51
|
Abstract
The majority of pituitary adenomas occur sporadically, however, about 5% of all cases occur in a familial setting, of which over half are due to multiple endocrine neoplasia type 1 (MEN-1) and Carney's complex (CNC). Since the late 1990s we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes, a condition named familial isolated pituitary adenomas (FIPA). The clinical characteristics of FIPA vary from those of sporadic pituitary adenomas, as patients with FIPA have a younger age at diagnosis and larger tumours. About 15% of FIPA patients have mutations in the aryl hydrocarbon receptor interacting protein gene (AIP), which indicates that FIPA may have a diverse genetic pathophysiology. This review describes the clinical features of familial pituitary adenomas like MEN1, the MEN 1-like syndrome MEN-4, CNC, FIPA, the tumour pathologies found in this setting and the genetic/molecular data that have been recently reported.
Collapse
Affiliation(s)
- M A Tichomirowa
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège 4000, Belgium
| | | | | |
Collapse
|
52
|
|
53
|
Abstract
Sporadic multiple endocrine neoplasia type 1 (MEN1) is defined as the occurrence of tumours in two of three main endocrine tissue types: parathyroid, pituitary and pancreaticoduodenal. A prolactinoma variant or Burin variant of MEN1 was found to occur in three large kindreds, with more prolactinomas and fewer gastrinomas than typical MEN1. MEN1 tumours differ from common tumours by showing features from the MEN1 gene (e.g. larger pituitary tumours). They also show various expressions of tumour multiplicity; however, pituitary tumour in MEN1 is usually solitary. Diagnosis in MEN1 carriers during childhood is not directed at cancers but at benign morbid tumours. Morbid prolactinoma occurred at the age of 5 years in one MEN1 individual; hence, this is the earliest age at which to recommend tumour surveillance in carriers. The MEN1 gene shows biallelic inactivation in 30% of some types of common variety endocrine tumours (e.g. parathyroid adenoma, gastrinoma, insulinoma and bronchial carcinoid), but in only 1-5% of common pituitary tumours. Heterozygous knockout of MEN1 in mice provides a robust model of MEN1 and has been found to support further research on anti-angiogenesis therapy for pituitary tumours. The rarity of MEN1 mutations in some MEN1-like states aids the identification of other mutated genes, such as AIP, HRPT2 and p27(Kip1). We present recent clinical and basic findings about the MEN1 gene, particularly concerning hereditary vs. common variety pituitary tumours.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md., USA
| | | | | | | |
Collapse
|
54
|
Kaji H, Canaffand L, Hendy GN. Role of Menin in Bone Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 668:59-67. [DOI: 10.1007/978-1-4419-1664-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
|
56
|
Mensah-Osman E, Zavros Y, Merchant JL. Somatostatin stimulates menin gene expression by inhibiting protein kinase A. Am J Physiol Gastrointest Liver Physiol 2008; 295:G843-54. [PMID: 18755809 PMCID: PMC2575917 DOI: 10.1152/ajpgi.00607.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 08/20/2008] [Indexed: 01/31/2023]
Abstract
Somatostatin is a potent inhibitor of gastrin secretion and gene expression. Menin is a 67-kDa protein product of the multiple endocrine neoplasia type 1 (MEN1) gene that when mutated leads to duodenal gastrinomas, a tumor that overproduces the hormone gastrin. These observations suggest that menin might normally inhibit gastrin gene expression in its role as a tumor suppressor. Since somatostatin and ostensibly menin are both inhibitors of gastrin, we hypothesized that somatostatin signaling directly induces menin. Menin protein expression was significantly lower in somatostatin-null mice, which are hypergastrinemic. We found by immunohistochemistry that somatostatin receptor-positive cells (SSTR2A) express menin. Mice were treated with the somatostatin analog octreotide to determine whether activation of somatostatin signaling induced menin. We found that octreotide increased the number of menin-expressing cells, menin mRNA, and menin protein expression. Moreover, the induction by octreotide was greater in the duodenum than in the antrum. The increase in menin observed in vivo was recapitulated by treating AGS and STC cell lines with octreotide, demonstrating that the regulation was direct. The induction required suppression of protein kinase A (PKA) since forskolin treatment suppressed menin protein levels and octreotide inhibited PKA enzyme activity. Small-interfering RNA-mediated suppression of PKA levels raised basal levels of menin protein and prevented further induction by octreotide. Using AGS cells, we also showed for the first time that menin directly inhibits endogenous gastrin gene expression. In conclusion, somatostatin receptor activation induces menin expression by suppressing PKA activation.
Collapse
Affiliation(s)
- Edith Mensah-Osman
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
57
|
Thorne JL, Campbell MJ, Turner BM. Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 2008; 41:164-75. [PMID: 18804550 DOI: 10.1016/j.biocel.2008.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 01/26/2023]
Abstract
Transcription factors, chromatin and chromatin-modifying enzymes are key components in a complex network through which the genome interacts with its environment. For many transcription factors, binding motifs are found adjacent to the promoter regions of a large proportion of genes, requiring mechanisms that confer binding specificity in any given cell type. These include association of the factor with other proteins and packaging of DNA, as chromatin, at the binding sequence so as to inhibit or facilitate binding. Recent evidence suggests that specific post-translational modifications of the histones packaging promoter DNA can help guide transcription factors to selected sites. The enzymes that put such modifications in place are dependent on metabolic components (e.g. acetyl CoA, S-adenosyl methionine) and susceptible to inhibition or activation by environmental factors. Local patterns of histone modification can be altered or maintained through direct interaction between the transcription factor and histone modifying enzymes. The functional consequences of transcription factor binding are also dependent on protein modifying enzymes, particularly those that alter lysine methylation at selected residues. Remarkably, the role of these enzymes is not limited to promoter-proximal events, but can be linked to changes in the intranuclear location of target genes. In this review we describe results that begin to define how transcription factors, chromatin and environmental variables interact and how these interactions are subverted in cancer. We focus on the nuclear receptor family of transcription factors, where binding of ligands such as steroid hormones and dietary derived factors provides an extra level of environmental input.
Collapse
Affiliation(s)
- James L Thorne
- University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
58
|
Fujiki K, Duerr EM, Kikuchi H, Ng A, Xavier RJ, Mizukami Y, Imamura T, Kulke MH, Chung DC. Hoxc6 is overexpressed in gastrointestinal carcinoids and interacts with JunD to regulate tumor growth. Gastroenterology 2008; 135:907-16, 916.e1-2. [PMID: 18655788 PMCID: PMC3777410 DOI: 10.1053/j.gastro.2008.06.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/04/2008] [Accepted: 06/09/2008] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The molecular alterations that underlie carcinoid tumor pathogenesis remain poorly defined. The homeobox gene HOXC6 was highly up-regulated in human gastrointestinal carcinoid tumors, and we sought to define its pathogenic role. METHODS The functional and physical properties of Hoxc6 were investigated by establishing carcinoid cells that stably overexpressed Hoxc6 or were deficient in Hoxc6. Cellular proliferation assays, luciferase reporter assays, Western blotting, immunoprecipitation, DNA affinity precipitation, and DNA microarray studies were performed. RESULTS Expression of Hoxc6 in cultured human BON1 carcinoid cells enhanced their proliferation, and knock-down of Hoxc6 inhibited their growth. Hoxc6 activated the oncogenic activator protein-1 signaling pathway through a physical interaction with JunD. Mutations in the homeodomain of Hoxc6 blocked this interaction and inhibited proliferation of carcinoid cells. Of note, Hoxc6 induced the expression of genes that characteristically are up-regulated in carcinoid tumors, including neurotensin and connective tissue growth factor. CONCLUSIONS A novel molecular pathway has been identified that links Hoxc6 with oncogenic signaling through the activator protein-1 pathway in carcinoid tumorigenesis.
Collapse
Affiliation(s)
- Kotoyo Fujiki
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27:4757-67. [PMID: 18427548 PMCID: PMC2726657 DOI: 10.1038/onc.2008.120] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/25/2008] [Accepted: 03/18/2008] [Indexed: 12/12/2022]
Abstract
JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein-protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein-protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.
Collapse
Affiliation(s)
- JM Hernandez
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - DH Floyd
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - KN Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - PL Green
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - K Boris-Lawrie
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
60
|
Abstract
MEN1 and MEN2 are autosomal dominant cancer syndromes with the potential for considerable morbidity and mortality. Better understanding of the molecular pathogenesis in MEN1 and MEN2 has fostered the development of specific DNA screening. Knowing the genetic status of patients is valuable for making decisions regarding surveillance and interventions, such as prophylactic thyroidectomy for medullary thyroid cancer. Identifying new RET pathways has provided molecular targets for therapies that currently are being tested in clinical trials for locally advanced, metastatic, and recurrent medullary thyroid cancer.
Collapse
Affiliation(s)
- Matthew L White
- Department of Surgery, University of Michigan, and Department of Surgery, St. Joseph Mercy Hospital, 5301 McAuley Drive, Ann Arbor, MI 48197, USA
| | | |
Collapse
|
61
|
Abstract
BACKGROUND Primary cutaneous B-cell lymphoma (PCBCL) consists mainly of primary cutaneous marginal zone B-cell lymphoma (PCMZL), primary cutaneous follicle centre lymphoma (PCFCL) and primary cutaneous large B-cell lymphoma, leg type (PCLBCL-LT). The activator protein 1 (AP-1) transcription factor includes JUN, FOS and other family members. OBJECTIVES To assess the expression pattern of AP-1 transcription factors in PCBCL. METHODS We analysed paraffin tissue sections from nine cases of PCMZL, seven PCFCL, six PCLBCL-LT and two unspecified PCBCL cases by using immunohistochemistry with antibodies against c-JUN, JUNB, JUND, c-FOS, RAF1, alphaPAK, CD30 and CCND1. RESULTS A positive staining for JUND (++) was observed in six cases of PCFCL (86%), five PCLBCL-LT (83%) and five PCMZL (56%). Positive CCND1 protein expression was present in four cases of PCLBCL-LT (67%), four PCFCL (57%) and four PCMZL (44%), and the two unspecified PCBCL cases. Expression of alphaPAK protein was seen in three cases of PCLBCL-LT (50%), two PCMZL (22%) and one PCFCL. However, c-JUN, c-FOS and RAF1 protein were rarely expressed in the PCBCL cases analysed; JUNB and CD30 protein expression was absent in these cases. CONCLUSIONS These findings suggest that the presence of abnormal AP-1 protein expression is associated with upregulation of JUND, CCND1 and alphaPAK and downregulation of JUNB in PCBCL.
Collapse
Affiliation(s)
- X Mao
- Skin Tumour Unit, St John's Institute of Dermatology, St Thomas' Hospital, King's College London, UK.
| | | |
Collapse
|
62
|
Barbeau B, Mesnard JM. Does the HBZ gene represent a new potential target for the treatment of adult T-cell leukemia? Int Rev Immunol 2008; 26:283-304. [PMID: 18027202 DOI: 10.1080/08830180701690843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Links between human T-cell leukemia virus type 1 and adult T-cell leukemia (ATL) were first suspected in 1980. Provirus integration has since been found in all ATL cells. Although the viral Tax protein is involved in the proliferation of the infected cells during the preleukemic stage, Tax expression is not systematically detected in primary leukemic cells. Recent studies found that the viral HBZ gene was always expressed in leukemic cells, suggesting its involvement in the progression of the infected cells toward malignancy. How could this new discovery be translated into possible new avenues for the prevention or treatment of ATL?
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | | |
Collapse
|
63
|
Hipkaeo W, Sakulsak N, Wakayama T, Yamamoto M, Nakaya MA, Keattikunpairoj S, Kurobo M, Iseki S. Coexpression of Menin and JunD during the Duct Cell Differentiation in Mouse Submandibular Gland. TOHOKU J EXP MED 2008; 214:231-45. [DOI: 10.1620/tjem.214.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wiphawi Hipkaeo
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Natthiya Sakulsak
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Miyuki Yamamoto
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Masa-Aki Nakaya
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Sunisa Keattikunpairoj
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Miho Kurobo
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| |
Collapse
|
64
|
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007; 11:555-69. [PMID: 17560336 DOI: 10.1016/j.ccr.2007.04.021] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/14/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.
Collapse
Affiliation(s)
- Igor Vivanco
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gruijl FR, Van Kranen HJ, Van Schanke A. UV Exposure, Genetic Targets in Melanocytic Tumors and Transgenic Mouse Models¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01522.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Xiao L, Rao J, Zou T, Liu L, Marasa B, Chen J, Turner D, Passaniti A, Wang JY. Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochem J 2007; 403:573-81. [PMID: 17253961 PMCID: PMC1876376 DOI: 10.1042/bj20061436] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/17/2007] [Accepted: 01/25/2007] [Indexed: 02/06/2023]
Abstract
Maintenance of intestinal epithelial integrity requires cellular polyamines that regulate expression of various genes involved in cell proliferation, growth arrest and apoptosis. In prior studies, depletion of cellular polyamines has been shown to stabilize JunD, a member of the AP-1 (activator protein-1) family of transcription factors, leading to inhibition of intestinal epithelial cell proliferation, but the exact downstream targets of induced JunD remain elusive. CDK4 (cyclin-dependent kinase 4) is essential for the G1- to S-phase transition during the cell cycle and its expression is primarily controlled at the transcriptional level. In the present study, we show that induced JunD in IECs (intestinal epithelial cells) is a transcriptional repressor of the CDK4 gene following polyamine depletion. Increased JunD in polyamine-deficient cells was associated with a significant inhibition of CDK4 transcription, as indicated by repression of CDK4-promoter activity and decreased levels of CDK4 mRNA and protein, all of which were prevented by using specific antisense JunD oligomers. Ectopic expression of the wild-type junD also repressed CDK4-promoter activity and decreased levels of CDK4 mRNA and protein without any effect on CDK2 expression. Gel shift and chromatin immunoprecipitation assays revealed that JunD bound to the proximal region of the CDK4-promoter in vitro as well as in vivo, while experiments using different CDK4-promoter mutants showed that transcriptional repression of CDK4 by JunD was mediated through an AP-1 binding site within this proximal sequence of the CDK4-promoter. These results indicate that induced JunD in IECs represses CDK4 transcription through its proximal promoter region following polyamine depletion.
Collapse
Key Words
- activator protein-1 (ap-1)
- α-difluoromethylornithine
- growth arrest
- intestinal epithelium
- ornithine decarboxylase
- transcriptional regulation
- ap-1, activator protein-1
- cdk, cyclin-dependent kinase
- chip, chromatin immunoprecipitation
- dfmo, α-difluoromethylornithine
- emsa, electrophoretic mobility-shift assay
- fbs, fetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- iec, intestinal epithelial cell
- luc, luciferase
- pbs-t, pbs containing tween 20
- q-pcr, quantitative pcr
- rb, retinoblastoma tumour suppressor protein
- rt, reverse transcriptase
Collapse
Affiliation(s)
- Lan Xiao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jaladanki N. Rao
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Tongtong Zou
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Lan Liu
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Bernard S. Marasa
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jie Chen
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Douglas J. Turner
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Antonino Passaniti
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| | - Jian-Ying Wang
- *Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- †Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- ‡Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, U.S.A
| |
Collapse
|
67
|
Mineva ND, Rothstein TL, Meyers JA, Lerner A, Sonenshein GE. CD40 ligand-mediated activation of the de novo RelB NF-kappaB synthesis pathway in transformed B cells promotes rescue from apoptosis. J Biol Chem 2007; 282:17475-85. [PMID: 17446175 DOI: 10.1074/jbc.m607313200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD40, a tumor necrosis factor receptor family member, is expressed on B lymphocytes. Interaction between CD40 and its ligand (CD40L), expressed on activated T lymphocytes, is critical for B cell survival. Here, we demonstrate that CD40 signals B cell survival in part via transcriptional activation of the RelB NF-kappaB subunit. CD40L treatment of chronic lymphocytic leukemia cells induced levels of relB mRNA. Similarly, CD40L-mediated rescue of WEHI 231 B lymphoma cells from apoptosis induced upon B cell receptor (surface IgM) engagement led to increased relB mRNA levels. Recently, we characterized a new de novo synthesis pathway for the RelB NF-kappaB subunit, induced by the cytomegalovirus IE1 protein, in which binding of p50/p65 NF-kappaB and c-Jun/Fra-2 AP-1 complexes to the relB promoter works in synergy to potently activate transcription (Wang, X., and Sonenshein, G. E. (2005) J. Virol. 79, 95-105). CD40L treatment of WEHI 231 cells caused induction of AP-1 family members Fra-2, c-Jun, JunD, and JunB. Cotransfection of Fra-2 with the Jun AP-1 subunits and p50/c-Rel NF-kappaB led to synergistic activation of the relB promoter. Ectopic expression of relB or RelB knockdown using small interfering RNA demonstrated the important role of this subunit in control of WEHI 231 cell survival and implicated activation of the anti-apoptotic factors Survivin and manganese superoxide dismutase. Thus, CD40 engagement of transformed B cells activates relB gene transcription via a process we have termed the de novo RelB synthesis pathway, which protects these cells from apoptosis.
Collapse
Affiliation(s)
- Nora D Mineva
- Department of Pathology and Laboratory Medicine, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
68
|
Agarwal SK, Impey S, McWeeney S, Scacheri PC, Collins FS, Goodman RH, Spiegel AM, Marx SJ. Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 2007; 9:101-7. [PMID: 17356705 PMCID: PMC1813935 DOI: 10.1593/neo.06706] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/27/2006] [Accepted: 12/29/2006] [Indexed: 11/18/2022] Open
Abstract
Menin is the protein product of the MEN1 tumor-suppressor gene; one allele of MEN1 is inactivated in the germ line of patients with "multiple endocrine neoplasia type 1" (MEN1) cancer syndrome. Menin interacts with several proteins involved in transcriptional regulation. RNA expression analyses have identified several menin-regulated genes that could represent proximal or distal interaction sites for menin. This report presents a substantial and unbiased sampling of menin-occupied chromatin regions using Serial Analysis of Chromatin Occupancy; this method combines chromatin immuno-precipitation with Serial Analysis of Gene Expression. Hundreds of menin-occupied genomic sites were identified in promoter regions (32% of menin-occupied loci), near the 3' end of genes (14%), or inside genes (21%), extending other data about menin recruitments to many sites of transcriptional activity. A large number of menin-occupied sites (33%) were located outside known gene regions. Additional annotation of the human genome could help in identifying genes at these loci, or these might be gene-free regions of the genome where menin occupancy could play some structural or regulatory role. Menin occupancy at many intragenic positions distant from the core promoter reveals an unexpected type of menin target region at many loci in the genome. These unbiased data also suggest that menin could play a broad role in transcriptional regulation.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Loffler KA, Biondi CA, Gartside M, Waring P, Stark M, Serewko-Auret MM, Muller HK, Hayward NK, Kay GF. Broad tumor spectrum in a mouse model of multiple endocrine neoplasia type 1. Int J Cancer 2007; 120:259-67. [PMID: 17044021 DOI: 10.1002/ijc.22288] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an inherited cancer predisposition syndrome typified by development of tumors in parathyroid, pituitary and endocrine pancreas, as well as less common sites including both endocrine and nonendocrine organs. Deletion or mutation of the tumor suppressor gene MEN1 on chromosome 11 has been identified in many cases of MEN1 as well as in sporadic tumors. The molecular biology of menin, the protein encoded by MEN1, remains poorly understood. Here we describe a mouse model of MEN1 in which tumors were seen in pancreatic islets, pituitary, thyroid and parathyroid, adrenal glands, testes and ovaries. The observed tumor spectrum therefore includes types commonly seen in MEN1 patients and additional types. Pancreatic pathology was most common, evident in over 80% of animals, while other tumor types developed with lower frequency and generally later onset. Tumors of multiple endocrine organs were observed frequently, but progression to carcinoma and metastasis were not evident. Tumors in all sites showed loss of heterozygosity at the Men1 locus, though the frequency in testicular tumors was only 36%, indicating that a different molecular mechanism of tumorigenesis occurs in those Leydig tumors that do not show loss of the normal Men1 allele. Menin expression was below the level of detection in ovary, thyroid and testis, but loss of nuclear menin immunoreactivity was observed uniformly in all pancreatic islet adenomas and in some hyperplastic islet cells, suggesting that complete loss of Men1 is a critical point in islet tumor progression in this model.
Collapse
Affiliation(s)
- Kelly A Loffler
- Queensland Institute of Medical Research, Herston, QLD, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Human hereditary tumor syndromes serve as an ideal model for studying molecular pathways regulating tumorigenesis. Multiple endocrine neoplasia type 1 (MEN1), a human familial tumor syndrome, results from mutations in the Men1 gene. Men1 encodes a novel tumor suppressor, menin, of unknown biochemical function. Recently, significant progress has been made in identifying menin as a regulator of gene transcription, cell proliferation, apoptosis, and genome stability, leading to a new model of understanding menin's tumor-suppressing function. These findings suggest that menin's diverse functions depend on its association with chromatin and its control over gene transcription. This knowledge will likely be translated into new strategies to improve therapeutic interventions against MEN1 and other related cancers.
Collapse
Affiliation(s)
- Yuqing Yang
- Abramson Family Cancer Research Institute, Signal Transduction Program, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
71
|
Loffler KA, Biondi CA, Gartside MG, Serewko-Auret MM, Duncan R, Tonks ID, Mould AW, Waring P, Muller HK, Kay GF, Hayward NK. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2006; 26:4009-17. [PMID: 17173065 DOI: 10.1038/sj.onc.1210163] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To identify possible genetic interactions between the mechanisms of tumor suppression of menin and pRb, we intercrossed mice with targeted deletions of Men1 and Rb1, and compared tumor development in cohorts of animals carrying single or dual mutations of these tumor-suppressor genes. In mice lacking one copy of Men1, pancreatic islet and anterior pituitary adenomas are common. In animals lacking one copy of Rb1, intermediate pituitary and thyroid tumors occur at high frequency, with less frequent development of pancreatic islet hyperplasia and parathyroid lesions. In mice heterozygous for both Men1 and Rb1, pancreatic hyperplasia and tumors of the intermediate pituitary and thyroid occurred at high frequency. Serum measurements of calcium and glucose did not vary significantly between genotypic groups. Loss of heterozygosity at the Rb1 locus was common in pituitary and thyroid tumors, whereas loss of menin was observed in pancreatic and parathyroid lesions. The tumor spectrum in the double heterozygotes was a combination of pathologies seen in each of the individual heterozygotes, without decrease in age of onset, indicating independent, non-additive effects of the two mutations. Together with the lack of increased tumor spectrum, this suggests that menin and pRb function in a common pathway of tumor suppression.
Collapse
Affiliation(s)
- K A Loffler
- Cancer and Cell Biology Divison, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Dreijerink KM, Höppener JW, Timmers HM, Lips CJ. Mechanisms of disease: multiple endocrine neoplasia type 1-relation to chromatin modifications and transcription regulation. ACTA ACUST UNITED AC 2006; 2:562-70. [PMID: 17024155 DOI: 10.1038/ncpendmet0292] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 04/27/2006] [Indexed: 12/17/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a hereditary tumor syndrome characterized by tumors of the parathyroid glands, the pancreatic islets, the pituitary gland, the adrenal glands, as well as by neuroendocrine carcinoid tumors, often at a young age. Causal to the syndrome are germline mutations of the MEN1 tumor-suppressor gene. Identification of gene-mutation carriers has enabled presymptomatic diagnosis and treatment of MEN1-related lesions. The product of the MEN1 gene is the nuclear protein menin. Recent observations indicate several functions for menin in the regulation of transcription, serving either as a repressor or as an activator: menin interacts with the activator-protein-1-family transcription factor JunD, changing it from an oncoprotein into a tumor-suppressor protein, putatively by recruitment of histone deacetylase complexes; menin maintains transforming growth factor beta mediated signal transduction involved in parathyroid hormone and prolactin gene expression; and menin is an integral component of histone methyltransferase complexes. In this capacity menin is a regulator of expression of the cyclin-dependent-kinase inhibitors p18INK4C and p27Kip1; furthermore, menin serves as a co-activator of estrogen receptor mediated transcription, by recruiting methyltransferase activity to lysine 4 of histone 3 at the estrogen responsive TFF1(pS2) gene promoter. We propose that menin links transcription-factor function to histone-modification pathways and that this is crucial for MEN1 tumorigenesis. Understanding the molecular pathology of MEN1 tumorigenesis will lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Koen Ma Dreijerink
- Department of Internal Medicine and Endocrinology, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
73
|
Balogh K, Rácz K, Patócs A, Hunyady L. Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab 2006; 17:357-64. [PMID: 16997566 DOI: 10.1016/j.tem.2006.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/25/2006] [Accepted: 09/14/2006] [Indexed: 12/20/2022]
Abstract
The multiple endocrine neoplasia type 1 (MEN1) gene is a tumor suppressor gene encoding a 610 amino acid nuclear protein, menin. Although mutations of the MEN1 gene are responsible for MEN 1 syndrome, the intracellular functions of menin have not been fully elucidated. Recent data suggest that interactions between menin and menin-interacting proteins have a role in physiological regulation of cell growth, control of the cell cycle and genome stability, and are potentially important in bone development and multipotent mesenchymal stem cell differentiation. Loss of these interactions might also contribute to the development of MEN 1 syndrome.
Collapse
Affiliation(s)
- Katalin Balogh
- Second Department of Medicine, Semmelweis University, Szentkirályi str. 46, H-1088 Budapest, Hungary.
| | | | | | | |
Collapse
|
74
|
Cerrato A, Parisi M, Santa Anna S, Missirlis F, Guru S, Agarwal S, Sturgill D, Talbot T, Spiegel A, Collins F, Chandrasekharappa S, Marx S, Oliver B. Genetic interactions between Drosophila melanogaster menin and Jun/Fos. Dev Biol 2006; 298:59-70. [PMID: 16930585 PMCID: PMC2291284 DOI: 10.1016/j.ydbio.2006.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 01/16/2023]
Abstract
Menin is a tumor suppressor required to prevent multiple endocrine neoplasia in humans. Mammalian menin protein is associated with chromatin modifying complexes and has been shown to bind a number of nuclear proteins, including the transcription factor JunD. Menin shows bidirectional effects acting positively on c-Jun and negatively on JunD. We have produced protein null alleles of Drosophila menin (mnn1) and have over expressed the Mnn1 protein. Flies homozygous for protein-null mnn1 alleles are viable and fertile. Localized over-expression of Mnn1 causes defects in thoracic closure, a phenotype that sometimes results from insufficient Jun activity. We observed complex genetic interactions between mnn1 and jun in different developmental settings. Our data support the idea that one function of menin is to modulate Jun activity in a manner dependent on the cellular context.
Collapse
Affiliation(s)
- Aniello Cerrato
- National Institute of Diabetes and Digestive and Kidney Diseases, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA, Brown E, Hua X. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 2006; 66:5707-15. [PMID: 16740708 PMCID: PMC2839933 DOI: 10.1158/0008-5472.can-05-4518] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an inherited tumor syndrome affecting endocrine organs including pancreatic islets, results from mutation of the tumor suppressor gene Men1 that encodes protein menin. Although menin is known to be involved in regulating cell proliferation in vitro, it is not clear how menin regulates cell cycle and whether mutation of Men1 acutely promotes pancreatic islet cell proliferation in vivo. Here we show that excision of the floxed Men1 in mouse embryonic fibroblasts (MEF) accelerates G(0)/G(1) to S phase entry. This accelerated S-phase entry is accompanied by increased cyclin-dependent kinase 2 (CDK2) activity as well as decreased expression of CDK inhibitors p18(Ink4c) and p27(Kip1). Moreover, Men1 excision results in decreased expression of p18(Ink4c) and p27(Kip1) in the pancreas. Furthermore, complementation of menin-null cells with wild-type menin represses S-phase entry. To extend the role of menin in repressing cell cycle in cultured cells to in vivo pancreatic islets, we generated a system in which floxed Men1 alleles can be excised in a temporally controllable manner. As early as 7 days following Men1 excision, pancreatic islet cells display increased proliferation, leading to detectable enlargement of pancreatic islets 14 days after Men1 excision. These observations are consistent with the notion that an acute effect of Men1 mutation is accelerated S-phase entry and enhanced cell proliferation in pancreatic islets. Together, these results suggest a molecular mechanism whereby menin suppresses MEN1 tumorigenesis at least partly through repression of G(0)/G(1) to S transition.
Collapse
Affiliation(s)
| | | | | | - Tim Cash
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albert Silva
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - J. Alan Diehl
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Eric Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Xianxin Hua
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
76
|
Hivin P, Arpin-André C, Clerc I, Barbeau B, Mesnard JM. A modified version of a Fos-associated cluster in HBZ affects Jun transcriptional potency. Nucleic Acids Res 2006; 34:2761-72. [PMID: 16717281 PMCID: PMC1464409 DOI: 10.1093/nar/gkl375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Like c-Fos, HBZ (HTLV-I bZIP factor) is able to interact with c-Jun but differs considerably from c-Fos in its ability to activate AP-1-responsive genes since HBZ rather inhibits transcriptional activity of c-Jun. To better understand the molecular mechanisms involved in this down-regulation of c-Jun activity, a large number of HBZ/c-Fos chimeras was constructed and analyzed for their ability to interact with c-Jun, to bind to the AP-1 motif and to stimulate expression of a reporter gene containing the collagenase promoter. By this approach, we demonstrate that the DNA-binding domain of HBZ is responsible for its inhibitory effect on the trans-activation potential of c-Jun. However, unexpectedly, we found that exchange of a cluster of six charged amino acids immediately adjacent to the DNA contact region altered significantly transcriptional activity of chimeras. This particular subdomain could be involved in efficient presentation of the AP-1 complex to the transcriptional machinery. To confirm this role, specific residues present in the cluster of HBZ were substituted for corresponding amino acids in c-Fos. Unlike the JunD-activating potential of wild-type HBZ, this mutant was no longer able to stimulate JunD activity, confirming the key role of this particular cluster in regulation of Jun transcriptional potency.
Collapse
Affiliation(s)
| | | | | | - Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à MontréalMontréal, Canada
| | - Jean-Michel Mesnard
- To whom correspondence should be addressed at Laboratoire Infections Rétrovirales et Signalisation Cellulaire, Institut de Biologie, 4 Bd Henri IV, Montpellier 34000, Montpellier, France. Tel: 33 4 67 60 86 60; Fax: 33 4 67 60 44 20;
| |
Collapse
|
77
|
Dreijerink KMA, Mulder KW, Winkler GS, Höppener JWM, Lips CJM, Timmers HTM. Menin Links Estrogen Receptor Activation to Histone H3K4 Trimethylation. Cancer Res 2006; 66:4929-35. [PMID: 16651450 DOI: 10.1158/0008-5472.can-05-4461] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The product of the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor gene, menin, is an integral component of MLL1/MLL2 histone methyltransferase complexes specific for Lys4 of histone H3 (H3K4). We show that menin is a transcriptional coactivator of the nuclear receptors for estrogen and vitamin D. Activation of the endogenous estrogen-responsive TFF1 (pS2) gene results in promoter recruitment of menin and in elevated trimethylation of H3K4. Knockdown of menin reduces both activated TFF1 (pS2) transcription and H3K4 trimethylation. In addition, menin can directly interact with the estrogen receptor-alpha (ERalpha) in a hormone-dependent manner. The majority of disease-related MEN1 mutations prevent menin-ERalpha interaction. Importantly, ERalpha-interacting mutants are also defective in coactivator function. Our results indicate that menin is a critical link between recruitment of histone methyltransferase complexes and nuclear receptor-mediated transcription.
Collapse
Affiliation(s)
- Koen M A Dreijerink
- Departments of Physiological Chemistry, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
78
|
Hoff AO, Hauache OM. [Multiple endocrine neoplasia type 1 (MEN 1): clinical, biochemical and molecular diagnosis and treatment of the associated disturbances]. ACTA ACUST UNITED AC 2006; 49:735-46. [PMID: 16444356 DOI: 10.1590/s0004-27302005000500014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple endocrine neoplasia (MEN) syndromes include types 1 (MEN 1) and 2 (MEN 2), von Hippel-Lindau syndrome, neurofibromatosis type 1 and Carney complex. These are complex genetic syndromes caused by activation or inactivation of different types of genes known to be involved in the regulation of cell proliferation. In this review we will discuss the clinical manifestations and management of the MEN 1 syndrome as well as the genetic screening of potential MEN 1 gene carriers. MEN 1 is a hereditary syndrome, transmitted in an autosomic dominant fashion and caused by an inactivating mutation of the MEN 1 gene, characterized by the development of primary hyperparathyroidism, islet cell tumors and pituitary adenomas. In addition, these patients can present with cutaneous manifestations such as angiofibromas and collagenomas, and can develop other neoplastic manifestations including carcinoids, thyroid tumors, adrenal adenomas, lipomas, pheochromocytomas and meningiomas. The MEN 1 gene encodes a peptide which is a tumor suppressor gene called menin. Several studies have demonstrated its importance in regulation of cell proliferation and have confirmed its role in the pathogenesis of the MEN 1 syndrome. The discovery of the MEN 1 gene and the genetic analysis of MEN 1 patients have resulted in earlier diagnosis and treatment of asymptomatic carriers which can potentially result in a longer survival of these patients. Further investigation of the function and signaling pathways of the menin protein will hopefully offer therapeutic alternatives to patients with malignant progression of MEN 1-related tumors and also result in improved survival.
Collapse
|
79
|
Nadella KS, Kirschner LS. Disruption of protein kinase a regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res 2006; 65:10307-15. [PMID: 16288019 DOI: 10.1158/0008-5472.can-05-3183] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorylation is a key event in cell cycle control, and dysregulation of this process is observed in many tumors, including those associated with specific inherited neoplasia syndromes. We have shown previously that patients with the autosomal dominant tumor predisposition Carney complex carry inactivating mutations in the PRKAR1A gene, which encodes the type 1A regulatory subunit of protein kinase A (PKA), the cyclic AMP-dependent protein kinase. This defect was associated with dysregulation of PKA signaling, and genetic analysis has suggested that complete loss of the gene may be required for tumorigenesis. To determine the mechanism by which dysregulation of PKA causes tumor formation, we generated in vitro primary mouse cells lacking the Prkar1a protein. We report that this genetic disruption of PKA regulation causes constitutive PKA activation and immortalization of primary mouse embryonic fibroblasts (MEFs). At the molecular level, knockout of Prkar1a leads to up-regulation of D-type cyclins, and this increase occurs independently of other pathways known to increase cyclin D levels. Despite the immortalized phenotype, known mediators of cellular senescence (e.g., p53 and p19ARF) seem to remain intact in Prkar1a-/- MEFs. Mechanistically, cyclin D1 mRNA levels are not altered in the knockout cells, but protein half-life is markedly increased. Using this model, we provide the first direct genetic evidence that dysregulation of PKA promotes important steps in tumorigenesis, and that cyclin D1 is an essential target of PKA.
Collapse
Affiliation(s)
- Kiran S Nadella
- Human Cancer Genetics Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
80
|
Lytras A, Tolis G. Growth hormone-secreting tumors: genetic aspects and data from animal models. Neuroendocrinology 2006; 83:166-78. [PMID: 17047380 DOI: 10.1159/000095525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Indexed: 01/24/2023]
Abstract
Hereditary cases of growth hormone (GH)-secreting tumors have been classified into three clinical entities: the multiple endocrine neoplasia type 1 (MEN1) syndrome, the Carney complex (CNC) and the isolated familial somatotropinomas (IFS). The genomic defects associated with MEN1 are all linked to various mutations of the MEN1 gene, which is located at chromosome 11q13 and codes for menin, a nuclear protein expressed in multiple tissues. Inactivation of the MEN1 gene appears to be only rarely associated with sporadic pituitary tumor development. A CNC-associated gene, the type 1 alpha regulatory subunit (R1alpha) of cAMP-dependent protein kinase A (PRKAR1A), is located at 17q23-24. A second CNC candidate gene is located at chromosome 2p15-16, with characteristics of inheritance consistent with an oncogene; however, this gene has not been identified yet. PRKAR1A mutations are infrequently associated with sporadic GH-secreting adenomas. A candidate IFS gene is located at 11q13, in proximity to the MEN1 gene, at a locus narrowed down to a 2.21-Mb area, with approximately 50 genes, that does not appear to include the MEN1 gene. Apart from the linkage of IFS to 11q13, a possible linkage to 2p16 has also been raised, although data are still inconclusive. This manuscript reviews genetic aspects of hereditary GH-secreting tumors, data from animal models resulting from the inactivation of the MEN1 and PRKAR1A tumor suppressor genes and available in vitro data regarding possible functions of menin, the product of the MEN1 gene.
Collapse
Affiliation(s)
- Aristides Lytras
- Division of Endocrinology and Metabolism, Hippokrateion General Hospital, Athens, Greece.
| | | |
Collapse
|
81
|
Abstract
Major advances have been made in the understanding of the genetic mechanisms underlying endocrine tumorigenesis, through the study of several syndromes of genetic predisposition and the identification of the genes involved. The syndrome of type 1 multiple endocrine neoplasia (MEN-1) is one of the best known; this autosomal dominant hereditary syndrome predisposes to the development of endocrine tumors of the pituitary, the parathyroids, the foregut and the adrenals. The responsible gene, known as MEN-1, encodes an original protein, menin, involved in several major cellular functions, such as the control of cell proliferation and differentiation. Type 2 multiple endocrine neoplasia (MEN-2) is an autosomal dominant hereditary syndrome associated with the development of medullary carcinomas of the thyroid, pheochromocytomas and hyperparathyroidism; the corresponding gene, RET, encodes a transmembrane receptor with tyrosine kinase activity. Endocrine tumors are also associated with non Hippel-Lindau disease and with phacomatoses, such as type 1 neurofibromatosis and tuberous sclerosis. Finally, isolated familial syndromes of endocrine tumors have been described: isolated familial hyperparathyroidism type II (HRPT2), associated with alterations in a gene coding for an original protein, parafibromin, or isolated familial syndromes of pheochromocytomas and paragangliomas (PRG) associated with mutations in the genes SDHB, SDHC or SDHD, which encode succinate-dehydrogenase subunits. The understanding of the genetic mechanisms underlying these syndromes of predisposition is essential for the diagnosis and management of these patients and their family; it also gives insight on the molecular mechanisms of endocrine tumorigenesis.
Collapse
Affiliation(s)
- A Calender
- Service de Génétique Moléculaire et Médicale, CR-21076, Hôpital Edouard Herriot, place d'Arsonval, F 69437 Lyon cedex 03
| | | | | | | |
Collapse
|
82
|
Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The Menin Tumor Suppressor Protein Is an Essential Oncogenic Cofactor for MLL-Associated Leukemogenesis. Cell 2005; 123:207-18. [PMID: 16239140 DOI: 10.1016/j.cell.2005.09.025] [Citation(s) in RCA: 505] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/10/2005] [Accepted: 09/19/2005] [Indexed: 11/21/2022]
Abstract
The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
83
|
Christopoulos C, Antoniou N, Thempeyioti A, Calender A, Economopoulos P. Familial multiple endocrine neoplasia type I: the urologist is first on the scene. BJU Int 2005; 96:884-7. [PMID: 16153223 DOI: 10.1111/j.1464-410x.2005.05731.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study the urological manifestations of familial multiple endocrine neoplasia type 1 (MEN-1). PATIENTS AND METHODS The study included 26 adults (median age 38.5 years, range 18-80) from two unrelated MEN-1 pedigrees. In 15 of the patients the diagnosis was confirmed by genetic analysis, while in the rest the diagnosis was based on clinical criteria combined with genealogy data. RESULTS Urolithiasis associated with primary hyperparathyroidism was present in 65% of MEN-1 patients and in 77% of those who were symptomatic. In 68% of patients complications of urolithiasis (renal/ureteric colic, urinary tract infection) were the presenting clinical manifestations of MEN-1, whereas in 50% they constituted the only clinical manifestation of the syndrome. The mean time from the onset of symptoms of urolithiasis to the diagnosis of the polyendocrinopathy was 17.2 years. Initial failure to recognize the presence of MEN-1 in patients with primary hyperparathyroidism led to conservative parathyroid surgery, with subsequent relapse of the hyperparathyroidism, requiring re-operation. Serious renal morbidity included one case of pyonephrosis necessitating nephrectomy. While urolithiasis was a cardinal clinical manifestation of MEN-1, there was otherwise considerable phenotypic polymorphism, even among patients bearing the same MEN1 gene mutation. CONCLUSION In patients with familial MEN-1 the complications of urolithiasis are the commonest presenting clinical manifestations and the cause of significant morbidity. In the presence of a family history of renal stones, appropriate investigations may lead to the timely diagnosis of this important, albeit rare, disorder.
Collapse
|
84
|
Abstract
Hereditary origin of a tumor helps toward early discovery of its mutated gene; for example, it supports the compilation of a DNA panel from index cases to identify that gene by finding mutations in it. The gene for a hereditary tumor may contribute also to common tumors. For some syndromes, such as hereditary paraganglioma, several genes can cause a similar syndrome. For other syndromes, such as multiple endocrine neoplasia 2, one gene supports variants of a syndrome. Onset usually begins earlier and in more locations with hereditary than sporadic tumors. Mono- or oligoclonal ("clonal") tumor usually implies a postnatal delay, albeit less delay than for sporadic tumor, to onset and potential for cancer. Hormone excess from a polyclonal tissue shows onset at birth and no benefit from subtotal ablation of the secreting organ. Genes can cause neoplasms through stepwise loss of function, gain of function, or combinations of these. Polyclonal hormonal excess reflects abnormal gene dosage or effect, such as activation or haploinsufficiency. Polyclonal hyperplasia can cause the main endpoint of clinical expression in some syndromes or can be a precursor to clonal progression in others. Gene discovery is usually the first step toward clarifying the molecule and pathway mutated in a syndrome. Most mutated pathways in hormone excess states are only partly understood. The bases for tissue specificity of hormone excess syndromes are usually uncertain. In a few syndromes, tissue selectivity arises from mutation in the open reading frame of a regulatory gene (CASR, TSHR) with selective expression driven by its promoter. Polyclonal excess of a hormone is usually from a defect in the sensor system for an extracellular ligand (e.g., calcium, glucose, TSH). The final connections of any of these polyclonal or clonal pathways to hormone secretion have not been identified. In many cases, monoclonal proliferation causes hormone excess, probably as a secondary consequence of accumulation of cells with coincidental hormone-secretory ability.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, Room 9C-101, 10 Center Drive, MSC 1802, Bethesda, MD 20892-1802, USA.
| | | |
Collapse
|
85
|
Abstract
The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Collapse
Affiliation(s)
- Jochen Hess
- Deutsches Krebsforschungszentrum, Division of Signal Transduction and Growth Control, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
86
|
Abstract
Six multiple endocrine neoplasia (MEN) syndromes have received a level of attention that might seem disproportionate to their low prevalence. The attention has been given because their hormonal excesses cause striking metabolic expressions and because they might clarify pathways disrupted in more common tumours. The recent discovery of the main gene in each MEN syndrome has furthered our understanding of not only hereditary but also sporadic tumours and has fostered new avenues of research.
Collapse
Affiliation(s)
- Stephen J Marx
- National Institutes of Health, Building 10, Room 9C-101, Bethesda, Maryland 20892-1802, USA.
| |
Collapse
|
87
|
Dilley WG, Kalyanaraman S, Verma S, Cobb JP, Laramie JM, Lairmore TC. Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome. Mol Cancer 2005; 4:9. [PMID: 15691381 PMCID: PMC549185 DOI: 10.1186/1476-4598-4-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 02/03/2005] [Indexed: 11/12/2022] Open
Abstract
Background Multiple Endocrine Neoplasia type 1 (MEN1, OMIM 131100) is an autosomal dominant disorder characterized by endocrine tumors of the parathyroids, pancreatic islets and pituitary. The disease is caused by the functional loss of the tumor suppressor protein menin, coded by the MEN1 gene. The protein sequence has no significant homology to known consensus motifs. In vitro studies have shown menin binding to JunD, Pem, Smad3, NF-kappaB, nm23H1, and RPA2 proteins. However, none of these binding studies have led to a convincing theory of how loss-of-menin leads to neoplasia. Results Global gene expression studies on eight neuroendocrine tumors from MEN1 patients and 4 normal islet controls was performed utilizing Affymetrix U95Av2 chips. Overall hierarchical clustering placed all tumors in one group separate from the group of normal islets. Within the group of tumors, those of the same type were mostly clustered together. The clustering analysis also revealed 19 apoptosis-related genes that were under-expressed in the group of tumors. There were 193 genes that were increased/decreased by at least 2-fold in the tumors relative to the normal islets and that had a t-test significance value of p < = 0.005. Forty-five of these genes were increased and 148 were decreased in the tumors relative to the controls. One hundred and four of the genes could be classified as being involved in cell growth, cell death, or signal transduction. The results from 11 genes were selected for validation by quantitative RT-PCR. The average correlation coefficient was 0.655 (range 0.235–0.964). Conclusion This is the first analysis of global gene expression in MEN1-associated neuroendocrine tumors. Many genes were identified which were differentially expressed in neuroendocrine tumors arising in patients with the MEN1 syndrome, as compared with normal human islet cells. The expression of a group of apoptosis-related genes was significantly suppressed, suggesting that these genes may play crucial roles in tumorigenesis in this syndrome. We identified a number of genes which are attractive candidates for further investigation into the mechanisms by which menin loss causes tumors in pancreatic islets. Of particular interest are: FGF9 which may stimulate the growth of prostate cancer, brain cancer and endometrium; and IER3 (IEX-1), PHLDA2 (TSS3), IAPP (amylin), and SST, all of which may play roles in apoptosis.
Collapse
Affiliation(s)
- William G Dilley
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sulekha Verma
- John Cochran Veterans Administration Medical Center, St. Louis, MO, USA
| | - J Perren Cobb
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M Laramie
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Terry C Lairmore
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran Veterans Administration Medical Center, St. Louis, MO, USA
| |
Collapse
|
88
|
de Gruijl FR, van Kranen HJ, van Schanke A. UV Exposure, Genetic Targets in Melanocytic Tumors and Transgenic Mouse Models¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-09-26-ir-328.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
89
|
Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K. Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem 2004; 280:4785-91. [PMID: 15563473 DOI: 10.1074/jbc.m408143200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mice null for menin, the product of the multiple endocrine neoplasia type 1 (MEN1) gene, exhibit cranial and facial hypoplasia suggesting a role for menin in bone formation. We have shown previously that menin is required for the commitment of multipotential mesenchymal stem cells into the osteoblast lineage in part by interacting with the bone morphogenetic protein (BMP)-2 signaling molecules Smad1/5, and the key osteoblast transcriptional regulator, Runx2 (Sowa H., Kaji, H., Hendy, G. N., Canaff, L., Komori, T., Sugimoto, T., and Chihara, K. (2004) J. Biol. Chem. 279, 40267-40275). However, menin inhibits the later differentiation of committed osteoblasts. The activator protein-1 (AP-1) transcription factor, JunD, is expressed in osteoblasts and has been shown to interact with menin in other cell types. Here, we examined the consequences of menin-JunD interaction on osteoblast differentiation in mouse osteoblastic MC3T3-E1 cells. JunD expression, assessed by immunoblot, gradually increased during osteoblast differentiation. Stable expression of JunD enhanced expression of the differentiation markers, Runx2, type 1 collagen (COL1), and osteocalcin (OCN) and alkaline phosphatase (ALP) activity and mineralization. Hence, JunD promotes osteoblast differentiation. In MC3T3-E1 cells in which menin expression was reduced by stable menin antisense DNA transfection, JunD levels were increased. When JunD and menin were co-transfected in MC3T3-E1 cells, they co-immunoprecipitated. JunD overexpression increased the transcriptional activity of an AP-1 luciferase reporter construct, and this activity was reduced by co-transfection of menin. Therefore, JunD and menin interact both physically and functionally in osteoblasts. Furthermore, menin overexpression inhibited the ALP activity induced by JunD. In conclusion, the data suggest that menin suppresses osteoblast maturation, in part, by inhibiting the differentiation actions of JunD.
Collapse
Affiliation(s)
- Junko Naito
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
90
|
Schnepp RW, Hou Z, Wang H, Petersen C, Silva A, Masai H, Hua X. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004; 64:6791-6. [PMID: 15374998 DOI: 10.1158/0008-5472.can-04-0724] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple endocrine neoplasia type I (MEN1), a hereditary tumor syndrome, is characterized by the development of tumors in multiple endocrine organs. The gene mutated in MEN1 patients, Men1, encodes a tumor suppressor, menin. Overexpression of menin leads to inhibition of Ras-transformed cells. However, it is unclear whether menin is essential for repression of cell proliferation, and if it is, how it inhibits cell proliferation. Here, we show that targeted disruption of the Men1 gene leads to enhanced cell proliferation, whereas complementation of menin-null cells with menin reduces cell proliferation. Moreover, menin interacts with activator of S-phase kinase (ASK), a component of the Cdc7/ASK kinase complex that is crucial for cell proliferation, but does not appear to alter Cdc7 kinase activity in in vitro kinase assays. We identify the COOH terminus of menin as the domain that mediates the specific interaction with ASK. Notably, wild-type menin completely represses ASK-induced cell proliferation, although it does not obviously affect the steady-state cell cycle profile of ASK-infected cells. Interestingly, disease-related COOH-terminal menin mutants that do not interact with ASK completely fail to repress ASK-induced cell proliferation. Together, these findings demonstrate a functional link between menin and ASK in the regulation of cell proliferation.
Collapse
Affiliation(s)
- Robert W Schnepp
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24:5639-49. [PMID: 15199122 PMCID: PMC480881 DOI: 10.1128/mcb.24.13.5639-5649.2004] [Citation(s) in RCA: 529] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MLL (for mixed-lineage leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Its product, a homolog of Drosophila melanogaster trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. Here we report the biochemical purification of MLL and demonstrate that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein. Two other members of the novel MLL complex identified here are host cell factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLL(N) (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1-MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Agarwal SK, Lee Burns A, Sukhodolets KE, Kennedy PA, Obungu VH, Hickman AB, Mullendore ME, Whitten I, Skarulis MC, Simonds WF, Mateo C, Crabtree JS, Scacheri PC, Ji Y, Novotny EA, Garrett-Beal L, Ward JM, Libutti SK, Richard Alexander H, Cerrato A, Parisi MJ, Santa Anna-A S, Oliver B, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ. Molecular pathology of the MEN1 gene. Ann N Y Acad Sci 2004; 1014:189-98. [PMID: 15153434 DOI: 10.1196/annals.1294.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), among all syndromes, causes tumors in the highest number of tissue types. Most of the tumors are hormone producing (e.g., parathyroid, enteropancreatic endocrine, anterior pituitary) but some are not (e.g., angiofibroma). MEN1 tumors are multiple for organ type, for regions of a discontinuous organ, and for subregions of a continuous organ. Cancer contributes to late mortality; there is no effective prevention or cure for MEN1 cancers. Morbidities are more frequent from benign than malignant tumor, and both are indicators for screening. Onset age is usually earlier in a tumor type of MEN1 than of nonhereditary cases. Broad trends contrast with those in nonneoplastic excess of hormones (e.g., persistent hyperinsulinemic hypoglycemia of infancy). Most germline or somatic mutations in the MEN1 gene predict truncation or absence of encoded menin. Similarly, 11q13 loss of heterozygosity in tumors predicts inactivation of the other MEN1 copy. MEN1 somatic mutation is prevalent in nonhereditary, MEN1-like tumor types. Compiled germline and somatic mutations show almost no genotype/phenotype relation. Normal menin is 67 kDa, widespread, and mainly nuclear. It may partner with junD, NF-kB, PEM, SMAD3, RPA2, FANCD2, NM23beta, nonmuscle myosin heavy chain II-A, GFAP, and/or vimentin. These partners have not clarified menin's pathways in normal or tumor tissues. Animal models have opened approaches to menin pathways. Local overexpression of menin in Drosophila reveals its interaction with the jun-kinase pathway. The Men1+/- mouse has robust MEN1; its most important difference from human MEN1 is marked hyperplasia of pancreatic islets, a tumor precursor stage.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Thébault S, Basbous J, Hivin P, Devaux C, Mesnard JM. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett 2004; 562:165-70. [PMID: 15044019 DOI: 10.1016/s0014-5793(04)00225-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 01/29/2004] [Accepted: 02/15/2004] [Indexed: 11/15/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) bZIP factor (HBZ) is a viral basic leucine zipper protein that was originally described as a partner of cAMP response element binding protein-2 and as a repressor of HTLV-I viral transcription. In addition, HBZ is able to interact with the activator protein-1 (AP-1) transcription factors c-Jun and JunB, the interaction with c-Jun leading to a transcriptional repression of AP-1-regulated genes. Here we show that HBZ also interacts with JunD in vitro and in vivo, and that this association occurs via the bZIP domain of the two proteins. Moreover, we show that HBZ can activate JunD-dependent transcription and that its amino-terminus is required.
Collapse
Affiliation(s)
- Sabine Thébault
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 4 Bd Henri IV, CS 89508, 34960 Montpellier Cedex 2, France.
| | | | | | | | | |
Collapse
|
94
|
Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, Kay GF, Hayward NK, Hess JL, Meyerson M. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004; 13:587-97. [PMID: 14992727 DOI: 10.1016/s1097-2765(04)00081-4] [Citation(s) in RCA: 496] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/30/2003] [Accepted: 02/04/2004] [Indexed: 12/17/2022]
Abstract
The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser 5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.
Collapse
Affiliation(s)
- Christina M Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|