Hao Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Guo-Qiang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, China
| |
Collapse
|
57
|
Ma S, Deng T, Li Z, Zhang Z, Jia J, Wu G, Xia H, Yang S, Liu X. Photocatalytic Hydrogen Production on a sp
2
‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202208919. [DOI: 10.1002/anie.202208919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Si Ma
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Tianqi Deng
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P.R. China
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Ziping Li
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Zhenwei Zhang
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Ji Jia
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Gang Wu
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Technology Jilin University Changchun 130012 P.R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Xiaoming Liu
- College of Chemistry Jilin University Changchun 130012 P.R. China
| |
Collapse
|
58
|
Barak A, Dhiman N, Sturm F, Rauch F, Lakshmanna YA, Findlay KS, Beeby A, Marder TB, Umapathy S. Excited‐State Intramolecular Charge‐Transfer Dynamics in 4‐Dimethylamino‐4’‐Cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Arvind Barak
- Indian Institute of Science Department of Inorganic and Physical Chemistry 560012 Bangalore INDIA
| | - Nishant Dhiman
- Indian Institute of Science Department of Inorganic and Physical Chemistry 560012 Bangalore INDIA
| | - Floriane Sturm
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) GERMANY
| | - Florian Rauch
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) GERMANY
| | - Yapamanu Adithya Lakshmanna
- Indian Institute of Science Education and Research Thiruvananthapuram School of Chemistry 695551 Thiruvananthapuram INDIA
| | - Karen S. Findlay
- University of Durham: Durham University Department of Chemistry UNITED KINGDOM
| | - Andrew Beeby
- University of Durham: Durham University Department of Chemistry UNITED KINGDOM
| | - Todd B. Marder
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) GERMANY
| | - Siva Umapathy
- Indian Institute of Science Dept. of Inorganic and physical chemistry Raman avenue 560012 Bangalore INDIA
| |
Collapse
|
59
|
Photocatalytic Hydrogen Production on a sp2‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
60
|
Navamani K, Rajkumar K. Generalization on Entropy-Ruled Charge and Energy Transport for Organic Solids and Biomolecular Aggregates. ACS OMEGA 2022; 7:27102-27115. [PMID: 35967056 PMCID: PMC9366796 DOI: 10.1021/acsomega.2c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Herein, a generalized version of the entropy-ruled charge and energy transport mechanism for organic solids and biomolecular aggregates is presented. The effects of thermal disorder and electric field on electronic transport in molecular solids have been quantified by entropy, which eventually varies with respect to the typical disorder (static or dynamic). Based on our previous differential entropy (h s )-driven charge transport method, we explore the nonsteady carrier energy flux principle for soft matter systems from small organic solids to macrobiomolecular aggregates. Through this principle, the synergic nature of charge and energy transport in different organic systems is addressed. In this work, entropy is the key parameter to classify whether the carrier dynamics is in a nonsteady or steady state. Besides that, we also propose the formulation for unifying the hopping and band transport, which provides the relaxation time-hopping rate relation and the relaxation time-effective mass ratio. The calculated disorder drift time (or entropy-weighted carrier drift time) for hole transport in an alkyl-substituted triphenylamine (TPA) molecular device is 9.3 × 10-7 s, which illustrates nuclear dynamics-coupled charge transfer kinetics. The existence of nonequilibrium transport is anticipated while the carrier dynamics is in the nonsteady state, which is further examined from the rate of traversing potential in octupolar molecules. Our entropy-ruled Einstein model connects the adiabatic band and nonadiabatic hopping transport mechanisms. The logarithmic current density at different electric field-assisted site energy differences provides information about the typical transport (whether trap-free diffusion or trap-assisted recombination) in molecular devices, which reflects in the Navamani-Shockley diode equation.
Collapse
Affiliation(s)
- Karuppuchamy Navamani
- Department
of Physics, Centre for Research and Development
(CFRD), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Kanakaraj Rajkumar
- Department
of Physics, Indian Institute of Technology
Madras, Chennai 600036, India
| |
Collapse
|
61
|
Fell VHK, Cameron J, Kanibolotsky AL, Hussien EJ, Skabara PJ. Introducing a new 7-ring fused diindenone-dithieno[3,2- b:2',3'- d]thiophene unit as a promising component for organic semiconductor materials. Beilstein J Org Chem 2022; 18:944-955. [PMID: 35965856 PMCID: PMC9359197 DOI: 10.3762/bjoc.18.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
A novel π-conjugated molecule, EtH-T-DI-DTT is reported, which is fused, rigid, and planar, featuring the electron-rich dithieno[3,2-b:2',3'-d]thiophene (DTT) unit in the core of the structure. Adjacent to the electron-donating DTT core, there are indenone units with electron-withdrawing keto groups. To enable solubility in common organic solvents, the fused system is flanked by ethylhexylthiophene groups. The material is a dark, amorphous solid with an onset of absorption at 638 nm in CH2Cl2 solution, which corresponds to an optical gap of 1.94 eV. In films, the absorption onset wavelength is at 701 nm, which corresponds to 1.77 eV. An ionisation energy of 5.5 eV and an electron affinity of 3.3 eV were estimated by cyclic voltammetry measurements. We have applied this new molecule in organic field effect transistors. The material exhibited a p-type mobility up to 1.33 × 10-4 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Valentin H K Fell
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Joseph Cameron
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Alexander L Kanibolotsky
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
- Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv, Ukraine
| | - Eman J Hussien
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Peter J Skabara
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| |
Collapse
|
62
|
Hebbali R, Mekelleche SM, Zaitri LK. Computational study of optoelectronic properties of oxadiazole-based compounds for organic light emitting diodes. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Rabah Hebbali
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Sidi Mohamed Mekelleche
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Lamia Kara Zaitri
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
63
|
Guo J, Zeng Y, Zhen Y, Geng H, Wang Z, Yi Y, Dong H, Hu W. Non-Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3-a]carbazole. Angew Chem Int Ed Engl 2022; 61:e202202336. [PMID: 35506192 DOI: 10.1002/anie.202202336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Rare studies of cocrystal engineering have focused on improving carrier mobility of organic semiconductors mainly because of the generation of ambipolarity, the alteration of the charge carrier polarity or the reduction of electronic couplings. Herein, we utilize indolo[2,3-a]carbazole (IC) as the model compound and 2,6-diphenylanthraquinone (DPAO) and 9-fluorenone (FO) as the coformers to construct IC2-DPAO and IC-FO cocrystals with 2 : 1 or 1 : 1 ratios, respectively, through hydrogen bonds and donor-acceptor interactions. Interestingly, the more appropriate packing structure, possessing not only enhanced electronic couplings but also increased intermolecular distances, is achieved in IC2-DPAO, which shows an improved carrier mobility of 0.11 cm2 V-1 s-1 by four orders of magnitude relative to the IC crystal. These results suggest that non-equal ratio cocrystal engineering opens up the possibility to develop organic semiconductors with enhanced charge transport behaviors.
Collapse
Affiliation(s)
- Junfeng Guo
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zeng
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonggang Zhen
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangdong, 510275, China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zongrui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuanping Yi
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
64
|
Anisotropic Charge Transfer Mobility Properties of Systems with Large Conjugation Core and Peripheral Phenyl Rings. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
65
|
Ali U, Etabti H, Muhammad Rizwan Ahmad H, Uz Zafar S. The conformational control of small D-A-D organic solar cells for large power conversion efficiency: A deep quantum chemistry analysis. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
66
|
Jadhav SD, Sasikumar D, Hariharan M. Modulating singlet fission through interchromophoric rotation. Phys Chem Chem Phys 2022; 24:16193-16199. [PMID: 35749225 DOI: 10.1039/d2cp01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet fission (SF) is a spin-allowed, exciton-multiplying phenomenon that can be utilized to improve the efficiency of organic solar cells. It is well-understood that SF is sensitive to the local crystal morphology and an appropriately balanced coupling is essential to facilitate efficient SF. In this study, we show how the interchromophoric rotation selectively modulates the interaction between the monomer frontier molecular orbitals, promoting both fast and exothermal SF. We evaluate the effective electronic coupling for SF (VSF), the square of which is proportional to the SF rate, and the effective energies of the Frenkel exciton (FE/S1S0) and triplet pair exciton (TT) in a terrylene dimer model. Optimal interplanar rotation of the chromophoric moieties in slip-stacked arrangements pulls the effective energy of the TT state below that of the FE state. Consequently, SF is favored over competing pathways such as excimer formation, thereby enhancing the overall triplet yield. This work represents a step towards improvising the molecular design guidelines for SF and understanding the importance of interchromophoric rotation over the conventional slip-stacked arrangements for achieving favorable intermolecular electronic coupling towards efficient SF.
Collapse
Affiliation(s)
- Sohan D Jadhav
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
67
|
Santos VS, Moura BR, Metzker G, Cornélio ML, Ferreira OP, Mounier SJL, Hajjoul H, Boscolo M, Bisinoti MC, Moreira AB. Increase of Fluorescence of Humic-Like Substances in Interaction with Cd(II): a Photoinduced Charge Transfer Approach. J Fluoresc 2022; 32:1761-1767. [PMID: 35678899 DOI: 10.1007/s10895-022-02978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Described is the enhancement of fluorescence intensity due to the interaction of a humic-like substance (HLS 1%) extracted from process water (PW) and Cd(II) ions in aqueous solution. Using Canonical Polyadic/Parallel Factor Analysis (CP/PARAFAC), two main components were seen that contributed to fluorescence, the first one increased it and the second one kept it constant in both static and dynamic fluorescence studies. Two-dimensional FTIR analysis indicated that the interaction of HLS 1% and Cd(II) ions occurred in the following order of affinity with the groups: C-O bonds in polysaccharides > C-O bonds in carboxylic acid. The results obtained suggest that the increase in fluorescence intensity and lifetime suggest a photoinduced charge transfer (PCT) between Cd(II) ions and carboxylic acid groups present in HLS 1%.
Collapse
Affiliation(s)
- Vinicius S Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Bernardo R Moura
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Gustavo Metzker
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Marinonio L Cornélio
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Odair P Ferreira
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Stéphane J L Mounier
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, Toulon, France
| | - Houssam Hajjoul
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, Toulon, France
| | - Maurício Boscolo
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Márcia C Bisinoti
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Altair B Moreira
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
68
|
Guo J, Zeng Y, Zhen Y, Geng H, Wang Z, Yi Y, Dong H, Hu W. Non‐Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3‐a]carbazole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junfeng Guo
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Zeng
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yonggang Zhen
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Optoelectronic Materials and Technologies Sun Yat-sen University Guangdong 510275 China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Zongrui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yuanping Yi
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huanli Dong
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
69
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
70
|
Liu S, Zhang J, Zang C, Zhang L, Xie W, Lee CS. Centimeter-scale hole diffusion and its application in organic light-emitting diodes. SCIENCE ADVANCES 2022; 8:eabm1999. [PMID: 35486728 PMCID: PMC9054018 DOI: 10.1126/sciadv.abm1999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In conventional organic light-emitting diodes (OLEDs), current balance between electron and hole transport regions is typically achieved by leakage of the major carrier through the devices or by accumulation of the major carrier inside the devices. Both of these are known to reduce performances leading to reduction of efficiency and operation stability due to exciton-polaron annihilation, etc. We found that hole diffusion in a centimeter-scale can be achieved in a PEDOT:PSS layer via composition and interface engineering. This ultralong distance hole diffusion enables substantially enhanced hole diffusion current in the lateral direction perpendicular to the applied electric field in typical organic optoelectronic devices. By introducing this lateral hole diffusion layer (LHDL) at the anode side of OLEDs, reduced carrier accumulation, improved efficiency, and enhanced operation stability are demonstrated. The application of the LHDL provides a third strategy for current balancing with much reduced harmful effects from the previous two approaches.
Collapse
Affiliation(s)
- Shihao Liu
- State key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, People’s Republic of China
| | - Jiaming Zhang
- State key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Chunxiu Zang
- State key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Letian Zhang
- State key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Wenfa Xie
- State key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, People’s Republic of China
| |
Collapse
|
71
|
Xu J, Jo SB, Chen X, Zhou G, Zhang M, Shi X, Lin F, Zhu L, Hao T, Gao K, Zou Y, Su X, Feng W, Jen AKY, Zhang Y, Liu F. The Molecular Ordering and Double-Channel Carrier Generation of Nonfullerene Photovoltaics within Multi-Length-Scale Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108317. [PMID: 35218262 DOI: 10.1002/adma.202108317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The success of nonfullerene acceptor (NFA) solar cells lies in their unique physical properties beyond the extended absorption and suitable energy levels. The current study investigates the morphology and photophysical behavior of PBDB-T donor blending with ITIC, 4TIC, and 6TIC acceptors. Single-crystal study shows that the π-π stacking and side-chain interaction dictate molecular assembly, which can be carried to blended films, forming a multi-length-scale morphology. Spontaneous carrier generation is seen in ITIC, 4TIC, and 6TIC neat films and their blended thin films using the PBDB-T donor, providing a new avenue of zero-energy-loss carrier formation. The molecular packing associated with specific contacts and geometry is key in influencing the photophysics, as demonstrated by the charge transfer and carrier lifetime results. The 2D layer of 6TIC facilitates the exciton-to-polaron conversion, and the largest photogenerated polaron yield is obtained. The new mechanism, together with the highly efficient blending region carrier generation, has the prospect of the fundamental advantage for NFA solar cells, from molecular assembly to thin-film morphology.
Collapse
Affiliation(s)
- Jinqiu Xu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sae Byeok Jo
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Xiankai Chen
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
| | - Guanqing Zhou
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xueliang Shi
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Francis Lin
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianyu Hao
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ke Gao
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong Province, 256401, P. R. China
| | - Xuan Su
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong Province, 256401, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong Province, 256401, P. R. China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and In Situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
72
|
Jun B, Lee CH, Lee SU. Strain-induced carrier mobility modulation in organic semiconductors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
73
|
Plater MJ, Harrison WTA. A Potential Iterative Approach to 1,4-Dihydro-N-Heteroacene Arrays. ChemistryOpen 2022; 11:e202100150. [PMID: 34432942 PMCID: PMC8886647 DOI: 10.1002/open.202100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
A new method for the synthesis of substituted 1,4-dihydrophenazines is reported and the structure of N-butyl-5-methyl-3-nitro-5,10-dihydrophenazine is proven by an X-ray single-crystal structure determination.
Collapse
Affiliation(s)
- M. John Plater
- Department of ChemistryUniversity of AberdeenMeston WalkAberdeenAB24 3UEUK
| | | |
Collapse
|
74
|
Yu H, Li J, Li S, Liu Y, Jackson NE, Moore JS, Schroeder CM. Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. J Am Chem Soc 2022; 144:3162-3173. [PMID: 35148096 DOI: 10.1021/jacs.1c12741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermolecular charge transport through π-conjugated molecules plays an essential role in biochemical redox processes and energy storage applications. In this work, we observe highly efficient intermolecular charge transport upon dimerization of pyridinium molecules in the cavity of a synthetic host (cucurbit[8]uril, CB[8]). Stable, homoternary complexes are formed between pyridinium molecules and CB[8] with high binding affinity, resulting in an offset stacked geometry of two pyridiniums inside the host cavity. The charge transport properties of free and dimerized pyridiniums are characterized using a scanning tunneling microscope-break junction (STM-BJ) technique. Our results show that π-stacked pyridinium dimers exhibit comparable molecular conductance to isolated, single pyridinium molecules, despite a longer transport pathway and a switch from intra- to intermolecular charge transport. Control experiments using a CB[8] homologue (cucurbit[7]uril, CB[7]) show that the synthetic host primarily serves to facilitate dimer formation and plays a minimal role on molecular conductance. Molecular modeling using density functional theory (DFT) reveals that pyridinium molecules are planarized upon dimerization inside the host cavity, which facilitates charge transport. In addition, the π-stacked pyridinium dimers possess large intermolecular LUMO-LUMO couplings, leading to enhanced intermolecular charge transport. Overall, this work demonstrates that supramolecular assembly can be used to control intermolecular charge transport in π-stacked molecules.
Collapse
Affiliation(s)
| | - Jialing Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | | | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Charles M Schroeder
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
75
|
Calcinelli F, Jeindl A, Hörmann L, Ghan S, Oberhofer H, Hofmann OT. Interfacial Charge Transfer Influences Thin-Film Polymorphism. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2868-2876. [PMID: 35178141 PMCID: PMC8842301 DOI: 10.1021/acs.jpcc.1c09986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Indexed: 05/05/2023]
Abstract
The structure and chemical composition are the key parameters influencing the properties of organic thin films deposited on inorganic substrates. Such films often display structures that substantially differ from the bulk, and the substrate has a relevant influence on their polymorphism. In this work, we illuminate the role of the substrate by studying its influence on para-benzoquinone on two different substrates, Ag(111) and graphene. We employ a combination of first-principles calculations and machine learning to identify the energetically most favorable structures on both substrates and study their electronic properties. Our results indicate that for the first layer, similar structures are favorable for both substrates. For the second layer, we find two significantly different structures. Interestingly, graphene favors the one with less, while Ag favors the one with more electronic coupling. We explain this switch in stability as an effect of the different charge transfer on the two substrates.
Collapse
Affiliation(s)
- Fabio Calcinelli
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Andreas Jeindl
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Lukas Hörmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Simiam Ghan
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
| | - Harald Oberhofer
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
- Chair
for Theoretical Physics VII and Bavarian Center for Battery Technology
(BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Oliver T. Hofmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| |
Collapse
|
76
|
Ponder JF, Gregory SA, Atassi A, Menon AK, Lang AW, Savagian LR, Reynolds JR, Yee SK. Significant Enhancement of the Electrical Conductivity of Conjugated Polymers by Post-Processing Side Chain Removal. J Am Chem Soc 2022; 144:1351-1360. [PMID: 35007084 DOI: 10.1021/jacs.1c11558] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The processability and electronic properties of conjugated polymers (CPs) have become increasingly important due to the potential of these materials in redox and solid-state devices for a broad range of applications. To solubilize CPs, side chains are needed, but such side chains reduce the relative fraction of electroactive material in the film, potentially obstructing π-π intermolecular interactions, localizing charge carriers, and compromising desirable optoelectronic properties. To reduce the deleterious effects of side chains, we demonstrate that post-processing side chain removal, exemplified here via ester hydrolysis, significantly increases the electrical conductivity of chemically doped CP films. Beginning with a model system consisting of an ester functionalized ProDOT copolymerized with a dimethylProDOT, we used a variety of methods to assess the changes in polymer film volume and morphology upon hydrolysis and resulting active material densification. Via a combination of electrochemistry, X-ray photoelectron spectroscopy, and charge transport models, we demonstrate that this increase in electrical conductivity is not due to an increase in degree of doping but an increase in charge carrier density and reduction in carrier localization that occurs due to side chain removal. With this improved understanding of side chain hydrolysis, we then apply this method to high-performance ProDOT-alt-EDOTx copolymers. After hydrolysis, these ProDOT-alt-EDOTx copolymers yield exceptional electrical conductivities (∼700 S/cm), outperforming all previously reported oligoether-/glycol-based CP systems. Ultimately, this methodology advances the ability to solution process highly electrically conductive CP films.
Collapse
Affiliation(s)
- James F Ponder
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shawn A Gregory
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amalie Atassi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Akanksha K Menon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Augustus W Lang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lisa R Savagian
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John R Reynolds
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shannon K Yee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
77
|
Ni X, Li H, Liu F, Brédas JL. Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. MATERIALS HORIZONS 2022; 9:88-98. [PMID: 34866138 DOI: 10.1039/d1mh00935d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs), also referred to as 2D polymer networks, display unusual electronic-structure characteristics, which can significantly enrich and broaden the fields of electronics and spintronics. In this Focus article, our objective is to lay the groundwork for the conceptual description of the fundamental relationships among the COF electronic structures, the symmetries of their 2D lattices, and the frontier molecular orbitals (MOs) of their core and linker components. We focus on monolayers of hexagonal COFs and use tight-binding model analyses to highlight the critical role of the frontier-MO symmetry, in addition to lattice symmetry, in determining the nature of the electronic bands near the Fermi level. We rationalize the intriguing feature that, when the core unit has degenerate highest occupied MOs [or lowest unoccupied MOs], the COF highest valence band [or lowest conduction band] is flat but degenerate with a dispersive band at a high-symmetry point of the Brillouin zone; the consequences of having such band characteristics are briefly described. Multi-layer and bulk 2D COFs are found to maintain the salient features of the monolayer electronic structures albeit with a reduced bandgap due to the interlayer coupling. This Focus article is thus meant to provide an effective framework for the engineering of flat and Dirac bands in 2D polymer networks.
Collapse
Affiliation(s)
- Xiaojuan Ni
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, USA.
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, USA.
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, USA.
| |
Collapse
|
78
|
Debata S, Khatua R, Sahu S. Synergistic effects of side-functionalization and aza-substitution on the charge transport and optical properties of perylene-based organic materials: a DFT study. NEW J CHEM 2022. [DOI: 10.1039/d1nj06084h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physicochemical properties of organic materials are subject to the chemical structure of the molecular unit and the arrangement of molecules in a crystal.
Collapse
Affiliation(s)
- Suryakanti Debata
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Rudranarayan Khatua
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Sridhar Sahu
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
79
|
Mandal A. Unraveling Semiconductor Properties of Mixed Stack Donor Acceptor Cocrystals of Pyrene Derivatives and TCNQ: Effect of Crystal Packing versus Super-exchange Mechanism. CrystEngComm 2022. [DOI: 10.1039/d2ce00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have discussed semiconductor property of two reported 2:1 and 1:1 charge transfer donor acceptor cocrystals with mixed ··DDADDA·· stacking. These cocrystals (CCDC 1212856 and 1212858) are comprising of 2-phenyl-3-(pyrene-2-yl)acrylonitrile...
Collapse
|
80
|
Mandal A. Tuning p-type to n-type Semiconductor Nature by Charge Transfer Cocrystallization: Effect of Transfer Integral vs. Reorganization Energy. CrystEngComm 2022. [DOI: 10.1039/d2ce00006g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, 1:2 mixed stack (··DADA·· arrangement) donor acceptor cocrystal comprised of hole transport material CBP (4,4ʹ-bis(9H-carbazole-9-yl)biphenyl) as the donor (D), and TCNQ (7,7ʹ,8,8ʹ-tetracyano-1,4-quinodimethane) as the acceptor (A) was...
Collapse
|
81
|
Moret M, Gavezzotti A. The crystalline state of rubrene materials: intermolecular recognition, isomorphism, polymorphism, and periodic bond-chain analysis of morphologies. NEW J CHEM 2022. [DOI: 10.1039/d2nj00861k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structure analysis and lattice energy calculations of 33 rubrenes provide a background for new ideas on synthesis and planning of transport properties.
Collapse
Affiliation(s)
- Massimo Moret
- Department of Materials Science, University of Milano – Bicocca, Italy
| | | |
Collapse
|
82
|
Shao Y, Lu T, Li M, Lu W. Theoretical exploration of diverse electron-deficient core and terminal groups in A–DA′D–A type non-fullerene acceptors for organic solar cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj04571g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influences triggered by the structurally diverse electron-withdrawing terminal group and fuse-ring electron-deficient core on the performance of NFAs OSCs are comprehensively investigated by using DFT, TD-DFT and Marcus charge transfer theory.
Collapse
Affiliation(s)
- Yueyue Shao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Minjie Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
83
|
Samanta S, Mallick D, Roy RK. Folding of aromatic polyamides into a rare intrachain β-sheet type structure and further reinforcement of the secondary structure through host–guest interactions. Polym Chem 2022. [DOI: 10.1039/d2py00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design, synthesis, and folding of aromatic polyamides into an intrachain β-sheet-like structure. Additionally, the effect of a guest molecule in stabilizing the β-sheet structure has also been demonstrated here.
Collapse
Affiliation(s)
- Subhendu Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, SAS Nagar, Manauli, (PO) 140 306, Punjab, India
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata – 700073, West Bengal, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, SAS Nagar, Manauli, (PO) 140 306, Punjab, India
| |
Collapse
|
84
|
Mombrú D, Romero M, Faccio R, Mombrú ÁW. Ab Initio Molecular Dynamics Assessment on the Mixed Ionic–Electronic Transport for Crystalline Poly(3-Hexylthiophene) Using Full Explicit Lithium-Based Dopants and Additives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Álvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| |
Collapse
|
85
|
Xun S, Li H, Sini G, Bredas JL. Impact of Imine Bond Orientations on the Geometric and Electronic Structures of Imine-based Covalent Organic Frameworks. Chem Asian J 2021; 16:3781-3789. [PMID: 34624932 DOI: 10.1002/asia.202101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Indexed: 11/05/2022]
Abstract
Many efforts are currently devoted to improving the stability and crystallinity of imine-based two-dimensional (2D) covalent organic frameworks (COFs) given their wide range of potential applications. The variation in the relative orientations of the imine bonds has been found to be a critical factor that impacts the stacking of the 2D COF layers, leads to the formation of isomer structures, and influences the crystallinity of the final product. Most investigations to date have focused only on the structural properties, while the role of the imine orientations on the electronic properties has not been studied systematically. Here, we explore this effect by examining how the electronic band structures, electronic couplings, and effective masses evolve when considering four isomeric structures of an imine-linked tetraphenyl-pyrene naphthalene-diimide COF. Our results provide an understanding of the impact of the imine orientations and how they need to be controlled to realize COF inter-layer stackings that can lead to efficient cross-plane electron transport. They can be used to guide the design and synthesis of imine-based COFs for applications where charge transport needs to be optimized.
Collapse
Affiliation(s)
- Sangni Xun
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China.,School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA
| | - Gjergji Sini
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA.,Laboratoire de Physicochimie des Polymères et des Interfaces, CY Cergy Paris Université, Cergy-Pontoise Cedex, 95031, France
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0008, USA
| |
Collapse
|
86
|
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents. Commun Chem 2021; 4:155. [PMID: 36697635 PMCID: PMC9814529 DOI: 10.1038/s42004-021-00583-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) is an n-type organic semiconductor that has shown unique multi-fold intermolecular hydrogen-bonding interactions, leading to aggregated structures with excellent charge transports and electron mobility properties. However, the strong intermolecular anchoring of BQQDI presents challenges for fine-tuning the molecular assembly and improving the semiconducting properties. Herein, we report the design and synthesis of two BQQDI derivatives with phenyl- and cyclohexyl substituents (Ph-BQQDI and Cy6-BQQDI), where the two organic semiconductors show distinct molecular assemblies and degrees of intermolecular orbital overlaps. In addition, the difference in their packing motifs leads to strikingly different band structures that give rise to contrasting charge-transport capabilities. More specifically, Cy6-BQQDI bearing bulky substituents exhibits isotropic intermolecular orbital overlaps resulting in equal averaged transfer integrals in both π-π stacking directions, even when dynamic disorders are taken into account; whereas Ph-BQQDI exhibits anisotropic averaged transfer integrals in these directions. As a result, Cy6-BQQDI shows excellent device performances in both single-crystalline and polycrystalline thin-film organic field-effect transistors up to 2.3 and 1.0 cm2 V-1 s-1, respectively.
Collapse
|
87
|
Javed M, Farhat A, Jabeen S, Khera RA, Khalid M, Iqbal J. Optoelectronic properties of naphthalene bis-benzimidazole based derivatives and their photovoltaic applications. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
88
|
Zhang Z, Qi N, Wu Y, Chen Z. Pressure-Induced Enhancement of Thermoelectric Performance in Rubrene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44409-44417. [PMID: 34515463 DOI: 10.1021/acsami.1c12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, the thermoelectric performance of a typical small-molecule organic semiconductor rubrene under different hydrostatic pressures was studied by first-principles calculation and molecular dynamics simulation. The ZT value of rubrene can reach 1.6 at 400 K due to an unprecedented increase in hole mobility under hydrostatic pressure. The underlying mechanism is ascribed to the suppression of low-frequency phonons (which weakens electron-phonon scattering) and the increase in the intermolecular electronic coupling. The effect of uniaxial stress has also been investigated to confirm this conclusion. Our results provide meaningful insights to understand the relationship between thermoelectric properties and hydrostatic pressure in organic semiconductors.
Collapse
Affiliation(s)
- Ziye Zhang
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Ning Qi
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Yichu Wu
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| | - Zhiquan Chen
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
89
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
90
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
91
|
Exploring the charge injection aptitude in pyrazol and oxazole derivatives by the first-principles approach. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Azole derived products acquired significant consideration in everyday life based on their improved biological potential to the semiconducting substances. The research focused in-depth within pyrazol, and oxazole compounds 1–4 concerning charge transport, structural, optical as well as electronic properties. The density functional theory (DFT) along with time-dependent DFT were used for the optimization of their ground state geometries and excitation energies. We also investigated the molecule’s electron coupling constants (|V
RP|) as well as electron injection (ΔG
inject) values. For better understanding, charge transport and electronic characteristics were performed through quantum chemical computations. The |V
RP| and ΔG
inject values of pyrazole, as well as oxazole molecules, exhibited that these compounds could be competent for dye-sensitized solar cell applications. The pyrazole higher diagonal band gap enlightening these might have enhanced fill factor (FF) along with short-circuit current density (J
sc
). We have also explored the electron injection, energy level offset, dissociation of excitons, and band alignment of studied compounds to shed light on the functionality of these compounds for photovoltaic and semiconductor device applications.
Collapse
|
92
|
Zojer E, Winkler C. Maximizing the Carrier Mobilities of Metal-Organic Frameworks Comprising Stacked Pentacene Units. J Phys Chem Lett 2021; 12:7002-7009. [PMID: 34283912 PMCID: PMC8397338 DOI: 10.1021/acs.jpclett.1c01892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Charge transport properties of metal-organic frameworks (MOFs) are of distinct interest for (opto)electronic applications. In contrast to the situation in molecular crystals, MOFs allow an extrinsic control of the relative arrangement of π-conjugated entities through the framework architecture. This suggests that MOFs should enable materials with particularly high through-space charge carrier mobilities. Such materials, however, do not yet exist, despite the synthesis of MOFs with, for example, seemingly ideally packed stacks of pentacene-bearing linkers. Their rather low mobilities have been attributed to dynamic disorder effects. Using dispersion-corrected density functional theory calculations, we show that this is only part of the problem and that targeted network design involving comparably easy-to-implement structural modifications have the potential to massively boost charge transport. For the pentacene stacks, this is related to the a priori counterintuitive observation that the electronic coupling between neighboring units can be strongly increased by increasing the stacking distance.
Collapse
|
93
|
Li W, Ren J, Shuai Z. A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. Nat Commun 2021; 12:4260. [PMID: 34253724 PMCID: PMC8275621 DOI: 10.1038/s41467-021-24520-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The nonlocal electron-phonon couplings in organic semiconductors responsible for the fluctuation of intermolecular transfer integrals has been the center of interest recently. Several irreconcilable scenarios coexist for the description of the nonlocal electron-phonon coupling, such as phonon-assisted transport, transient localization, and band-like transport. Through a nearly exact numerical study for the carrier mobility of the Holstein-Peierls model using the matrix product states approach, we locate the phonon-assisted transport, transient localization and band-like regimes as a function of the transfer integral (V) and the nonlocal electron-phonon couplings (ΔV), and their distinct transport behaviors are analyzed by carrier mobility, mean free path, optical conductivity and one-particle spectral function. We also identify an "intermediate regime" where none of the established pictures applies, and the generally perceived hopping regime is found to be at a very limited end in the proposed regime paradigm.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
94
|
Winkler C, Kamencek T, Zojer E. Understanding the origin of serrated stacking motifs in planar two-dimensional covalent organic frameworks. NANOSCALE 2021; 13:9339-9353. [PMID: 33998630 DOI: 10.1039/d1nr01047f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Covalent organic frameworks (COFs) have attracted significant attention due to their chemical versatility combined with a significant number of potential applications. Of particular interest are two-dimensional COFs, where the organic building units are linked by covalent bonds within a plane. Most properties of these COFs are determined by the relative arrangement of neighboring layers. These are typically found to be laterally displaced, which, for example, reduces the electronic coupling between the layers. In the present contribution we use dispersion-corrected density-functional theory to elucidate the origin of that displacement, showing that the common notion that the displacement is a consequence of electrostatic repulsions of polar building blocks can be misleading. For the representative case of COF-1 we find that electrostatic and van der Waals interactions would, actually, favor a cofacial arrangement of the layers and that Pauli repulsion is the crucial factor causing the serrated AA-stacking. A more in-depth analysis of the electrostatic contribution reveals that the "classical" Coulomb repulsion between the boroxine building blocks of COF-1 suggested by chemical intuition does exist, but is overcompensated by attractive effects due to charge-penetration in the phenylene units. The situation becomes more involved, when additionally allowing the interlayer distance to relax for each displacement, as then the different distance-dependences of the various types of interactions come into play. The overall behavior calculated for COF-1 is recovered for several additional COFs with differently sized π-systems and topologies, implying that the presented results are of more general relevance.
Collapse
Affiliation(s)
- Christian Winkler
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Tomas Kamencek
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria. and Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| |
Collapse
|
95
|
Tamayo A, Hofer S, Salzillo T, Ruzié C, Schweicher G, Resel R, Mas-Torrent M. Mobility anisotropy in the herringbone structure of asymmetric Ph-BTBT-10 in solution sheared thin film transistors. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:7186-7193. [PMID: 34211720 PMCID: PMC8191576 DOI: 10.1039/d1tc01288f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 06/02/2023]
Abstract
Thin films of the organic semiconductor Ph-BTBT-10 and blends of this material with polystyrene have been deposited by a solution shearing technique at low (1 mm s-1) and high (10 mm s-1) coating velocities and implemented in organic field-effect transistors. Combined X-ray diffraction and electrical characterisation studies prove that the films coated at low speed are significantly anisotropic. The highest mobility is found along the coating direction, which corresponds to the crystallographic a-axis. In contrast, at high coating speed the films are crystallographically less ordered but with better thin film homogeneity and exhibit isotropic electrical characteristics. Best mobilities are found in films prepared at high coating speeds with the blended semiconductor. This work demonstrates the interplay between the crystal packing and thin film morphology and uniformity and their impact on the device performance.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB 08193 Bellaterra Spain
| | - Sebastian Hofer
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 Graz 8010 Austria
| | - Tommaso Salzillo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB 08193 Bellaterra Spain
| | - Christian Ruzié
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe 1050 Brussels Belgium
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe 1050 Brussels Belgium
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 Graz 8010 Austria
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB 08193 Bellaterra Spain
| |
Collapse
|
96
|
Matsunaga A, Ogawa Y, Tamura S, Yamamoto K, Katagiri H. Molecular Structure‐Property Relationships of the Asymmetric Thienoacenes: Naphtho[2,3‐
b
]thieno[2,3‐
d
]thiophene, Anthra[2,3‐
b
]thieno[2,3‐
d
]thiophene, and their Thienyl Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amane Matsunaga
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yuta Ogawa
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Shigeki Tamura
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Kazuhiro Yamamoto
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
97
|
Simokaitiene J, Cekaviciute M, Baucyte K, Volyniuk D, Durgaryan R, Molina D, Yang B, Suo J, Kim Y, Filho DAS, Hagfeldt A, Sini G, Grazulevicius JV. Interfacial versus Bulk Properties of Hole-Transporting Materials for Perovskite Solar Cells: Isomeric Triphenylamine-Based Enamines versus Spiro-OMeTAD. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21320-21330. [PMID: 33914514 PMCID: PMC8289195 DOI: 10.1021/acsami.1c03000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Here, we report on three new triphenylamine-based enamines synthesized by condensation of an appropriate primary amine with 2,2-diphenylacetaldehyde and characterized by experimental techniques and density functional theory (DFT) computations. Experimental results allow highlighting attractive properties including solid-state ionization potential in the range of 5.33-5.69 eV in solid-state and hole mobilities exceeding 10-3 cm2/V·s, which are higher than those in spiro-OMeTAD at the same electric fields. DFT-based analysis points to the presence of several conformers close in energy at room temperature. The newly synthesized hole-transporting materials (HTMs) were used in perovskite solar cells and exhibited performances comparable to that of spiro-OMeTAD. The device containing one newly synthesized hole-transporting enamine was characterized by a power conversion efficiency of 18.4%. Our analysis indicates that the perovskite-HTM interface dominates the properties of perovskite solar cells. PL measurements indicate smaller efficiency for perovskite-to-new HTM hole transfer as compared to spiro-OMeTAD. Nevertheless, the comparable power conversion efficiencies and simple synthesis of the new compounds make them attractive candidates for utilization in perovskite solar cells.
Collapse
Affiliation(s)
- Jurate Simokaitiene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| | - Monika Cekaviciute
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| | - Kristina Baucyte
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| | - Ranush Durgaryan
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| | - Desiré Molina
- Department
of Chemistry, Laboratory of Photomolecular Science Institute of Chemical
Sciences Engineering, École Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
| | - Bowen Yang
- Department
of Chemistry, Laboratory of Photomolecular Science Institute of Chemical
Sciences Engineering, École Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Jiajia Suo
- Department
of Chemistry, Laboratory of Photomolecular Science Institute of Chemical
Sciences Engineering, École Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland
| | - YeonJu Kim
- Department
of Chemistry, Laboratory of Photomolecular Science Institute of Chemical
Sciences Engineering, École Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Demetrio Antonio
da Silva Filho
- Laboratoire
de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 5 mail Gay Lussac, 95031 Cergy Pontoise Cedex, France
- Institute
for Advanced Studies, University of Cergy-Pontoise, 1 rue Descartes, 95000 Neuville-sur-Oise, France
- Institute
of Physics, University of Brasilia, 70919-970 Brasilia, Brazil
| | - Anders Hagfeldt
- Department
of Chemistry, Laboratory of Photomolecular Science Institute of Chemical
Sciences Engineering, École Polytechnique
Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Gjergji Sini
- Laboratoire
de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 5 mail Gay Lussac, 95031 Cergy Pontoise Cedex, France
| | - Juozas V. Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT, 50245 Kaunas, Lithuania
| |
Collapse
|
98
|
Benny A, Ramakrishnan R, Hariharan M. Mutually exclusive hole and electron transfer coupling in cross stacked acenes. Chem Sci 2021; 12:5064-5072. [PMID: 35356382 PMCID: PMC8895660 DOI: 10.1039/d1sc00520k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
The topology of frontier molecular orbitals (FMOs) induces highly sensitive charge transfer coupling with variation in the intermolecular arrangement. A consistent optoelectronic property correlated to a specific aggregate architecture independent of the nature of the monomer is a rare phenomenon. Our theoretical investigation on stacked dimeric systems of linear [n]acenes (n = 2-5) and selected non-linear acenes with a D2h point group reveals that the Greek cross (+) stacked orientation, irrespective of the molecular candidate, exhibits mutually exclusive hole and electron transfer couplings. The deactivation of either hole or electron transfer coupling is a consequence of the zero inter-orbital overlap between the highest occupied molecular orbitals (HOMOs) or lowest unoccupied molecular orbitals (LUMOs) of the monomers possessing gerade symmetry. In the Greek cross (+) stacked alignment, the (4n + 2) π-electronic acene systems with an odd number of benzenoids exhibit exclusive electron transfer coupling, while the even numbered acenes exhibit selective hole transfer coupling. The trend is reversed for representative 4n π-electronic acene systems. The effect of mutually exclusive charge transfer coupling in the hopping regime of charge transport was evaluated using semiclassical Marcus theory, and selective charge carrier mobility was exhibited by the Greek cross (+) stacks of the considered acene candidates. Additionally, the characteristic charge transfer coupling of the orthogonal acene stacks resulted in negligible short-range exciton coupling, inciting null exciton splitting at short interplanar distances. Engineering chromophores in precise angular orientations ensuring characteristic emergent properties can have tremendous potential in the rational design of advanced optoelectronic materials.
Collapse
Affiliation(s)
- Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
99
|
Yin H, Chen J, Zheng D. Effect of Molecular Substitution and Isomerization on Charge-Transport Parameters in Molecular Organic Semiconductors. J Phys Chem Lett 2021; 12:2660-2667. [PMID: 33689354 DOI: 10.1021/acs.jpclett.1c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charge transport in an organic semiconductor is strongly dependent on the molecular packing motif, which could be modified by the molecular substitutions and molecular isomerization. We constructed a series of benzodithiophene-based organic semiconductor molecules with different silyethyne substitutions and isomers. The existence of different conformations of these molecules is supported by a low isomerization energy barrier from density functional theory. By using Marcus semiclassical theory calculation, we make a comprehensive assessment for the effect of molecular substitution and isomerization on charge transport. We found that the hole mobility of cis-isomer molecular packing can be enhanced by increasing the length of silylethyne substitutions. We demonstrated that a favorable charge-transport material would possess an identical direction of induced ring currents, stable induced magnetic fields, and dominant π-π stacking interaction in their molecular packing motif to ensure good π-overlap area. Our findings will provide direct guidance for developing organic semiconductor materials.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
100
|
Gómez P, Georgakopoulos S, Más-Montoya M, Cerdá J, Pérez J, Ortí E, Aragó J, Curiel D. Improving the Robustness of Organic Semiconductors through Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8620-8630. [PMID: 33576612 PMCID: PMC8893359 DOI: 10.1021/acsami.0c18928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2021] [Indexed: 05/05/2023]
Abstract
Molecular organization plays an essential role in organic semiconductors since it determines the extent of intermolecular interactions that govern the charge transport present in all electronic applications. The benefits of hydrogen bond-directed self-assembly on charge transport properties are demonstrated by comparing two analogous pyrrole-based, fused heptacyclic molecules. The rationally designed synthesis of these materials allows for inducing or preventing hydrogen bonding. Strategically located hydrogen bond donor and acceptor sites control the solid-state arrangement, favoring the supramolecular expansion of the π-conjugated surface and the subsequent π-stacking as proved by X-ray diffraction and computational calculations. The consistency observed for the performance of organic field-effect transistors and the morphology of the organic thin films corroborate that higher stability and thermal robustness are achieved in the hydrogen-bonded material.
Collapse
Affiliation(s)
- Paula Gómez
- Multifunctional
Molecular Materials Group, Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain
| | - Stamatis Georgakopoulos
- Multifunctional
Molecular Materials Group, Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain
| | - Miriam Más-Montoya
- Multifunctional
Molecular Materials Group, Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain
| | - Jesús Cerdá
- Institute
of Molecular Science, University of Valencia, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - José Pérez
- Department
of Chemical Engineering and Environmental Chemistry, Regional Campus
of International Excellence, Technical University
of Cartagena, 30203 Cartagena, Spain
| | - Enrique Ortí
- Institute
of Molecular Science, University of Valencia, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Juan Aragó
- Institute
of Molecular Science, University of Valencia, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - David Curiel
- Multifunctional
Molecular Materials Group, Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100 Murcia, Spain
| |
Collapse
|