51
|
Mayer AV, Wermter AK, Stroth S, Alter P, Haberhausen M, Stehr T, Paulus FM, Krach S, Kamp-Becker I. Randomized clinical trial shows no substantial modulation of empathy-related neural activation by intranasal oxytocin in autism. Sci Rep 2021; 11:15056. [PMID: 34301983 PMCID: PMC8302641 DOI: 10.1038/s41598-021-94407-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that intranasal application of oxytocin facilitates empathy and modulates its underlying neural processes, which are often impaired in individuals with autism spectrum disorders (ASD). Oxytocin has therefore been considered a promising candidate for the treatment of social difficulties in ASD. However, evidence linking oxytocin treatment to social behavior and brain function in ASD is limited and heterogeneous effects might depend on variations in the oxytocin-receptor gene (OXTR). We examined 25 male ASD patients without intellectual disability in a double-blind, cross-over, placebo-controlled fMRI-protocol, in which a single dose of oxytocin or placebo was applied intranasally. Patients performed three experiments in the MRI examining empathy for other's physical pain, basic emotions, and social pain. All participants were genotyped for the rs53576 single-nucleotide polymorphism of the OXTR. Oxytocin increased bilateral amygdala responsiveness during the physical pain task for both painful and neutral stimuli. Other than that, there were no effects of oxytocin treatment. OXTR genotype did not significantly interact with oxytocin treatment. Our results contribute to the growing body of empirical literature suggesting heterogenous effects of oxytocin administration in ASD. To draw clinically relevant conclusions regarding the usefulness of oxytocin treatment, however, empirical studies need to consider methods of delivery, dose, and moderating individual factors more carefully in larger samples.
Collapse
Affiliation(s)
- Annalina V Mayer
- Department of Psychiatry and Psychotherapy, Social Neuroscience Lab, University of Lübeck, Lübeck, Germany.
| | - Anne-Kathrin Wermter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Sanna Stroth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, and Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
| | - Michael Haberhausen
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Thomas Stehr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Frieder M Paulus
- Department of Psychiatry and Psychotherapy, Social Neuroscience Lab, University of Lübeck, Lübeck, Germany
| | - Sören Krach
- Department of Psychiatry and Psychotherapy, Social Neuroscience Lab, University of Lübeck, Lübeck, Germany
| | - Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
52
|
Alymov AA, Kapitsa IG, Voronina TA. Neurochemical Mechanisms of Pathogenesis and Pharmacological Correction of Autism Spectrum Disorders: Current Concepts and Prospects. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
McCracken JT, Anagnostou E, Arango C, Dawson G, Farchione T, Mantua V, McPartland J, Murphy D, Pandina G, Veenstra-VanderWeele J. Drug development for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. Eur Neuropsychopharmacol 2021; 48:3-31. [PMID: 34158222 PMCID: PMC10062405 DOI: 10.1016/j.euroneuro.2021.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
In 2017, facing lack of progress and failures encountered in targeted drug development for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders, the ISCTM with the ECNP created the ASD Working Group charged to identify barriers to progress and recommending research strategies for the field to gain traction. Working Group international academic, regulatory and industry representatives held multiple in-person meetings, teleconferences, and subgroup communications to gather a wide range of perspectives on lessons learned from extant studies, current challenges, and paths for fundamental advances in ASD therapeutics. This overview delineates the barriers identified, and outlines major goals for next generation biomedical intervention development in ASD. Current challenges for ASD research are many: heterogeneity, lack of validated biomarkers, need for improved endpoints, prioritizing molecular targets, comorbidities, and more. The Working Group emphasized cautious but unwavering optimism for therapeutic progress for ASD core features given advances in the basic neuroscience of ASD and related disorders. Leveraging genetic data, intermediate phenotypes, digital phenotyping, big database discovery, refined endpoints, and earlier intervention, the prospects for breakthrough treatments are substantial. Recommendations include new priorities for expanded research funding to overcome challenges in translational clinical ASD therapeutic research.
Collapse
Affiliation(s)
- James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States.
| | | | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Univesitario Gregorio Maranon, and School of Medicine, Universidad Complutense de Madrid, CIBERSAM, Madrid, Spain
| | - Geraldine Dawson
- Duke University Medical Center, Durham, North Carolina, United States
| | - Tiffany Farchione
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Valentina Mantua
- Food and Drug Administration, Silver Spring, Maryland, United States
| | | | - Declan Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King's College De Crespigny Park, Denmark Hill, London SE5 8AF, United Kingdom
| | - Gahan Pandina
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, New Jersey, United States
| | | |
Collapse
|
54
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
55
|
Increased Serum Concentrations of High Mobility Group Box 1 (HMGB1) Protein in Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8060478. [PMID: 34198762 PMCID: PMC8228126 DOI: 10.3390/children8060478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 protein (HMGB1) has been suggested to be involved in the immune dysfunction and inflammation reported in autism spectrum disorder (ASD). We aimed to assess HMGB1 serum concentrations (SCs) in high-functioning ASD children compared to typically developing (TD) controls and to explore their associations with the autism spectrum quotient (AQ), the empathy quotient (EQ), and the systemizing quotient (SQ). The study involved 42 ASD children and 38 TD children, all-male, aged between 6.1 and 13.3 years old. HMGB1 SCs were measured by enzyme-linked immunosorbent assay (ELISA). Groups were comparable regarding age, general IQ, birth weight, and maternal age at birth. ASD children showed significantly higher HMGB1 SCs compared to TD children (1.25 ± 0.84 ng/mL versus 1.13 ± 0.79 ng/mL, respectively, p = 0.039). The Spearman’s rho revealed that HMGB1 SCs were positively correlated with the AQ attention to detail subscale (rs = 0.46, p = 0.045) and with the SQ total score (rs = 0.42, p = 0.04) in the ASD group. These results show that HMGB1 serum concentrations are altered in ASD children, and suggest that inflammatory processes mediated by HMGB1 may be associated with specific cognitive features observed in ASD.
Collapse
|
56
|
Erikson DW, Blue SW, Kaucher AV, Shnitko TA. LC-MS/MS measurement of endogenous oxytocin in the posterior pituitary and CSF of macaques: A pilot study. Peptides 2021; 140:170544. [PMID: 33811949 PMCID: PMC8462972 DOI: 10.1016/j.peptides.2021.170544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Oxytocin (OT) is a nanopeptide released into systemic circulation via the posterior pituitary (peripheral) and into the central nervous system via widespread OTergic pathways (central). Central OT plays a significant role in variety of functions from social and executive cognition to immune regulation. Many ongoing studies explore its therapeutic potential for variety of neuropsychiatric disorders. Measures of peripheral OT levels are most frequently used as an indicator of its concentration in the central nervous system in humans and animal models. In this study, LC-MS/MS was used to measure OT in pituitary samples collected from adult male macaque monkeys in order to explore the correlation between individual levels of OT in the CSF (central) and pituitary (peripheral). We quantified individual differences in the levels of OT in the pituitaries (44-151 ng/mg) and CSF (41-66 pg/mL) of these monkeys. A positive correlation between these two measures was identified. These preliminary results allow for future analyses to determine whether LC-MS/MS measures of peripheral OT can be used as markers of OT levels in the brain of nonhuman primates that serve as valuable models for many human neuropsychiatric disorders.
Collapse
Affiliation(s)
- D W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - S W Blue
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - A V Kaucher
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - T A Shnitko
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA.
| |
Collapse
|
57
|
Kong XJ, Liu J, Liu K, Koh M, Sherman H, Liu S, Tian R, Sukijthamapan P, Wang J, Fong M, Xu L, Clairmont C, Jeong MS, Li A, Lopes M, Hagan V, Dutton T, Chan ST(P, Lee H, Kendall A, Kwong K, Song Y. Probiotic and Oxytocin Combination Therapy in Patients with Autism Spectrum Disorder: A Randomized, Double-Blinded, Placebo-Controlled Pilot Trial. Nutrients 2021; 13:1552. [PMID: 34062986 PMCID: PMC8147925 DOI: 10.3390/nu13051552] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a rapidly growing neurodevelopmental disorder. Both probiotics and oxytocin were reported to have therapeutic potential; however, the combination therapy has not yet been studied. We conducted a randomized, double-blinded, placebo-controlled, 2-stage pilot trial in 35 individuals with ASD aged 3-20 years (median = 10.30 years). Subjects were randomly assigned to receive daily Lactobacillus plantarum PS128 probiotic (6 × 1010 CFUs) or a placebo for 28 weeks; starting on week 16, both groups received oxytocin. The primary outcomes measure socio-behavioral severity using the Social Responsiveness Scale (SRS) and Aberrant Behavior Checklist (ABC). The secondary outcomes include measures of the Clinical Global Impression (CGI) scale, fecal microbiome, blood serum inflammatory markers, and oxytocin. All outcomes were compared between the two groups at baseline, 16 weeks, and 28 weeks into treatment. We observed improvements in ABC and SRS scores and significant improvements in CGI-improvement between those receiving probiotics and oxytocin combination therapy compared to those receiving placebo (p < 0.05). A significant number of favorable gut microbiome network hubs were also identified after combination therapy (p < 0.05). The favorable social cognition response of the combination regimen is highly correlated with the abundance of the Eubacterium hallii group. Our findings suggest synergic effects between probiotics PS128 and oxytocin in ASD patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jun Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
| | - Kevin Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Madelyn Koh
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Hannah Sherman
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Siyu Liu
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Ruiyi Tian
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | | | - Jiuju Wang
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Michelle Fong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Lei Xu
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cullen Clairmont
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Min-Seo Jeong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Alice Li
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Maria Lopes
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Veronica Hagan
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Tess Dutton
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Suk-Tak (Phoebe) Chan
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Hang Lee
- Harvard Medical School, Boston, MA 02115, USA; (P.S.); (L.X.); (H.L.)
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Kendall
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Kenneth Kwong
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; (J.L.); (K.L.); (M.K.); (H.S.); (S.L.); (R.T.); (J.W.); (M.F.); (C.C.); (M.-S.J.); (A.L.); (M.L.); (V.H.); (T.D.); (S.-T.C.); (A.K.); (K.K.)
| | - Yiqing Song
- Department of Epidemiology, Indiana University, Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA;
| |
Collapse
|
58
|
Festante F, Rayson H, Paukner A, Kaburu SSK, Toschi G, Fox NA, Ferrari PF. Oxytocin promotes prosocial behavior and related neural responses in infant macaques at-risk for compromised social development. Dev Cogn Neurosci 2021; 48:100950. [PMID: 33831822 PMCID: PMC8042434 DOI: 10.1016/j.dcn.2021.100950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023] Open
Abstract
Although positive effects of oxytocin (OT) on social functioning are well-demonstrated, little is known about the mechanisms through which OT may drive early social development, or its therapeutic efficacy in infancy. To address these critical issues, we investigated the effects of exogenous OT on neural (EEG) and behavioral responses during observation of live facial gestures in infant macaques with limited social exposure (i.e. nursery-reared). Three key findings were revealed. First, OT increased alpha suppression over posterior scalp regions during observation of facial gestures but not non-biological movement, suggesting that OT targets self-other matching and attentional cortical networks involved in social perception from very early infancy. Second, OT increased infant production of matching facial gestures and attention towards the most socially-relevant facial stimuli, both behaviors typically silenced by early social deprivation. Third, infants with higher cortisol levels appeared to benefit the most from OT, displaying greater improvements in prosocial behaviors after OT administration. Altogether, these findings suggest that OT promotes prosocial behaviors and associated neural responses likely impacted by early social adversity, and demonstrate the potential of OT administration to ameliorate social difficulties in the context of neurodevelopmental and early-emerging psychiatric disorders, at a developmental stage when brain plasticity is greatest.
Collapse
Affiliation(s)
- Fabrizia Festante
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Holly Rayson
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/Université Claude Bernard Lyon, Bron, Cedex, 69675, France
| | - Annika Paukner
- Psychology Department, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Stefano S K Kaburu
- Department of Biomedical Science & Physiology, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Giulia Toschi
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, 20740, USA
| | - Pier Francesco Ferrari
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/Université Claude Bernard Lyon, Bron, Cedex, 69675, France; Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy.
| |
Collapse
|
59
|
Munesue SI, Liang M, Harashima A, Zhong J, Furuhara K, Boitsova EB, Cherepanov SM, Gerasimenko M, Yuhi T, Yamamoto Y, Higashida H. Transport of oxytocin to the brain after peripheral administration by membrane-bound or soluble forms of receptors for advanced glycation end-products. J Neuroendocrinol 2021; 33:e12963. [PMID: 33733541 DOI: 10.1111/jne.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.
Collapse
Affiliation(s)
- Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - MingKun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Elizabeta B Boitsova
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| |
Collapse
|
60
|
Albantakis L, Brandi ML, Brückl T, Gebert D, Auer M, Kopczak A, Stalla G, Neumann I, Schilbach L. Oxytocin and cortisol concentrations in adults with and without autism spectrum disorder in response to physical exercise. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 5:100027. [PMID: 35754449 PMCID: PMC9216704 DOI: 10.1016/j.cpnec.2021.100027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, whose core symptoms consist of deficits in social interaction and communication as well as restricted and repetitive behavior. Brain oxytocin (OXT) has been associated with various prosocial behaviors, and might, therefore, be involved in the pathogenesis of disorders associated with socio-emotional dysfunctions such as ASD. However, significant associations between central and peripheral OXT levels may only be present in response to physiological or stressful stimuli but were not shown under baseline conditions. In this study, we, therefore, investigated salivary and plasma OXT in response to physical exercise in adults with ASD (n = 33, mean age: 36.8 ± 10.7 years) without intellectual impairment (IQ > 70) and neurotypical controls (n = 31, mean age: 31.0 ± 11.7 years). To stimulate the OXT system, we used rapid cycling and measured cortisol (CORT) concentrations to monitor the physiological stress response. When controlling for age, neither salivary OXT (p = .469), plasma OXT (p = .297) nor CORT (p = .667) concentrations significantly differed between groups at baseline. In addition, neither OXT nor CORT concentrations significantly differed between groups after physical exercise. Social anxiety traits were negatively correlated with plasma, but not saliva OXT concentrations in neurotypicals at baseline, while empathetic traits were positively correlated with saliva, but not plasma concentrations in autistic patients at baseline. No significant correlations between salivary and plasma OXT concentrations were found at any time point. Future studies including adult participants should investigate the effect of age on CORT and OXT concentrations in response to stress.
Collapse
Affiliation(s)
- L. Albantakis
- Max Planck Institute of Psychiatry – Independent Max Planck Research Group for Social Neuroscience, Kraepelinstr. 2-10, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - M.-L. Brandi
- Max Planck Institute of Psychiatry – Independent Max Planck Research Group for Social Neuroscience, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - T. Brückl
- Max Planck Institute of Psychiatry – Translational Research in Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - D. Gebert
- Neurological Specialty Hospital for Movement Disorders/Parkinson’s Disease, Straße Nach Fichtenwalde 16, 14547, Beelitz, Germany
| | - M.K. Auer
- Medizinische Klinik and Poliklinik IV, LMU Klinikum, Ziemssenstr. 1, 80336, Munich, Germany
| | - A. Kopczak
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - G.K. Stalla
- Medizinische Klinik and Poliklinik IV, LMU Klinikum, Ziemssenstr. 1, 80336, Munich, Germany
- Medicover Neuroendokrinologie, Orleansplatz 3, 81667, Munich, Germany
| | - I.D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - L. Schilbach
- Max Planck Institute of Psychiatry – Independent Max Planck Research Group for Social Neuroscience, Kraepelinstr. 2-10, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg, Germany
| |
Collapse
|
61
|
Chen K, Ye Y, Troje NF, Zhou W. Oxytocin modulates human chemosensory decoding of sex in a dose-dependent manner. eLife 2021; 10:59376. [PMID: 33439831 PMCID: PMC7806258 DOI: 10.7554/elife.59376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
There has been accumulating evidence of human social chemo-signaling, but the underlying mechanisms remain poorly understood. Considering the evolutionarily conserved roles of oxytocin and vasopressin in reproductive and social behaviors, we examined whether the two neuropeptides are involved in the subconscious processing of androsta-4,16,-dien-3-one and estra-1,3,5 (10),16-tetraen-3-ol, two human chemosignals that convey masculinity and femininity to the targeted recipients, respectively. Psychophysical data collected from 216 heterosexual and homosexual men across five experiments totaling 1056 testing sessions consistently showed that such chemosensory communications of masculinity and femininity were blocked by a competitive antagonist of both oxytocin and vasopressin receptors called atosiban, administered nasally. On the other hand, intranasal oxytocin, but not vasopressin, modulated the decoding of androstadienone and estratetraenol in manners that were dose-dependent, nonmonotonic, and contingent upon the recipients’ social proficiency. Taken together, these findings establish a causal link between neuroendocrine factors and subconscious chemosensory communications of sex-specific information in humans.
Collapse
Affiliation(s)
- Kepu Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yuting Ye
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
62
|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:121-140. [PMID: 34266588 DOI: 10.1016/b978-0-12-819973-2.00009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.
Collapse
|
63
|
Quintana DS, Lischke A, Grace S, Scheele D, Ma Y, Becker B. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol Psychiatry 2021; 26:80-91. [PMID: 32807845 PMCID: PMC7815514 DOI: 10.1038/s41380-020-00864-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
Reports on the modulatory role of the neuropeptide oxytocin on social cognition and behavior have steadily increased over the last two decades, stimulating considerable interest in its psychiatric application. Basic and clinical research in humans primarily employs intranasal application protocols. This approach assumes that intranasal administration increases oxytocin levels in the central nervous system via a direct nose-to-brain route, which in turn acts upon centrally-located oxytocin receptors to exert its behavioral effects. However, debates have emerged on whether intranasally administered oxytocin enters the brain via the nose-to-brain route and whether this route leads to functionally relevant increases in central oxytocin levels. In this review we outline recent advances from human and animal research that provide converging evidence for functionally relevant effects of the intranasal oxytocin administration route, suggesting that direct nose-to-brain delivery underlies the behavioral effects of oxytocin on social cognition and behavior. Moreover, advances in previously debated methodological issues, such as pre-registration, reproducibility, statistical power, interpretation of non-significant results, dosage, and sex differences are discussed and integrated with suggestions for the next steps in translating intranasal oxytocin into psychiatric applications.
Collapse
Affiliation(s)
- Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Alexander Lischke
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Sally Grace
- School of Psychology, Australian Catholic University, Melbourne, Australia
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, Key Laboratory for NeuroInformation, School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
64
|
Chen Y, Li Q, Zhang Q, Kou J, Zhang Y, Cui H, Wernicke J, Montag C, Becker B, Kendrick KM, Yao S. The Effects of Intranasal Oxytocin on Neural and Behavioral Responses to Social Touch in the Form of Massage. Front Neurosci 2020; 14:589878. [PMID: 33343285 PMCID: PMC7746800 DOI: 10.3389/fnins.2020.589878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Manually-administered massage can potently increase endogenous oxytocin concentrations and neural activity in social cognition and reward regions and intranasal oxytocin can increase the pleasantness of social touch. In the present study, we investigated whether intranasal oxytocin modulates behavioral and neural responses to foot massage applied manually or by machine using a randomized placebo-controlled within-subject pharmaco-fMRI design. 46 male participants underwent blocks of massage of each type where they both received and imagined receiving the massage. Intranasal oxytocin significantly increased subjective pleasantness ratings of the manual but not the machine massage and neural responses in key regions involved in reward (orbitofrontal cortex, dorsal striatum and ventral tegmental area), social cognition (superior temporal sulcus and inferior parietal lobule), emotion and salience (amygdala and anterior cingulate and insula) and default mode networks (medial prefrontal cortex, parahippocampal gyrus, posterior cingulate, and precuneus) as well as a number of sensory and motor processing regions. Both neural and behavioral effects of oxytocin occurred independent of whether subjects thought the massage was applied by a male or female masseur. These findings support the importance of oxytocin for enhancing positive behavioral and neural responses to social touch in the form of manually administered massage and that a combination of intranasal oxytocin and massage may have therapeutic potential in autism. CLINICAL TRIALS REGISTRATION The Effects of Oxytocin on Social Touch; registration ID: NCT03278860; URL: https://clinicaltrials.gov/ct2/show/NCT03278860.
Collapse
Affiliation(s)
- Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qianqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jennifer Wernicke
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christian Montag
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
65
|
Itskovich E, Zyga O, Libove RA, Phillips JM, Garner JP, Parker KJ. Complex Interplay Between Cognitive Ability and Social Motivation in Predicting Social Skill: A Unique Role for Social Motivation in Children With Autism. Autism Res 2020; 14:86-92. [DOI: 10.1002/aur.2409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Olena Zyga
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Robin A. Libove
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Jennifer M. Phillips
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| | - Joseph P. Garner
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
- Department of Comparative Medicine Stanford University Stanford California USA
| | - Karen J. Parker
- Department of Psychiatry and Behavioral Sciences Stanford University Stanford California USA
| |
Collapse
|
66
|
Spanos M, Chandrasekhar T, Kim SJ, Hamer RM, King BH, McDougle CJ, Sanders KB, Gregory SG, Kolevzon A, Veenstra-VanderWeele J, Sikich L. Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). Contemp Clin Trials 2020; 98:106103. [PMID: 32777383 DOI: 10.1016/j.cct.2020.106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe the rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). METHOD This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 24 weeks of treatment with either oxytocin or a matched placebo at one of seven collaborating sites. Participants were subsequently treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done approximately 4 weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) methylation level were measured at baseline, and week 8, 24 and 36 to explore potential relationships between these biomarkers and treatment response. RESULTS This report describes the rationale, design, and methods of the SOARS-B clinical trial. CONCLUSIONS There is a tremendous unmet need for safe and effective pharmacological treatment options that target the core symptoms of ASD. Several studies support the hypothesis that intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains controversial and inconclusive. SOARS-B is the best powered study to date to address this hypothesis and promises to improve our understanding of the safety and efficacy of intranasal oxytocin in the treatment of social deficits in children with ASD.
Collapse
Affiliation(s)
- Marina Spanos
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America.
| | - Tara Chandrasekhar
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| | - Soo-Jeong Kim
- Seattle Children's Autism Center, Department of Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA, United States of America
| | - Robert M Hamer
- Departments of Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bryan H King
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, UCSF Benioff Children's Hospitals, San Francisco, CA, United States of America
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Kevin B Sanders
- Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States of America; Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, United States of America
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| |
Collapse
|
67
|
Wang J, Zhang P, Li W, Wen Q, Liu F, Xu J, Xu Q, Zhu D, Ye Z, Yu C. Right Posterior Insula and Putamen Volume Mediate the Effect of Oxytocin Receptor Polygenic Risk for Autism Spectrum Disorders on Reward Dependence in Healthy Adults. Cereb Cortex 2020; 31:746-756. [PMID: 32710107 DOI: 10.1093/cercor/bhaa198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Much evidence indicates the influence of the oxytocin receptor (OXTR) gene on autism spectrum disorders (ASDs), a set of disorders characterized by a range of deficits in prosocial behaviors, which are closely related to the personality trait of reward dependence (RD). However, we do not know the effect of the OXTR polygenic risk score for ASDs (OXTR-PRSASDs) on RD and its underlying neuroanatomical substrate. Here, we aimed to investigate associations among the OXTR-PRSASDs, gray matter volume (GMV), and RD in two independent datasets of healthy young adults (n = 450 and 540). We found that the individuals with higher OXTR-PRSASDs had lower RD and significantly smaller GMV in the right posterior insula and putamen. The GMV of this region showed a positive correlation with RD and a mediation effect on the association between OXTR-PRSASDs and RD. Moreover, the correlation map between OXTR-PRSASDs and GMV showed spatial correlation with OXTR gene expression. All results were highly consistent between the two datasets. These findings highlight a possible neural pathway by which the common variants in the OXTR gene associated with ASDs may jointly impact the GMV of the right posterior insula and putamen and further affect the personality trait of RD.
Collapse
Affiliation(s)
- Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qin Wen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
68
|
Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10070435. [PMID: 32650534 PMCID: PMC7408098 DOI: 10.3390/brainsci10070435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence indicates a tight relationship between the endocrine system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin and arginine-vasopressin, because of their extensively documented function in supporting and regulating affiliative and socio-emotional responses, have attracted great interest for their critical implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident hypothalamic implication in affiliative behavior in animals and humans, a rather small number of neuroimaging studies showed an association between this region and socioemotional responses in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the hypothalamus with impaired social cognition and behavior in ASD by integrating results of both anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei underlying atypical socioemotional behavior in ASD.
Collapse
|
69
|
Borowiak K, von Kriegstein K. Intranasal oxytocin modulates brain responses to voice-identity recognition in typically developing individuals, but not in ASD. Transl Psychiatry 2020; 10:221. [PMID: 32636360 PMCID: PMC7341857 DOI: 10.1038/s41398-020-00903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Faces and voices are prominent cues for person-identity recognition. Face recognition behavior and associated brain responses can be enhanced by intranasal administration of oxytocin. It is unknown whether oxytocin can also augment voice-identity recognition mechanisms. To find it out is particularly relevant for individuals who have difficulties recognizing voice identity such as individuals diagnosed with autism spectrum disorder (ASD). We conducted a combined behavioral and functional magnetic resonance imaging (fMRI) study to investigate voice-identity recognition following intranasal administration of oxytocin or placebo in a group of adults diagnosed with ASD (full-scale intelligence quotient > 85) and pairwise-matched typically developing (TD) controls. A single dose of 24 IU oxytocin was administered in a randomized, double-blind, placebo-controlled and cross-over design. In the control group, but not in the ASD group, administration of oxytocin compared to placebo increased responses to recognition of voice identity in contrast to speech in the right posterior superior temporal sulcus/gyrus (pSTS/G) - a region implicated in the perceptual analysis of voice-identity information. In the ASD group, the right pSTS/G responses were positively correlated with voice-identity recognition accuracy in the oxytocin condition, but not in the placebo condition. Oxytocin did not improve voice-identity recognition performance at the group level. The ASD compared to the control group had lower right pSTS/G responses to voice-identity recognition. Since ASD is known to have atypical pSTS/G, the results indicate that the potential of intranasal oxytocin to enhance mechanisms for voice-identity recognition might be variable and dependent on the functional integrity of this brain region.
Collapse
Affiliation(s)
- Kamila Borowiak
- Technische Universität Dresden, Bamberger Straße 7, 01187, Dresden, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
- Berlin School of Mind and Brain, Humboldt University of Berlin, Luisenstraße 56, 10117, Berlin, Germany.
| | - Katharina von Kriegstein
- Technische Universität Dresden, Bamberger Straße 7, 01187, Dresden, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
70
|
Baker E, Stavropoulos KKM. The effects of oxytocin administration on individuals with ASD: Neuroimaging and behavioral evidence. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:209-238. [PMID: 32711811 DOI: 10.1016/bs.pmbts.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and the presence of restricted interests and repetitive behaviors. Although behavioral interventions are numerous, there are no Federal Drug Administration approved pharmacological treatments for the core symptoms of ASD. The neuropeptide oxytocin has been studied in animals for decades, and is involved in pair bonding and social affiliation. Given oxytocin's involvement in social communication in animals, researchers have begun exploring whether oxytocin administration in humans affects social behaviors and attachment. Particular attention has been paid to whether oxytocin has therapeutic benefits for improving social behaviors in individuals with ASD. Research on oxytocin administration in ASD has utilized both behavioral and brain-based outcomes. This chapter reviews the effects of oxytocin administration in ASD, with a focus on functional outcomes from neuroimaging investigations. Evidence of potential therapeutic benefits are reviewed, as well as limitations of extant research. A proposed model for future research into the therapeutic benefits of oxytocin includes combining pharmacological (e.g. oxytocin) and behavioral (e.g. evidence-based behavioral interventions) techniques to improve social communication skills in ASD.
Collapse
Affiliation(s)
- Elizabeth Baker
- University of California, Graduate School of Education, Riverside, CA, United States
| | | |
Collapse
|
71
|
Xue SW, Wu HB, Zhang L, Zhang DX. Intranasal Oxytocin Increases Perceptual Salience of Faces in the Absence of Awareness. Psychiatry Investig 2020; 17:292-298. [PMID: 32200608 PMCID: PMC7176568 DOI: 10.30773/pi.2019.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/07/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The neuropeptide oxytocin has been found to improve human social cognition and promote prosocial behavior. However, it is still unclear about the mechanisms underlying these effects of oxytocin on neural processes, such as visual perception and awareness. Especially, it is still unclear whether oxytocin influences perceptual salience of social stimuli in the absence of awareness. METHODS In a randomized double-blind, placebo-controlled trial we applied an interocular suppression paradigm and eye tracking methods to investigate the influence of intranasally administered oxytocin on perceptual salience of social stimuli. Suppression times and pupillometric data were measured during subjects being presented with gradually introduced pictures of social stimuli (neutral expression faces) or nonsocial stimuli (grayscale watch pictures) that were suppressed and invisible in 10 men who were administered 24 IU oxytocin and 10 men who were administered a placebo. RESULTS The results demonstrated that the oxytocin group perceived social stimuli more quickly accompanied by subsequent larger increasing pupil diameter than nonsocial stimuli, indicating an increased unconscious salience of social stimuli. CONCLUSION These findings provided new insights into oxytocin's modulatory role to social information processing, suggesting that oxytocin might enhance attentional bias to social stimuli even after removal of awareness.
Collapse
Affiliation(s)
- Shao-Wei Xue
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hua-Bo Wu
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Lanhua Zhang
- College of Medical Information and Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - De-Xuan Zhang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
72
|
Myocyte Enhancer Factor 2A (MEF2A) Defines Oxytocin-Induced Morphological Effects and Regulates Mitochondrial Function in Neurons. Int J Mol Sci 2020; 21:ijms21062200. [PMID: 32209973 PMCID: PMC7139413 DOI: 10.3390/ijms21062200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide oxytocin (OT) is a well-described modulator of socio-emotional traits, such as anxiety, stress, social behavior, and pair bonding. However, when dysregulated, it is associated with adverse psychiatric traits, such as various aspects of autism spectrum disorder (ASD). In this study, we identify the transcription factor myocyte enhancer factor 2A (MEF2A) as the common link between OT and cellular changes symptomatic for ASD, encompassing neuronal morphology, connectivity, and mitochondrial function. We provide evidence for MEF2A as the decisive factor defining the cellular response to OT: while OT induces neurite retraction in MEF2A expressing neurons, OT causes neurite outgrowth in absence of MEF2A. A CRISPR-Cas-mediated knockout of MEF2A and retransfection of an active version or permanently inactive mutant, respectively, validated our findings. We also identified the phosphatase calcineurin as the main upstream regulator of OT-induced MEF2A signaling. Further, MEF2A signaling dampens mitochondrial functioning in neurons, as MEF2A knockout cells show increased maximal cellular respiration, spare respiratory capacity, and total cellular ATP. In summary, we reveal a central role for OT-induced MEF2A activity as major regulator of cellular morphology as well as neuronal connectivity and mitochondrial functioning, with broad implications for a potential treatment of disorders based on morphological alterations or mitochondrial dysfunction.
Collapse
|
73
|
Procyshyn TL, Lombardo MV, Lai MC, Auyeung B, Crockford SK, Deakin J, Soubramanian S, Sule A, Baron-Cohen S, Bethlehem RAI. Effects of oxytocin administration on salivary sex hormone levels in autistic and neurotypical women. Mol Autism 2020; 11:20. [PMID: 32188502 PMCID: PMC7079504 DOI: 10.1186/s13229-020-00326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Oxytocin administration, which may be of therapeutic value for individuals with social difficulties, is likely to affect endogenous levels of other socially relevant hormones. However, to date, the effects of oxytocin administration on endogenous hormones have only been examined in neurotypical individuals. The need to consider multi-hormone interactions is particularly warranted in oxytocin trials for autism due to evidence of irregularities in both oxytocin and sex steroid systems. Methods In this double-blind cross-over study, saliva samples were collected from 16 autistic and 29 neurotypical women before and after intranasal administration of 24 IU oxytocin or placebo. Oestradiol, testosterone, and oxytocin levels were quantified in saliva samples. Participants also completed the Autism-Spectrum Quotient (AQ) and Empathy Quotient (EQ) questionnaires. Results Distinct patterns of change in testosterone and oestradiol levels pre- to-post-administration were observed in autistic relative to neurotypical women (ANCOVA, p < 0.05 main effect of Group), controlling for sample collection time. The mean percent change oestradiol was + 8.8% for the autism group and − 13.0% for the neurotypical group (t = 1.81, p = 0.08), while the mean percent change testosterone was + 1.1% in the autism group and − 12.6% in the neurotypical group (t = 1.26, p = 0.22). In the oxytocin condition, the mean percent change oestradiol was + 12.6% in the autism group and − 6.9% in the neurotypical group (t = 1.78, p = 0.08), while the mean percent change testosterone was + 14.4% in the autism group and − 15.2% in the neurotypical group (t = 3.00, p = 0.006). Robust regression confirmed that group differences in percent change hormone levels were not driven by a small number of influential individuals. Baseline hormone levels did not differ between groups when considered individually. However, baseline testosterone relative to oestradiol (T:E2 ratio) was higher in autistic women (p = 0.023, Cohen’s d = 0.63), and this ratio correlated positively and negatively with AQ and EQ scores, respectively, in the combined sample. Limitations Further studies with larger and more diverse autistic sample are warranted to confirm these effects. Conclusions This study provides the first evidence that oxytocin influences endogenous testosterone levels in autistic individuals, with autistic women showing increases similar to previous reports of neurotypical men. These findings highlight the need to consider sex steroid hormones as a variable in future oxytocin trials.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.,Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.,Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.,Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah K Crockford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.,Section of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - J Deakin
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - S Soubramanian
- South West London and St. George's Mental Health NHS Trust, London, UK.,Liaison Psychiatry Service, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - A Sule
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, 18b Trumpington Road, Cambridge, CB2 8AH, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
74
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW We review evidence for the presence, quality, and correlates of interpersonal synchrony in autism spectrum disorder (ASD) across four domains: motor, conversational, physiological, and neural. We also propose cognitive and neural mechanisms for the disruption of interpersonal synchrony and investigate synchrony as a mechanism of intervention in ASD. RECENT FINDINGS Across domains, synchrony is present but reduced or atypical in individuals with ASD during interactions with individuals with typical development (TD). Atypical synchrony may reflect the contribution of both intrapersonal mechanisms, such as atypical motor timing, and interpersonal mechanisms, such as atypical interindividual coupling. Research suggests evidence for synchrony interventions leading to improvements in some aspects of social behavior. Understanding synchrony in ASD has the potential to lead to biomarkers and interventions to support social functioning. However, further research should clarify mechanisms of atypical synchrony in ASD including taking features of the dyad into account.
Collapse
|
76
|
Zhao W, Luo R, Sindermann C, Li J, Wei Z, Zhang Y, Liu C, Le J, Quintana DS, Montag C, Becker B, Kendrick KM. Oxytocin modulation of self-referential processing is partly replicable and sensitive to oxytocin receptor genotype. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109734. [PMID: 31415827 DOI: 10.1016/j.pnpbp.2019.109734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022]
Abstract
Intranasal oxytocin (OXT) has been associated with effects on diverse social-emotional domains in humans, however progress towards a therapeutic application of OXT in disorders with social-emotion impairments is currently hampered by poor replicability. Limited statistical power and individual differences in biological factors, such as oxytocin receptor (OXTR) genetics, may have contributed to these variable findings. To this end, employing a validated oxytocin-sensitive trait judgment paradigm, we present a pharmaco-genetic study aiming at (1) replicating previous findings suggesting that intranasal oxytocin (24 IU) reduces the self-referential bias in a large sample of n = 170 male subjects, (2) determining whether variations in common receptor polymorphisms (rs237887, rs2268491, rs2254298, rs53576, rs2268498) influence sensitivity to oxytocin's behavioral effects. We confirmed that in the whole sample oxytocin influenced self-other distinction in terms of reduced decision time. However, oxytocin only influenced decision time in rs53576 G carriers, whereas effects on subsequent memory performance were only found in rs2268498 TT homozygotes. In summary, the current study partially replicates our previous findings showing that oxytocin reduces the self-referential bias and suggests that sensitivity to its effects in this domain are receptor genotype dependent.
Collapse
Affiliation(s)
- Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruixue Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenyu Wei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Congcong Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiao Le
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daniel S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
77
|
Acute and Repeated Intranasal Oxytocin Differentially Modulate Brain-wide Functional Connectivity. Neuroscience 2020; 445:83-94. [PMID: 31917352 DOI: 10.1016/j.neuroscience.2019.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
Central release of the neuropeptide oxytocin (OXT) modulates neural substrates involved in socio-affective behavior. This property has prompted research into the use of intranasal OXT administration as an adjunctive therapy for brain conditions characterized by social impairment, such as autism spectrum disorders (ASD). However, the neural circuitry and brain-wide functional networks recruited by intranasal OXT administration remain elusive. Moreover, little is known of the neuroadaptive cascade triggered by long-term administration of this peptide at the network level. To address these questions, we applied fMRI-based circuit mapping in adult mice upon acute and repeated (seven-day) intranasal dosing of OXT. We report that acute and chronic OXT administration elicit comparable fMRI activity as assessed with cerebral blood volume mapping, but entail largely different patterns of brain-wide functional connectivity. Specifically, acute OXT administration focally boosted connectivity within key limbic components of the rodent social brain, whereas repeated dosing led to a prominent and widespread increase in functional connectivity, involving a strong coupling between the amygdala and extended cortical territories. Importantly, this connectional reconfiguration was accompanied by a paradoxical reduction in social interaction and communication in wild-type mice. Our results identify the network substrates engaged by exogenous OXT administration, and show that repeated OXT dosing leads to a substantial reconfiguration of brain-wide connectivity, entailing an aberrant functional coupling between cortico-limbic structures involved in socio-communicative and affective functions. Such divergent patterns of network connectivity might contribute to discrepant clinical findings involving acute or long-term OXT dosing in clinical populations.
Collapse
|
78
|
Bakker-Huvenaars MJ, Greven CU, Herpers P, Wiegers E, Jansen A, van der Steen R, van Herwaarden AE, Baanders AN, Nijhof KS, Scheepers F, Rommelse N, Glennon JC, Buitelaar JK. Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals. Eur Neuropsychopharmacol 2020; 30:87-101. [PMID: 30201120 DOI: 10.1016/j.euroneuro.2018.07.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 11/29/2022]
Abstract
The aim of the current study was to compare levels of oxytocin, cortisol, and testosterone in adolescents with either autism spectrum disorder (ASD), or oppositional defiant disorder (ODD)/conduct disorder (CD), and in typically developing individuals (TDI), and relate hormone levels to severity and subtype of aggression and callous-unemotional (CU) traits. Saliva concentrations of oxytocin, cortisol, and testosterone were assessed in 114 male participants (N = 49 ASD, N = 37 ODD/CD, N = 28 TDI,) aged 12-19 years (M = 15.4 years, SD = 1.9). The ASD and the ODD/CD groups had significantly lower levels of oxytocin than the TDI group, and the ODD/CD group had significantly higher levels of testosterone than the ASD group. There were no group effects on cortisol levels. Group differences remained for oxytocin after correcting for the influence of CU traits, but were not significant after controlling for aggression. Results for testosterone became non-significant after correction for either CU traits or aggression. Across groups, higher levels of CU traits were related to higher levels of cortisol and testosterone, however, proactive and reactive aggression were unrelated to all three hormonal levels. The current findings show that, regardless of cognitive ability or comorbid disorders, the diagnostic groups (ASD, ODD/CD) differ from each other by their hormonal levels, with the ASD group characterized by relative low level of oxytocin, and the ODD/CD group by a relative low level of oxytocin and high level of testosterone. These group effects were partly driven by differences in CU traits between the groups.
Collapse
Affiliation(s)
- M J Bakker-Huvenaars
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands
| | - C U Greven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands; King's College London, Medical Research Council Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, UK
| | - P Herpers
- Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands
| | - E Wiegers
- Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands
| | - A Jansen
- Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands
| | - R van der Steen
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A N Baanders
- Stichting Otto Gerhard Heldring, Zetten, The Netherlands
| | - K S Nijhof
- Pluryn, Hoenderloo, The Netherlands; Department of Developmental Psychopathology, Behavioral Science Institute, Radboud University Nijmegen, The Netherlands
| | - F Scheepers
- Brain Centre Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - N Rommelse
- Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands; Department of Psychiatry, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
79
|
Jurek B, Meyer M. Anxiolytic and Anxiogenic? How the Transcription Factor MEF2 Might Explain the Manifold Behavioral Effects of Oxytocin. Front Endocrinol (Lausanne) 2020; 11:186. [PMID: 32322239 PMCID: PMC7156634 DOI: 10.3389/fendo.2020.00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The neuromodulator oxytocin, since its first synthesis by du Vigneaud in 1953, has mainly been associated with beneficial physiological effects, as well as positive social and emotional behaviors. This overall positive picture of oxytocin as the "love-, cuddle-, or bonding-hormone" has repeatedly been challenged since then. Oxytocin-induced effects that would be perceived as negative by the individual, such as increased anxiety or potentiation of stress-induced ACTH release, as well as the regulation of negative approach-related emotions, such as envy and schadenfreude (gloating) have been described. The general consent is that oxytocin, instead of acting unidirectional, induces changes in the salience network to shift the emphasis of emotional contexts, and therefore can, e.g., produce both anxiolytic as well as anxiogenic behavioral outcomes. However, the underlying mechanisms leading to alterations in the salience network are still unclear. With the aim to understand the manifold effects of oxytocin on a cellular/molecular level, a set of oxytocin receptor-coupled signaling cascades and downstream effectors regulating transcription and translation has been identified. Those oxytocin-driven effectors, such as MEF2 and CREB, are known modulators of the neuronal and glial cytoarchitecture. We hypothesize that, by determining cellular morphology and connectivity, MEF2 is one of the key factors that might contribute to the diverse behavioral effects of oxytocin.
Collapse
|
80
|
Mathematical Models for Possible Roles of Oxytocin and Oxytocin Receptors in Autism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:7308197. [PMID: 31827587 PMCID: PMC6885170 DOI: 10.1155/2019/7308197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
This paper develops mathematical models examining possible roles of oxytocin and oxytocin receptors in the development of autism. This is done by demonstrating that mathematical operations on normalized data from the Stanford study, which establishes a correspondence between severity of autism in children and their oxytocin blood levels, generate a graph that is the same as the graph of mathematical operations on a normalized theoretical model for the severity of autism. This procedure establishes the validity of the theoretical model and the significance of oxytocin receptors in autism. A steady-state model follows, explaining the constant baseline concentrations of oxytocin observed in the cerebral spinal fluid and blood in terms of the neuromodulation by oxytocin of oxytocin receptors on the magnocellular neurons that produce oxytocin in nuclei in the hypothalamus. The implications of these models for possible roles of oxytocin and oxytocin receptors in autism are considered for several unrelated conditions that may be associated with autism. These are oxytocin receptor desensitization and downregulation as factors during labor in offspring autism development; reductions in the oxytocin receptor numbers in the fixed oxytocin receptor expression that occurs before birth; MAST Immune System disease; and the excess number of dendritic spines from lack of pruning observed in brains of autistic people. Research into the feasibility of generating magnocellular neurons and other neurons from adult stem cells is suggested as a way of doing in vitro studies of oxytocin and oxytocin receptors to assess the validity of theories presented in this paper.
Collapse
|
81
|
Intranasal oxytocin selectively modulates the behavior of rhesus monkeys in an expression matching task. Sci Rep 2019; 9:15187. [PMID: 31645593 PMCID: PMC6811679 DOI: 10.1038/s41598-019-51422-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Although the neuropeptide oxytocin (OT) is thought to regulate prosocial behavior in mammals, there is considerable debate as to how intranasal OT influences primate behavior. The aim of this study was to determine whether intranasal OT has a general anxiolytic effect on the performance of rhesus monkeys tasked with matching face stimuli, or a more selective effect on their behavior towards aversive facial expressions. To this end, we developed an innovative delayed match-to-sample task where the exact same trials could be used to assess either a monkey’s ability to match facial expressions or facial identities. If OT has a general affect on behavior, then performance in both tasks should be altered by the administration of OT. We tested four male rhesus monkeys (Macaca mulatta) in both the expression and identity task after the intranasal administration of either OT or saline in a within-subjects design. We found that OT inhalation selectively reduced a selection bias against negatively valenced expressions. Based on the same visual input, performance in the identity task was also unaffected by OT. This dissociation provides evidence that intranasal OT affects primate behavior under very particular circumstances, rather than acting as a general anxiolytic, in a highly translatable nonhuman model, the rhesus monkey.
Collapse
|
82
|
Parker KJ, Garner JP, Oztan O, Tarara ER, Li J, Sclafani V, Del Rosso LA, Chun K, Berquist SW, Chez MG, Partap S, Hardan AY, Sherr EH, Capitanio JP. Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Sci Transl Med 2019; 10:10/439/eaam9100. [PMID: 29720452 DOI: 10.1126/scitranslmed.aam9100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 11/03/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by core social impairments. ASD remains poorly understood because of the difficulty in studying disease biology directly in patients and the reliance on mouse models that lack clinically relevant, complex social cognition abilities. We use ethological observations in rhesus macaques to identify male monkeys with naturally occurring low sociality. These monkeys showed differences in specific neuropeptide and kinase signaling pathways compared to socially competent male monkeys. Using a discovery and replication design, we identified arginine vasopressin (AVP) in cerebrospinal fluid (CSF) as a key marker of group differences in monkey sociality; we replicated these findings in an independent monkey cohort. We also confirmed in an additional monkey cohort that AVP concentration in CSF is a stable trait-like measure. Next, we showed in a small pediatric cohort that CSF AVP concentrations were lower in male children with ASD compared to age-matched male children without ASD (but with other medical conditions). We demonstrated that CSF AVP concentration was sufficient to accurately distinguish ASD cases from medical controls. These data suggest that AVP and its signaling pathway warrant consideration in future research studies investigating new targets for diagnostics and drug development in ASD.
Collapse
Affiliation(s)
- Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. .,California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Erna R Tarara
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jiang Li
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Valentina Sclafani
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Katie Chun
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Sean W Berquist
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael G Chez
- Sutter Neuroscience Medical Group, Sacramento, CA 95816, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
83
|
Shindler AE, Hill-Yardin EL, Petrovski S, Bishop N, Franks AE. Towards Identifying Genetic Biomarkers for Gastrointestinal Dysfunction in Autism. J Autism Dev Disord 2019; 50:76-86. [DOI: 10.1007/s10803-019-04231-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
84
|
Kucharska K, Kot E, Biernacka K, Zimowski J, Rogoza R, Rybakowski F, Kostecka B, Bednarska-Makaruk M. Interaction between polymorphisms of the oxytocinergic system genes and emotion perception in inpatients with anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2019; 27:481-494. [PMID: 31385420 DOI: 10.1002/erv.2698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The empirical literature describes the role of the oxytocinergic system in emotion perception (EP). Variants in the oxytocin (OXT) and oxytocin receptor genes have been associated with mental disorders, including anorexia nervosa (AN), that are characterized by difficulties in socioemotional functioning. Our study aimed to examine whether variability within the genes related to OXT pathways may play a role in facial EP in inpatients with AN. METHOD Single nucleotide polymorphisms (SNPs) of the following genes: oxytocin receptor (rs2254298, rs53576), OXT (rs6133010), OXT-arginine-vasopressin (rs2740204), CD38 (rs6449197, rs3796863), and human leucyl/cystinylaminopeptidase (rs4869317) were genotyped in 60 AN female inpatients and 60 healthy control females (HCs). Associations between genetic polymorphisms and EP as well as clinical symptoms were examined. RESULTS The AN group showed decreased EP abilities compared with HCs. SNPs of rs2740204, rs6133010, and rs53576 were associated with differences in EP in women with AN and in HCs. The SNP of rs4869317 was associated with the level of eating disorders symptoms in HCs. CONCLUSIONS The OXT system may be involved in EP difficulties in AN. SNPs within genes related to OXT pathways may influence EP abilities. The leucyl/cystinylaminopeptidase rs4869317 SNP may be involved in the development of eating disorders psychopathology.
Collapse
Affiliation(s)
| | - Emilia Kot
- The Department of Neuroses, Personality Disorders and Eating Disorders, The Institute of Psychiatry and Neurology, Poland
| | - Katarzyna Biernacka
- The Department of Child and Adolescent Psychiatry, The Institute of Psychiatry and Neurology, Poland
| | - Janusz Zimowski
- The Department of Genetics, The Institute of Psychiatry and Neurology, Poland
| | - Radosław Rogoza
- Institute of Psychology, Cardinal Stefan Wyszyński University, Poland
| | - Filip Rybakowski
- The Department of Child and Adolescent Psychiatry, The Institute of Psychiatry and Neurology, Poland.,The Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - Barbara Kostecka
- The Department of Neuroses, Personality Disorders and Eating Disorders, The Institute of Psychiatry and Neurology, Poland
| | | |
Collapse
|
85
|
Narvaez D, Wang L, Cheng A, Gleason TR, Woodbury R, Kurth A, Lefever JB. The importance of early life touch for psychosocial and moral development. PSICOLOGIA-REFLEXAO E CRITICA 2019; 32:16. [PMID: 32025990 PMCID: PMC6967013 DOI: 10.1186/s41155-019-0129-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
One of the primary means of communicating with a baby is through touch. Nurturing physical touch promotes healthy physiological development in social mammals, including humans. Physiology influences wellbeing and psychosocial functioning. The purpose of this paper is to explore the connections among early life positive and negative touch and wellbeing and sociomoral development. In study 1, mothers of preschoolers (n = 156) reported their attitudes toward positive/negative touch and on their children's wellbeing and sociomoral outcomes, illustrating moderate to strong positive correlations between positive touch attitudes and children's sociomoral capacities and orientations and negative correlations with psychopathology. In study 2, we used an existing longitudinal dataset, with at-risk mothers (n = 682) and their children to test touch effects on moral capacities and social behaviors in early life. Results demonstrated moderate to strong relationships between positive/negative touch and concurrent child behavioral regulation and positive correlations between low corporal punishment and child sociomoral outcomes. In a third study with adults (n = 607), we found significant mediation processes connecting retrospective reports of childhood touch to adult moral orientation through attachment security, mental health, and moral capacities. In general across studies, more affectionate touch and less punishing touch were positively associated with wellbeing and development of moral capacities and engaged moral orientation.
Collapse
Affiliation(s)
- Darcia Narvaez
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Lijuan Wang
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Alison Cheng
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Tracy R. Gleason
- Department of Psychology, Wellesley College, Wellesley, MA 02481-8203 USA
| | - Ryan Woodbury
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Angela Kurth
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 USA
| | | |
Collapse
|
86
|
A Mathematical Model Relating Pitocin Use during Labor with Offspring Autism Development in terms of Oxytocin Receptor Desensitization in the Fetal Brain. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:8276715. [PMID: 31379974 PMCID: PMC6657633 DOI: 10.1155/2019/8276715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023]
Abstract
This paper develops a mathematical model describing the potential buildup of high oxytocin concentrations in the maternal circulation during labor in terms of continuous Pitocin infusion rate, half-life, and maternal weight. Oxytocin override of the degradation of oxytocin by placental oxytocinase is introduced to model the potential transfer of oxytocin from the maternal circulation across the placenta into the fetal circulation and from there into the brain of the fetus. The desensitization unit D equal to 1.8E6 (pg·min)/ml is employed to establish a desensitization threshold and by extension, a downregulation threshold as a function of oxytocin override concentration and continuous Pitocin infusion time, that could be a factor in the subsequent development of autism among offspring. Epidemiological studies by Duke University [1], Yale University [2], and Harvard University [3] are discussed regarding Pitocin use and offspring autism development for an explanation of the weak correlations they identified. The findings of the Harvard epidemiological study are reinterpreted regarding Pitocin use and its conclusion questioned. Further evaluations of the findings of these three epidemiological studies are called for to incorporate medical information on quantity of Pitocin used, continuous Pitocin infusion rate, length of labor, and maternal weight to determine if a correlation can be established with offspring autism development above an empirically determined desensitization threshold for Pitocin use. Suggestions for research are discussed, including an alternative to continuous Pitocin infusion, pulsatile infusion of Pitocin during labor induction, which may mitigate possible offspring autism development.
Collapse
|
87
|
Mariscal MG, Oztan O, Rose SM, Libove RA, Jackson LP, Sumiyoshi RD, Trujillo TH, Carson DS, Phillips JM, Garner JP, Hardan AY, Parker KJ. Blood oxytocin concentration positively predicts contagious yawning behavior in children with autism spectrum disorder. Autism Res 2019; 12:1156-1161. [PMID: 31132232 DOI: 10.1002/aur.2135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 01/13/2023]
Abstract
Research suggests that children with autism spectrum disorder (ASD) may have reduced empathy, as measured by an impaired contagious yawn response, compared to typically developing (TD) children. Other research has failed to replicate this finding, instead attributing this phenomenon to group differences in attention paid to yawn stimuli. A third possibility is that only a subgroup of children with ASD exhibits the impaired contagious yawn response, and that it can be identified biologically. Here we quantified blood concentrations of the "social" neuropeptide oxytocin (OXT) and evaluated yawning behavior and attention rates during a laboratory task in children with ASD (N = 34) and TD children (N = 30) aged 6-12 years. No group difference in contagious yawning behavior was found. However, a blood OXT concentration × group (ASD vs. TD) interaction positively predicted contagious yawning behavior (F1,50 = 7.4987; P = 0.0085). Specifically, blood OXT concentration was positively related to contagious yawning behavior in children with ASD, but not in TD children. This finding was not due to delayed perception of yawn stimuli and was observed whether attention paid to test stimuli and clinical symptom severity were included in the analysis or not. These findings suggest that only a biologically defined subset of children with ASD exhibits reduced empathy, as measured by the impaired contagious yawn response, and that prior conflicting reports of this behavioral phenomenon may be attributable, at least in part, to variable mean OXT concentrations across different ASD study cohorts. Autism Res 2019, 12: 1156-1161. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: People with autism may contagiously yawn (i.e., yawn in response to another's yawn) less often than people without autism. We find that people with autism who have lower levels of blood oxytocin (OXT), a hormone involved in social behavior and empathy, show decreased contagious yawning, but those who have higher blood OXT levels do not differ in contagious yawning from controls. This suggests that decreased contagious yawning may only occur in a biologically defined subset of people with autism.
Collapse
Affiliation(s)
- Michael G Mariscal
- Program in Human Biology, Stanford University, Stanford, California.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Sophie M Rose
- Program in Human Biology, Stanford University, Stanford, California.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Robin A Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Lisa P Jackson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Raena D Sumiyoshi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Tara H Trujillo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Dean S Carson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.,Department of Comparative Medicine, Stanford University, Stanford, California
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
88
|
Reichl C, Kaess M, Fuchs A, Bertsch K, Bödeker K, Zietlow AL, Dittrich K, Hartmann AM, Rujescu D, Parzer P, Resch F, Bermpohl F, Herpertz SC, Brunner R. Childhood adversity and parenting behavior: the role of oxytocin receptor gene polymorphisms. J Neural Transm (Vienna) 2019; 126:777-787. [DOI: 10.1007/s00702-019-02009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
|
89
|
Zhao J, Yang Y, Li X, Zheng L, Xue M, Zhang M, Wang C, Yu R, Gong P. OXTR rs53576 polymorphism impacts interpersonal adaptability: Dispositional forgiveness as a mediator. Psychoneuroendocrinology 2019; 103:8-13. [PMID: 30605805 DOI: 10.1016/j.psyneuen.2018.12.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
Polymorphisms in the oxytocin receptor (OXTR) gene have been shown to be related to individual differences in social skills that are important for building and maintaining social relationships, such as the capability to efficiently process social information and regulate emotions. However, what remains unclear is the potential roles of OXTR polymorphisms in interpersonal adaptability, namely the ability to cope with the situational demands of interpersonal interactions. In this study, we examined the roles of OXTR rs53576 polymorphism in interpersonal adaptability, empathic perception, and dispositional forgiveness in a cohort of 573 college freshmen. The results indicated that the scores on interpersonal adaptability and dispositional forgiveness, apart from empathic perception, increased as functions of the number of G alleles of OXTR rs53576. Moreover, dispositional forgiveness, but not empathic perception, mediated the association between OXTR rs53576 and interpersonal adaptability. The findings highlight the influences of the OXTR gene on adaptive interpersonal interactions, especially when individuals face changing social situations.
Collapse
Affiliation(s)
- Jing Zhao
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yafang Yang
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xiaohan Li
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Linfeng Zheng
- Department of Psychology and Human Development, Institute of Education, University College London, UK
| | - Mengying Xue
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Mengfei Zhang
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Chunlan Wang
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Rongjun Yu
- College of Life Science, Northwest University, Xi'an, 710069, China; Department of Psychology, National University of Singapore, Singapore.
| | - Pingyuan Gong
- College of Life Science, Northwest University, Xi'an, 710069, China; Institute of Population and Health, Northwest University, Xi'an, 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
90
|
The interaction between oxytocin receptor gene methylation and maternal behavior on children's early theory of mind abilities. Dev Psychopathol 2019; 32:511-519. [PMID: 31030686 DOI: 10.1017/s0954579419000257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theory of mind, the ability to represent the mental states of others, is an important social cognitive process, which contributes to the development of social competence. Recent research suggests that interactions between gene and environmental factors, such as oxytocin receptor gene (OXTR) polymorphisms and maternal parenting behavior, may underlie individual differences in children's theory of mind. However, the potential influence of DNA methylation of OXTR remains unclear. The current study investigated the roles of OXTR methylation, maternal behavior, and their statistical interaction on toddlers' early emerging theory of mind abilities. Participants included a community sample of 189 dyads of mothers and their 2- to 3-year-old children, whose salivary DNA was analyzed. Results indicated that more maternal structuring behavior was associated with better performance, on a battery of three theory of mind tasks, while higher OXTR methylation within exon 3 was associated with poorer performance. A significant interaction also emerged, such that OXTR methylation was related to theory of mind among children whose mothers displayed less structuring, when controlling for children's age, sex, ethnicity, number of child-aged siblings, verbal ability, and maternal education. Maternal structuring behavior may buffer the potential negative impact of hypermethylation on OXTR gene expression and function.
Collapse
|
91
|
Association of OXTR rs53576 with the Developmental Trajectories of Callous-Unemotional Traits and Stressful Life Events in 3- to 9-Year-Old Community Children. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2019; 47:1651-1662. [PMID: 31030321 DOI: 10.1007/s10802-019-00548-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objective was to obtain developmental trajectories combining callous-unemotional traits and the number of stressful life-events between ages 3 and 9 years and to ascertain their association with the polymorphism rs53576 at the Oxytocin Receptor gene (OXTR). A total of 377 children were assessed yearly from ages 3 to 9 years. Latent class growth analysis for parallel processes was used to identify distinct trajectories for callous-unemotional traits (assessed using the Inventory of Callous-Unemotional Traits, ICU) and number of stressful life-events, and then the influence of being an A allele carrier on class membership was included with OXTR genotypes as a binary time-invariant predictor, following a 3-step approach. A 3-class model showed the highest entropy (.859) and adequate posterior probabilities of class membership (≥.884). Class 1 (n = 226, 59.9%) included children with low and stable ICU scores and low and descending stressful life-events; class 2 (n = 127, 33.7%) included children with high and ascending ICU scores and low and slightly descending stressful life-events; and class 3 (n = 24, 6.4%) included children with persistently high profiles both for ICU scores and stressful life-events. Carrying an A allele (genotypes GA/AA) increased the odds of pertaining to class 3 (high and persistent ICU scores and stressful life-events) as opposed to class 2 (OR = 4.27, p = 0.034) or class 1 (OR = 3.81, p = 0.042). The results suggest the importance of considering callous-unemotional traits and stressful life-events in conjunction. In addition, the genetic variability of OXTR (rs53576) may help to understand individual differences in early development.
Collapse
|
92
|
Friedlander E, Yirmiya N, Laiba E, Harel-Gadassi A, Yaari M, Feldstein O, Mankuta D, Israel S. Cumulative Risk of the Oxytocin Receptor Gene Interacts with Prenatal Exposure to Oxytocin Receptor Antagonist to Predict Children's Social Communication Development. Autism Res 2019; 12:1087-1100. [PMID: 31025834 DOI: 10.1002/aur.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 01/13/2023]
Abstract
Compelling evidence for the far-reaching role of oxytocin (OT) in social cognition and affiliative behaviors set the basis for examining the association between genetic variation in the OT receptor (OXTR) gene and risk for autism spectrum disorder (ASD). In the current study, gene-environment interaction between OXTR and prenatal exposure to either OT or OXTR antagonist (OXTRA) in predicting early social communication development was examined. One hundred and fifty-three children (age: M = 4.32, SD = 1.07) were assigned to four groups based on prenatal history: children whose mothers prenatally received OXTRA and Nifedipine to delay preterm labor (n = 27); children whose mothers received Nifedipine only to delay preterm labor (n = 35); children whose mothers received OT for labor augmentation (n = 56), and a no intervention group (n = 35). Participants completed a developmental assessment of intelligence quotient (IQ), adaptive behavior, and social communication abilities. DNA was extracted via buccal swab. A genetic risk score was calculated based on four OXTR single nucleotide polymorphisms (rs53576, rs237887, rs1042778, and rs2254298) previously reported to be associated with ASD symptomatology. OXTRrisk-allele dosage was associated with more severe autism diagnostics observation schedule (ADOS) scores only in the OXTRA group. In contrast, in the Nifedipine, OT, and no intervention groups, OXTRrisk-allele dosage was not associated with children's ADOS scores. These findings highlight the importance of both genetic and environmental pathways of OT in signaling early social development and raise the need for further research in this field. Autism Res 2019, 12: 1087-1100. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: In the current study, we examined if the association between prenatal exposure to an oxytocin receptor antagonist (OXTRA) and autism spectrum disorder (ASD) related impairments are dependent on an individual's genetic background for the oxytocin receptor gene (OXTR). Children who carried a greater number of risk alleles for the OXTR gene and whose mothers received OXTRA to delay preterm labor showed more ASD-related impairments. The results highlight the importance of both genetic and environmental pathways of oxytocin in shaping early social development.
Collapse
Affiliation(s)
- Edwa Friedlander
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Laiba
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Maya Yaari
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Feldstein
- Department of Obstetrics and Gynecology, Hadassah Ein-Kerem University Hospital, Jerusalem, Israel
| | - David Mankuta
- Department of Obstetrics and Gynecology, Hadassah Ein-Kerem University Hospital, Jerusalem, Israel
| | - Salomon Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Scheinfeld Center of Human Genetics for the Social Sciences, Jerusalem, Israel
| |
Collapse
|
93
|
Baião R, Fearon P, Belsky J, Baptista J, Carneiro A, Pinto R, Nogueira M, Oliveira C, Soares I, Mesquita AR. Child's oxytocin response to mother-child interaction: The contribution of child genetics and maternal behavior. Psychoneuroendocrinology 2019; 102:79-83. [PMID: 30529717 DOI: 10.1016/j.psyneuen.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022]
Abstract
The oxytocinergic system is a primary biological system involved in regulating a child's needs for bonding and for protection from threats. It is responsive to social experiences in close relationships, though evidence across studies is not entirely consistent. Guided by previous literature, we investigated individual and environmental factors predicting and presumably affecting children's oxytocin (OT) response during mother-child interaction. by focusing on children's OXTR genotype, and maternal behavior, respectively. This was achieved by assessing salivary OT levels of 88 Portuguese preschoolers prior to and following a mother-child interaction task, and by genotyping children's OXTR SNP rs53576. Maternal interactive behavior was assessed using Ainsworth scales. Results indicated that child genotype and mother's sensitive responsiveness interacted in predicting change in child OT concentrations from before to after the interaction. Specifically, Genotypic differences emerged under conditions of low maternal sensitive responsiveness: OT levels increased over time for children with the GG genotype when maternal sensitive responsiveness was low, but no such genotypic differences were evident when mothers were highly sensitive responsive. Findings provide preliminary support for the notion that increased understanding of children's OT and close relationships requires consideration of both individual and environmental factors.
Collapse
Affiliation(s)
- Rita Baião
- CIPsi, School of Psychology, University of Minho, Portugal; Present address: Department of Psychiatry, University of Oxford, UK
| | - Pasco Fearon
- Department of Clinical, Educational and Health Psychology, UCL, UK
| | - Jay Belsky
- Department of Human Ecology, University of California, Davis, USA
| | - Joana Baptista
- CIPsi, School of Psychology, University of Minho, Portugal; Present address: Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
| | - Alexandra Carneiro
- Research Centre for Human Development, Catholic University of Portugal, Portugal
| | - Raquel Pinto
- CIPsi, School of Psychology, University of Minho, Portugal
| | | | - César Oliveira
- Chemistry Centre, University of Minho, Portugal; Present address: REQUIMTE/LAQV, Porto, Portugal
| | - Isabel Soares
- CIPsi, School of Psychology, University of Minho, Portugal
| | - Ana R Mesquita
- CIPsi, School of Psychology, University of Minho, Portugal.
| |
Collapse
|
94
|
Uzefovsky F, Bethlehem RAI, Shamay-Tsoory S, Ruigrok A, Holt R, Spencer M, Chura L, Warrier V, Chakrabarti B, Bullmore E, Suckling J, Floris D, Baron-Cohen S. The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Mol Autism 2019; 10:12. [PMID: 30918622 PMCID: PMC6419364 DOI: 10.1186/s13229-019-0258-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background Autism is a highly varied and heritable neurodevelopmental condition, and common variants explain approximately 50% of the genetic variance of autism. One of the genes implicated in autism is the oxytocin receptor (OXTR). The current study combined genetic and brain imaging (fMRI) data to examine the moderating effect of genotype on the association between diagnosis and brain activity in response to a test of cognitive empathy. Methods Participants were adolescents (mean age = 14.7 ± 1.7) who were genotyped for single nucleotide polymorphisms (SNPs) within the OXTR and underwent functional brain imaging while completing the adolescent version of the 'Reading the Mind in the Eyes' Test (Eyes Test). Results Two (rs2254298, rs53576) of the five OXTR SNPs examined were significantly associated with brain activity during the Eyes Test, and three of the SNPs (rs2254298, rs53576, rs2268491) interacted with diagnostic status to predict brain activity. All of the effects localized to the right supramarginal gyrus (rSMG) and an overlap analysis revealed a large overlap of the effects. An exploratory analysis showed that activity within an anatomically defined rSMG and genotype can predict diagnostic status with reasonable accuracy. Conclusions This is one of the first studies to investigate OXTR and brain function in autism. The findings suggest a neurogenetic mechanism by which OXTR-dependent activity within the rSMG is related to the aetiology of autism.
Collapse
Affiliation(s)
- Florina Uzefovsky
- 1Department of Psychology and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, 84105 Be'er Sheva, Israel
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Amber Ruigrok
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Rosemary Holt
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael Spencer
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lindsay Chura
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bhismadev Chakrabarti
- 4School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Ed Bullmore
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Dorothea Floris
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- 5Department of Child and Adolescent Psychiatry, New York University, New York, USA
| | - Simon Baron-Cohen
- 2Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- CLASS Clinic, Cambridgeshire and Peterborough NHS Trust, Peterborough, UK
| |
Collapse
|
95
|
Das I, Estevez MA, Sarkar AA, Banerjee-Basu S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol Autism 2019; 10:11. [PMID: 30911366 PMCID: PMC6417187 DOI: 10.1186/s13229-019-0263-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Autism (MIM 209850) is a multifactorial disorder with a broad clinical presentation. A number of high-confidence ASD risk genes are known; however, the contribution of non-genetic environmental factors towards ASD remains largely uncertain. Here, we present a bioinformatics resource of genetic and induced models of ASD developed using a shared annotation platform. Using this data, we depict the intricate trends in the research approaches to analyze rodent models of ASD. We identify the top 30 most frequently studied phenotypes extracted from rodent models of ASD based on 787 publications. As expected, many of these include animal model equivalents of the “core” phenotypes associated with ASD, such as impairments in social behavior and repetitive behavior, as well as several comorbid features of ASD including anxiety, seizures, and motor-control deficits. These phenotypes have also been studied in models based on a broad range of environmental inducers present in the database, of which gestational exposure to valproic acid (VPA) and maternal immune activation models comprising lipopolysaccharide (LPS) and poly I:C are the most studied. In our unique dataset of rescue models, we identify 24 pharmaceutical agents tested on established models derived from various ASD genes and CNV loci for their efficacy in mitigating symptoms relevant for ASD. As a case study, we analyze a large collection of Shank3 mouse models providing a high-resolution view of the in vivo role of this high-confidence ASD gene, which is the gateway towards understanding and dissecting the heterogeneous phenotypes seen in single-gene models of ASD. The trends described in this study could be useful for researchers to compare ASD models and to establish a complete profile for all relevant animal models in ASD research.
Collapse
Affiliation(s)
- Ishita Das
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | - Marcel A Estevez
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | - Anjali A Sarkar
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | | |
Collapse
|
96
|
Nomi JS, Molnar-Szakacs I, Uddin LQ. Insular function in autism: Update and future directions in neuroimaging and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:412-426. [PMID: 30381235 DOI: 10.1016/j.pnpbp.2018.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
The insular cortex, hidden within the lateral sulcus of the human brain, participates in a range of cognitive, affective, and sensory functions. Autism spectrum disorder (ASD), a neurodevelopmental condition affecting all of these functional domains, has increasingly been linked with atypical activation and connectivity of the insular cortices. Here we review the latest research linking atypical insular function to a range of behaviors characteristic of ASD, with an emphasis on neuroimaging findings in the domains of social cognition and executive function. We summarize some of the recent work linking the insula to interventions in autism, including oxytocin-based pharmacological treatments and music therapy. We suggest that future directions likely to yield significant insights into insular pathology in ASD include the analysis of the dynamics of this brain region. We also conclude that more basic research is necessary on the use of oxytocin pharmacotherapy, and larger studies addressing participant heterogeneity are needed on the use of music therapy in ASD. Long-term studies are needed to ascertain sustained effects of these interventions.
Collapse
Affiliation(s)
- Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA; Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
97
|
Li Q, Becker B, Wernicke J, Chen Y, Zhang Y, Li R, Le J, Kou J, Zhao W, Kendrick KM. Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sulcus. Psychoneuroendocrinology 2019; 101:193-203. [PMID: 30469087 DOI: 10.1016/j.psyneuen.2018.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 01/27/2023]
Abstract
Massage may be an important method for increasing endogenous oxytocin concentrations and of potential therapeutic benefit in disorders with social dysfunction such as autism where basal oxytocin levels are typically reduced. Here we investigated oxytocin release and associated neural responses using functional near infrared spectroscopy (fNIRS) during hand- or machine-administered massage. 40 adult male subjects received 10 min of light foot massage either by hand or machine in a counterbalanced order and then rated pleasure, intensity, arousal and how much they would pay for the massage. Blood samples were taken before and after each massage condition to determine plasma oxytocin concentrations. Neural responses from medial and lateral orbitofrontal cortex, superior temporal sulcus and somatosensory cortex were measured (fNIRS oxy-Hb) together with skin conductance responses (SCR), ratings of the massage experience, autistic traits and sensitivity to social touch. Results showed subjects gave higher ratings of pleasure, but not intensity or arousal, after hand- compared with machine-administered massage and there were no differential effects on SCR. Subjects were also willing to pay more for the hand massage. Plasma oxytocin increased after both massage by hand or machine, but more potently after massage by hand. Both basal oxytocin concentrations and increases evoked by hand-, but not machine-administered massage, were negatively associated with trait autism and attitudes towards social touch, but massage by hand-evoked changes were significant in higher as well as lower trait individuals. Increased neural responses to hand vs. machine-administered massage were found in posterior superior temporal sulcus and medial/lateral orbitofrontal cortex but not somatosensory cortex. Orbitofrontal cortex and superior temporal cortex activation during hand massage was associated with the amount of money subjects were willing to pay and between orbitofrontal cortex activation and autism scores. Thus, hand-administered massage can potently increase oxytocin release and activity in brain regions involved in social cognition and reward but not sensory aspects of affective touch. Massage by hand induced changes in both oxytocin concentrations and neural circuits involved in processing social affective trust may have therapeutic potential in the context of autism.
Collapse
Affiliation(s)
- Qin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jennifer Wernicke
- Department of Molecular Psychology, Institute of Psychology and Education, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Li
- Brain and Cognition Research Laboratory, Psyche-Ark Ltd., Beijing, China
| | - Jiao Le
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
98
|
Tops S, Habel U, Radke S. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. Horm Behav 2019; 108:84-93. [PMID: 29505762 DOI: 10.1016/j.yhbeh.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022]
Abstract
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles.
Collapse
Affiliation(s)
- Sanne Tops
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| |
Collapse
|
99
|
Priel A, Djalovski A, Zagoory-Sharon O, Feldman R. Maternal depression impacts child psychopathology across the first decade of life: Oxytocin and synchrony as markers of resilience. J Child Psychol Psychiatry 2019; 60:30-42. [PMID: 29484656 DOI: 10.1111/jcpp.12880] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND While maternal depression is known to carry long-term negative consequences for offspring, very few studies followed children longitudinally to address markers of resilience in the context of maternal depression. We focused on oxytocin (OT) and mother-child synchrony - the biological and behavioral arms of the neurobiology of affiliation - as correlates of resilience among children of depressed mothers. METHOD A community birth-cohort was recruited on the second postbirth day and repeatedly assessed for maternal depression across the first year. At 6 and 10 years, mothers and children underwent psychiatric diagnosis, mother-child interactions were coded for maternal sensitivity, child social engagement, and mother-child synchrony, children's OT assayed, and externalizing and internalizing problems reported. RESULTS Exposure to maternal depression markedly increased child propensity to develop Axis-I disorder at 6 and 10 years. Child OT showed main effects for both maternal depression and child psychiatric disorder at 6 and 10 years, with maternal or child psychopathology attenuating OT response. In contrast, maternal depression decreased synchrony at 6 years but by 10 years synchrony showed only child disorder effect, highlighting the shift from direct to indirect effects as children grow older. Path analysis linking maternal depression to child externalizing and internalizing problems at 10 years controlling for 6-year variables indicated that depression linked with decreased maternal sensitivity and child OT, which predicted reduced child engagement and synchrony, leading to higher externalizing and internalizing problems. OT and synchrony mediated the effects of maternal depression on child behavior problems and an alternative model without these resilience components provided less adequate fit. CONCLUSIONS Maternal depression continues to play a role in children's development beyond infancy. The mediating effects of OT and synchronous, mutually regulated interactions underscore the role of plasticity in resilience. Results emphasize the need to follow children of depressed mothers across middle childhood and construct interventions that bolster age-appropriate synchrony.
Collapse
Affiliation(s)
| | - Amir Djalovski
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel
| | - Orna Zagoory-Sharon
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel.,Child Study Center, Yale University, New Haven, CT, USA
| |
Collapse
|
100
|
Wilczyński KM, Siwiec A, Janas-Kozik M. Systematic Review of Literature on Single-Nucleotide Polymorphisms Within the Oxytocin and Vasopressin Receptor Genes in the Development of Social Cognition Dysfunctions in Individuals Suffering From Autism Spectrum Disorder. Front Psychiatry 2019; 10:380. [PMID: 31214061 PMCID: PMC6554290 DOI: 10.3389/fpsyt.2019.00380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is found in virtually all population groups regardless of ethnic or socioeconomic backgrounds. Among others, dominant symptoms of autism persistent throughout its course of development include, inter alia, qualitative disorders of social communication and social interactions. Numerous studies have been performed on animal models as well as groups of healthy individuals to assess the potential role of oxytocinergic and vasopresynergic systems in normal social functioning. These studies have also discussed their potential participation in the development of social cognition dysfunctions in the course of ASD. This literature review aimed to identify studies examining single-nucleotide polymorphisms of the oxytocin (OXT) and arginine vasopressin (AVP) receptor genes and their differential effects on social cognitive dysfunction in the development of ASD. Methods: A systematic review of literature published within the last 10 years and accessible in PubMed, Google Scholar, Cochrane Library, and APA PsycNET databases was conducted by each author separately. Inclusion criteria required that articles should 1) be published between January 2008 and August 2018; 2) be published in English or Polish; 3) be located in periodical publications; 4) focus on the role of polymorphisms within oxytocin and vasopressin receptor genes in autistic population; 5) provide a clear presentation of the applied methodology; and 6) apply proper methodology. Results: From the 491 studies qualified to the initial abstract analysis, 15 met the six inclusion criteria and were included in the full-text review. Conclusions: The analysis of available literature seems to indicate that there is an association between social cognition dysfunctions in the course of autism and selected alleles of polymorphisms within the OXT receptor AVP 1A receptor genes. However, previous studies neither specify the nature of this association in an unequivocal way nor select genotypes that are the basis for this association.
Collapse
Affiliation(s)
- Krzysztof Maria Wilczyński
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland.,Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia, Katowice, Poland
| | - Andrzej Siwiec
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland
| | - Małgorzata Janas-Kozik
- Pediatric Centre of John Paul II in Sosnowiec Sp. z o.o., Sosnowiec, Poland.,Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia, Katowice, Poland
| |
Collapse
|