51
|
Rashid A, Tevlin M, Lu Y, Shaham S. A developmental pathway for epithelial-to-motoneuron transformation in C. elegans. Cell Rep 2022; 40:111414. [PMID: 36170838 PMCID: PMC9579992 DOI: 10.1016/j.celrep.2022.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Motoneurons and motoneuron-like pancreatic β cells arise from radial glia and ductal cells, respectively, both tube-lining progenitors that share molecular regulators. To uncover programs underlying motoneuron formation, we studied a similar, cell-division-independent transformation of the C. elegans tube-lining Y cell into the PDA motoneuron. We find that lin-12/Notch acts through ngn-1/Ngn and its regulator hlh-16/Olig to control transformation timing. lin-12 loss blocks transformation, while lin-12(gf) promotes precocious PDA formation. Early basal expression of ngn-1/Ngn and hlh-16/Olig depends on sem-4/Sall and egl-5/Hox. Later, coincident with Y cell morphological changes, ngn-1/Ngn expression is upregulated in a sem-4/Sall and egl-5/Hox-dependent but hlh-16/Olig-independent manner. Subsequently, Y cell retrograde extension forms an anchored process priming PDA axon extension. Extension requires ngn-1-dependent expression of the cytoskeleton organizers UNC-119, UNC-44/ANK, and UNC-33/CRMP, which also activate PDA terminal-gene expression. Our findings uncover cell-division-independent regulatory events leading to motoneuron generation, suggesting a conserved pathway for epithelial-to-motoneuron/motoneuron-like cell differentiation. Rashid et al. report on a conserved epithelial-to-motoneuron transformation pathway in C. elegans requiring ngn-1/Ngn and hlh-16/Olig. lin-12/Notch regulates transformation timing through these genes, while ngn-1/Ngn and hlh-16/Olig expression levels are regulated by sem-4/Sall and egl-5/Hox. Unexpectedly, the cytoskeleton organizers UNC-119, UNC-44, and UNC-33, which are ngn-1/Ngn targets, promote motoneuron terminal identity.
Collapse
Affiliation(s)
- Alina Rashid
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Maya Tevlin
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
52
|
Vasquez EG, Nasreddin N, Valbuena GN, Mulholland EJ, Belnoue-Davis HL, Eggington HR, Schenck RO, Wouters VM, Wirapati P, Gilroy K, Lannagan TRM, Flanagan DJ, Najumudeen AK, Omwenga S, McCorry AMB, Easton A, Koelzer VH, East JE, Morton D, Trusolino L, Maughan T, Campbell AD, Loughrey MB, Dunne PD, Tsantoulis P, Huels DJ, Tejpar S, Sansom OJ, Leedham SJ. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 2022; 29:1213-1228.e8. [PMID: 35931031 PMCID: PMC9592560 DOI: 10.1016/j.stem.2022.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.
Collapse
Affiliation(s)
- Ester Gil Vasquez
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Nadia Nasreddin
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Gabriel N Valbuena
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Holly R Eggington
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Ryan O Schenck
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pratyaksha Wirapati
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Sulochana Omwenga
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alistair Easton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Dion Morton
- Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Timothy Maughan
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Petros Tsantoulis
- University of Geneva and Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
| | - Simon J Leedham
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK; Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland.
| |
Collapse
|
53
|
Novelli M, Masini M, Vecoli C, Moscato S, Funel N, Pippa A, Mattii L, Ippolito C, Campani D, Neglia D, Masiello P. Dysregulated insulin secretion is associated with pancreatic β-cell hyperplasia and direct acinar-β-cell trans-differentiation in partially eNOS-deficient mice. Physiol Rep 2022; 10:e15425. [PMID: 35986504 PMCID: PMC9391603 DOI: 10.14814/phy2.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023] Open
Abstract
eNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks. After being longitudinally monitored for their metabolic state after 8 and 16 weeks of diet, mice were euthanized and fragments of pancreas were processed for histological, immuno-histochemical and ultrastructural analyses. HFD-fed WT and eNOS+/- mice developed progressive glucose intolerance and insulin resistance. Differently from WT animals, eNOS+/- mice showed a blunted insulin response to a glucose load, regardless of the diet regimen. Such dysregulation of insulin secretion was associated with pancreatic β-cell hyperplasia, as shown by larger islet fractional area and β-cell mass, and higher number of extra-islet β-cell clusters than in chow-fed WT animals. In addition, only in the pancreas of HFD-fed eNOS+/- mice, there was ultrastructural evidence of a number of hybrid acinar-β-cells, simultaneously containing zymogen and insulin granules, suggesting the occurrence of a direct exocrine-endocrine transdifferentiation process, plausibly triggered by metabolic stress associated to deficient endothelial NO production. As suggested by confocal immunofluorescence analysis of pancreatic histological sections, inhibition of Notch-1 signaling, likely due to a reduced NO availability, is proposed as a novel mechanism that could favor both β-cell hyperplasia and acinar-β-cell transdifferentiation in eNOS-deficient mice with impaired insulin response to a glucose load.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Cecilia Vecoli
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Stefania Moscato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Anna Pippa
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Letizia Mattii
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Interdepartmental Research Centre "Nutraceuticals and Food for Health"University of PisaPisaItaly
| | - Chiara Ippolito
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care MedicineUniversity of PisaPisaItaly
| | - Danilo Neglia
- Cardiovascular DepartmentFondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità PubblicaPisaItaly
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
54
|
Li Q, Han Z, Singh N, Terré B, Fame RM, Arif U, Page TD, Zahran T, Abdeltawab A, Huang Y, Cao P, Wang J, Lu H, Lidov HGW, Surendran K, Wu L, Virga JQ, Zhao YT, Schüller U, Wechsler-Reya RJ, Lehtinen MK, Roy S, Liu Z, Stracker TH, Zhao H. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death Differ 2022; 29:1596-1610. [PMID: 35322202 PMCID: PMC9345885 DOI: 10.1038/s41418-022-00950-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.
Collapse
Affiliation(s)
- Qun Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhiyuan Han
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Navleen Singh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Uzayr Arif
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Thomas D Page
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Tasneem Zahran
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ahmed Abdeltawab
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ping Cao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Jun Wang
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Explora Biolabs, 11175 Flintkote Avenue, Suite B, San Diego, CA, 92121, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th Street North, Sioux Falls, SD, 57104, USA
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, PR China
| | - James Q Virga
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Zhongmin Liu
- Department of Cardio-vascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China.
- The Institute of Biomedical Engineering & Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.
| |
Collapse
|
55
|
Filipović M, Flegar D, Šućur A, Šisl D, Kavazović I, Antica M, Kelava T, Kovačić N, Grčević D. Inhibition of Notch Signaling Stimulates Osteoclastogenesis From the Common Trilineage Progenitor Under Inflammatory Conditions. Front Immunol 2022; 13:902947. [PMID: 35865541 PMCID: PMC9294223 DOI: 10.3389/fimmu.2022.902947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts, macrophages and dendritic cells (DCs) can be derived from a common trilineage myeloid progenitor of hematopoietic origin. Progenitor commitment is susceptible to regulation through Notch signaling. Our aim was to determine the effects of Notch modulation on trilineage progenitor commitment and functional properties of differentiated cells under inflammatory conditions. We used the conditional inducible CX3CR1CreERT2 mouse strain to achieve overexpression of the Notch 1 intracellular domain (NICD1) or to inhibit Notch signaling via deletion of the transcription factor RBP-J in a bone marrow population, used as a source of the trilineage progenitor (CD45+Ly6G−CD3−B220−NK1.1−CD11b–/loCD115+). Cre-recombinase, under the control of the CX3CR1 promoter, expressed in the monocyte/macrophage lineage, was induced in vitro by 4-hydroxytamoxifen. Differentiation of osteoclasts was induced by M-CSF/RANKL; macrophages by M-CSF; DCs by IL-4/GM-CSF, and inflammation by LPS. Functionally, DCs were tested for the ability to process and present antigen, macrophages to phagocytose E. coli particles, and osteoclasts to resorb bone and express tartrate-resistant acid phosphatase (TRAP). We found that Notch 1 signal activation suppressed osteoclast formation, whereas disruption of the Notch canonical pathway enhanced osteoclastogenesis, resulting in a higher number and size of osteoclasts. RANK protein and Ctsk gene expression were upregulated in osteoclastogenic cultures from RBP-J+ mice, with the opposing results in NICD1+ mice. Notch modulation did not affect the number of in vitro differentiated macrophages and DCs. However, RBP-J deletion stimulated Il12b and Cd86 expression in macrophages and DCs, respectively. Functional assays under inflammatory conditions confirmed that Notch silencing amplifies TRAP expression by osteoclasts, whereas the enhanced phagocytosis by macrophages was observed in both NICD1+ and RBP-J+ strains. Finally, antigen presentation by LPS-stimulated DCs was significantly downregulated with NICD1 overexpression. This experimental setting allowed us to define a cell-autonomous response to Notch signaling at the trilineage progenitor stage. Although Notch signaling modulation affected the activity of all three lineages, the major effect was observed in osteoclasts, resulting in enhanced differentiation and function with inhibition of canonical Notch signaling. Our results indicate that Notch signaling participates as the negative regulator of osteoclast activity during inflammation, which may be relevant in immune and bone diseases.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Danka Grčević,
| |
Collapse
|
56
|
Katreddi RR, Taroc EZM, Hicks SM, Lin JM, Liu S, Xiang M, Forni PE. Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents. Development 2022; 149:dev200448. [PMID: 35781337 PMCID: PMC9340558 DOI: 10.1242/dev.200448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
The ability of terrestrial vertebrates to find food and mating partners, and to avoid predators, relies on the detection of chemosensory information. Semiochemicals responsible for social and sexual behaviors are detected by chemosensory neurons of the vomeronasal organ (VNO), which transmits information to the accessory olfactory bulb. The vomeronasal sensory epithelium of most mammalian species contains a uniform vomeronasal system; however, rodents and marsupials have developed a more complex binary vomeronasal system, containing vomeronasal sensory neurons (VSNs) expressing receptors of either the V1R or V2R family. In rodents, V1R/apical and V2R/basal VSNs originate from a common pool of progenitors. Using single cell RNA-sequencing, we identified differential expression of Notch1 receptor and Dll4 ligand between the neuronal precursors at the VSN differentiation dichotomy. Our experiments show that Notch signaling is required for effective differentiation of V2R/basal VSNs. In fact, Notch1 loss of function in neuronal progenitors diverts them to the V1R/apical fate, whereas Notch1 gain of function redirects precursors to V2R/basal. Our results indicate that Notch signaling plays a pivotal role in triggering the binary differentiation dichotomy in the VNO of rodents.
Collapse
Affiliation(s)
- Raghu Ram Katreddi
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sawyer M. Hicks
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jennifer M. Lin
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
57
|
Duvall K, Crist L, Perl AJ, Pode Shakked N, Chaturvedi P, Kopan R. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development 2022; 149:275412. [PMID: 35451473 PMCID: PMC9188758 DOI: 10.1242/dev.200446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Notch signaling promotes maturation of nephron epithelia, but its proposed contribution to nephron segmentation into proximal and distal domains has been called into doubt. We leveraged single cell and bulk RNA-seq, quantitative immunofluorescent lineage/fate tracing, and genetically modified human induced pluripotent stem cells (iPSCs) to revisit this question in developing mouse kidneys and human kidney organoids. We confirmed that Notch signaling is needed for maturation of all nephron lineages, and thus mature lineage markers fail to detect a fate bias. By contrast, early markers identified a distal fate bias in cells lacking Notch2, and a concomitant increase in early proximal and podocyte fates in cells expressing hyperactive Notch1 was observed. Orthogonal support for a conserved role for Notch signaling in the distal/proximal axis segmentation is provided by the demonstration that nicastrin (NCSTN)-deficient human iPSC-derived organoids differentiate into TFA2B+ distal tubule and CDH1+ connecting segment progenitors, but not into HNF4A+ or LTL+ proximal progenitors.
Collapse
Affiliation(s)
- Kathryn Duvall
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lauren Crist
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Naomi Pode Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Praneet Chaturvedi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
58
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
59
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
60
|
Khouri-Farah N, Guo Q, Morgan K, Shin J, Li JYH. Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. SCIENCE ADVANCES 2022; 8:eabl9156. [PMID: 35363520 PMCID: PMC10938588 DOI: 10.1126/sciadv.abl9156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Recent studies using single-cell RNA-sequencing have revealed cellular heterogeneity in the developing mammalian cerebellum, yet the regulatory logic underlying this cellular diversity remains to be elucidated. Using integrated single-cell RNA and ATAC analyses, we resolved developmental trajectories of cerebellar progenitors and identified putative trans- and cis-elements that control cell state transition. We reverse engineered gene regulatory networks (GRNs) of each cerebellar cell type. Through in silico simulations and in vivo experiments, we validated the efficacy of GRN analyses and uncovered the molecular control of a posterior transitory zone (PTZ), a distinct progenitor zone residing immediately anterior to the morphologically defined rhombic lip (RL). We showed that perturbing cell fate specification in the PTZ and RL causes posterior cerebellar vermis hypoplasia, the most common cerebellar birth defect in humans. Our study provides a foundation for comprehensive studies of developmental programs of the mammalian cerebellum.
Collapse
Affiliation(s)
- Nagham Khouri-Farah
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Kerry Morgan
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Jihye Shin
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
61
|
Ma T, Li X, Zhu Y, Yu S, Liu T, Zhang X, Chen D, Du S, Chen T, Chen S, Xu Y, Fan Q. Excessive Activation of Notch Signaling in Macrophages Promote Kidney Inflammation, Fibrosis, and Necroptosis. Front Immunol 2022; 13:835879. [PMID: 35280997 PMCID: PMC8913942 DOI: 10.3389/fimmu.2022.835879] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease (ESRD). Existing treatments cannot control the progression of diabetic nephropathy very well. In diabetic nephropathy, Many monocytes and macrophages infiltrate kidney tissue. However, the role of these cells in the pathogenesis of diabetic nephropathy has not been fully elucidated. In this study, we analyzed patient kidney biopsy specimens, diabetic nephropathy model animals. Meanwhile, we cocultured cells and found that in diabetic nephropathy, damaged intrinsic renal cells (glomerular mesangial cells and renal tubular epithelial cells) recruited monocytes/macrophages to the area of tissue damage to defend against and clear cell damage. This process often involved the activation of different types of macrophages. Interestingly, the infiltrating macrophages were mainly M1 (CD68+iNOS+) macrophages. In diabetic nephropathy, crosstalk between the Notch pathway and NF-κB signaling in macrophages contributed to the polarization of macrophages. Hyperpolarized macrophages secreted large amounts of inflammatory cytokines and exacerbated the inflammatory response, extracellular matrix secretion, fibrosis, and necroptosis of intrinsic kidney cells. Additionally, macrophage depletion therapy with clodronate liposomes and inhibition of the Notch pathway in macrophages alleviated the pathological changes in kidney cells. This study provides new information regarding diabetic nephropathy-related renal inflammation, the causes of macrophage polarization, and therapeutic targets for diabetic nephropathy.
Collapse
Affiliation(s)
- Tiankui Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yonghong Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Shufan Yu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianyan Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaodan Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dong Chen
- Department of Centre Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Du
- Department of Centre Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Tong Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Shuo Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Yanyan Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiuling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
62
|
Bartolomé A, Suda N, Yu J, Zhu C, Son J, Ding H, Califano A, Accili D, Pajvani UB. Notch-mediated Ephrin signaling disrupts islet architecture and β cell function. JCI Insight 2022; 7:157694. [PMID: 35167496 PMCID: PMC8986078 DOI: 10.1172/jci.insight.157694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Altered islet architecture is associated with β cell dysfunction and type 2 diabetes (T2D) progression, but molecular effectors of islet spatial organization remain mostly unknown. Although Notch signaling is known to regulate pancreatic development, we observed “reactivated” β cell Notch activity in obese mouse models. To test the repercussions and reversibility of Notch effects, we generated doxycycline-dependent, β cell–specific Notch gain-of-function mice. As predicted, we found that Notch activation in postnatal β cells impaired glucose-stimulated insulin secretion and glucose intolerance, but we observed a surprising remnant glucose intolerance after doxycycline withdrawal and cessation of Notch activity, associated with a marked disruption of normal islet architecture. Transcriptomic screening of Notch-active islets revealed increased Ephrin signaling. Commensurately, exposure to Ephrin ligands increased β cell repulsion and impaired murine and human pseudoislet formation. Consistent with our mouse data, Notch and Ephrin signaling were increased in metabolically inflexible β cells in patients with T2D. These studies suggest that β cell Notch/Ephrin signaling can permanently alter islet architecture during a morphogenetic window in early life.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, IIBm Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Nina Suda
- Department of Medicine, Columbia University, New York, United States of America
| | - Junjie Yu
- Department of Medicine, Columbia University, New York, United States of America
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, United States of America
| | - Jinsook Son
- Department of Medicine, Columbia University, New York, United States of America
| | - Hongxu Ding
- Systems Biology, Columbia University College of Physicians & Surgeons, New York, United States of America
| | - Andrea Califano
- Systems Biology, Columbia University College of Physicians & Surgeons, New York, United States of America
| | - Domenico Accili
- Department of Medicine, Columbia University, New York, United States of America
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, United States of America
| |
Collapse
|
63
|
Kurz J, Weiss AC, Thiesler H, Qasrawi F, Deuper L, Kaur J, Rudat C, Lüdtke TH, Wojahn I, Hildebrandt H, Trowe MO, Kispert A. Notch signaling is a novel regulator of visceral smooth muscle cell differentiation in the murine ureter. Development 2022; 149:274136. [DOI: 10.1242/dev.199735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/31/2021] [Indexed: 01/13/2023]
Abstract
ABSTRACT
The contractile phenotype of smooth muscle cells (SMCs) is transcriptionally controlled by a complex of the DNA-binding protein SRF and the transcriptional co-activator MYOCD. The pathways that activate expression of Myocd and of SMC structural genes in mesenchymal progenitors are diverse, reflecting different intrinsic and extrinsic signaling inputs. Taking the ureter as a model, we analyzed whether Notch signaling, a pathway previously implicated in vascular SMC development, also affects visceral SMC differentiation. We show that mice with a conditional deletion of the unique Notch mediator RBPJ in the undifferentiated ureteric mesenchyme exhibit altered ureter peristalsis with a delayed onset, and decreased contraction frequency and intensity at fetal stages. They also develop hydroureter 2 weeks after birth. Notch signaling is required for precise temporal activation of Myocd expression and, independently, for expression of a group of late SMC structural genes. Based on additional expression analyses, we suggest that a mesenchymal JAG1-NOTCH2/NOTCH3 module regulates visceral SMC differentiation in the ureter in a biphasic and bimodal manner, and that its molecular function differs from that in the vascular system.
Collapse
Affiliation(s)
- Jennifer Kurz
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Fairouz Qasrawi
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Lena Deuper
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jaskiran Kaur
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H. Lüdtke
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
64
|
Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, Carter R, Malanchi I. Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. NATURE CANCER 2022; 3:173-187. [PMID: 35221334 PMCID: PMC7612918 DOI: 10.1038/s43018-022-00336-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Radiotherapy is one of the most effective approaches to achieve tumor control in cancer patients, although healthy tissue injury due to off-target radiation exposure can occur. In this study, we used a model of acute radiation injury to the lung, in the context of cancer metastasis, to understand the biological link between tissue damage and cancer progression. We exposed healthy mouse lung tissue to radiation before the induction of metastasis and observed a strong enhancement of cancer cell growth. We found that locally activated neutrophils were key drivers of the tumor-supportive preconditioning of the lung microenvironment, governed by enhanced regenerative Notch signaling. Importantly, these tissue perturbations endowed arriving cancer cells with an augmented stemness phenotype. By preventing neutrophil-dependent Notch activation, via blocking degranulation, we were able to significantly offset the radiation-enhanced metastases. This work highlights a pro-tumorigenic activity of neutrophils, which is likely linked to their tissue regenerative functions.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | | | - Luigi Ombrato
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Adam Karoutas
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | - Nicolas Rabas
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | | | - Marcos Vasquez
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London, UK
| | | | - Stuart Horswell
- Bioinformatics & Biostatistics Unit, The Francis Crick Institute, London, UK
| | - Peter Faull
- Proteomics Unit, The Francis Crick Institute, London, UK
- Center for Biomedical Research Support Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, TX, USA
| | - Rebecca Carter
- Preclinical Radiotherapy TTP, CRUK-City of London Centre, UCL Cancer Institute, University College London, London, UK
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
65
|
Hyun J, Lee M, Rehman J, Pajcini KV, Malik AB. Notch1 promotes ordered revascularization through Semaphorin 3g modulation of downstream vascular patterning signalling factors. J Physiol 2022; 600:509-530. [PMID: 34921404 PMCID: PMC9305962 DOI: 10.1113/jp282286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
Here we genetically and functionally addressed potential pathways of Notch signalling in mediating vascular regeneration in mouse models. We first used transgenic adult mice with either gain- or loss-of-function Notch signalling in vascular endothelial cells and monitored perfusion in the hindlimb following ischaemia induced by femoral artery ligation. Mice deficient in Notch signalling showed defective perfusion recovery and expansion of collateral arteries. Transcriptomics analysis of arterial endothelial cells in the Notch mutants identified the guidance factor Sema3g as a candidate gene mediating reperfusion downstream of Notch. Studies in the retinal circulation showed the central role of SEMA3G downstream of Notch signalling in the orderly regulation of vascular patterning. These studies in multiple vascular beds show the primacy of Notch signalling and downstream generation of guidance peptides such as SEMA3G in promoting well-ordered vascular regeneration. KEY POINTS: Notch signalling is a critical mediator of revascularization. Yet the cellular processes activated during recovery following vascular injury are incompletely understood. Here we used genetic and cellular approaches in two different vascular beds and cultured endothelial cells to address the generalizability of mechanisms. By utilizing a highly reproducible murine model of hindlimb ischaemia in transgenic mice in which Notch signalling was inhibited at the transcriptional level, we demonstrated the centrality of Notch signalling in perfusion recovery and revascularization. RNA-sequencing of Notch mutants identified class 3 Semaphorins regulated by Notch signalling as downstream targets. Studies in retinal vessels and endothelial cells showed an essential role of guidance peptide Sema3g as a modulator of angiogenesis and orderly vascular patterning. The Notch to Sema3g signalling axis functions as a feedback mechanism to sculpt the growing vasculature in multiple beds.
Collapse
Affiliation(s)
- James Hyun
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Monica Lee
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
66
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
67
|
Wang S, Zhu G, Jiang D, Rhen J, Li X, Liu H, Lyu Y, Tsai P, Rose Y, Nguyen T, White RJ, Pryhuber GS, Mariani TJ, Li C, Mohan A, Xu Y, Pang J. Reduced Notch1 Cleavage Promotes the Development of Pulmonary Hypertension. Hypertension 2022; 79:79-92. [PMID: 34739767 PMCID: PMC8665100 DOI: 10.1161/hypertensionaha.120.16065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/10/2021] [Indexed: 01/03/2023]
Abstract
Clinical trials of Dll4 (Delta-like 4) neutralizing antibodies (Dll4nAbs) in cancer patients are ongoing. Surprisingly, pulmonary hypertension (PH) occurs in 14% to 18% of patients treated with Dll4nAbs, but the mechanisms have not been studied. Here, PH progression was measured in mice treated with Dll4nAbs. We detected Notch signaling in lung tissues and analyzed pulmonary vascular permeability and inflammation. Notch target gene array was performed on adult human pulmonary microvascular endothelial cells (ECs) after inhibiting Notch cleavage. Similar mechanisms were studied in PH mouse models and pulmonary arterial hypertension patients. The rescue effects of constitutively activated Notch1 in vivo were also measured. We observed that Dll4nAbs induced PH in mice as indicated by significantly increased right ventricular systolic pressure, as well as pulmonary vascular and right ventricular remodeling. Mechanistically, Dll4nAbs inhibited Notch1 cleavage and subsequently impaired lung endothelial barrier function and increased immune cell infiltration in vessel walls. In vitro, Notch targeted genes' expression related to cell growth and inflammation was decreased in human pulmonary microvascular ECs after the Notch1 inactivation. In lungs of PH mouse models and pulmonary arterial hypertension patients, Notch1 cleavage was inhibited. Consistently, EC cell-cell junction was leaky, and immune cell infiltration increased in PH mouse models. Overexpression activated Notch1-attenuated progression of PH in mice. In conclusion, Dll4nAbs led to PH development in mice by impaired EC barrier function and increased immune cell infiltration through inhibition of Notch1 cleavage in lung ECs. Reduced Notch1 cleavage in lung ECs could be an underlying mechanism of PH pathogenesis.
Collapse
Affiliation(s)
- Shumin Wang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jordan Rhen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuyan Lyu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Patrick Tsai
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Yara Rose
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tiffany Nguyen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - R. James White
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J. Mariani
- Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
- Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Li
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Amy Mohan
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
68
|
Sajadimajd S, Mohammadi B, Bahrami G, Madani SH, Hatami R, Miraghaee SS. Modulation of Notch signaling and angiogenesis via an isolated polysaccharide from
Momordica charantia
in diabetic rats. J Food Biochem 2021; 46:e14033. [DOI: 10.1111/jfbc.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, School of Sciences Razi University Kermanshah Iran
| | - Bahareh Mohammadi
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
- School of Pharmacy Kermanshah University of Medical Sciences Kermanshah Iran
| | - Seyed Hamid Madani
- Molecular Pathology Research Center, Clinical Research Development Center, Imam Reza Hospital Kermanshah University of Medical Sciences Kermanshah Iran
| | - Razieh Hatami
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Seyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
69
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
70
|
Miyamoto M, Andersen P, Sulistio E, Liu X, Murphy S, Kannan S, Nam L, Miyamoto W, Tampakakis E, Hibino N, Uosaki H, Kwon C. Noncanonical Notch signals have opposing roles during cardiac development. Biochem Biophys Res Commun 2021; 577:12-16. [PMID: 34487959 PMCID: PMC8484041 DOI: 10.1016/j.bbrc.2021.08.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The Notch pathway is an ancient intercellular signaling system with crucial roles in numerous cell-fate decision processes across species. While the canonical pathway is activated by ligand-induced cleavage and nuclear localization of membrane-bound Notch, Notch can also exert its activity in a ligand/transcription-independent fashion, which is conserved in Drosophila, Xenopus, and mammals. However, the noncanonical role remains poorly understood in in vivo processes. Here we show that increased levels of the Notch intracellular domain (NICD) in the early mesoderm inhibit heart development, potentially through impaired induction of the second heart field (SHF), independently of the transcriptional effector RBP-J. Similarly, inhibiting Notch cleavage, shown to increase noncanonical Notch activity, suppressed SHF induction in embryonic stem cell (ESC)-derived mesodermal cells. In contrast, NICD overexpression in late cardiac progenitor cells lacking RBP-J resulted in an increase in heart size. Our study suggests that noncanonical Notch signaling has stage-specific roles during cardiac development.
Collapse
Affiliation(s)
- Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Edrick Sulistio
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Xihe Liu
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Lucy Nam
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD,Present address: Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - William Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University Baltimore, MD
| | - Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University Baltimore, MD,Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Narutoshi Hibino
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
71
|
Sakamoto K, Jin SP, Goel S, Jo JH, Voisin B, Kim D, Nadella V, Liang H, Kobayashi T, Huang X, Deming C, Horiuchi K, Segre JA, Kong HH, Nagao K. Disruption of the endopeptidase ADAM10-Notch signaling axis leads to skin dysbiosis and innate lymphoid cell-mediated hair follicle destruction. Immunity 2021; 54:2321-2337.e10. [PMID: 34582748 DOI: 10.1016/j.immuni.2021.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Hair follicles (HFs) function as hubs for stem cells, immune cells, and commensal microbes, which must be tightly regulated during homeostasis and transient inflammation. Here we found that transmembrane endopeptidase ADAM10 expression in upper HFs was crucial for regulating the skin microbiota and protecting HFs and their stem cell niche from inflammatory destruction. Ablation of the ADAM10-Notch signaling axis impaired the innate epithelial barrier and enabled Corynebacterium species to predominate the microbiome. Dysbiosis triggered group 2 innate lymphoid cell-mediated inflammation in an interleukin-7 (IL-7) receptor-, S1P receptor 1-, and CCR6-dependent manner, leading to pyroptotic cell death of HFs and irreversible alopecia. Double-stranded RNA-induced ablation models indicated that the ADAM10-Notch signaling axis bolsters epithelial innate immunity by promoting β-defensin-6 expression downstream of type I interferon responses. Thus, ADAM10-Notch signaling axis-mediated regulation of host-microbial symbiosis crucially protects HFs from inflammatory destruction, which has implications for strategies to sustain tissue integrity during chronic inflammation.
Collapse
Affiliation(s)
- Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seon-Pil Jin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shubham Goel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay-Hyun Jo
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Voisin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Doyoung Kim
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nadella
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hai Liang
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Huang
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Saitama 359-8513, Japan
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
72
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
73
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
74
|
Zhang X, Tao J, Yu J, Hu N, Zhang X, Wang G, Feng J, Xiong X, Li M, Chai D, Li H, Rong Y, Tang Z, Wang W, Peng Z, Shi Q. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis 2021; 12:867. [PMID: 34556631 PMCID: PMC8460737 DOI: 10.1038/s41419-021-04160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Some individuals develop prediabetes and/or diabetes following acute pancreatitis (AP). AP-induced beta-cell injury and the limited regenerative capacity of beta cells might account for pancreatic endocrine insufficiency. Previously, we found that only a few pancreatic cytokeratin 5 positive (Krt5+) cells differentiated into beta cells in the murine AP model, which was insufficient to maintain glucose homeostasis. Notch signaling determines pancreatic progenitor differentiation in pancreas development. This study aimed to examine whether Notch signaling inhibition could promote pancreatic Krt5+ cell differentiation into beta cells and improve glucose homeostasis following AP. Pancreatic tissues from patients with acute necrotizing pancreatitis (ANP) were used to evaluate beta-cell injury, Krt5+ cell activation and differentiation, and Notch activity. The murine AP model was induced by cerulein, and the effect of Notch inhibition on Krt5+ cell differentiation was evaluated both in vivo and in vitro. The results demonstrated beta-cell loss in ANP patients and AP mice. Krt5+ cells were activated in ANP pancreases along with persistently elevated Notch activity, which resulted in the formation of massive duct-like structures. AP mice that received Notch inhibitor showed that impaired glucose tolerance was reversed 7 and 15 days following AP, and increased numbers of newborn small islets due to increased differentiation of Krt5+ cells to beta cells to some extent. In addition, Krt5+ cells isolated from AP mice showed increased differentiation to beta cells by Notch inhibition. Collectively, these findings suggest that beta-cell loss contributes to pancreatic endocrine insufficiency following AP, and inhibition of Notch activity promotes pancreatic Krt5+ cell differentiation to beta cells and improves glucose homeostasis. The findings from this study may shed light on the potential treatment of prediabetes/diabetes following AP.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Hu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuanzhe Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, USA
| | - Jiarui Feng
- Department of Medical Management, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Rong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhigang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
75
|
Lu P, Wang Y, Liu Y, Wang Y, Wu B, Zheng D, Harvey RP, Zhou B. Perinatal angiogenesis from pre-existing coronary vessels via DLL4-NOTCH1 signalling. Nat Cell Biol 2021; 23:967-977. [PMID: 34497373 DOI: 10.1038/s41556-021-00747-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
New coronary vessels are added to the heart around birth to support postnatal cardiac growth. Here we show that, in late fetal development, the embryonic coronary plexus at the inner myocardium of the ventricles expresses the angiogenic signalling factors VEGFR3 and DLL4 and generates new coronary vessels in neonates. Contrary to a previous model in which the formation of new coronary vessels in neonates from ventricular endocardial cells was proposed, we find that late fetal and neonatal ventricular endocardial cells lack angiogenic potential and do not contribute to new coronary vessels. Instead, we show using lineage-tracing as well as gain- and loss-of-function experiments that the pre-existing embryonic coronary plexus at the inner myocardium undergoes angiogenic expansion through the DLL4-NOTCH1 signalling pathway to vascularize the expanding myocardium. We also show that the pre-existing coronary plexus revascularizes the regenerating neonatal heart through a similar mechanism. These findings provide a different model of neonatal coronary angiogenesis and regeneration, potentially informing cardiovascular medicine.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yifeng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
- Departments of Pediatrics (Pediatric Genetic Medicine) and Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY, USA.
- Wilf Family Cardiovascular Research Institute and Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
76
|
Martos-Rodríguez CJ, Albarrán-Juárez J, Morales-Cano D, Caballero A, MacGrogan D, de la Pompa JL, Carramolino L, Bentzon JF. Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development. Arterioscler Thromb Vasc Biol 2021; 41:e427-e439. [PMID: 34261328 DOI: 10.1161/atvbaha.120.315627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers. Approach and Results Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ (recombination signal-binding protein for immunoglobulin kappa J region). The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development. Conclusions Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Lineage
- Cells, Cultured
- Disease Progression
- Fibrosis
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
- Tunica Media/metabolism
- Tunica Media/pathology
- Mice
Collapse
Affiliation(s)
- Carlos J Martos-Rodríguez
- Experimental Pathology of Atherosclerosis Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (C.J.M.-R., D.M.-C., A.C., L.C., J.F.B.)
| | - Julián Albarrán-Juárez
- Heart Diseases, Department of Clinical Medicine (J.A.-J., A.C., J.F.B.), Aarhus University, Denmark
| | - Daniel Morales-Cano
- Experimental Pathology of Atherosclerosis Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (C.J.M.-R., D.M.-C., A.C., L.C., J.F.B.)
| | - Ainoa Caballero
- Experimental Pathology of Atherosclerosis Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (C.J.M.-R., D.M.-C., A.C., L.C., J.F.B.)
- Heart Diseases, Department of Clinical Medicine (J.A.-J., A.C., J.F.B.), Aarhus University, Denmark
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.M., J.L.d.l.P.)
- Ciber de Enfermedades Cardiovasculares, Madrid, Spain (D.M., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.M., J.L.d.l.P.)
- Ciber de Enfermedades Cardiovasculares, Madrid, Spain (D.M., J.L.d.l.P.)
| | - Laura Carramolino
- Experimental Pathology of Atherosclerosis Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (C.J.M.-R., D.M.-C., A.C., L.C., J.F.B.)
| | - Jacob F Bentzon
- Experimental Pathology of Atherosclerosis Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (C.J.M.-R., D.M.-C., A.C., L.C., J.F.B.)
- Heart Diseases, Department of Clinical Medicine (J.A.-J., A.C., J.F.B.), Aarhus University, Denmark
- Steno Diabetes Center Aarhus, Department of Clinical Medicine (J.F.B.), Aarhus University, Denmark
| |
Collapse
|
77
|
Kryvalap Y, Jiang ML, Kryvalap N, Hendrickson C, Czyzyk J. SerpinB13 antibodies promote β cell development and resistance to type 1 diabetes. Sci Transl Med 2021; 13:13/588/eabf1587. [PMID: 33827974 DOI: 10.1126/scitranslmed.abf1587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Pancreatic endocrine cell development is dependent on the rescue of the neurogenin3 (Ngn3) transcription factor from repression by Notch. The signals that prevent Notch signaling, thereby allowing the formation of pancreatic endocrine cells, remain unclear. We show that inhibiting serpinB13, a cathepsin L (CatL) protease inhibitor expressed in the pancreatic epithelium, caused in vitro and in vivo cleavage of the extracellular domain of Notch1. This was followed by a twofold increase in the Ngn3+ progenitor cell population and enhanced conversion of these cells to express insulin. Conversely, both recombinant serpinB13 protein and CatL deficiency down-regulated pancreatic Ngn3+ cell output. Mouse embryonic exposure to inhibitory anti-serpinB13 antibody resulted in increased islet cell mass and improved outcomes in streptozotocin-induced diabetes at 8 weeks of age. Moreover, anti-serpinB13 autoantibodies stimulated Ngn3+ endocrine progenitor formation in the pancreas and were associated with delayed progression to type 1 diabetes (T1D) in children. These data demonstrate long-term impact of serpinB13 activity on islet biology and suggest that promoting protease activity by blocking this serpin may have prophylactic potential in T1D.
Collapse
Affiliation(s)
- Yury Kryvalap
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Matthew L Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Nadzeya Kryvalap
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Cole Hendrickson
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Jan Czyzyk
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Washington Ave. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
78
|
Kuriyama K, Kodama Y, Shiokawa M, Nishikawa Y, Marui S, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Matsumori T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Sakuma Y, Ota Y, Maruno T, Uza N, Kageyama R, Chiba T, Seno H. Essential role of Notch/Hes1 signaling in postnatal pancreatic exocrine development. J Gastroenterol 2021; 56:673-687. [PMID: 34128109 DOI: 10.1007/s00535-021-01779-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Notch/Hes1 signaling has been shown to play a role in determining the fate of pancreatic progenitor cells. However, its function in postnatal pancreatic maturation is not fully elucidated. METHODS We generated conditional Hes1 knockout and/or Notch intracellular domain (NICD) overexpression mice in Ptf1a- or Pdx1-positive pancreatic progenitor cells and analyzed pancreatic tissues. RESULTS Both Ptf1acre/+; Hes1f/f and Ptf1acre/+; Rosa26NICD mice showed normal pancreatic development at P0. However, exocrine tissue of the pancreatic tail in Ptf1acre/+; Hes1f/f mice atrophied and was replaced by fat tissue by 4 weeks of age, with increased apoptotic cells and fewer centroacinar cells. This impaired exocrine development was completely rescued by NICD overexpression in Ptf1acre/+; Hes1f/f; Rosa26NICD mice, suggesting compensation by a Notch signaling pathway other than Hes1. Conversely, Pdx1-Cre; Hes1f/f mice showed impaired postnatal exocrine development in both the pancreatic head and tail, revealing that the timing and distribution of embryonic Hes1 expression affects postnatal exocrine tissue development. CONCLUSIONS Notch signaling has an essential role in pancreatic progenitor cells for the postnatal maturation of exocrine tissue, partly through the formation of centroacinar cells.
Collapse
Affiliation(s)
- Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Kansai Electric Power Hospital, 2-1-7 Fukushima, Fukushima-ku, Osaka, 553-0003, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
79
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
80
|
Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov 2021; 7:138. [PMID: 34112759 PMCID: PMC8192546 DOI: 10.1038/s41420-021-00522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
The pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1—a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer—is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.
Collapse
|
81
|
Notch signaling promotes disease initiation and progression in murine chronic lymphocytic leukemia. Blood 2021; 137:3079-3092. [PMID: 33512383 DOI: 10.1182/blood.2020006701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
NOTCH1 gain-of-function mutations are recurrent in B-cell chronic lymphocytic leukemia (B-CLL), where they are associated with accelerated disease progression and refractoriness to chemotherapy. The specific role of NOTCH1 in the development and progression of this malignancy is unclear. Here, we assess the impact of loss of Notch signaling and pathway hyperactivation in an in vivo mouse model of CLL (IgH.TEμ) that faithfully replicates many features of the human pathology. Ablation of canonical Notch signaling using conditional gene inactivation of RBP-J in immature hematopoietic or B-cell progenitors delayed CLL induction and reduced incidence of mice developing disease. In contrast, forced expression of a dominant active form of Notch resulted in more animals developing CLL with early disease onset. Comparative analysis of gene expression and epigenetic features of Notch gain-of-function and control CLL cells revealed direct and indirect regulation of cell cycle-associated genes, which led to increased proliferation of Notch gain-of-function CLL cells in vivo. These results demonstrate that Notch signaling facilitates disease initiation and promotes CLL cell proliferation and disease progression.
Collapse
|
82
|
Yum MK, Han S, Fink J, Wu SHS, Dabrowska C, Trendafilova T, Mustata R, Chatzeli L, Azzarelli R, Pshenichnaya I, Lee E, England F, Kim JK, Stange DE, Philpott A, Lee JH, Koo BK, Simons BD. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 2021; 594:442-447. [PMID: 34079126 PMCID: PMC7614896 DOI: 10.1038/s41586-021-03605-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.
Collapse
Affiliation(s)
- Min Kyu Yum
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Juergen Fink
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Catherine Dabrowska
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Teodora Trendafilova
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roxana Mustata
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lemonia Chatzeli
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roberta Azzarelli
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Irina Pshenichnaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Frances England
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Anna Philpott
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Joo-Hyeon Lee
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
83
|
Zhang T, Liu T, Mora N, Guegan J, Bertrand M, Contreras X, Hansen AH, Streicher C, Anderle M, Danda N, Tiberi L, Hippenmeyer S, Hassan BA. Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Rep 2021; 35:109208. [PMID: 34107249 DOI: 10.1016/j.celrep.2021.109208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Brain neurons arise from relatively few progenitors generating an enormous diversity of neuronal types. Nonetheless, a cardinal feature of mammalian brain neurogenesis is thought to be that excitatory and inhibitory neurons derive from separate, spatially segregated progenitors. Whether bi-potential progenitors with an intrinsic capacity to generate both lineages exist and how such a fate decision may be regulated are unknown. Using cerebellar development as a model, we discover that individual progenitors can give rise to both inhibitory and excitatory lineages. Gradations of Notch activity determine the fates of the progenitors and their daughters. Daughters with the highest levels of Notch activity retain the progenitor fate, while intermediate levels of Notch activity generate inhibitory neurons, and daughters with very low levels of Notch signaling adopt the excitatory fate. Therefore, Notch-mediated binary cell fate choice is a mechanism for regulating the ratio of excitatory to inhibitory neurons from common progenitors.
Collapse
Affiliation(s)
- Tingting Zhang
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France; Doctoral School of Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Tengyuan Liu
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France; Doctoral School of Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Natalia Mora
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Justine Guegan
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mathilde Bertrand
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Natasha Danda
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Bassem A Hassan
- Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
84
|
Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1. Blood 2021; 137:646-660. [PMID: 33538798 DOI: 10.1182/blood.2020005734] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Richter's transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase-associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent mutations, we identified a profile of genomic aberrations intermediate between CLL and diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells.
Collapse
|
85
|
Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P. Hippo Signaling Pathway in Pancreas Development. Front Cell Dev Biol 2021; 9:663906. [PMID: 34079799 PMCID: PMC8165189 DOI: 10.3389/fcell.2021.663906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is a vital regulator of pancreatic development and homeostasis, directing cell fate decisions, morphogenesis, and adult pancreatic cellular plasticity. Through loss-of-function research, Hippo signaling has been found to play key roles in maintaining the proper balance between progenitor cell renewal, proliferation, and differentiation in pancreatic organogenesis. Other studies suggest that overactivation of YAP, a downstream effector of the pathway, promotes ductal cell development and suppresses endocrine cell fate specification via repression of Ngn3. After birth, disruptions in Hippo signaling have been found to lead to de-differentiation of acinar cells and pancreatitis-like phenotype. Further, Hippo signaling directs pancreatic morphogenesis by ensuring proper cell polarization and branching. Despite these findings, the mechanisms through which Hippo governs cell differentiation and pancreatic architecture are yet to be fully understood. Here, we review recent studies of Hippo functions in pancreatic development, including its crosstalk with NOTCH, WNT/β-catenin, and PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pauline Aegerter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Michael Nipper
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Logan Ramjit
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jun Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pei Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
86
|
Abstract
Background: Several mechanisms likely cooperate with the mitogen-activated protein (MAP)-kinase pathway to promote cancer progression in the thyroid. One putative pathway is NOTCH signaling, which is implicated in several other malignancies. In thyroid cancer, data regarding the role of the NOTCH pathway are insufficient and even contradictory. Methods: A BRAFV600E-driven papillary thyroid carcinoma (PTC) mouse model was subjected to NOTCH pathway genetic alterations, and the tumor burden was followed by ultrasound. Further analyses were performed on PTC cell lines or noncancerous cells transfected with NOTCHIC or BRAFV600E, which were then subjected to pharmacological treatment with MAP-kinase or NOTCH pathway inhibitors. Results: The presence of the BRAFV600E mutation coupled with overexpression of the NOTCH intracellular domain led to significantly bigger thyroid tumors in mice, to a more aggressive carcinoma, and decreased overall survival. Although more cystic, the tumors did not progress into anaplastic thyroid carcinomas. On the contrary, the deletion of RBP-jκ (a major cofactor involved in NOTCH signaling) did not alter the phenotype in mice. BRAFV600E-mutated PTC cell lines were resistant to pharmacological inhibition of the NOTCH pathway. Inhibition of MEK1/2 uncovered a predominant effect on Hes1/Hey1 transcription compared with NOTCH inhibition in BRAFV600E-mutated cell lines. Finally, γ-secretase activity and γ-secretase subunit transcription levels were dependent on ERK activation. Our findings suggest that MAP-kinase activity overrides the NOTCH pathway in the context of thyroid cancer. Conclusions: The interaction between the BRAF and NOTCH pathways demonstrates that the BRAFV600E mutation might bypass NOTCH and exert a strong positive effect on NOTCH downstream targets in thyroid carcinoma.
Collapse
Affiliation(s)
- Florian Traversi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | | | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
87
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
88
|
Huang L, Desai R, Conrad DN, Leite NC, Akshinthala D, Lim CM, Gonzalez R, Muthuswamy LB, Gartner Z, Muthuswamy SK. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 2021; 28:1090-1104.e6. [PMID: 33915081 PMCID: PMC8202734 DOI: 10.1016/j.stem.2021.03.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.
Collapse
Affiliation(s)
- Ling Huang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ridhdhi Desai
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel N Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nayara C Leite
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dipikaa Akshinthala
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christine Maria Lim
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Raul Gonzalez
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lakshmi B Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA; NSF Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
89
|
Loe AKH, Francis R, Seo J, Du L, Wang Y, Kim JE, Hakim SW, Kim JE, He HH, Guo H, Kim TH. Uncovering the dosage-dependent roles of Arid1a in gastric tumorigenesis for combinatorial drug therapy. J Exp Med 2021; 218:211950. [PMID: 33822841 PMCID: PMC8034383 DOI: 10.1084/jem.20200219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most common deadly cancers in the world. Although patient genomic data have identified AT-rich interaction domain 1A (ARID1A), a key chromatin remodeling complex subunit, as the second most frequently mutated gene after TP53, its in vivo role and relationship to TP53 in gastric tumorigenesis remains unclear. Establishing a novel mouse model that reflects the ARID1A heterozygous mutations found in the majority of human GC cases, we demonstrated that Arid1a heterozygosity facilitates tumor progression through a global loss of enhancers and subsequent suppression of the p53 and apoptosis pathways. Moreover, mouse genetic and single-cell analyses demonstrated that the homozygous deletion of Arid1a confers a competitive disadvantage through the activation of the p53 pathway, highlighting its distinct dosage-dependent roles. Using this unique vulnerability of Arid1a mutated GC cells, our combined treatment with the epigenetic inhibitor, TP064, and the p53 agonist, Nutlin-3, inhibited growth of Arid1a heterozygous tumor organoids, providing a novel therapeutic option for GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roshane Francis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jieun Seo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shaheed W Hakim
- St. Joseph's Health Centre, Unity Health Toronto, Toronto, Ontario, Canada
| | - Jung-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Haiyang Guo
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
90
|
Zhu C, Ho YJ, Salomao MA, Dapito DH, Bartolome A, Schwabe RF, Lee JS, Lowe SW, Pajvani UB. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J Hepatol 2021; 74:613-626. [PMID: 33038431 PMCID: PMC7897246 DOI: 10.1016/j.jhep.2020.09.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The hepatocyte Notch pathway is a pathogenic factor in non-alcoholic steatohepatitis (NASH)-associated fibrosis, but its role in hepatocellular carcinoma (HCC) is less well defined. Herein, we aimed to characterize the molecular and clinical features of Notch-active human HCC, and to investigate the mechanisms by which Notch affects NASH-driven HCC. METHODS Using a 14-gene Notch score, we stratified human HCCs from multiple comprehensively profiled datasets. We performed gene set enrichment analyses to compare Notch-active HCCs with published HCC subtype signatures. Next, we sorted Notch-active hepatocytes from Notch reporter mice for RNA sequencing and characterized Notch-active tumors in an HCC model combining a carcinogen and a NASH-inducing diet. We used genetic mouse models to manipulate hepatocyte Notch to investigate the sufficiency and necessity of Notch in NASH-driven tumorigenesis. RESULTS Notch-active signatures were found in ~30% of human HCCs that transcriptionally resemble cholangiocarcinoma-like HCC, exhibiting a lack of activating CTNNB1 (β-catenin) mutations and a generally poor prognosis. Endogenous Notch activation in hepatocytes is associated with repressed β-catenin signaling and hepatic metabolic functions, in lieu of increased interactions with the extracellular matrix in NASH. Constitutive hepatocyte Notch activation is sufficient to induce β-catenin-inactive HCC in mice with NASH. Notch and β-catenin show a pattern of mutual exclusivity in carcinogen-induced HCC; in this mouse model, chronic blockade of Notch led to β-catenin-dependent tumor development. CONCLUSIONS Notch activity characterizes a distinct HCC molecular subtype with unique histology and prognosis. Sustained Notch signaling in chronic liver diseases can drive tumor formation without acquiring specific genomic driver mutations. LAY SUMMARY The Notch signaling pathway is known to be involved in the pathogenesis of liver fibrosis. However, its role in liver cancer has not been well defined. Herein, we show that Notch activity is increased in a subset of liver cancers and is associated with poor outcomes. We also used a mouse model to show that aberrant Notch activity can drive cancer progression in obese mice.
Collapse
Affiliation(s)
- Changyu Zhu
- Department of Medicine, Columbia University, New York, NY, USA;,Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcela A. Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY, USA;,Corresponding author: Utpal B. Pajvani, Department of Medicine, Columbia University, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, New York, NY, 10032. ; fax: (212) 851-5493
| |
Collapse
|
91
|
Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, Varet H, Legendre R, Pawlotsky JM, Sampaolesi M, Voet T, Maire P, Relaix F, Mourikis P. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 2021; 28:1125-1135.e7. [PMID: 33609440 DOI: 10.1016/j.stem.2021.01.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022]
Abstract
Tissue damage dramatically alters how cells interact with their microenvironment. These changes in turn dictate cellular responses, such as stem cell activation, yet early cellular responses in vivo remain ill defined. We generated single-cell and nucleus atlases from intact, dissociated, and injured muscle and liver and identified a common stress response signature shared by multiple cell types across these organs. This prevalent stress response was detected in published datasets across a range of tissues, demonstrating high conservation but also a significant degree of data distortion in single-cell reference atlases. Using quiescent muscle stem cells as a paradigm of cell activation following injury, we captured early cell activation following muscle injury and found that an essential ERK1/2 primary proliferation signal precedes initiation of the Notch-regulated myogenic program. This study defines initial events in response to tissue perturbation and identifies a broadly conserved transcriptional stress response that acts in parallel with cell-specific adaptive alterations.
Collapse
Affiliation(s)
- Léo Machado
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Perla Geara
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Jordi Camps
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Bayer AG, 13353 Berlin, Germany
| | | | | | - Jens Van Herck
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France; Plate-forme Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015 Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France; Plate-forme Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015 Paris, France
| | - Jean-Michel Pawlotsky
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; Département de Virologie, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | - Frederic Relaix
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France; EFS, IMRB, 94010 Creteil, France; AP-HP, Hopital Mondor, Service d'histologie, F-94010 Creteil, France.
| | | |
Collapse
|
92
|
Kim JH, Park I, Shin HR, Rhee J, Seo JY, Jo YW, Yoo K, Hann SH, Kang JS, Park J, Kim YL, Moon JY, Choi MH, Kong YY. The hypothalamic-pituitary-gonadal axis controls muscle stem cell senescence through autophagosome clearance. J Cachexia Sarcopenia Muscle 2021; 12:177-191. [PMID: 33244887 PMCID: PMC7890269 DOI: 10.1002/jcsm.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated β-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research, University of California, Berkeley, CA, USA
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jieon Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Yeon Moon
- College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, KIST, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
93
|
Harro CM, Perez-Sanz J, Costich TL, Payne KK, Anadon CM, Chaurio RA, Biswas S, Mandal G, Rigolizzo KE, Sprenger KB, Mine JA, Showe LC, Yu X, Liu K, Rodriguez PC, Pinilla-Ibarz J, Sokol L, Conejo-Garcia JR. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest 2021; 131:135711. [PMID: 33270606 PMCID: PMC7843215 DOI: 10.1172/jci135711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/25/2020] [Indexed: 12/27/2022] Open
Abstract
Cutaneous T cell lymphoma (CTCL) has a poorly understood etiology and no known cure. Using conditional knockout mice, we found that ablation of the genomic organizer special AT-rich sequence-binding protein 1 (Satb1) caused malignant transformation of mature, skin-homing, Notch-activated CD4+ and CD8+ T cells into progressively fatal lymphoma. Mechanistically, Satb1 restrained Stat5 phosphorylation and the expression of skin-homing chemokine receptors in mature T cells. Notably, methyltransferase-dependent epigenetic repression of SATB1 was universally found in human Sézary syndrome, but not in other peripheral T cell malignancies. H3K27 and H3K9 trimethylation occluded the SATB1 promoter in Sézary cells, while inhibition of SUV39H1/2 methyltransferases (unlike EZH2 inhibition) restored protective SATB1 expression and selectively abrogated the growth of primary Sézary cells more effectively than romidepsin. Therefore, inhibition of methyltransferases that silence SATB1 could address an unmet need for patients with mycosis fungoides/Sézary syndrome, a set of incurable diseases.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, and
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, Florida, and H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jairo Perez-Sanz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kyle K. Payne
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kristen E. Rigolizzo
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Louise C. Showe
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
94
|
Sim EZ, Shiraki N, Kume S. Recent progress in pancreatic islet cell therapy. Inflamm Regen 2021; 41:1. [PMID: 33402224 PMCID: PMC7784351 DOI: 10.1186/s41232-020-00152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells (PSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising cell sources in regenerating pancreatic islets through in vitro directed differentiation. Recent progress in this research field has made it possible to generate glucose-responsive pancreatic islet cells from PSCs. Single-cell RNA sequencing techniques have been applied to analyze PSC-derived endocrine beta-cells, which are then compared with human islets. This has led to the identification of novel signaling pathways and molecules involved in lineage commitment during pancreatic differentiation and maturation processes. Single-cell transcriptomics are also used to construct a detailed map of in vivo endocrine differentiation of developing mouse embryos to study pancreatic islet development. Mimicking those occurring in vivo, it was reported that differentiating PSCs can generate similar islet cell structures, while metabolomics analysis highlighted key components involved in PSC-derived pancreatic islet cell function, providing information for the improvement of in vitro pancreatic maturation procedures. In addition, cell transplantation into diabetic animal models, together with the cell delivery system, is studied to ensure the therapeutic potentials of PSC-derived pancreatic islet cells. Combined with gene-editing technology, the engineered mutation-corrected PSC lines originated from diabetes patients could be differentiated into functional pancreatic islet cells, suggesting possible autologous cell therapy in the future. These PSC-derived pancreatic islet cells are a potential tool for studies of disease modeling and drug testing. Herein, we outlined the directed differentiation procedures of PSC-derived pancreatic islet cells, novel findings through transcriptome and metabolome studies, and recent progress in disease modeling.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
95
|
Webb LMC, Fra‐Bido S, Innocentin S, Matheson LS, Attaf N, Bignon A, Novarino J, Fazilleau N, Linterman MA. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell 2021; 20:e13295. [PMID: 33387451 PMCID: PMC7811847 DOI: 10.1111/acel.13295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing profoundly changes our immune system and is thought to be a driving factor in the morbidity and mortality associated with infectious disease in older people. We have previously shown that the impaired immunity to vaccination that occurs in aged individuals is partly attributed to the effect of age on T follicular helper (Tfh) cell formation. In this study, we examined how age intrinsically affects Tfh cell formation in both mice and humans. We show increased formation of Tfh precursors (pre-Tfh) but no associated increase in germinal centre (GC)-Tfh cells in aged mice, suggesting age-driven promotion of only early Tfh cell differentiation. Mechanistically, we show that ageing alters TCR signalling which drives expression of the Notch-associated transcription factor, RBPJ. Genetic or chemical modulation of RBPJ or Notch rescues this age-associated early Tfh cell differentiation, and increased intrinsic Notch activity recapitulates this phenomenon in younger mice. Our data offer mechanistic insight into the age-induced changes in T-cell activation that affects the differentiation and ultimately the function of effector T cells.
Collapse
Affiliation(s)
- Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Sigrid Fra‐Bido
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Louise S. Matheson
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Noudjoud Attaf
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | - Alexandre Bignon
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Julien Novarino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | | |
Collapse
|
96
|
Najumudeen AK, Ceteci F, Fey SK, Hamm G, Steven RT, Hall H, Nikula CJ, Dexter A, Murta T, Race AM, Sumpton D, Vlahov N, Gay DM, Knight JRP, Jackstadt R, Leach JDG, Ridgway RA, Johnson ER, Nixon C, Hedley A, Gilroy K, Clark W, Malla SB, Dunne PD, Rodriguez-Blanco G, Critchlow SE, Mrowinska A, Malviya G, Solovyev D, Brown G, Lewis DY, Mackay GM, Strathdee D, Tardito S, Gottlieb E, Takats Z, Barry ST, Goodwin RJA, Bunch J, Bushell M, Campbell AD, Sansom OJ. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat Genet 2021; 53:16-26. [PMID: 33414552 DOI: 10.1038/s41588-020-00753-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023]
Abstract
Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.
Collapse
Affiliation(s)
| | - Fatih Ceteci
- Cancer Research UK Beatson Institute, Glasgow, UK
- Georg Speyer Haus Institute for Tumour Biology and Experimental Therapy, Paul-Ehrlich-Straße, Frankfurt, Germany
| | - Sigrid K Fey
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Gregory Hamm
- Imaging and data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rory T Steven
- National Physical Laboratory, Teddington, Middlesex, UK
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Alex Dexter
- National Physical Laboratory, Teddington, Middlesex, UK
| | - Teresa Murta
- National Physical Laboratory, Teddington, Middlesex, UK
| | - Alan M Race
- Imaging and data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Institute of Medical Bioinformatics and Biostatistics, University of Marburg, Marburg, Germany
| | | | | | - David M Gay
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Københavns Universitet, BRIC, Copenhagen, Denmark
| | | | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), Division of Cancer Progression and Metastasis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Sudhir B Malla
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | - Gavin Brown
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Eyal Gottlieb
- Cancer Research UK Beatson Institute, Glasgow, UK
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zoltan Takats
- Department of Metabolism, Imperial College London, London, UK
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Imaging and data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
97
|
Eom YS, Gwon AR, Kwak KM, Youn JY, Park H, Kim KW, Kim BJ. Notch1 Has an Important Role in β-Cell Mass Determination and Development of Diabetes. Diabetes Metab J 2021; 45:86-96. [PMID: 32174059 PMCID: PMC7850870 DOI: 10.4093/dmj.2019.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Notch signaling pathway plays an important role in regulating pancreatic endocrine and exocrine cell fate during pancreas development. Notch signaling is also expressed in adult pancreas. There are few studies on the effect of Notch on adult pancreas. Here, we investigated the role of Notch in islet mass and glucose homeostasis in adult pancreas using Notch1 antisense transgenic (NAS). METHODS Western blot analysis was performed for the liver of 8-week-old male NAS mice. We also conducted an intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test in 8-week-old male NAS mice and male C57BL/6 mice (control). Morphologic observation of pancreatic islet and β-cell was conducted in two groups. Insulin secretion capacity in islets was measured by glucose-stimulated insulin secretion (GSIS) and perifusion. RESULTS NAS mice showed higher glucose levels and lower insulin secretion in IPGTT than the control mice. There was no significant difference in insulin resistance. Total islet and β-cell masses were decreased in NAS mice. The number of large islets (≥250 µm) decreased while that of small islets (<250 µm) increased. Reduced insulin secretion was observed in GSIS and perifusion. Neurogenin3, neurogenic differentiation, and MAF bZIP transcription factor A levels increased in NAS mice. CONCLUSION Our study provides that Notch1 inhibition decreased insulin secretion and decreased islet and β-cell masses. It is thought that Notch1 inhibition suppresses islet proliferation and induces differentiation of small islets. In conclusion, Notch signaling pathway may play an important role in β-cell mass determination and diabetes.
Collapse
Affiliation(s)
- Young Sil Eom
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - A-Ryeong Gwon
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyung Min Kwak
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jin-Young Youn
- Institute of Clinical Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Heekyoung Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kwang-Won Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Byung-Joon Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
98
|
Vanderkerken M, Maes B, Vandersarren L, Toussaint W, Deswarte K, Vanheerswynghels M, Pouliot P, Martens L, Van Gassen S, Arthur CM, Kirkling ME, Reizis B, Conrad D, Stowell S, Hammad H, Lambrecht BN. TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proc Natl Acad Sci U S A 2020; 117:31331-31342. [PMID: 33214146 PMCID: PMC7733863 DOI: 10.1073/pnas.2009847117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lana Vandersarren
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Philippe Pouliot
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Van Gassen
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Margaret E Kirkling
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Daniel Conrad
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298
| | - Sean Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
99
|
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2020; 2:1443-1458. [PMID: 33257854 PMCID: PMC7744443 DOI: 10.1038/s42255-020-00314-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022]
Abstract
The in vitro differentiation of insulin-producing beta-like cells can model aspects of human pancreatic development. Here, we generate 95,308 single-cell transcriptomes and reconstruct a lineage tree of the entire differentiation process from human embryonic stem cells to beta-like cells to study temporally regulated genes during differentiation. We identify so-called 'switch genes' at the branch point of endocrine/non-endocrine cell fate choice, revealing insights into the mechanisms of differentiation-promoting reagents, such as NOTCH and ROCKII inhibitors, and providing improved differentiation protocols. Over 20% of all detectable genes are activated multiple times during differentiation, even though their enhancer activation is usually unimodal, indicating extensive gene reuse driven by different enhancers. We also identify a stage-specific enhancer at the TCF7L2 locus for diabetes, uncovered by genome-wide association studies, that drives a transient wave of gene expression in pancreatic progenitors. Finally, we develop a web app to visualize gene expression on the lineage tree, providing a comprehensive single-cell data resource for researchers studying islet biology and diabetes.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Master of Science in Biology Program, Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Department of Electrical Engineering and Computer Science, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
100
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|