51
|
Zhang C, Hwarng G, Cooper DE, Grevengoed TJ, Eaton JM, Natarajan V, Harris TE, Coleman RA. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 2014; 290:3519-28. [PMID: 25512376 DOI: 10.1074/jbc.m114.602789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gwen Hwarng
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel E Cooper
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Trisha J Grevengoed
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James M Eaton
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Viswanathan Natarajan
- the Departments of Pharmacology & Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Rosalind A Coleman
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
52
|
Henkels KM, Mallets ER, Dennis PB, Gomez-Cambronero J. S6K is a morphogenic protein with a mechanism involving Filamin-A phosphorylation and phosphatidic acid binding. FASEB J 2014; 29:1299-313. [PMID: 25512366 DOI: 10.1096/fj.14-260992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/18/2014] [Indexed: 01/13/2023]
Abstract
Change of cell shape in vivo plays many roles that are central to life itself, such as embryonic development, inflammation, wound healing, and pathologic processes such as cancer metastasis. Nonetheless, the spatiotemporal mechanisms that control the concerted regulation of cell shape remain understudied. Here, we show that ribosomal S6K, which is normally considered a protein involved in protein translation, is a morphogenic protein. Its presence in cells alters the overall organization of the cell surface and cell circularity [(4π × area)/(perimeter)(2)] from 0.47 ± 0.06 units in mock-treated cells to 0.09 ± 0.03 units in S6K-overexpressing macrophages causing stellation and arborization of cell shape. This effect was partially reversed in cells expressing a kinase-inactive S6K mutant and was fully reversed in cells silenced with small interference RNA. Equally important is that S6K is itself regulated by phospholipids, specifically phosphatidic acid, whereby 300 nM 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), but not the control 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), binds directly to S6K and causes an ∼ 2.9-fold increase in S6K catalytic activity. This was followed by an increase in Filamin A (FLNA) functionality as measured by phospho-FLNA (S(2152)) expression and by a subsequent elevation of actin nucleation. This reliance of S6K on phosphatidic acid (PA), a curvature-inducing phospholipid, explained the extra-large perimeter of cells that overexpressed S6K. Furthermore, the diversity of the response to S6K in several unrelated cell types (fibroblasts, leukocytes, and invasive cancer cells) that we report here indicates the existence of an underlying common mechanism in mammalian cells. This new signaling set, PA-S6K-FLNA-actin, sheds light for the first time into the morphogenic pathway of cytoskeletal structures that are crucial for adhesion and cell locomotion during inflammation and metastasis.
Collapse
Affiliation(s)
- Karen M Henkels
- *Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA; and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - Elizabeth R Mallets
- *Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA; and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - Patrick B Dennis
- *Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA; and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - Julian Gomez-Cambronero
- *Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA; and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| |
Collapse
|
53
|
Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes. Proc Natl Acad Sci U S A 2014; 111:17450-5. [PMID: 25422441 DOI: 10.1073/pnas.1410530111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic-mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase-Akt-mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance.
Collapse
|
54
|
Smart HC, Mast FD, Chilije MFJ, Tavassoli M, Dacks JB, Zaremberg V. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components. PLoS One 2014; 9:e110684. [PMID: 25340523 PMCID: PMC4207751 DOI: 10.1371/journal.pone.0110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of ‘fungal’ orthologs in the basal taxa of the holozoa and ‘animal’ orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.
Collapse
Affiliation(s)
- Heather C. Smart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Fred D. Mast
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Marjan Tavassoli
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JBD); (VZ)
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JBD); (VZ)
| |
Collapse
|
55
|
Lord CC, Brown JM. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte 2014; 1:123-131. [PMID: 23145367 PMCID: PMC3492958 DOI: 10.4161/adip.20035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Catabolism of stored triacylglycerol (TAG) from cytoplasmic lipid droplets is critical for providing energy substrates, membrane building blocks and signaling lipids in most cells of the body. However, the lipolytic machinery dictating TAG hydrolysis varies greatly among different cell types. Within the adipocyte, TAG hydrolysis is dynamically regulated by hormones to ensure appropriate metabolic adaptation to nutritional and physiologic cues. In other cell types such as hepatocytes, myocytes and macrophages, mobilization of stored TAG is regulated quite differently. Within the last decade, mutations in two key genes involved in TAG hydrolysis, α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2), were found to cause two distinct neutral lipid storage diseases (NLSD) in humans. These genetic links, along with supporting evidence in mouse models, have prompted a number of studies surrounding the biochemical function(s) of these proteins. Although both CGI-58 and ATGL have been clearly implicated in TAG hydrolysis in multiple tissues and have even been shown to physically interact with each other, recent evidence suggests that they may also have distinct roles. The purpose of this review is to summarize the most recent insights into how CGI-58 and ATGL regulate lipid metabolism and signaling.
Collapse
|
56
|
Zhang C, Cooper DE, Grevengoed TJ, Li LO, Klett EL, Eaton JM, Harris TE, Coleman RA. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am J Physiol Endocrinol Metab 2014; 307:E305-15. [PMID: 24939733 PMCID: PMC4121579 DOI: 10.1152/ajpendo.00034.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - James M Eaton
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina;
| |
Collapse
|
57
|
Foster DA, Salloum D, Menon D, Frias MA. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem 2014; 289:22583-22588. [PMID: 24990952 DOI: 10.1074/jbc.r114.566091] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.
| | - Darin Salloum
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Deepak Menon
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Maria A Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| |
Collapse
|
58
|
Agarwal AK, Sankella S. Phosphatidic acid: a new therapeutic lead to suppress hepatic glucose production. ACTA ACUST UNITED AC 2014; 4:323-326. [PMID: 26413162 DOI: 10.2217/dmt.14.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition & Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shireesha Sankella
- Division of Nutrition & Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
59
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
60
|
Kennedy MA, Gable K, Niewola-Staszkowska K, Abreu S, Johnston A, Harris LJ, Reggiori F, Loewith R, Dunn T, Bennett SAL, Baetz K. A neurotoxic glycerophosphocholine impacts PtdIns-4, 5-bisphosphate and TORC2 signaling by altering ceramide biosynthesis in yeast. PLoS Genet 2014; 10:e1004010. [PMID: 24465216 PMCID: PMC3900389 DOI: 10.1371/journal.pgen.1004010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
Unbiased lipidomic approaches have identified impairments in glycerophosphocholine second messenger metabolism in patients with Alzheimer's disease. Specifically, we have shown that amyloid-β42 signals the intraneuronal accumulation of PC(O-16:0/2:0) which is associated with neurotoxicity. Similar to neuronal cells, intracellular accumulation of PC(O-16:0/2:0) is also toxic to Saccharomyces cerevisiae, making yeast an excellent model to decipher the pathological effects of this lipid. We previously reported that phospholipase D, a phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding protein, was relocalized in response to PC(O-16:0/2:0), suggesting that this neurotoxic lipid may remodel lipid signaling networks. Here we show that PC(O-16:0/2:0) regulates the distribution of the PtdIns(4)P 5-kinase Mss4 and its product PtdIns(4,5)P2 leading to the formation of invaginations at the plasma membrane (PM). We further demonstrate that the effects of PC(O-16:0/2:0) on the distribution of PM PtdIns(4,5)P2 pools are in part mediated by changes in the biosynthesis of long chain bases (LCBs) and ceramides. A combination of genetic, biochemical and cell imaging approaches revealed that PC(O-16:0/2:0) is also a potent inhibitor of signaling through the Target of rampamycin complex 2 (TORC2). Together, these data provide mechanistic insight into how specific disruptions in phosphocholine second messenger metabolism associated with Alzheimer's disease may trigger larger network-wide disruptions in ceramide and phosphoinositide second messenger biosynthesis and signaling which have been previously implicated in disease progression. Accelerated cognitive decline in Alzheimer's patients is associated with distinct changes in the abundance of choline-containing lipids belonging to the platelet activating factor family. In particular, PC(O-16:0/2:0) or C16:0 platelet activating factor (PAF), is specifically elevated in brains of Alzheimer's patients. Since elevated intraneuronal levels of PC(O-16:0/2:0) are thought to contribute to the loss of neuronal cells it is imperative to identify the underlying mechanisms contributing to the toxic effects of PC(O-16:0/2:0). In this study, we have determined that elevated levels of PC(O-16:0/2:0) has negative effects upon the distribution of phosphoinositides at the plasma membrane leading to a potent inhibition of target of rapamycin (TOR) signaling. We further show that the changes in phosphoinositide distribution are due to changes in ceramide metabolism. In conclusion, our study suggests that the toxicity associated with aberrant metabolism of glycerophosphocholine lipids species is likely due to the remodeling of phosphoinositide and ceramide metabolism and that therapeutic strategies which target these disruptions may be effective in ameliorating Alzheimer's Disease pathology.
Collapse
Affiliation(s)
- Michael A. Kennedy
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth Gable
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Karolina Niewola-Staszkowska
- Department of Molecular Biology and Swiss National Center for Competence in Research Programme Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Susana Abreu
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne Johnston
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Linda J. Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robbie Loewith
- Department of Molecular Biology and Swiss National Center for Competence in Research Programme Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Teresa Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Steffany A. L. Bennett
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
61
|
Sankella S, Garg A, Horton JD, Agarwal AK. Hepatic gluconeogenesis is enhanced by phosphatidic acid which remains uninhibited by insulin in lipodystrophic Agpat2-/- mice. J Biol Chem 2014; 289:4762-77. [PMID: 24425876 DOI: 10.1074/jbc.m113.530998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study we examined the role of phosphatidic acid (PA) in hepatic glucose production (HGP) and development of hepatic insulin resistance in mice that lack 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2). Liver lysophosphatidic acid and PA levels were increased ∼2- and ∼5-fold, respectively, in male Agpat2(-/-) mice compared with wild type mice. In the absence of AGPAT2, the liver can synthesize PAs by activating diacylglycerol kinase or phospholipase D, both of which were elevated in the livers of Agpat2(-/-) mice. We found that PAs C16:0/18:1 and C18:1/20:4 enhanced HGP in primary WT hepatocytes, an effect that was further enhanced in primary hepatocytes from Agpat2(-/-) mice. Lysophosphatidic acids C16:0 and C18:1 failed to increase HGP in primary hepatocytes. The activation of HGP was accompanied by an up-regulation of the key gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This activation was suppressed by insulin in the WT primary hepatocytes but not in the Agpat2(-/-) primary hepatocytes. Thus, the lack of normal insulin signaling in Agpat2(-/-) livers allows unrestricted PA-induced gluconeogenesis significantly contributing to the development of hyperglycemia in these mice.
Collapse
Affiliation(s)
- Shireesha Sankella
- From the Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and Center for Human Nutrition
| | | | | | | |
Collapse
|
62
|
Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. CLINICAL LIPIDOLOGY 2013; 8:659-667. [PMID: 24533033 PMCID: PMC3921899 DOI: 10.2217/clp.13.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
63
|
Tan SH, Shui G, Zhou J, Shi Y, Huang J, Xia D, Wenk MR, Shen HM. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy 2013; 10:226-42. [PMID: 24296537 DOI: 10.4161/auto.27003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2(-/-) mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2(-/-) MEFs compared with Tsc2(+/+) MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2(-/-) MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2(-/-) MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.
Collapse
Affiliation(s)
- Shi-Hao Tan
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
| | - Jing Zhou
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Yin Shi
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Jingxiang Huang
- Department of Pathology; National University Hospital of Singapore; Singapore
| | - Dajing Xia
- Zhejiang University School of Public Health; Hangzhou, Zhejiang, China
| | - Markus R Wenk
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore; Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Han-Ming Shen
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
64
|
Abstract
The liver plays a unique, central role in regulating lipid metabolism. In addition to influencing hepatic function and disease, changes in specific pathways of fatty acid (FA) metabolism have wide-ranging effects on the metabolism of other nutrients, extra-hepatic physiology, and the development of metabolic diseases. The high prevalence of nonalcoholic fatty liver disease (NAFLD) has led to increased efforts to characterize the underlying biology of hepatic energy metabolism and FA trafficking that leads to disease development. Recent advances have uncovered novel roles of metabolic pathways and specific enzymes in generating lipids important for cellular processes such as signal transduction and transcriptional activation. These studies have also advanced our understanding of key branch points involving FA partitioning between metabolic pathways and have identified new roles for lipid droplets in these events. This review covers recent advances in our understanding of FA trafficking and its regulation. An emphasis will be placed on branch points in these pathways and how alterations in FA trafficking contribute to NAFLD and related comorbidities.
Collapse
|
65
|
Diacylglycerol kinase θ couples farnesoid X receptor-dependent bile acid signalling to Akt activation and glucose homoeostasis in hepatocytes. Biochem J 2013; 454:267-74. [PMID: 23767959 DOI: 10.1042/bj20130609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DGKs (diacylglycerol kinases) catalyse the conversion of diacylglycerol into PA (phosphatidic acid), a positive modulator of mTOR (mammalian target of rapamycin). We have found that chenodeoxycholic acid and the synthetic FXR (farnesoid X receptor) ligand GW4064 induce the mRNA and protein expression of DGKθ in the HepG2 cell line and in primary human hepatocytes. Reporter gene studies using 1.5 kB of the DGKθ promoter fused to the luciferase gene revealed that bile acids increase DGKθ transcriptional activity. Mutation of putative FXR-binding sites attenuated the ability of GW4046 to increase DGKθ luciferase activity. Consistent with this finding, ChIP (chromatin immunoprecipitation) assays demonstrated that bile acid signalling increased the recruitment of FXR to the DGKθ promoter. Furthermore, GW4064 evoked a time-dependent increase in the cellular concentration of PA. We also found that GW4064 and PA promote the phosphorylation of mTOR, Akt and FoxO1 (forkhead box O1), and that silencing DGKθ expression significantly abrogated the ability of GW4046 to promote the phosphorylation of these PA-regulated targets. DGKθ was also required for bile-acid-dependent decreased glucose production. Taken together, our results establish DGKθ as a key mediator of bile-acid-stimulated modulation of mTORC2 (mTOR complex 2), the Akt pathway and glucose homoeostasis.
Collapse
|
66
|
Li T, Li S, Dong Y, Zhu R, Liu Y. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet. Food Chem 2013; 145:335-41. [PMID: 24128486 DOI: 10.1016/j.foodchem.2013.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
To expand application of hawthorn (Crataegus pinnatifida Bge) fruit, the antioxidant and anti-lipidemic effects of haw pectin penta-oligogalacturonide (HPPS) prepared from hawthorn fruit were investigated in vitro and in mice. HPPS exhibited concentration-dependent scavenging activities against superoxide anion, hydroxyl and DPPH radicals. Additionally, HPPS supplementation significantly enhanced the antioxidant enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, increased the total antioxidant capacity and the levels of glutathione, but lowered the malondialdehyde content in the liver of high-fat fed mice. Furthermore, HPPS significantly decreased the TG levels, the activity and the mRNA and protein levels of glycerol 3-phosphate acyltransferase (GPAT) and phosphatidate phosphohydrolase (PAP) in mice livers. Moreover, liver steatosis of mice associated with diffuse hepatocyte ballooning induced by a high-fat diet was markedly improved by a dose of 300 mg/kg HPPS-consumption. The results revealed that HPPS might be applicable as a dietary supplement for the prevention of fatty liver and oxidative damage.
Collapse
Affiliation(s)
- Tuoping Li
- Department of Food Science, Liaoning University, Shenyang 110036, China.
| | | | | | | | | |
Collapse
|
67
|
Wendel AA, Cooper DE, Ilkayeva OR, Muoio DM, Coleman RA. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J Biol Chem 2013; 288:27299-27306. [PMID: 23908354 DOI: 10.1074/jbc.m113.485219] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1(-/-), and Gpat4(-/-) mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4(-/-) hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1(-/-) hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1(-/-) mice was 3-fold higher than in controls. When compared with control and Gpat4(-/-) mice, after the fasting-refeeding protocol, Gpat1(-/-) hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation.
Collapse
Affiliation(s)
- Angela A Wendel
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27704
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center and Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27704
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
68
|
Foster DA. Phosphatidic acid and lipid-sensing by mTOR. Trends Endocrinol Metab 2013; 24:272-8. [PMID: 23507202 PMCID: PMC3669661 DOI: 10.1016/j.tem.2013.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin (mTOR) has been implicated as a sensor of nutrient sufficiency for dividing cells and is activated by essential amino acids and glucose. However, cells also require lipids for membrane biosynthesis. A central metabolite in the synthesis of membrane phospholipids is phosphatidic acid (PA), which is required for the stability and activity of mTOR complexes. Although PA is commonly generated by the phospholipase D-catalyzed hydrolysis of phosphatidylcholine, PA is also generated by diacylglycerol kinases and lysophosphatidic acid acyltransferases, which are at the center of phospholipid biosynthesis. It is proposed that the responsiveness of mTOR/TOR to PA evolved as a means for sensing lipid precursors for membrane biosynthesis prior to doubling the mass of a cell and dividing.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, USA.
| |
Collapse
|
69
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
70
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognised as the hepatic component of metabolic syndrome (MetS). NAFLD is an example of ectopic fat accumulation in a visceral organ that causes organ-specific disease, and affects risk of other related diseases such as type 2 diabetes and CVD. NAFLD is a spectrum of fat-associated liver conditions that can culminate in end stage liver disease, hepatocellular carcinoma and the need for liver transplantation. Simple steatosis, or fatty liver, occurs early in NAFLD and may progress to non-alcoholic steatohepatitis, fibrosis and cirrhosis with increased risk of hepatocellular carcinoma. Prevalence estimates for NAFLD range from 2 to 44% in the general population and it has been estimated that NAFLD exists in up to 70% of people with type 2 diabetes. Although many obese people have NAFLD, there are many obese people who do not develop ectopic liver fat. The aim of this review which is based on a presentation at the Royal Society of Medicine, UK in December 2012 is to discuss development of NAFLD, ectopic fat accumulation and insulin resistance. The review will also describe the relationships between NAFLD, type 2 diabetes and CVD.
Collapse
|
71
|
Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog Lipid Res 2013; 52:305-16. [PMID: 23603613 DOI: 10.1016/j.plipres.2013.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins-lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of "lipinopathies" in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
Collapse
|
72
|
Jensen-Urstad APL, Song H, Lodhi IJ, Funai K, Yin L, Coleman T, Semenkovich CF. Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα. J Lipid Res 2013; 54:1848-59. [PMID: 23585690 DOI: 10.1194/jlr.m036103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status.
Collapse
|
73
|
Liu Y, Turdi S, Park T, Morris NJ, Deshaies Y, Xu A, Sweeney G. Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomic profile and whole-body glucose homeostasis. Diabetes 2013; 62:743-52. [PMID: 23238294 PMCID: PMC3581202 DOI: 10.2337/db12-0687] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We provide here a detailed and comprehensive analysis of skeletal muscle metabolomic profiles in response to adiponectin in adiponectin knockout (AdKO) mice after high-fat-diet (HFD) feeding. Hyperinsulinemic-euglycemic clamp studies showed that adiponectin administration corrected HFD-induced defects in post/basal insulin stimulated R(d) and insulin signaling in skeletal muscle. Lipidomic profiling of skeletal muscle from HFD-fed mice indicated elevated triacylglycerol and diacylglycerol species (16:0-18:1, 18:1, and 18:0-18:2) as well as acetyl coA, all of which were mitigated by adiponectin. HFD induced elevated levels of various ceramides, but these were not significantly altered by adiponectin. Adiponectin corrected the altered branched-chain amino acid metabolism caused by HFD and corrected increases across a range of glycerolipids, fatty acids, and various lysolipids. Adiponectin also reversed induction of the pentose phosphate pathway by HFD. Analysis of muscle mitochondrial structure indicated that adiponectin treatment corrected HFD-induced pathological changes. In summary, we show an unbiased comprehensive metabolomic profile of skeletal muscle from AdKO mice subjected to HFD with or without adiponectin and relate these to changes in whole-body glucose handling, insulin signaling, and mitochondrial structure and function. Our data revealed a key signature of relatively normalized muscle metabolism across multiple metabolic pathways with adiponectin supplementation under the HFD condition.
Collapse
MESH Headings
- Adiponectin/genetics
- Adiponectin/metabolism
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/ultrastructure
- Animals
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Energy Metabolism
- Hyperlipidemias/blood
- Hyperlipidemias/etiology
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Insulin/metabolism
- Insulin Resistance
- Male
- Metabolic Syndrome/blood
- Metabolic Syndrome/etiology
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Metabolomics/methods
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Obesity/blood
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ying Liu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Subat Turdi
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Taesik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | | | | | - Aimin Xu
- Department of Pharmacology, University of Hong Kong, Hong Kong, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
- Corresponding author: Gary Sweeney,
| |
Collapse
|
74
|
Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation. Proc Natl Acad Sci U S A 2012; 110:642-7. [PMID: 23267081 DOI: 10.1073/pnas.1213493110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.
Collapse
|
75
|
Glycerol-3-Phosphate Acyltransferase-1 Gene Ablation Results in Altered Thymocyte Lipid Content and Reduces Thymic T Cell Production in Mice. Lipids 2012. [DOI: 10.1007/s11745-012-3741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Tripathy S, Jump DB. Elovl5 regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid synthesis in diet-induced obese mice. J Lipid Res 2012; 54:71-84. [PMID: 23099444 DOI: 10.1194/jlr.m028787] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Elevated hepatic expression of fatty acid elongase-5 (Elovl5) induces FoxO1 phosphorylation, lowers FoxO1 nuclear content, and suppresses expression of genes involved in gluconeogenesis (GNG). In this report, we define the molecular and metabolic basis of Elovl5 control of FoxO1 phosphorylation. Adenoviral-mediated (Ad-Elovl5) induction of hepatic Elovl5 in diet-induced obese, glucose-intolerant mice and HepG2 cells increased the phosphorylation of Akt2-S(473) [mammalian target of rapamycin complex-2 (mTORC2) site], but not Akt2-T(308) (PDK1 site). The Akt2 inhibitor Akti1/2 blocked Elovl5 induction of FoxO1-S(256) phosphorylation in HepG2 cells. Elevated Elovl5 activity in liver and HepG2 cells induced rictor mRNA, rictor protein, and rictor-mTOR interaction, whereas rictor knockdown (siRNA) attenuated Elovl5 induction of Akt2-S(473) and FoxO1-S(256) phosphorylation in HepG2 cells. FA analysis revealed that the abundance of cis-vaccenic acid (18:1,n-7) was increased in livers of obese mice and HepG2 cells following Ad-Elovl5 infection. Treating HepG2 cells with Elovl5 substrates established that palmitoleic acid (16:1,n-7), but not γ-linolenic acid (18:3,n-6), induced rictor protein, Akt-S(473), and FoxO1-S(256) phosphorylation. Inhibition of FA elongation blocked 16:1,n-7 but not 18:1,n-7 induction of rictor protein and Akt-S(473) and FoxO1-S(256) phosphorylation. These results establish a novel link between Elovl5-mediated synthesis of 18:1,n-7 and GNG through the control of the mTORC2-Akt-FoxO1 pathway.
Collapse
Affiliation(s)
- Sasmita Tripathy
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
77
|
Ong KT, Mashek MT, Bu SY, Mashek DG. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J 2012; 27:313-21. [PMID: 22993196 DOI: 10.1096/fj.12-213454] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adipose triglyceride lipase (ATGL) is the predominant triacylglycerol (TAG) hydrolase in mammals; however, the tissue-specific effects of ATGL outside of adipose tissue have not been well characterized. Hence, we tested the contribution of hepatic ATGL on mediating glucose tolerance and insulin action. Glucose or insulin tolerance tests and insulin signaling were performed in C57BL/6 mice administered control (nongene specific shRNA) or Atgl shRNA adenoviruses. Glucose and lipid metabolism assays were conducted in primary hepatocytes isolated from mice transduced with control or Atgl shRNA adenoviruses. Knocking down hepatic ATGL completely abrogated the increase in serum insulin following either 1 or 12 wk of feeding a high-fat (HF) diet despite higher hepatic TAG content. Glucose tolerance tests demonstrated that ATGL knockdown normalized glucose tolerance in HF-diet-fed mice. The observed improvements in glucose tolerance were present despite unaltered hepatic insulin signaling and increased liver TAG. Mice with suppressed hepatic ATGL had reduced hepatic glucose production in vivo, and hepatocytes isolated from Atgl shRNA-treated mice displayed a 26% decrease in glucose production and a 38% increase in glucose oxidation compared to control cells. Taken together, these data suggest that hepatic ATGL knockdown enhances glucose tolerance by increasing hepatic glucose utilization and uncouples impairments in insulin action from hepatic TAG accumulation.
Collapse
Affiliation(s)
- Kuok Teong Ong
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
78
|
Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc Natl Acad Sci U S A 2012; 109:E2486-95. [PMID: 22908270 DOI: 10.1073/pnas.1205221109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The three lipin phosphatidate phosphatase (PAP) enzymes catalyze a step in glycerolipid biosynthesis, the conversion of phosphatidate to diacylglycerol. Lipin-1 is critical for lipid synthesis and homeostasis in adipose tissue, liver, muscle, and peripheral nerves. Little is known about the physiological role of lipin-2, the predominant lipin protein present in liver and the deficient gene product in the rare disorder Majeed syndrome. By using lipin-2-deficient mice, we uncovered a functional relationship between lipin-1 and lipin-2 that operates in a tissue-specific and age-dependent manner. In liver, lipin-2 deficiency led to a compensatory increase in hepatic lipin-1 protein and elevated PAP activity, which maintained lipid homeostasis under basal conditions, but led to diet-induced hepatic triglyceride accumulation. As lipin-2-deficient mice aged, they developed ataxia and impaired balance. This was associated with the combination of lipin-2 deficiency and an age-dependent reduction in cerebellar lipin-1 levels, resulting in altered cerebellar phospholipid composition. Similar to patients with Majeed syndrome, lipin-2-deficient mice developed anemia, but did not show evidence of osteomyelitis, suggesting that additional environmental or genetic components contribute to the bone abnormalities observed in patients. Combined lipin-1 and lipin-2 deficiency caused embryonic lethality. Our results reveal functional interactions between members of the lipin family in vivo, and a unique role for lipin-2 in central nervous system biology that may be particularly important with advancing age. Additionally, as has been observed in mice and humans with lipin-1 deficiency, the pathophysiology in lipin-2 deficiency is associated with dysregulation of lipid intermediates.
Collapse
|
79
|
Rodriguez Camargo DC, Link NM, Dames SA. The FKBP–Rapamycin Binding Domain of Human TOR Undergoes Strong Conformational Changes in the Presence of Membrane Mimetics with and without the Regulator Phosphatidic Acid. Biochemistry 2012; 51:4909-21. [DOI: 10.1021/bi3002133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Nina M. Link
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sonja A. Dames
- Biomolecular
NMR Spectroscopy,
Department of Chemistry, Technische Universität München, Munich, Germany
| |
Collapse
|
80
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
81
|
PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol Cell Biol 2012; 32:2268-78. [PMID: 22493067 DOI: 10.1128/mcb.00063-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.
Collapse
|