51
|
Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2389-2397. [PMID: 28501566 PMCID: PMC5567836 DOI: 10.1016/j.bbadis.2017.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a major epigenetic mechanism to regulate gene expression. Epigenetic regulation, including DNA methylation, histone modifications and RNA interference, results in heritable changes in gene expression independent of alterations in DNA sequence. Epigenetic regulation often occurs in response to aging and environment stimuli, including exposures and diet. Studies have shown that DNA methylation is critical in the pathogenesis of fibrosis involving multiple organ systems, contributing to significant morbidity and mortality. Aberrant DNA methylation can silence or activate gene expression patterns that drive the fibrosis process. Fibrosis is a pathological wound healing process in response to chronic injury. It is characterized by excessive extracellular matrix production and accumulation, which eventually affects organ architecture and results in organ failure. Fibrosis can affect a wide range of organs, including the heart and lungs, and have limited therapeutic options. DNA methylation, like other epigenetic process, is reversible, therefore regarded as attractive therapeutic interventions. Although epigenetic mechanisms are highly interactive and often reinforcing, this review discusses DNA methylation-dependent mechanisms in the pathogenesis of organ fibrosis, with focus on cardiac and pulmonary fibrosis. We discuss specific pro- and anti-fibrotic genes and pathways regulated by DNA methylation in organ fibrosis; we further highlight the potential benefits and side-effects of epigenetic therapies in fibrotic disorders.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chun Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
52
|
Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q, Qian LB, Chen SY, Sun J, Cai L. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond) 2017; 131:1841-1857. [PMID: 28533215 PMCID: PMC5737625 DOI: 10.1042/cs20170064] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Inhibition of total histone deacetylases (HDACs) was phenomenally associated with the prevention of diabetic cardiomyopathy (DCM). However, which specific HDAC plays the key role in DCM remains unclear. The present study was designed to determine whether DCM can be prevented by specific inhibition of HDAC3 and to elucidate the mechanisms by which inhibition of HDAC3 prevents DCM. Type 1 diabetes OVE26 and age-matched wild-type (WT) mice were given the selective HDAC3 inhibitor RGFP966 or vehicle for 3 months. These mice were then killed immediately or 3 months later for cardiac function and pathological examination. HDAC3 activity was significantly increased in the heart of diabetic mice. Administration of RGFP966 significantly prevented DCM, as evidenced by improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis, along with diminished cardiac oxidative stress, inflammation, and insulin resistance, not only in the mice killed immediately or 3 months later following the 3-month treatment. Furthermore, phosphorylated extracellular signal-regulated kinases (ERK) 1/2, a well-known initiator of cardiac hypertrophy, was significantly increased, while dual specificity phosphatase 5 (DUSP5), an ERK1/2 nuclear phosphatase, was substantially decreased in diabetic hearts. Both of these changes were prevented by RGFP966. Chromatin immunoprecipitation (ChIP) assay showed that HDAC3 inhibition elevated histone H3 acetylation on the DUSP5 gene promoter at both two time points. These findings suggest that diabetes-activated HDAC3 inhibits DUSP5 expression through deacetylating histone H3 on the primer region of DUSP5 gene, leading to the derepression of ERK1/2 and the initiation of DCM. The present study indicates the potential application of HDAC3 inhibitor for the prevention of DCM.
Collapse
MESH Headings
- Acrylamides/therapeutic use
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/prevention & control
- Drug Evaluation, Preclinical/methods
- Dual-Specificity Phosphatases/metabolism
- Epigenesis, Genetic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Histone Deacetylases/drug effects
- Histone Deacetylases/metabolism
- Histone Deacetylases/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice, Transgenic
- Myocardium/enzymology
- Oxidative Stress/drug effects
- Phenylenediamines/therapeutic use
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| | - Qian Tong
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Shudong Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Qiuju Liu
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Ling-Bo Qian
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, KY 40202, U.S.A
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| |
Collapse
|
53
|
DUSPs as critical regulators of cardiac hypertrophy. Clin Sci (Lond) 2017; 131:155-158. [PMID: 28011900 DOI: 10.1042/cs20160766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022]
Abstract
This commentary highlights the research presented by Li et al. [15]. In this issue of Clinical Science, which demonstrates that dual specific phosphatase 12 (DUSP12), through JNK1/2 inhibition, alleviates cardiac hypertrophy in response to pressure overload, making it a potential therapeutic target.
Collapse
|
54
|
Kutty RG, Xin G, Schauder DM, Cossette SM, Bordas M, Cui W, Ramchandran R. Dual Specificity Phosphatase 5 Is Essential for T Cell Survival. PLoS One 2016; 11:e0167246. [PMID: 27936095 PMCID: PMC5147890 DOI: 10.1371/journal.pone.0167246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway regulates many key cellular processes such as differentiation, apoptosis, and survival. The final proteins in this pathway, ERK1/2, are regulated by dual specificity phosphatase 5 (DUSP5). DUSP5 is a nuclear, inducible phosphatase with high affinity and fidelity for ERK1/2. By regulating the final step in the MAPK signaling cascade, DUSP5 exerts strong regulatory control over a central cellular pathway. Like other DUSPs, DUSP5 plays an important role in immune function. In this study, we have utilized new knockout mouse reagents to explore its function further. We demonstrate that global loss of DUSP5 does not result in any gross phenotypic changes. However, loss of DUSP5 affects memory/effector CD8+ T cell populations in response to acute viral infection. Specifically, Dusp5-/- mice have decreased proportions of short-lived effector cells (SLECs) and increased proportions of memory precursor effector cells (MPECs) in response to infection. Further, we show that this phenotype is T cell intrinsic; a bone marrow chimera model restricting loss of DUSP5 to the CD8+ T cell compartment displays a similar phenotype. Dusp5-/- T cells also display increased proliferation, increased apoptosis, and altered metabolic profiles, suggesting that DUSP5 is a pro-survival protein in T cells.
Collapse
Affiliation(s)
- Raman G. Kutty
- Developmental Vascular Biology Program, Division of Neonatology, Department of Pediatrics, Department of Obstetrics and Gynecology, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gang Xin
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, Wisconsin, United States of America
| | - David M. Schauder
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, Wisconsin, United States of America
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Stephanie M. Cossette
- Developmental Vascular Biology Program, Division of Neonatology, Department of Pediatrics, Department of Obstetrics and Gynecology, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michelle Bordas
- Developmental Vascular Biology Program, Division of Neonatology, Department of Pediatrics, Department of Obstetrics and Gynecology, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Weiguo Cui
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, Wisconsin, United States of America
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Developmental Vascular Biology Program, Division of Neonatology, Department of Pediatrics, Department of Obstetrics and Gynecology, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
55
|
Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y, Zheng Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 2016; 17:2001. [PMID: 27941647 PMCID: PMC5187801 DOI: 10.3390/ijms17122001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM) is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK) activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1/2 activation are vital to differential biological effects of ERK1/2. Moreover, many intracellular events, including mitochondrial signaling and protein kinases, manipulate signaling upstream and downstream of MAPK, to influence myocardial survival or death. In this review, we will summarize the roles of ERK1/2 pathways in DCM development by the evidence from current studies and will present novel opinions on "differential influence of ERK1/2 action in cardiac dysfunction, and protection against myocardial ischemia-reperfusion injury".
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
| | - Jian Sun
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Tong
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| | - Lingbo Qian
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China.
| | - Yongsoo Park
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- College of Medicine & Engineering, Hanyang University, Seoul 04963, Korea.
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
56
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
57
|
Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload. Clin Sci (Lond) 2016; 131:141-154. [PMID: 27702885 DOI: 10.1042/cs20160664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
Pathological cardiac hypertrophy is an independent risk factor of heart failure. However, we still lack effective methods to reverse cardiac hypertrophy. DUSP12 is a member of the dual specific phosphatase (DUSP) family, which is characterized by its DUSP activity to dephosphorylate both tyrosine and serine/threonine residues on one substrate. Some DUSPs have been identified as being involved in the regulation of cardiac hypertrophy. However, the role of DUSP12 during pathological cardiac hypertrophy is still unclear. In the present study, we observed a significant decrease in DUSP12 expression in hypertrophic hearts and cardiomyocytes. Using a genetic loss-of-function murine model, we demonstrated that DUSP12 deficiency apparently aggravated pressure overload-induced cardiac hypertrophy and fibrosis as well as impaired cardiac function, whereas cardiac-specific overexpression of DUPS12 was capable of reversing this hypertrophic and fibrotic phenotype and improving contractile function. Furthermore, we demonstrated that JNK1/2 activity but neither ERK1/2 nor p38 activity was increased in the DUSP12 deficient group and decreased in the DUSP12 overexpression group both in vitro and in vivo under hypertrophic stress conditions. Pharmacological inhibition of JNK1/2 activity (SP600125) is capable of reversing the hypertrophic phenotype in DUSP12 knockout (KO) mice. DUSP12 protects against pathological cardiac hypertrophy and related pathologies. This regulatory role of DUSP12 is primarily through c-Jun N-terminal kinase (JNK) inhibition. DUSP12 could be a promising therapeutic target of pathological cardiac hypertrophy. DUSP12 is down-regulated in hypertrophic hearts. An absence of DUSP12 aggravated cardiac hypertrophy, whereas cardiomyocyte-specific DUSP12 overexpression can alleviate this hypertrophic phenotype with improved cardiac function. Further study demonstrated that DUSP12 inhibited JNK activity to attenuate pathological cardiac hypertrophy.
Collapse
|
58
|
Li C, Chen Z, Yang H, Luo F, Chen L, Cai H, Li Y, You G, Long D, Li S, Zhang Q, Rao L. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway. PLoS One 2016; 11:e0159079. [PMID: 27438013 PMCID: PMC4954659 DOI: 10.1371/journal.pone.0159079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
Aims Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. Methods and Results In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Conclusions Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials.
Collapse
Affiliation(s)
- Chen Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hao Yang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fangbo Luo
- Department of Rehabilitation, Community Health Center of Shuangnan Wuhou District, Chengdu, Sichuan, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Guiying You
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital of Sichuan University, High-tech Zone, Chengdu, Sichuan, China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital of Sichuan University, High-tech Zone, Chengdu, Sichuan, China
| | - Qiuping Zhang
- King’s College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London, United Kingdom
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
59
|
Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, McKinsey TA, Domann FE. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L124-34. [PMID: 27233998 PMCID: PMC4967185 DOI: 10.1152/ajplung.00263.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation. We used lung tissue and pulmonary artery smooth muscle cells (PASMC) from subjects with IPAH at transplantation and from failed donors (FD). Lung SOD3 mRNA expression and activity was decreased in IPAH vs. FD. In contrast, mitochondrial SOD (Mn-SOD or SOD2) protein expression was unchanged and intracellular SOD activity was unchanged. Using bisulfite sequencing in genomic lung or PASMC DNA, we found the methylation status of the SOD3 promoter was similar between FD and IPAH. Furthermore, treatment with 5-aza-2'-deoxycytidine did not increase PASMC SOD3 mRNA, suggesting DNA methylation was not responsible for PASMC SOD3 expression. Though total histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity, acetylated histones, and acetylated SP1 were similar between IPAH and FD, treatment with two selective class I HDAC inhibitors increased SOD3 only in IPAH PASMC. Class I HDAC3 siRNA also increased SOD3 expression. Trichostatin A, a pan-HDAC inhibitor, decreased proliferation in IPAH, but not in FD PASMC. These data indicate that histone deacetylation, specifically via class I HDAC3, decreases SOD3 expression in PASMC and HDAC inhibitors may protect IPAH in part by increasing PASMC SOD3 expression.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado;
| | - Crystal Woods
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Robert S Stearman
- Department of Medicine, Indiana University, Indianapolis, Indiana; and
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Bradley S Ferguson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Kalin Swain
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Russell P Bowler
- Department of Medicine, National Jewish Hospital, Denver, Colorado
| | - Mark W Geraci
- Department of Medicine, Indiana University, Indianapolis, Indiana; and
| | - Kaori Ihida-Stansbury
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado; Cardiovascular Pulmonary Research, University of Colorado Anschutz Medical Center, Aurora, Colorado; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Timothy A McKinsey
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | | |
Collapse
|
60
|
Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci 2016; 36:2119-30. [PMID: 26888924 DOI: 10.1523/jneurosci.3056-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Stress and the major stress hormone corticosterone induce profound influences in the brain. Altered histone modification and transcriptional dysfunction have been implicated in stress-related mental disorders. We previously found that repeated stress caused an impairment of prefrontal cortex (PFC)-mediated cognitive functions by increasing the ubiquitination and degradation of AMPA-type glutamate receptors via a mechanism depending on the E3 ubiquitin ligase Nedd4. Here, we demonstrated that in PFC of repeatedly stressed rats, active glucocorticoid receptor had the increased binding to the glucocorticoid response element of histone deacetylase 2 (HDAC2) promoter, resulting in the upregulation of HDAC2. Inhibition or knock-down of HDAC2 blocked the stress-induced impairment of synaptic transmission, AMPAR expression, and recognition memory. Furthermore, we found that, in stressed animals, the HDAC2-dependent downregulation of histone methyltransferase Ehmt2 (G9a) led to the loss of repressive histone methylation at the Nedd4-1 promoter and the transcriptional activation of Nedd4. These results have provided an epigenetic mechanism and a potential treatment strategy for the detrimental effects of chronic stress. SIGNIFICANCE STATEMENT Prolonged stress exposure can induce altered histone modification and transcriptional dysfunction, which may underlie the profound influence of stress in regulating brain functions. We report an important finding about the epigenetic mechanism controlling the detrimental effects of repeated stress on synaptic transmission and cognitive function. First, it has revealed the stress-induced alteration of key epigenetic regulators HDAC2 and Ehmt2, which determines the synaptic and behavioral effects of repeated stress. Second, it has uncovered the stress-induced histone modification of the target gene Nedd4, an E3 ligase that is critically involved in the ubiquitination and degradation of AMPA receptors and cognition. Third, it has provided the epigenetic approach, HDAC2 inhibition or knock-down, to rescue synaptic and cognitive functions in stressed animals.
Collapse
|
61
|
Tao H, Cao W, Yang JJ, Shi KH, Zhou X, Liu LP, Li J. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol 2016; 25:381-9. [PMID: 27318893 DOI: 10.1016/j.carpath.2016.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/29/2023] Open
Abstract
Down-regulation of DUSP5 has been shown to increase cell proliferation. DUSP5 expression is regulated through epigenetic events involving LncRNA H19 human choriocarcinoma cell line. However, the molecular mechanisms of H19 modulating the DUSP5 expression in cardiac fibrosis remain largely unknown. Here, we identify H19 negatively regulation of DUSP5 gene expression in cardiac fibroblast and fibrosis tissues. In vivo, the expression levels of H19, DUSP5, α-SMA, p-ERK1/2, and ERK1/2 in cardiac fibrosis tissue were estimated by Western blotting, quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. In vitro stimulation of freshly isolated rat cardiac fibroblasts with recombinant marine TGF-β1 was performed, followed by quantitative reverse transcription-polymerase chain reaction and Western blotting to detect changes in H19, DUSP5, p-ERK1/2, and ERK1/2 levels. Cardiac fibroblasts were transfected with pEX-3-H19 overexpressing, H19-RNAi down-regulating, or pEGFP-C1-DUSP5 overexpressing. Finally, cell proliferation was assessed by the MTT assay and cell cycle. H19 endogenous expression is overexpressed in cardiac fibroblast and fibrosis tissues, and an opposite pattern is observed for DUSP5. H19 ectopic overexpression reduces DUSP5 abundance and increases the proliferation of cardiac fibroblast, whereas H19 silencing causes the opposite effects. In a broader perspective, these results demonstrated that LncRNA H19 contributes to cardiac fibroblast proliferation and fibrosis, which act in part through repression of DUSP5/ERK1/2.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Cao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Li-Ping Liu
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
62
|
Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circ Res 2016; 119:249-60. [PMID: 27225478 DOI: 10.1161/circresaha.115.308238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
RATIONALE Mitogen-activated protein kinase (MAPK) signaling regulates the growth response of the adult myocardium in response to increased cardiac workload or pathological insults. The dual-specificity phosphatases (DUSPs) are critical effectors, which dephosphorylate the MAPKs to control the basal tone, amplitude, and duration of MAPK signaling. OBJECTIVE To examine DUSP8 as a regulator of MAPK signaling in the heart and its impact on ventricular and cardiac myocyte growth dynamics. METHODS AND RESULTS Dusp8 gene-deleted mice and transgenic mice with inducible expression of DUSP8 in the heart were used here to investigate how this MAPK-phosphatase might regulate intracellular signaling and cardiac growth dynamics in vivo. Dusp8 gene-deleted mice were mildly hypercontractile at baseline with a cardiac phenotype of concentric ventricular remodeling, which protected them from progressing towards heart failure in 2 surgery-induced disease models. Cardiac-specific overexpression of DUSP8 produced spontaneous eccentric remodeling and ventricular dilation with heart failure. At the cellular level, adult cardiac myocytes from Dusp8 gene-deleted mice were thicker and shorter, whereas DUSP8 overexpression promoted cardiac myocyte lengthening with a loss of thickness. Mechanistically, activation of extracellular signal-regulated kinases 1/2 were selectively increased in Dusp8 gene-deleted hearts at baseline and following acute pathological stress stimulation, whereas p38 MAPK and c-Jun N-terminal kinases were mostly unaffected. CONCLUSIONS These results indicate that DUSP8 controls basal and acute stress-induced extracellular signal-regulated kinases 1/2 signaling in adult cardiac myocytes that then alters the length-width growth dynamics of individual cardiac myocytes, which further alters contractility, ventricular remodeling, and disease susceptibility.
Collapse
Affiliation(s)
- Ruijie Liu
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jop H van Berlo
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Allen J York
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Ronald J Vagnozzi
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Marjorie Maillet
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.).
| |
Collapse
|
63
|
Lkhagva B, Kao YH, Chen YC, Chao TF, Chen SA, Chen YJ. Targeting histone deacetylases: A novel therapeutic strategy for atrial fibrillation. Eur J Pharmacol 2016; 781:250-7. [PMID: 27089819 DOI: 10.1016/j.ejphar.2016.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia associated with high mortality and morbidity. Current treatments of AF have limited efficacy and considerable side effects. Histone deacetylases (HDACs) play critical roles in the pathophysiology of cardiovascular diseases and contribute to the genesis of AF. Therefore, HDAC inhibition may prove a novel therapeutic strategy for AF through upstream therapy and modifications of AF electrical and structural remodeling. In this review, we provide an update of the knowledge of the effects of HDACs and HDAC inhibitors on AF, and dissect potential underlying mechanisms.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
64
|
Meng L, Jin W, Wang Y, Huang H, Li J, Zhang C. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem Biophys Res Commun 2016; 473:497-502. [PMID: 26995086 DOI: 10.1016/j.bbrc.2016.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
Abstract
Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE -/- mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come.
Collapse
Affiliation(s)
- Lingjun Meng
- College of Biological Sciences, China Agricultural University, Beijing 100094, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Wei Jin
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
65
|
Wagner FF, Lundh M, Kaya T, McCarren P, Zhang YL, Chattopadhyay S, Gale JP, Galbo T, Fisher SL, Meier BC, Vetere A, Richardson S, Morgan NG, Christensen DP, Gilbert TJ, Hooker JM, Leroy M, Walpita D, Mandrup-Poulsen T, Wagner BK, Holson EB. An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection. ACS Chem Biol 2016; 11:363-74. [PMID: 26640968 DOI: 10.1021/acschembio.5b00640] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in β-cell pathobiology and demonstrate for the first time that selective inhibition of an individual HDAC isoform retains beneficial biological activity and mitigates mechanism-based toxicities. The highly selective HDAC3 inhibitor BRD3308 suppressed pancreatic β-cell apoptosis induced by inflammatory cytokines, as expected, or now glucolipotoxic stress, and increased functional insulin release. In addition, BRD3308 had no effect on human megakaryocyte differentiation, while inhibitors of HDAC1 and 2 were toxic. Our findings demonstrate that the selective inhibition of HDAC3 represents a potential path forward as a therapy to protect pancreatic β-cells from inflammatory cytokines and nutrient overload in diabetes.
Collapse
Affiliation(s)
- Florence F. Wagner
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Morten Lundh
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department
of Biomedical Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Taner Kaya
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Patrick McCarren
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Yan-Ling Zhang
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Shrikanta Chattopadhyay
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Jennifer P. Gale
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Thomas Galbo
- Department
of Internal Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Stewart L. Fisher
- SL Fisher Consulting, LLC, PO Box 3052, Framingham, Massachusetts 01701, United States
| | - Bennett C. Meier
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Amedeo Vetere
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Sarah Richardson
- University of Exeter Medical School, RD&E Hospital, Wonford EX2 5DW, U.K
| | - Noel G. Morgan
- University of Exeter Medical School, RD&E Hospital, Wonford EX2 5DW, U.K
| | - Dan Ploug Christensen
- Department
of Biomedical Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Tamara J. Gilbert
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Jacob M. Hooker
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Department of Radiology, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Mélanie Leroy
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Deepika Walpita
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Thomas Mandrup-Poulsen
- Department
of Biomedical Sciences, University of Copenhagen, Copenhagen 1165, Denmark
- Department
of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Bridget K. Wagner
- Center
for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Edward B. Holson
- Stanley
Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
66
|
MeCP2 regulation of cardiac fibroblast proliferation and fibrosis by down-regulation of DUSP5. Int J Biol Macromol 2016; 82:68-75. [DOI: 10.1016/j.ijbiomac.2015.10.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023]
|
67
|
Zhang D, Hu X, Henning RH, Brundel BJJM. Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation. Cardiovasc Res 2015; 109:519-26. [PMID: 26645980 DOI: 10.1093/cvr/cvv265] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are long-lived post-mitotic cells with limited regenerative capacity. Proper cardiomyocyte function depends critically on the maintenance of a healthy homeostasis of protein expression, folding, assembly, trafficking, function, and degradation, together commonly referred to as proteostasis. Impairment of proteostasis has a prominent role in the pathophysiology of ageing-related neurodegenerative diseases including Huntington's, Parkinson's, and Alzheimer's disease. Emerging evidence reveals also a role for impaired proteostasis in the pathophysiology of common human cardiac diseases such as cardiac hypertrophy, dilated and ischaemic cardiomyopathies, and atrial fibrillation (AF). Histone deacetylases (HDACs) have recently been recognized as key modulators which control cardiac proteostasis by deacetylating various proteins. By deacetylating chromatin proteins, including histones, HDACs modulate epigenetic regulation of pathological gene expression. Also, HDACs exert a broad range of functions outside the nucleus by deacetylating structural and contractile proteins. The cytosolic actions of HDACs result in changed protein function through post-translational modifications and/or modulation of their degradation. This review describes the mechanisms underlying the derailment of proteostasis in AF and subsequently focuses on the role of HDACs herein. In addition, the therapeutic potential of HDAC inhibition to maintain a healthy proteostasis resulting in a delay in AF onset and progression is discussed.
Collapse
Affiliation(s)
- Deli Zhang
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Xu Hu
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Zhao YF, Xu DC, Zhu GF, Zhu MY, Tang K, Li WM, Xu YW. Growth Arrest-Specific 6 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy. Hypertension 2015; 67:118-29. [PMID: 26573712 DOI: 10.1161/hypertensionaha.115.06254] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023]
Abstract
Growth arrest-specific 6 (GAS6) is a member of the vitamin K-dependent protein family that is involved in the regulation of the cardiovascular system, including vascular remodeling, homeostasis, and atherosclerosis. However, there is still no study that systemically elucidates the role of GAS6 in cardiac hypertrophy. Here, we found that GAS6 was upregulated in human dilated cardiomyopathic hearts, hypertrophic murine hearts, and angiotensin II-treated cardiomyocytes. Next, we examined the influence of GAS6 expression in response to a cardiac stress by inducing chronic pressure overload with aortic banding in wild-type and GAS6-knockout mice or cardiac-specific GAS6 overexpressing mice. Under basal conditions, the GAS6-knockout mice had normal left ventricular structure and function but after aortic banding, the mice demonstrated less hypertrophy, fibrosis, and contractile dysfunction when compared with wild-type mice. Conversely, cardiac-specific overexpression of GAS6 exacerbated aortic banding-induced cardiac hypertrophy, fibrosis, and dysfunction. Furthermore, we demonstrated that GAS6 activated the mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 pathway during pressure overload-induced cardiac hypertrophy, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed GAS6 overexpression-induced cardiac hypertrophy and fibrosis, resulting in improved cardiac function. Collectively, our data support the notion that GAS6 impairs ventricular adaptation to chronic pressure overload by activating mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 signaling. Our findings suggest that strategies to reduce GAS6 activity in cardiac tissue may be a novel approach to attenuate the development of congestive heart failure.
Collapse
Affiliation(s)
- Yi-Fan Zhao
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Da-Chun Xu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guo-Fu Zhu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng-Yun Zhu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Kai Tang
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wei-Ming Li
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ya-Wei Xu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
69
|
Histone Deacetylase 3 Is Required for Efficient T Cell Development. Mol Cell Biol 2015; 35:3854-65. [PMID: 26324326 DOI: 10.1128/mcb.00706-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4(+) or CD8(+) single-positive cells being produced. When Hdac3(-/-) mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection.
Collapse
|
70
|
Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front Pharmacol 2015; 6:149. [PMID: 26257652 PMCID: PMC4513555 DOI: 10.3389/fphar.2015.00149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/09/2015] [Indexed: 11/28/2022] Open
Abstract
Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein–coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2). Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY) motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that dephosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.
Collapse
Affiliation(s)
- Michael Mutlak
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel
| | - Izhak Kehat
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel ; Department of Cardiology and the Clinical Research Institute at Rambam, Rambam Medical Center , Haifa, Israel
| |
Collapse
|
71
|
Ferguson BS, McKinsey TA. Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol 2015; 83:14-20. [PMID: 25791169 PMCID: PMC4459895 DOI: 10.1016/j.yjmcc.2015.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/19/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl-groups from lysine residues within nucelosomal histone tails and thousands of non-histone proteins. The 18 mammalian HDACs are grouped into four classes. Classes I, II and IV HDACs employ zinc as a co-factor for catalytic activity, while class III HDACs (also known as sirtuins) require NAD+ for enzymatic function. Small molecule inhibitors of zinc-dependent HDACs are efficacious in multiple pre-clinical models of pressure overload and ischemic cardiomyopathy, reducing pathological hypertrophy and fibrosis, and improving contractile function. Emerging data have revealed numerous mechanisms by which HDAC inhibitors benefit the heart, including suppression of oxidative stress and inflammation, inhibition of MAP kinase signaling, and enhancement of cardiac protein aggregate clearance and autophagic flux. Here, we summarize recent findings with zinc-dependent HDACs and HDAC inhibitors in the heart, focusing on newly described functions for distinct HDAC isoforms (e.g. HDAC2, HDAC3 and HDAC6). Potential for pharmacological HDAC inhibition as a means of treating age-related cardiac dysfunction is also discussed. This article is part of a Special Issue entitled: CV Aging.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Medicine, Division of Cardiology, University of Colorado, Denver, 12700 E. 19th Ave Aurora, CO 80045-0508, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado, Denver, 12700 E. 19th Ave Aurora, CO 80045-0508, USA.
| |
Collapse
|
72
|
Cavasin MA, Stenmark KR, McKinsey TA. Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series). Pulm Circ 2015; 5:63-72. [PMID: 25992271 DOI: 10.1086/679700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/30/2014] [Indexed: 01/14/2023] Open
Abstract
Reversible lysine acetylation has emerged as a critical mechanism for controlling the function of nucleosomal histones as well as diverse nonhistone proteins. Acetyl groups are conjugated to lysine residues in proteins by histone acetyltransferases and removed by histone deacetylases (HDACs), which are also commonly referred to as lysine deacetylases. Over the past decade, many studies have shown that HDACs play crucial roles in the control of left ventricular (LV) cardiac remodeling in response to stress. Small molecule HDAC inhibitors block pathological hypertrophy and fibrosis and improve cardiac function in various preclinical models of LV failure. Only recently have HDACs been studied in the context of right ventricular (RV) failure, which commonly occurs in patients who experience pulmonary hypertension (PH). Here, we review recent findings with HDAC inhibitors in models of PH and RV remodeling, propose next steps for this newly uncovered area of research, and highlight potential for isoform-selective HDAC inhibitors for the treatment of PH and RV failure.
Collapse
Affiliation(s)
- Maria A Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
73
|
Yang J, Xu WW, Hu SJ. Heart failure: advanced development in genetics and epigenetics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:352734. [PMID: 25949994 PMCID: PMC4407520 DOI: 10.1155/2015/352734] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance. In addition, epigenetic regulation occurs via key mechanisms, including ATP-dependent chromatin remodeling, DNA methylation, histone modification, and RNA-based mechanisms. MicroRNA is also a hot spot in HF research. This review gives an overview of genetic mutations associated with cardiomyopathy and the roles of some epigenetic mechanisms in HF.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Wei-wei Xu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Shen-jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| |
Collapse
|
74
|
New vis-tas in lactosylceramide research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:127-38. [PMID: 25408340 DOI: 10.1007/978-3-319-11280-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
75
|
Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins. BMC BIOCHEMISTRY 2014; 15:27. [PMID: 25519881 PMCID: PMC4299175 DOI: 10.1186/s12858-014-0027-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022]
Abstract
Background The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies. Electronic supplementary material The online version of this article (doi:10.1186/s12858-014-0027-0) contains supplementary material, which is available to authorized users.
Collapse
|
76
|
Histone deacetylases as therapeutic targets--from cancer to cardiac disease. Pharmacol Ther 2014; 147:55-62. [PMID: 25444758 DOI: 10.1016/j.pharmthera.2014.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 01/04/2023]
Abstract
Heart failure is a major public health problem in western society. Recently, agents that inhibit histone deacetylase (HDAC) enzymes were developed and approved by the FDA as anticancer agents. This breakthrough has provided the motivation to develop more potent and more selective HDAC inhibitors and to target other pathologic conditions with these drugs. Here we review experimental evidence showing that these drugs may be beneficial in preventing cardiac hypertrophy and heart failure. Several lines of evidence show that inhibitors of Class I HDACs can blunt cardiac hypertrophy and preserve cardiac function in several small animal models. In contrast, Class IIa HDACs appear to be suppressors of hypertrophy, though experimental data with small molecule blockers of this class is largely lacking. The effects of HDAC inhibition in cardiac diseases, the cell population in the heart that is targeted by HDAC blockers, as well as the relative roles of specific HDACs are still under intense investigation.
Collapse
|
77
|
Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, Kim SW, Holson EB, Haggarty SJ, Hooker JM. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 2014; 57:7999-8009. [PMID: 25203558 PMCID: PMC4191584 DOI: 10.1021/jm500872p] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Epigenetic
enzymes are now targeted to treat the underlying gene
expression dysregulation that contribute to disease pathogenesis.
Histone deacetylases (HDACs) have shown broad potential in treatments
against cancer and emerging data supports their targeting in the context
of cardiovascular disease and central nervous system dysfunction.
Development of a molecular agent for non-invasive imaging to elucidate
the distribution and functional roles of HDACs in humans will accelerate
medical research and drug discovery in this domain. Herein, we describe
the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe
has high specificity, good selectivity, and appropriate kinetics and
distribution for imaging HDACs in the brain, heart, kidney, pancreas,
and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 73 High Street, Charlestown, Massachusetts 02129, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Cheng F, Lienlaf M, Wang HW, Perez-Villarroel P, Lee C, Woan K, Rock-Klotz J, Sahakian E, Woods D, Pinilla-Ibarz J, Kalin J, Tao J, Hancock W, Kozikowski A, Seto E, Villagra A, Sotomayor EM. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2850-62. [PMID: 25108026 PMCID: PMC4157123 DOI: 10.4049/jimmunol.1302778] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
APCs are critical in T cell activation and in the induction of T cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. In this study, to our knowledge we show for the first time that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells results in diminished production of the immunosuppressive cytokine IL-10 and induction of inflammatory APCs that effectively activate Ag-specific naive T cells and restore the responsiveness of anergic CD4(+) T cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising amino acids 503-840 as being required for HDAC6 interaction with STAT3. Furthermore, by re-chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation--but no changes in STAT3 acetylation--as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance toward T cell immunity.
Collapse
Affiliation(s)
- Fengdong Cheng
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Maritza Lienlaf
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Hong-Wei Wang
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Patricio Perez-Villarroel
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Calvin Lee
- All Children's Research Institute, All Children's Hospital-Johns Hopkins Medicine, St. Petersburg, FL 33701; Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Karrune Woan
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jennifer Rock-Klotz
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eva Sahakian
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - David Woods
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Javier Pinilla-Ibarz
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jay Kalin
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL 60612
| | - Jianguo Tao
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Alan Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL 60612
| | - Edward Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Alejandro Villagra
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612;
| | - Eduardo M Sotomayor
- Department of Immunology and Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612;
| |
Collapse
|
79
|
Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLoS One 2014; 9:e102684. [PMID: 25136952 PMCID: PMC4138023 DOI: 10.1371/journal.pone.0102684] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022] Open
Abstract
Selective histone deacetylase (HDAC) inhibitors have emerged as a potential anti-latency therapy for persistent human immunodeficiency virus type 1 (HIV-1) infection. We utilized a combination of small molecule inhibitors and short hairpin (sh)RNA-mediated gene knockdown strategies to delineate the key HDAC(s) to be targeted for selective induction of latent HIV-1 expression. Individual depletion of HDAC3 significantly induced expression from the HIV-1 promoter in the 2D10 latency cell line model. However, depletion of HDAC1 or −2 alone or in combination did not significantly induce HIV-1 expression. Co-depletion of HDAC2 and −3 resulted in a significant increase in expression from the HIV-1 promoter. Furthermore, concurrent knockdown of HDAC1, −2, and −3 resulted in a significant increase in expression from the HIV-1 promoter. Using small molecule HDAC inhibitors of differing selectivity to ablate the residual HDAC activity that remained after (sh)RNA depletion, the effect of depletion of HDAC3 was further enhanced. Enzymatic inhibition of HDAC3 with the selective small-molecule inhibitor BRD3308 activated HIV-1 transcription in the 2D10 cell line. Furthermore, ex vivo exposure to BRD3308 induced outgrowth of HIV-1 from resting CD4+ T cells isolated from antiretroviral-treated, aviremic HIV+ patients. Taken together these findings suggest that HDAC3 is an essential target to disrupt HIV-1 latency, and inhibition of HDAC2 may also contribute to the effort to purge and eradicate latent HIV-1 infection.
Collapse
|
80
|
Plotkin A, Volmar CH, Wahlestedt C, Ayad N, El-Ashry D. Transcriptional repression of ER through hMAPK dependent histone deacetylation by class I HDACs. Breast Cancer Res Treat 2014; 147:249-63. [PMID: 25129342 DOI: 10.1007/s10549-014-3093-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
Anti-estrogen therapies are not effective in ER- breast cancers, thus identifying mechanisms underlying lack of ER expression in ER- breast cancers is imperative. We have previously demonstrated that hyperactivation of MAPK (hMAPK) downstream of overexpressed EGFR or overexpression/amplification of Her2 represses ER protein and mRNA expression. Abrogation of hMAPK in ER- breast cancer cell lines and primary cultures causes re-expression of ER and restoration of anti-estrogen responses. This study was performed to identify mechanisms of hMAPK-induced transcriptional repression of ER. We found that ER promoter activity is significantly reduced in the presence of hMAPK signaling, yet did not identify specific promoter sequences responsible for this repression. We performed an epigenetic compound screen in an ER- breast cancer cell line that expresses hMAPK yet does not exhibit ER promoter hypermethylation. A number of HDAC inhibitors were identified and confirmed to modulate ER expression and estrogen signaling in multiple ER- cell lines and tumor samples lacking ER promoter methylation. siRNA-mediated knockdown of HDACs 1, 2, and 3 reversed the mRNA repression in multiple breast cancer cell lines and primary cultures and ER promoter-associated histone acetylation increased following MAPK inhibition. These data implicate histone deacetylation downstream of hMAPK in the observed ER mRNA repression associated with hMAPK. Importantly, histone deacetylation appears to be a common mechanism in the transcriptional repression of ER between ER- breast cancers with or without ER promoter hypermethylation.
Collapse
Affiliation(s)
- Amy Plotkin
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, 1501 NW 10th Ave., Miami, FL, 33136, USA
| | | | | | | | | |
Collapse
|
81
|
Abstract
Heart failure has become a huge public health problem. The treatment options for heart failure, however, are considerably limited. The significant disparity between the scope of a prominent health problem and the restricted means of therapy propagates heart failure epidemics. Delineating novel mechanisms of heart failure is imperative. Emerging evidence suggests that epigenetic regulation may take part in the pathogenesis of heart failure. Epigenetic regulation involves DNA and histone modifications that lead to changes in DNA-based transcriptional programs without altering the DNA sequence. Although more and more mechanisms are being discovered, the best understood epigenetic modifications are achieved through covalent biochemical reactions including histone acetylation, histone methylation and DNA methylation. Connecting environmental stimuli with genomic programs, epigenetic regulation remains important in maintaining homeostases and the pathogeneses of diseases. This review summarizes the most recent developments regarding individual epigenetic modifications and their implications in the pathogenesis of heart failure. Understanding this strategically important mechanism is potentially the key for developing powerful interventions in the future.
Collapse
Affiliation(s)
- Dian J Cao
- Department of Internal Medicine, Cardiology Division, UT Southwestern Medical Center, Dallas VA Medical Center, 4500 S Lancaster Rd, Dallas, TX 75216, USA
| |
Collapse
|
82
|
Aune SE, Herr DJ, Mani SK, Menick DR. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. J Mol Cell Cardiol 2014; 72:138-45. [PMID: 24632412 PMCID: PMC4046340 DOI: 10.1016/j.yjmcc.2014.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022]
Abstract
While inhibition of class I/IIb histone deacetylases (HDACs) protects the mammalian heart from ischemia reperfusion (IR) injury, class selective effects remain unexamined. We hypothesized that selective inhibition of class I HDACs would preserve left ventricular contractile function following IR in isolated hearts. Male Sprague Dawley rats (n=6 per group) were injected with vehicle (dimethylsulfoxide, 0.63mg/kg), the class I/IIb HDAC inhibitor trichostatin A (1mg/kg), the class I HDAC inhibitor entinostat (MS-275, 10mg/kg), or the HDAC6 (class IIb) inhibitor tubastatin A (10mg/kg). After 24h, hearts were isolated and perfused in Langendorff mode for 30min (Sham) or subjected to 30min global ischemia and 120min global reperfusion (IR). A saline filled balloon attached to a pressure transducer was placed in the LV to monitor contractile function. After perfusion, LV tissue was collected for measurements of antioxidant protein levels and infarct area. At the conclusion of IR, MS-275 pretreatment was associated with significant preservation of developed pressure, rate of pressure generation, rate of pressure relaxation and rate pressure product, as compared to vehicle treated hearts. There was significant reduction of infarct area with MS-275 pretreatment. Contractile function was not significantly restored in hearts treated with trichostatin A or tubastatin A. Mitochondrial superoxide dismutase (SOD2) and catalase protein and mRNA in hearts from animals pretreated with MS-275 were increased following IR, as compared to Sham. This was associated with a dramatic enrichment of nuclear FOXO3a transcription factor, which mediates the expression of SOD2 and catalase. Tubastatin A treatment was associated with significantly decreased catalase levels after IR. Class I HDAC inhibition elicits protection of contractile function following IR, which is associated with increased expression of endogenous antioxidant enzymes. Class I/IIb HDAC inhibition with trichostatin A or selective inhibition of HDAC6 with tubastatin A was not protective. This study highlights the need for the development of new strategies that target specific HDAC isoforms in cardiac ischemia reperfusion.
Collapse
Affiliation(s)
- Sverre E Aune
- Gazes Cardiac Research Institute, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425, USA
| | - Daniel J Herr
- Gazes Cardiac Research Institute, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425, USA
| | - Santhosh K Mani
- Gazes Cardiac Research Institute, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425, USA
| | - Donald R Menick
- Gazes Cardiac Research Institute, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425, USA.
| |
Collapse
|
83
|
Schuetze KB, McKinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs. J Mol Cell Cardiol 2014; 70:100-7. [PMID: 24631770 PMCID: PMC4080911 DOI: 10.1016/j.yjmcc.2014.02.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is implicated in numerous physiologic and pathologic conditions, including scar formation, heart failure and cardiac arrhythmias. However the specific cells and signaling pathways mediating this process are poorly understood. Lysine acetylation of nucleosomal histone tails is an important mechanism for the regulation of gene expression. Additionally, proteomic studies have revealed that thousands of proteins in all cellular compartments are subject to reversible lysine acetylation, and thus it is becoming clear that this post-translational modification will rival phosphorylation in terms of biological import. Acetyl groups are conjugated to lysine by histone acetyltransferases (HATs) and removed from lysine by histone deacetylases (HDACs). Recent studies have shown that pharmacologic agents that alter lysine acetylation by targeting HDACs have the remarkable ability to block pathological fibrosis. Here, we review the current understanding of cardiac fibroblasts and the fibrogenic process with respect to the roles of lysine acetylation in the control of disease-related cardiac fibrosis. Potential for small molecule HDAC inhibitors as anti-fibrotic therapeutics that target cardiac fibroblasts is highlighted. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
- Katherine B Schuetze
- Department of Medicine, Division of Cardiology, University of Colorado Denver, 12700 E. 19th Ave., Aurora, CO 80045-0508, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, 12700 E. 19th Ave., Aurora, CO 80045-0508, USA.
| | - Carlin S Long
- Department of Medicine, Division of Cardiology, University of Colorado Denver, 12700 E. 19th Ave., Aurora, CO 80045-0508, USA.
| |
Collapse
|
84
|
Mishra S, Chatterjee S. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes. Glycobiology 2014; 24:518-31. [PMID: 24658420 PMCID: PMC4001711 DOI: 10.1093/glycob/cwu020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypertrophy is central to several heart diseases; however, not much is known about the role of glycosphingolipids (GSLs) in this phenotype. Since GSLs have been accorded several physiological functions, we sought to determine whether these compounds affect cardiac hypertrophy. By using a rat cardiomyoblast cell line, H9c2 cells and cultured primary neonatal rat cardiomyocytes, we have determined the effects of GSLs on hypertrophy. Our study comprises (a) measurement of [(3)H]-leucine incorporation into protein, (b) measurement of cell size and morphology by immunofluorescence microscopy and (c) real-time quantitative mRNA expression assay for atrial natriuretic peptide and brain natriuretic peptide. Phenylephrine (PE), a well-established agonist of cardiac hypertrophy, served as a positive control in these studies. Subsequently, mechanistic studies were performed to explore the involvement of various signaling transduction pathways that may contribute to hypertrophy in these cardiomyocytes. We observed that lactosylceramide specifically exerted a concentration- (50-100 µM) and time (48 h)-dependent increase in hypertrophy in cardiomyocytes but not a library of other structurally related GSLs. Further, in cardiomyocytes, LacCer generated reactive oxygen species, stimulated the phosphorylation of p44 mitogen activated protein kinase and protein kinase-C, and enhanced c-jun and c-fos expression, ultimately leading to hypertrophy. In summary, we report here that LacCer specifically induces hypertrophy in cardiomyocytes via an "oxygen-sensitive signal transduction pathway."
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
85
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|
86
|
Williams SM, Golden-Mason L, Ferguson BS, Schuetze KB, Cavasin MA, Demos-Davies K, Yeager ME, Stenmark KR, McKinsey TA. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol 2014; 67:112-25. [PMID: 24374140 PMCID: PMC4120952 DOI: 10.1016/j.yjmcc.2013.12.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023]
Abstract
Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.
Collapse
Affiliation(s)
- Sarah M Williams
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | - Lucy Golden-Mason
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Denver, Aurora, CO, USA
| | - Bradley S Ferguson
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | - Katherine B Schuetze
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | - Maria A Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | - Kim Demos-Davies
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | - Michael E Yeager
- Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Kurt R Stenmark
- Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
87
|
Tao H, Shi KH, Yang JJ, Huang C, Zhan HY, Li J. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 2013; 26:521-7. [PMID: 24321371 DOI: 10.1016/j.cellsig.2013.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Histone deacetylases (HDACs) are enzymes that balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. In recent years, the role of HDACs in cardiac fibrosis initiation and progression, as well as the therapeutic effects of HDAC inhibitors, has been well studied. Moreover, numerous studies indicated that HDAC activity is associated with the development and progression of cardiac fibrosis. In this review, the innovative aspects of HDACs are discussed, with respect to biogenesis, their role in cardiac fibrosis. Furthermore, the potential applications of HDAC inhibitors in the treatment of cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Ying Zhan
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
88
|
Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 2013; 14:17643-63. [PMID: 23989608 PMCID: PMC3794746 DOI: 10.3390/ijms140917643] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 01/04/2023] Open
Abstract
Recent statistics indicate that the human population is ageing rapidly. Healthy, but also diseased, elderly people are increasing. This trend is particularly evident in Western countries, where healthier living conditions and better cures are available. To understand the process leading to age-associated alterations is, therefore, of the highest relevance for the development of new treatments for age-associated diseases, such as cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well accepted that the accumulation of intracellular damage determined by reactive oxygen species (ROS) might orchestrate the progressive loss of control over biological homeostasis and the functional impairment typical of aged tissues. Here, we review how epigenetics takes part in the control of stress stimuli and the mechanisms of ageing physiology and physiopathology. Alteration of epigenetic enzyme activity, histone modifications and DNA-methylation is, in fact, typically associated with the ageing process. Specifically, ageing presents peculiar epigenetic markers that, taken altogether, form the still ill-defined “ageing epigenome”. The comprehension of mechanisms and pathways leading to epigenetic modifications associated with ageing may help the development of anti-ageing therapies.
Collapse
|