51
|
Getachew Y, James L, Lee WM, Thiele DL, Miller BC. Susceptibility to acetaminophen (APAP) toxicity unexpectedly is decreased during acute viral hepatitis in mice. Biochem Pharmacol 2009; 79:1363-71. [PMID: 20036646 DOI: 10.1016/j.bcp.2009.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 01/27/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity results from cytochrome P450 metabolism of APAP to the toxic metabolite, n-acetyl-benzoquinone imine (NAPQI), which reacts with cysteinyl residues to form APAP adducts and initiates cell injury. As APAP is commonly used during viral illnesses there has been concern that APAP injury may be additive to that of viral hepatitis, leading physicians to advise against its use in such patients; this has not been investigated experimentally. We infected C57BL/6 male mice with replication-deficient adenovirus to produce moderately severe acute viral hepatitis and observed that APAP doses that were hepatotoxic or lethal in control mice produced neither death nor additional increase in serum ALT when administered to infected mice at the peak of virus-induced liver injury. Moreover, the concentration of hepatic APAP-protein adducts formed in these mice was only 10% that in control mice. Protection from APAP hepatotoxicity also was observed earlier in the course of infection, prior to the peak virus-induced ALT rise. Hepatic glutathione limits APAP-protein adduct formation but glutathione levels were similar in control and infected mice. Cyp1a2 (E.C. 1.14.14.1) and Cyp2e1 (E.C. 1.14.13.n7) mRNA expression decreased by 3 days post-infection and hepatic Cyp2e1 protein levels were reduced almost 90% at 7 days, when adduct formation was maximally inhibited. In vitro, hepatocytes from virally infected mice also were resistant to APAP-induced injury but sensitive to NAPQI. Rather than potentiating APAP-induced liver injury, acute viral hepatitis in this model resulted in selective down-regulation of APAP metabolizing P450s in liver and decreased the risk of APAP hepatotoxicity.
Collapse
Affiliation(s)
- Yonas Getachew
- Division of Liver and Digestive Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
52
|
Nair SR, Zelinskyy G, Schimmer S, Gerlach N, Kassiotis G, Dittmer U. Mechanisms of control of acute Friend virus infection by CD4+ T helper cells and their functional impairment by regulatory T cells. J Gen Virol 2009; 91:440-51. [DOI: 10.1099/vir.0.015834-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
53
|
Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity. PLoS One 2009; 4:e6376. [PMID: 19652717 PMCID: PMC2715858 DOI: 10.1371/journal.pone.0006376] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022] Open
Abstract
Background Hepatic gene transfer, in particular using adeno-associated viral (AAV) vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein. Major Findings AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic β-galactosidase (β-gal) was performed in immune competent mice, followed by a secondary β-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in ∼2% of hepatocytes almost completely protected from inflammatory T cell responses against β-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, ∼10% of hepatocytes continued to express β-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8+ T cell responses to β-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer. Conclusions These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.
Collapse
|
54
|
Woodworth JS, Wu Y, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8595-603. [PMID: 19050279 PMCID: PMC3133658 DOI: 10.4049/jimmunol.181.12.8595] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optimal immunity to Mycobacterium tuberculosis (Mtb) infection requires CD8(+) T cells, and several current Mtb vaccine candidates are being engineered to elicit enhanced CD8(+) T cell responses. However, the function of these T cells and the mechanism by which they provide protection is still unknown. We have previously shown that CD8(+) T cells specific for the mycobacterial Ags CFP10 and TB10.4 accumulate in the lungs of mice following Mtb infection and have cytolytic activity in vivo. In this study, we determine which cytolytic pathways are used by these CD8(+) T cells during Mtb infection. We find that Mtb-specific CD8(+) T cells lacking perforin have reduced cytolytic capacity in vivo. In the absence of perforin, the residual cytolytic activity is CD95 and TNFR dependent. This is particularly true in Mtb-infected lung tissue where disruption of both perforin and CD95 eliminates target cell lysis. Moreover, adoptive transfer of immune CD8(+) T cells isolated from wild-type, but not perforin-deficient mice, protect recipient mice from Mtb infection. We conclude that CD8(+) T cells elicited following Mtb infection use several cytolytic pathways in a hierarchical and compensatory manner dominated by perforin-mediated cytolysis. Finally, although several cytolytic pathways are available, adoptively transferred Mtb-specific CD8(+) T cells require perforin-mediated cytolysis to protect animals from infection. These data show that CD8(+) T cell-mediated protection during Mtb infection requires more than the secretion of IFN-gamma and specifically defines the CD8(+) cytolytic mechanisms utilized and required in vivo.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Histocompatibility Antigens Class I/administration & dosage
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Mycobacterium tuberculosis/immunology
- Perforin/administration & dosage
- Perforin/deficiency
- Perforin/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- T-Lymphocytes, Cytotoxic/transplantation
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- Joshua S. Woodworth
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Ying Wu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Samuel M. Behar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
55
|
GammadeltaT cells initiate acute inflammation and injury in adenovirus-infected liver via cytokine-chemokine cross talk. J Virol 2008; 82:9564-76. [PMID: 18667515 DOI: 10.1128/jvi.00927-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emerging studies suggest an important role for the innate immune response in replication-defective adenovirus (Ad)-mediated acute liver toxicity. Specifically, classical innate immune cells (including NK cells, neutrophils, and Kupffer cells) have all been implicated in the development of Ad-mediated acute liver toxicity. The nonclassical innate immune T cell, the gammadeltaT cell, has been implicated in the pathophysiology of several viral infections that predominantly affect the mucosa and brain, but the specific role in the pathology of AdLacZ-mediated acute liver inflammation and injury as well as accompanying vector clearance is largely unknown. In the present study, we demonstrated that a CXCL9-CXCR3-dependent mechanism governed the accumulation of gammadeltaT cells in the livers of mice infected with Ad expressing the Escherichia coli LacZ gene (AdLacZ). We also showed a critical role for gammadeltaT cells in initiating acute liver toxicity after AdLacZ administration, driven in part by the ability of gammadeltaT cells to promote the recruitment of the conventional T cell, the CD8(+) T cell, into the liver. Furthermore, reduced hepatic injury in AdLacZ-infected gammadeltaT-cell-deficient mice was associated with lower hepatic levels of gamma interferon (IFN-gamma) and CXCL9, an IFN-gamma-inducible chemokine. Finally, our study highlighted a key role for IFN-gamma and CXCL9 cross talk acting in a feedback loop to drive the proinflammatory effects of gammadeltaT cells during AdLacZ-mediated acute liver toxicity. Specifically, intracellular IFN-gamma produced by activated hepatic gammadeltaT cells interacts with hepatocytes to mediate hepatic CXCL9 production, with the consequent accumulation of CXCR3-bearing gammadeltaT cells in the liver to cause acute liver damage without vector clearance.
Collapse
|
56
|
Burt BM, Plitas G, Stableford JA, Nguyen HM, Bamboat ZM, Pillarisetty VG, DeMatteo RP. CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis. J Leukoc Biol 2008; 84:1039-46. [PMID: 18664530 DOI: 10.1189/jlb.0408256] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The liver contains a unique repertoire of immune cells and a particular abundance of NK cells. We have found that CD11c defines a distinct subset of NK cells (NK1.1(+)CD3(-)) in the murine liver whose function was currently unknown. In naïve animals, CD11c(+) liver NK cells displayed an activated phenotype and possessed enhanced effector functions when compared with CD11c(-) liver NK cells. During the innate response to adenovirus infection, CD11c(+) NK cells were the more common IFN-gamma-producing NK cells in the liver, demonstrated enhanced lytic capability, and gained a modest degree of APC function. The mechanism of IFN-gamma production in vivo depended on TLR9 ligation as well as IL-12 and -18. Taken together, our findings demonstrate that CD11c(+) NK cells are a unique subset of NK cells in the murine liver that contribute to the defense against adenoviral hepatitis.
Collapse
Affiliation(s)
- Bryan M Burt
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Lukens JR, Cruise MW, Lassen MG, Hahn YS. Blockade of PD-1/B7-H1 interaction restores effector CD8+ T cell responses in a hepatitis C virus core murine model. THE JOURNAL OF IMMUNOLOGY 2008; 180:4875-84. [PMID: 18354211 DOI: 10.4049/jimmunol.180.7.4875] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8(+) T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-gamma, TNF-alpha, and granzyme B production by CD8(+) T cells. In addition, the impaired CD8(+) T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8(+) T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8(+) T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection.
Collapse
Affiliation(s)
- John R Lukens
- Beirne Carter Center for Immunology Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
58
|
Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L, Barry F, O'Brien T, Zwacka R. Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 2008; 12:2628-43. [PMID: 18373740 PMCID: PMC3828879 DOI: 10.1111/j.1582-4934.2008.00317.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is a major public health problem in the western world, and gene therapy strategies to tackle this disease systemically are often impaired by inefficient delivery of the vector to the tumour tissue. Some of the main factors inhibiting systemic delivery are found in the blood stream in the form of red and white blood cells (WBCs) and serum components. Mesenchymal stem cells (MSCs) have been shown to home to tumour sites and could potentially act as a shield and vehicle for a tumouricidal gene therapy vector. Here, we describe the ability of an adenoviral vector expressing TRAIL (Ad.TR) to transduce MSCs and show the apoptosis-inducing activity of these TRAIL-carrying MSCs on A549 lung carcinoma cells. Intriguingly, using MSCs transduced with Ad.enhanced-green-fluorescent-protein (EGFP) we could show transfer of viral DNA to cocultured A549 cells resulting in transgenic protein production in these cells, which was not inhibited by exposure of MSCs to human serum containing high levels of adenovirus neutralizing antibodies. Furthermore, Ad.TR-transduced MSCs were shown not to induce T-cell proliferation, which may have resulted in cytotoxic T-cell-mediated apoptosis induction in the Ad.TR-transduced MSCs. Apoptosis was also induced in A549 cells by Ad.TR-transduced MSCs in the presence of physiological concentrations of WBC, erythrocytes and sera from human donors that inhibit or neutralize adenovirus alone. Moreover, we could show tumour growth reduction with TRAIL-loaded MSCs in an A549 xenograft mouse model. This is the first study that demonstrates the potential therapeutic utility of Ad.TR-transduced MSCs in cancer cells and the stability of this vector in the context of the blood environment.
Collapse
Affiliation(s)
- Andrea Mohr
- Molecular Therapeutics Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Novy P, Quigley M, Huang X, Yang Y. CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. THE JOURNAL OF IMMUNOLOGY 2008; 179:8243-51. [PMID: 18056368 DOI: 10.4049/jimmunol.179.12.8243] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of CD4 T cell help in primary and secondary CD8 T cell responses to infectious pathogens remains incompletely defined. The primary CD8 T response to infections was initially thought to be largely independent of CD4 T cells, but it is not clear why some primary, pathogen-specific CD8 T cell responses are CD4 T cell dependent. Furthermore, although the generation of functional memory CD8 T cells is CD4 T cell help dependent, it remains controversial when the "help" is needed. In this study, we demonstrated that CD4 T cell help was not needed for the activation and effector differentiation of CD8 T cells during the primary response to vaccinia virus infection. However, the activated CD8 T cells showed poor survival without CD4 T cell help, leading to a reduction in clonal expansion and a diminished, but stable CD8 memory pool. In addition, we observed that CD4 T cell help provided during both the primary and secondary responses was required for the survival of memory CD8 T cells during recall expansion. Our study indicates that CD4 T cells play a crucial role in multiple stages of CD8 T cell response to vaccinia virus infection and may help to design effective vaccine strategies.
Collapse
Affiliation(s)
- Patricia Novy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
60
|
Chen P, Tian J, Kovesdi I, Bruder JT. Promoters influence the kinetics of transgene expression following adenovector gene delivery. J Gene Med 2008; 10:123-31. [DOI: 10.1002/jgm.1127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
61
|
Brisbin JT, Zhou H, Gong J, Sabour P, Akbari MR, Haghighi HR, Yu H, Clarke A, Sarson AJ, Sharif S. Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:563-574. [PMID: 17981327 DOI: 10.1016/j.dci.2007.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 05/25/2023]
Abstract
Lactobacillus acidophilus has been shown to exert immunostimulating activities in a number of species, including the chicken. To examine the molecular mechanisms of this phenomenon, we investigated spatial and temporal expression of immune system genes in chicken cecal tonsil and spleen mononuclear cells in response to structural constituents of L. acidophilus. Using a low-density chicken immune system microarray, we found that cecal tonsil cells responded more rapidly than spleen cells to the bacterial stimuli, with the most potent stimulus for cecal tonsil cells being DNA and for splenocytes being the bacterial cell wall components. We also discovered that in both splenocytes and cecal tonsil cells, STAT2 and STAT4 genes were highly induced. Given the close interactions between cecal tonsil cells and commensal bacteria, we further examined the involvement of STAT2 and STAT4 signaling pathways in cellular responses to bacterial DNA. Our results revealed that the expression of STAT2, STAT4, IL-18, MyD88, IFN-alpha, and IFN-gamma genes were up-regulated in cecal tonsil cells after treatment with L. acidophilus DNA.
Collapse
Affiliation(s)
- Jennifer T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Nakai M, Komiya K, Murata M, Kimura T, Kanaoka M, Kanegae Y, Saito I. Expression of pIX Gene Induced by Transgene Promoter: Possible Cause of Host Immune Response in First-Generation Adenoviral Vectors. Hum Gene Ther 2007; 18:925-36. [PMID: 17907966 DOI: 10.1089/hum.2007.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
First-generation (FG) adenoviral vectors (AdVs) have been widely used not only for gene therapy but also for basic studies. Because vectors of this type lack the E1A gene that is essential for the expression of other viral genes, their expression levels in target cells have been considered low. However, we found that the viral pIX gene, located immediately downstream of the inserted expression unit of the transgene, was significantly coexpressed with the transgene in cells infected with FG AdV. Whereas CAG and SRalpha promoters activated the pIX promoter considerably through their enhancer effects, the EF1alpha promoter hardly did. Moreover, when the expression unit was inserted in the rightward orientation, not only the pIX protein but also a fusion protein consisting of the N-terminal part of transgene product and pIX were sometimes coexpressed with the transgene product through an aberrant splicing mechanism. In in vivo experiments, a LacZ-expressing AdV bearing the CAG promoter caused an elevation of alanine aminotransferase, but an AdV bearing the EF1alpha promoter produced no detectable levels. Whereas the FG AdV expressing human growth hormone under the control of the CAG promoter maintained a high hormone level for less than 1 month, the FG AdV under the control of the EF1alpha promoter maintained a high level for at least 6 months. These results suggest that pIX coexpression may be one of the main causes of AdV-induced immune responses, and that the EF1alpha promoter is probably valuable for the long-term expression of FG AdV. Thus, the in vivo utility of FG AdV should be reevaluated.
Collapse
Affiliation(s)
- Michio Nakai
- Drug Research Division, Dainippon Sumitomo Pharma, Osaka 554-0022, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
Wang AY, Ehrhardt A, Xu H, Kay MA. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 2007; 15:255-63. [PMID: 17235302 DOI: 10.1038/sj.mt.6300032] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The regeneration of insulin-producing cells in vivo has emerged as a promising method for treating type I diabetes. Pancreatic duodenal homeobox-1 (Pdx-1), NeuroD, and Neurogenin-3 (Ngn3) are pancreatic transcription factors important for the development of insulin-producing cells in the liver. Other groups have demonstrated that adenoviral-mediated transgene expression of these transcription factors in the liver can reverse hyperglycemia in diabetic mice. We delivered Pdx-1 and Ngn3 to the livers of diabetic mice using adeno-associated virus (AAV) serotype 8, a vector that has been shown to result in non-toxic, persistent, high level expression of the transgene. We were unable to correct hyperglycemia in mice with streptozotocin-induced diabetes using AAV vectors expressing Pdx-1 and Ngn3. However, when we co-delivered these transcription factor expression cassettes in non-viral vectors with an irrelevant adenoviral vector, we were able to correct hyperglycemia in diabetic animals. Further studies demonstrated that an antigen-dependent immune response elicited by the adenoviral capsid together with the expression of a pancreatic transcription factor was required for restoration of serum insulin levels by the liver. Our results suggest that a host response to adenovirus in combination with expression of a pro-endocrine pancreas transcription factor is sufficient to induce insulin production in the livers of diabetic mice.
Collapse
Affiliation(s)
- Alfred Y Wang
- Department of Molecular Pharmacology, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
64
|
Flotte TR, Ng P, Dylla DE, McCray PB, Wang G, Kolls JK, Hu J. Viral Vector–mediated and Cell-based Therapies for Treatment of Cystic Fibrosis. Mol Ther 2007; 15:229-41. [PMID: 17235299 DOI: 10.1038/sj.mt.6300002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene and cell-based therapies are considered to be potentially powerful new approaches for the management of cystic fibrosis (CF) lung disease. Despite tremendous efforts that have been made, especially in studies to understand the obstacles to gene delivery, major challenges to the application of these approaches remain to be solved. This article will review the advancements made and challenges remaining in the development of viral vector-mediated and cell-based approaches to treat patients with CF.
Collapse
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Wang Y, Lobigs M, Lee E, Koskinen A, Müllbacher A. CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. J Gen Virol 2006; 87:3599-3609. [PMID: 17098975 DOI: 10.1099/vir.0.81306-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The flavivirus West Nile virus (WNV) can cause fatal encephalitis in humans and mice. It has recently been demonstrated, in an experimental model using WNV strain Sarafend and C57BL/6 mice, that both virus- and immune-mediated pathology is involved in WNV encephalitis, with CD8(+) T cells being the dominant subpopulation of lymphocyte infiltrates in the brain. Here, the role of activated WNV-immune CD8(+) T cells in mouse WNV encephalitis was investigated further. Passive transfer of WNV-immune CD8(+) T cells reduced mortality significantly and prolonged survival times of mice infected with WNV. Early infiltration of WNV-immune CD8(+) T cells into infected brains is shown, suggesting a beneficial contribution of these lymphocytes to recovery from encephalitis. This antiviral function was not markedly mediated by gamma interferon (IFN-gamma), as a deficiency in IFN-gamma did not affect mortality to two strains of WNV (Sarafend and Kunjin) or brain virus titres significantly. The cytolytic potential, as well as precursor frequency, of WNV-immune CD8(+) T cells were not altered by the absence of IFN-gamma. This was reflected in transfer experiments of WNV-immune CD8(+) T cells from IFN-gamma(-/-) mice into WNV-infected wild-type mice, which showed that IFN-gamma-deficient T cells were as effective as those from WNV-immune wild-type mice in ameliorating disease outcome. It is speculated here that one of the pleiotropic functions of IFN-gamma is mimicked by WNV-Sarafend-mediated upregulation of cell-surface expression of major histocompatibility complex antigens, which may explain the lack of phenotype of IFN-gamma(-/-) mice in response to WNV.
Collapse
Affiliation(s)
- Yang Wang
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Mario Lobigs
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Eva Lee
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Aulikki Koskinen
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Arno Müllbacher
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| |
Collapse
|
66
|
Chen J, Hsu HC, Zajac AJ, Wu Q, Yang P, Xu X, McPherson SA, Li J, Curiel DT, Mountz JD. In vivo analysis of adenovirus-specific cytotoxic T lymphocyte response in mice deficient in CD28, fas ligand, and perforin. Hum Gene Ther 2006; 17:669-82. [PMID: 16776575 DOI: 10.1089/hum.2006.17.669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenoviruses (Ad) have been extensively studied as gene delivery vectors in gene therapy and as vaccine carriers. The cell-mediated cytotoxicity induced by Ad is of great interest in both applications. However, the mechanism underlying Ad-specific cytotoxic T lymphocyte (CTL) generation and effector function remains unclear. In this study, we used a novel MHC class I tetramer and an in vivo CTL assay to examine the role of CD28, perforin, Fas ligand (FasL), and TNF-alpha in the generation and function of Ad-specific CTLs in vivo. During the primary response, there was a significant defect in both the generation and in vivo effector function of Ad-specific CTLs in CD28-/- mice, but not in CD4+ T cell-depleted mice or CD4-/- mice. The relative role of CTL effector molecules was assayed by in vivo CTL assay in perforin- or FasL-mutant mice, using donor cells from Fas-deficient or TNFR1/TNFR2-deficient mice. The results indicated that the in vivo CTL activity is mediated mainly by perforin. In the absence of perforin, production of FasL, but not TNF-alpha, by the CTLs results in lower level Ad-specific killing of target cells. These results provide important implications concerning the development of safe and effective Ad vectors for gene therapy and vaccines.
Collapse
Affiliation(s)
- Jian Chen
- Department of Medicine, University of Alabama at Birmingham, and Veterans Administration Medical Center, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Chen J, Hsu HC, Zajac AJ, Wu Q, Yang P, Xu X, McPherson SA, Li J, Curiel DT, Mountz JD. In Vivo Analysis of Adenovirus-Specific Cytotoxic T Lymphocyte Response in Mice Deficient in CD28, Fas Ligand, and Perforin. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
Jogler C, Hoffmann D, Theegarten D, Grunwald T, Uberla K, Wildner O. Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J Virol 2006; 80:3549-58. [PMID: 16537623 PMCID: PMC1440393 DOI: 10.1128/jvi.80.7.3549-3558.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.
Collapse
Affiliation(s)
- Christian Jogler
- Department of Molecular and Medical Virology, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Dobrzynski E, Fitzgerald JC, Cao O, Mingozzi F, Wang L, Herzog RW. Prevention of cytotoxic T lymphocyte responses to factor IX-expressing hepatocytes by gene transfer-induced regulatory T cells. Proc Natl Acad Sci U S A 2006; 103:4592-7. [PMID: 16537361 PMCID: PMC1450216 DOI: 10.1073/pnas.0508685103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Indexed: 11/18/2022] Open
Abstract
Treatment of genetic disease such as the bleeding disorder hemophilia B [deficiency in blood coagulation factor IX (F.IX)] by gene replacement therapy is hampered by the risk of immune responses to the therapeutic gene product and to the gene transfer vector. Immune competent mice of two different strains were tolerized to human F.IX by hepatic gene transfer mediated by adenoassociated viral vector. These animals were subsequently challenged by systemic administration of an E1/E3-deleted adenoviral vector, which is known to induce a cytotoxic T lymphocyte response to the transgene product. Immune tolerance prevented cytotoxic T lymphocyte activation to F.IX and CD8(+) cellular infiltrates in the liver. Moreover, a sustained and substantial increase in hepatic F.IX expression from the adenoviral vector was achieved despite in vitro T cell responses to adenoviral antigens. Cytolytic responses to therapeutic and to viral vector-derived antigens had been prevented in vivo by activation of regulatory CD4(+) T cells, which mediated suppression of inflammatory lymphocyte responses to the liver. This result suggests that augmentation of regulatory T cell activation should provide new means to avoid destructive immune responses in gene transfer.
Collapse
Affiliation(s)
- Eric Dobrzynski
- *Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Medical School, Philadelphia, PA 19104; and
| | - Julie C. Fitzgerald
- *Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Medical School, Philadelphia, PA 19104; and
| | - Ou Cao
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Alachua, FL 32615
| | - Federico Mingozzi
- *Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Medical School, Philadelphia, PA 19104; and
| | - Lixin Wang
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Alachua, FL 32615
| | - Roland W. Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Alachua, FL 32615
| |
Collapse
|
70
|
Wilderman MJ, Kim S, Gillespie CT, Sun J, Kapoor V, Vachani A, Sterman DH, Kaiser LR, Albelda SM. Blockade of TNF-alpha decreases both inflammation and efficacy of intrapulmonary Ad.IFNbeta immunotherapy in an orthotopic model of bronchogenic lung cancer. Mol Ther 2006; 13:910-7. [PMID: 16488193 DOI: 10.1016/j.ymthe.2005.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 01/22/2023] Open
Abstract
Adenoviral immuno-gene therapy using interferon-beta has been effective in an orthotopic model of lung cancer. However, pulmonary inflammation induced by adenoviral (Ad) vectors will almost certainly limit the maximally tolerated dose. On the other hand, the strong innate immune response generated by the vector may be helpful in initiating the adaptive immune response required for efficacy. The goals of this study were to develop an effective approach to inhibit Ad.IFNbeta-mediated acute pulmonary inflammation and to determine whether this reduction of Ad-mediated inflammation decreased the therapeutic efficacy of Ad.IFNbeta in a mouse model of bronchioloalveolar cancer. Our data show that anti-TNF-alpha antibodies can blunt the innate pulmonary immune response induced by Ad vectors, even in sensitized animals. However, this effect also inhibited the ability of the animal to generate anti-tumor immune responses and reduced survival in an orthotopic lung cancer model responsive to Ad.IFNbeta treatment. Interestingly, in a flank model of tumor using a cell line derived from the lung tumor, TNF-alpha blockade did not inhibit efficacy. These data suggest that the innate immune response to adenovirus in the lung may be important in immuno-gene therapy of lung cancer. Therapeutic application of anti-inflammatory therapy in immuno-gene therapy strategies should thus be undertaken with caution.
Collapse
Affiliation(s)
- Michael J Wilderman
- Thoracic Oncology Research Laboratory, University of Pennsylvania Medical Center, BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Patel K, Norris S, Lebeck L, Feng A, Clare M, Pianko S, Portmann B, Blatt LM, Koziol J, Conrad A, McHutchison JG. HLA class I allelic diversity and progression of fibrosis in patients with chronic hepatitis C. Hepatology 2006; 43:241-9. [PMID: 16440356 DOI: 10.1002/hep.21040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients infected with HIV-1 who are heterozygous at HLA class I loci present greater variety of antigenic peptides to CD8+ cytotoxic T lymphocytes, slowing progression to AIDS. A similar broad immune response in chronic hepatitis C (CHC) infection could result in greater hepatic injury. Although specific HLA class II alleles may influence outcome in CHC patients, the role of HLA class I heterogeneity is generally less clearly defined. Our aims were to determine whether HLA class I allelic diversity is associated with disease severity and progression of fibrosis in CHC. The study population consisted of 670 adults with CHC, including 155 with advanced cirrhosis, and 237 non-HCV-infected controls. Serological testing for HLA class I antigens was performed via microlymphocytotoxicity assay. Peptide expression was defined as heterozygous (i.e., a different allele at each locus) or homozygous. Fibrosis staging was determined using METAVIR classification. Heterozygosity at the B locus (fibrosis progression rate [FPR] 0.08 vs. 0.06 units/yr; P = .04) and homozygosity at the A locus (FPR 0.10 vs. 0.08 units/yr; P = .04) predicted a higher median FPR. Age at infection, genotype, and duration of infection were also predictors of FPR. A higher proportion of patients with stage F2-F4 expressed HLA-B18 compared with controls (OR 2.2, 95% CI 1.17-4.23; P = .02). These differences were not observed in patients with advanced cirrhosis. HLA zygosity at 1, 2, or 3 alleles was not associated with fibrosis stage, liver inflammation, or treatment outcome. In conclusion, HLA class I allelic diversity has a minor influence on FPRs and disease severity in CHC.
Collapse
Affiliation(s)
- Keyur Patel
- Division of Gastroenterology, Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27715, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Brunetti-Pierri N, Nichols TC, McCorquodale S, Merricks E, Palmer DJ, Beaudet AL, Ng P. Sustained phenotypic correction of canine hemophilia B after systemic administration of helper-dependent adenoviral vector. Hum Gene Ther 2005; 16:811-20. [PMID: 16000063 DOI: 10.1089/hum.2005.16.811] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have evaluated the potential of liver-directed, helper-dependent adenoviral (HDAd) vector-mediated gene therapy in the hemophilia B dog. Two dogs were injected intravenously with HDAd (3 x 10(12) VP/kg) bearing a liver-restricted canine coagulation factor IX (FIX) expression cassette. After injection, the whole blood clotting time for both dogs declined from >60 min to </=20 min for at least 604 and 446 days, respectively. Peak FIX activities of 34.1 and 129.2% were detected at 12x14 days and then slowly declined to 2 to 5% by 120 days and stabilized at these therapeutic levels for at least 418 and 257 days. For one dog, a peak FIX level of 500 ng/ml was achieved and stabilized at >170 ng/ml for at least 256 days. For the other dog, a peak FIX level of 1258 ng/ml was achieved and stabilized at >400 ng/ml for at least 213 days. Inhibitor formation was not evident in either animal. Importantly, whereas untreated hemophilia B dogs suffer five or six spontaneous bleeds per year, the treated dogs suffered no such bleeds postinjection. Significantly, this study is the first to demonstrate long-term phenotypic correction of a genetic disorder in a large animal with HDAd. Although no evidence of chronic toxicity was observed in either animal, systemic vector administration at 3 x 10(12) VP/kg was accompanied by acute, albeit transient and variable laboratory abnormalities (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine phosphokinase, and platelet counts). The results of this study highlight both the potential benefit and the risk associated with systemic intravascular delivery of high-dose HDAd for liver-directed gene therapy.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Chen M, Tabaczewski P, Truscott SM, Van Kaer L, Stroynowski I. Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. THE JOURNAL OF IMMUNOLOGY 2005; 175:1047-55. [PMID: 16002705 DOI: 10.4049/jimmunol.175.2.1047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hepatic expression levels of class I MHC Ags are generally regarded as very low. Because the status of these Ags and their ability to present peptides are important for the understanding of pathogen clearance and tolerogenic properties of the liver, we set out to identify the factors contributing to the reported phenotype. Unexpectedly, we found that the surface densities of K(b) and D(b) on C57BL/6 mouse hepatocytes are nearly as high as on splenocytes, as are the lysate concentrations of mRNA encoding H chain and beta(2)-microglobulin (beta(2)m). In contrast, the components of the peptide-loading pathway are reduced in hepatocytes. Despite the difference in the stoichiometric ratios of H chain/beta(2)m/peptide-loading machineries, both cell types express predominantly thermostable class I and are critically dependent on TAP and tapasin for display of surface Ags. Minor differences in the expression patterns in tapasin(-/-) background suggest cell specificity in class I assembly. Under immunostimulatory conditions, such as exposure to IFN-gamma or Listeria monocytogenes, hepatocytes respond with a vigorous mRNA synthesis of the components of the Ag presentation pathway (up to 10-fold enhancement) but up-regulate H chain and beta(2)m to a lesser degree (<2-fold). This type of response should promote rapid influx of newly generated peptides into the endoplasmic reticulum and preferential presentation of foreign/induced Ag by hepatic class I.
Collapse
Affiliation(s)
- Ming Chen
- Center for Immunology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
74
|
Le Goff F, Méderlé-Mangeot I, Jestin A, Langlois P. Deletion of open reading frames 9, 10 and 11 from the avian adenovirus CELO genome: effect on biodistribution and humoral responses. J Gen Virol 2005; 86:2019-2027. [PMID: 15958681 DOI: 10.1099/vir.0.80879-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the in vivo effect of the 3·6 kbp deletion of the three open reading frames (ORF) 9, 10 and 11 found at the right end of the CELO genome was examined. Groups of chickens were inoculated oronasally with 105–107 p.f.u. per animal of wild-type virus and two recombinant CELO strains (rCELO) expressing luciferase and secreted alkaline phosphatase (SEAP). The tissue biodistribution, assessed by PCR, was similar for both wild-type and recombinant viruses. The infectious viral particle titre was determined by a p.f.u. counting method and the antibody responses to the CELO vector and the SEAP antigen were evaluated by ELISA. Infectious particle titres in tissues from chickens inoculated with the wild-type CELO virus increased up to 6 days post-inoculation, and declined until 11 days while titres in organs from chickens inoculated with the rCELO strain were low and only detectable at 4 days post-inoculation. Moreover, although anti-CELO antibody levels were three times lower in sera from chickens inoculated with rCELO, antibodies directed to the heterologous SEAP antigen were detected. Based on these results, no differences in tropism were observed, but the level of production of viral particles and the humoral responses appeared to decrease. Viruses replicate less efficiently with a deletion performed at the right end of the CELO genome. Nevertheless, the presence of antibodies directed to heterologous antigens makes the CELO virus an advantageous candidate for avian vaccination.
Collapse
Affiliation(s)
- Frédérick Le Goff
- Unité de Génétique Virale et Biosécurité, Agence Française de Sécurité Sanitaire des Aliments, Site Les Croix, BP 53, 22440 Ploufragan, France
| | - Isabelle Méderlé-Mangeot
- Unité de Génétique Virale et Biosécurité, Agence Française de Sécurité Sanitaire des Aliments, Site Les Croix, BP 53, 22440 Ploufragan, France
| | - André Jestin
- Unité de Génétique Virale et Biosécurité, Agence Française de Sécurité Sanitaire des Aliments, Site Les Croix, BP 53, 22440 Ploufragan, France
| | - Patrick Langlois
- Unité de Génétique Virale et Biosécurité, Agence Française de Sécurité Sanitaire des Aliments, Site Les Croix, BP 53, 22440 Ploufragan, France
| |
Collapse
|
75
|
Yarovinsky TO, Mohning MP, Bradford MA, Monick MM, Hunninghake GW. Increased sensitivity to staphylococcal enterotoxin B following adenoviral infection. Infect Immun 2005; 73:3375-84. [PMID: 15908364 PMCID: PMC1111844 DOI: 10.1128/iai.73.6.3375-3384.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal enterotoxin B induces toxic shock and is a major virulence factor of staphylococcal diseases. We examined the effects of systemic adenoviral infection on responses to staphylococcal enterotoxin B in a murine model. We found that adenoviral infection markedly increases the severity of liver injury following exposure to staphylococcal enterotoxin B without d-galactosamine sensitization. In adenovirus-infected mice, staphylococcal enterotoxin B triggered a more profound hypothermia and increased apoptosis in the liver. Consistent with these observations, we also found that adenoviral infection primed for an increased production of gamma interferon in vivo and in vitro following stimulation with staphylococcal enterotoxin B. Gamma-interferon-knockout mice did not show increased sensitivity to staphylococcal enterotoxin B following adenoviral infection. These data suggest that a preexisting viral infection primes mice for subsequent staphylococcal enterotoxin B exposure, possibly via a gamma-interferon-mediated mechanism.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Division of Pulmonary, Critical Care, and Occupational Medicine, 100 EMRB, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
76
|
Yamaguchi S, Tashiro-Yamaji J, Lee K, Takahashi T, Sano K, Endo Y, Nakanishi M, Eguchi A, Okada M, Nomi H, Yamamoto Y, Takenaka H, Kubota T, Yoshida R. IFN-γ: A Cytokine Essential for Rejection of CTL-Resistant, Virus-Infected Cells. J Interferon Cytokine Res 2005; 25:328-37. [PMID: 15957956 DOI: 10.1089/jir.2005.25.328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We recently demonstrated differential susceptibility of cells expressing viral antigen to killing by antigen-specific cytotoxic T lymphocytes (CTLs). In addition, interferon-gamma (IFN-gamma) has been implicated in the clearance of some viruses from tissues. We explored the role of IFN-gamma in the cytotoxicity of Sendai virus-specific CTLs against virus-infected RL(male symbol)1 (T cell leukemia) or Meth A (fibrosarcoma) cells, as well as the growth of subcutaneously (s.c.) transplanted, virus-infected cells in IFN-gamma(+/+) or IFN-gamma(/) mice of the syngeneic strain (BALB/c). Sendai virus-specific CTLs were cytotoxic against virus-infected RL(male symbol)1 cells, and s.c. transplanted, virus-infected RL(male symbol)1 cells were acutely rejected from IFN-gamma(+/+) or IFN-gamma(/) mice. In contrast, the CTLs were inactive toward virus-infected Meth A cells, but s.c. transplanted, virus-infected Meth A cells were acutely rejected from IFN-gamma(+/+) but not IFN-gamma(/) mice. The s.c. growth of virus-infected Meth A cells in the mutant mice was markedly inhibited by s.c. injections of IFN-gamma, and the rejection from IFN-gamma(+/+) mice was delayed after specific elimination of macrophages by intravenous (i.v.) injections of dichloromethylene diphosphonatecontaining liposomes. These results suggest an essential role of IFN-gamma and involvement of macrophage in the rejection of CTL-resistant, virus-infected cells.
Collapse
Affiliation(s)
- Satoko Yamaguchi
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Moffatt S, Wiehle S, Cristiano RJ. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum Gene Ther 2005; 16:57-67. [PMID: 15703489 DOI: 10.1089/hum.2005.16.57] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed a novel polyethylenimine (PEI)-DNA vector formulation that is capable of efficient tumor-specific delivery after intravenous administration to nude mice. To further increase the specificity of delivery, we have attached the peptide CNGRC to the vector, which is specific for aminopeptidase N (CD13). The strategy for coupling this peptide to PEI was based on a novel method involving the strong affinity between phenyl(di)boronic acid (PDBA) and salicylhydroxamic acid (SHA) as well as a polyethylene glycol (PEG) linker to reduce steric hindrance between the vector and the peptide. In vitro assessment of targeting by the CNGRC/PEG/PEI/DNA vector carrying a beta-galactosidase (beta-Gal)-expressing plasmid showed as much as a 5-fold increase in transduction, relative to the untargeted PEG/PEI/DNA-betagal vector, of CD13-positive lung cancer, fibrosarcoma, bladder cancer, and human umbilical vein endothelial cells. Competition with free peptide resulted in up to a 90% reduction in delivery, indicating that gene delivery was specific for CD13-positive cells. Intravenous administration of the CNGRC/PEG/PEI/DNA-betagal vector to nude mice bearing subcutaneous tumors resulted in as much as a 12-fold increase in beta-Gal expression in tumors as compared with expression in either lungs or tumors from animals treated with the original PEI/DNA-betagal vector. In vivo transduction analysis using the CNGRC/PEG/PEI/DNA vector to target the intravenous delivery of a yellow fluorescence protein (YFP)-expressing plasmid to subcutaneous H1299 tumors confirmed delivery of YFP to both tumor cells and tumor endothelial cells. The use of this peptide to further increase tumor-specific delivery mediated by our novel PEI/DNA vector now provides a basis for developing tumor-targeted gene therapies for use in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Stanley Moffatt
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
78
|
Bilbao G, Gómez-Navarro J, Contreras JL, Curiel DT. Advances in adenoviral vectors for cancer gene therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.7.12.1427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
79
|
Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW. Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 2005; 105:4226-34. [PMID: 15713796 PMCID: PMC1895044 DOI: 10.1182/blood-2004-03-0848] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8(+) T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4(+) cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA-transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pediatrics, University of Pennsylvania Medical Center and Children's Hospital of Philadelphia, Abramson Research Center, 302 34th St and Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
80
|
Wang W, Merchlinsky M, Inman J, Golding B. Identification of a novel immunodominant cytotoxic T lymphocyte epitope derived from human factor VIII in a murine model of hemophilia A. Thromb Res 2005; 116:335-44. [PMID: 16038719 DOI: 10.1016/j.thromres.2004.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 11/26/2022]
Abstract
Gene therapy of hemophilia A could be complicated by the development of immune responses against the vector as well as the Factor VIII (FVIII) transgene. Previous efforts have been focused on identifying FVIII inhibitor antibody epitopes, whereas the cytotoxic T lymphocyte (CTL) epitopes have not been characterized. CTL would kill cells expressing such epitopes and thus limit the efficacy of gene therapy. To investigate CTL responses against human FVIII in a mouse model of hemophilia A, a computer algorithm program (BIMAS) was employed to predict CTL epitopes of human FVIII. The potential binding of these predicted peptides to MHC class I K(b) was evaluated in a TAP-deficient cell line. When recombinant vaccinia virus expressing B domain-deleted human FVIII (vv-FVIII) was used to immunize E16 hemophilia A mice, a specific CTL response against FVIII152-159 was generated. In contrast, a CTL response to four other FVIII peptides was not detected. Therefore, FVIII152-159 represents a dominant CTL epitope. Identification of this epitope raises the possibility that CTL response to FVIII gene-transduced cells can be diminished by deliberatively mutating the dominant CTL epitope while retaining the biologic function of FVIII for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Weila Wang
- Laboratory of Plasma Derivatives, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
81
|
Schagen FHE, Ossevoort M, Toes REM, Hoeben RC. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2005; 50:51-70. [PMID: 15094159 DOI: 10.1016/s1040-8428(03)00172-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2003] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since they have a well-characterized genomic organization, can be grown to high titres and efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in most immunocompetent mice. This constituted a major limitation of this early vector type. In contrast, persistent transgene expression can be established in immunodeficient mice. This suggests that the immunogenicity of adenoviral vectors limits the effective period of adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent the limitations imposed onto gene therapy by the immune system. Improvements in vector design have significantly improved the performance of the adenovirus vectors. Based on these results it is reasonable to anticipate that new modifications of the vectors will overcome some of the immunological barriers and will further expand the applicability of adenovirus-derived vectors.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
82
|
Abstract
Helper-dependent adenoviral vectors possess a number of characteristics that make them attractive gene therapy vectors. These vectors are completely devoid of viral coding sequences and are able to mediate high-efficiency transduction in vivo to direct sustain high-level transgene expression with negligible chronic toxicity. This review focuses on advances in helper-dependent adenoviral vector technology, selected examples of in vivo studies of particular interest, and the issue of vector-mediated acute toxicity.
Collapse
Affiliation(s)
- Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
83
|
Abstract
Gene therapy is a clinical strategy that may potentially treat an array of genetic and nongenetic diseases, as well as a novel method for drug delivery and vaccination. To these ends, adenovirus vectors are a promising means to deliver specific genes of interest into the patient. A major limitation of the use of adenovirus vectors is the host immune response. Adenovirus vectors induce the innate arm of the immune system that results in inflammation of transduced tissues and efficient clearance of administered vectors. Unlike adaptive immunity, the innate response is mediated by the adenovirus particle and does not require viral transcription. In vivo, the innate immune response involves the induction of cytokines and activation of effector leukocytes that comprise the host response to these agents. A number of interactions with leukocytes and with epithelial and endothelial cells are essential in triggering the host response to adenovirus vectors. Signal transduction via MAP kinases and NF-kappaB-mediated gene transcription are triggered during early virus-cell interactions and are key events in the innate recognition of adenovirus vector transduction. This review aims to describe data examining cellular and molecular mechanisms involved in the adenovirus-mediated innate immune response.
Collapse
Affiliation(s)
- Daniel A Muruve
- Department of Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada.
| |
Collapse
|
84
|
Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 2004; 101:17216-21. [PMID: 15563600 PMCID: PMC535370 DOI: 10.1073/pnas.0404761101] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although inappropriate activation of the Wnt/beta-catenin pathway has been implicated in the development of hepatocellular carcinoma (HCC), the role of this signaling in liver carcinogenesis remains unclear. To investigate this issue, we constructed a mutant mouse strain, Apc(lox/lox), in which exon 14 of the tumor-suppressor gene adenomatous polyposis coli (Apc) is flanked by loxP sequences. i.v. injection of adenovirus encoding Cre recombinase (AdCre) at high multiplicity [10(9) plaque-forming units (pfu) per mouse] inactivated the Apc gene in the liver and resulted in marked hepatomegaly, hepatocyte hyperplasia, and rapid mortality. beta-Catenin signaling activation was demonstrated by nuclear and cytoplasmic accumulation of beta-catenin in the hepatocytes and by the induction of beta-catenin target genes (glutamine synthetase, glutamate transporter 1, ornithine aminotransferase, and leukocyte cell-derived chemotaxin 2) in the liver. To test a long-term oncogenic effect, we inoculated mice with lower doses of AdCre (0.5 x 10(9) pfu per mouse), compatible with both survival and persistence of beta-catenin-activated cells. In these conditions, 67% of mice developed HCC. beta-Catenin signaling was strongly activated in these Apc-inactivated HCCs. The HCCs were well, moderately, or poorly differentiated. Indeed, their histological and molecular features mimicked human HCC. Thus, deletion of Apc in the liver provides a valuable model of human HCC, and, in this model, activation of the Wnt/beta-catenin pathway by invalidation of Apc is required for liver tumorigenesis.
Collapse
Affiliation(s)
- S Colnot
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris V, 24 Rue du Faubourg St. Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun 2004; 321:413-23. [PMID: 15358192 DOI: 10.1016/j.bbrc.2004.06.153] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cells (HSCs) and transdifferentiated myofibroblasts are the principal producers of excessive extracellular matrix in liver fibrosis and cirrhosis. Activation of HSC is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain (PDGF-B), a potent mitogen for HSC, and overexpressed during hepatic fibrogenesis. Previous studies showed that MAPK and phosphatidylinositol 3' kinase are key signaling pathways involved in PDGF-induced stimulation of HSC. Based on the involvement of PDGF-B in fibrogenesis, reducing ligand stimulation of proliferative cytokine- or growth factor receptors interfering with receptor signaling therefore presents an interesting strategy for hepatic fibrosis prevention or interruption. We therefore generated an adenoviral vector serotype 5 (Ad5) expressing an antisense mRNA of the PDGF B-chain (Ad5-CMV-asPDGF) for application in an experimentally induced liver fibrogenesis model. The transgene clearly showed the ability to down-regulate endogenous PDGF B-chain and PDGFRbeta mRNA in culture-activated HSC and rat livers. The asPDGF mRNA also attenuates experimental liver fibrogenesis indicated by reduced levels of alpha-SMA and collagen type I expression.
Collapse
|
86
|
Wang Y, Xie J, Yarber FA, Mazurek C, Trousdale MD, Medina-Kauwe LK, Kasahara N, Hamm-Alvarez SF. Adenoviral capsid modulates secretory compartment organization and function in acinar epithelial cells from rabbit lacrimal gland. Gene Ther 2004; 11:970-81. [PMID: 15029229 DOI: 10.1038/sj.gt.3302247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although adenovirus (Ad) exhibits tropism for epithelial cells, little is known about the cellular effects of adenoviral binding and internalization on epithelial functions. Here, we examine its effects on the secretory acinar epithelial cells of the lacrimal gland, responsible for stimulated release of tear proteins into ocular fluid. Exposure of reconstituted rabbit lacrimal acini to replication-defective Ad for 16-18 h under conditions that resulted in >80% transduction efficiency did not alter cytoskeletal filament or biosynthetic/endosomal membrane compartment organization. Transduction specifically altered the organization of the stimulated secretory pathway, eliciting major dispersal of rab3D immunofluorescence from apical stores normally associated with mature secretory vesicles. Biochemical studies revealed that this dispersal was not associated with altered rab3D expression nor its release from cellular membranes. Ultraviolet (UV)-inactivated Ad elicited similar dispersal of rab3D immunofluorescence. In acini exposed to replication-defective or UV-inactivated Ad, carbachol-stimulated release of bulk protein and beta-hexosaminidase were significantly (P< or =0.05) inhibited to an extent proportional to the loss of rab3D-enriched mature secretory vesicles associated with these treatments. We propose that the altered secretory compartment organization and function caused by Ad reflects changes in the normal maturation of secretory vesicles, and that these changes are caused by exposure to the Ad capsid.
Collapse
Affiliation(s)
- Y Wang
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15:35-46. [PMID: 14965376 DOI: 10.1089/10430340460732445] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Systemic intravascular delivery of adenoviral (Ad) vectors for liver-directed gene therapy has been widely employed because of its simplicity, noninvasiveness, and potential for high transduction. For first-generation Ad vectors (FGAd), this results in high but transient levels of transgene expression and long-term hepatotoxicity due to viral gene expression from the vector backbone. Furthermore, high doses also result in an acute innate inflammatory response with potentially lethal consequences. Unlike FGAd, helper-dependent Ad vectors (HDAd) contain no viral genes and can provide sustained, high-level transgene expression with negligible long-term toxicity. However, whether the absence of viral gene expression leads to any decrease of acute toxicity in nonhuman primates has yet to be determined. To address this, we injected one baboon with 5.6 x 10(12) HDAd viral particles (VP)/kg and a second with 1.1 x 10(13) VP/kg. Approximately 50% hepatocyte transduction, accompanied by mild and transient acute toxicity, was observed in the animal receiving the lower dose. In the animal receiving the higher dose, 100% hepatocyte transduction, accompanied by lethal acute toxicity, was observed. These results indicate that systemic delivery of HDAd, like FGAd, results in acute toxicity in baboons consistent with activation of the innate inflammatory response, the severity of which is dose dependent, and confirm the hypothesis that Ad-mediated acute toxicity is independent of viral gene expression.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
88
|
Ehrhardt A, Xu H, Dillow AM, Bellinger DA, Nichols TC, Kay MA. A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. Blood 2003; 102:2403-11. [PMID: 12805062 DOI: 10.1182/blood-2003-01-0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many approaches for treating hemophilia via gene transfer have been attempted in large animal models but all have potential drawbacks. Recombinant adenoviral vectors offer high-efficiency transfer of an episomal vector but have been plagued by the cytotoxicity/immunogenicity of early-generation vectors that contain viral genes. In our current study, we have used a nonintegrating helper-dependent (HD) adenoviral vector for liver-directed gene transfer to achieve hemostatic correction in a dog with hemophilia B. We measured plasma canine factor IX (cFIX) concentrations at a therapeutic range for up to 2.5 months and normalization of the whole blood clotting time (WBCT) for about a month. This was followed by a decrease and stabilized partial correction for 4.5 months. Hepatic gene transfer of a slightly lower dose of the HD vector resulted in WBCTs that were close to normal for 2 weeks, suggesting a dose threshold effect in dogs. In sharp contrast to other studies using first- or second-generation adenoviral vectors, we observed no vector-related elevation of liver enzymes, no fall in platelet counts, and normal liver histology. Taken together, this study demonstrates that injection of an adenoviral HD vector results in complete but transient phenotypic correction of FIX deficiency in canine models with no detectable toxicity.
Collapse
Affiliation(s)
- Anja Ehrhardt
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
89
|
Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, Wadsworth S, O'Riordan C. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 2003; 8:99-107. [PMID: 12842433 DOI: 10.1016/s1525-0016(03)00139-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bifunctional PEG (polyethylene glycol) molecules provide a novel approach to retargeting viral vectors without the need to genetically modify the vector. In a previous report we showed that modification of the viral capsid by the addition of a peptide with binding preference for differentiated ciliated airway epithelia allowed gene delivery to those cells by a novel entry pathway. Here we demonstrate further the versatility of this method by coupling a protein, FGF2, to the surface of an adenovirus (Ad). This modification results in the elimination of the endogenous tropism of the virus and confers upon the virus a novel route of entry. Adenoviral vectors modified by the addition of FGF2 show enhanced efficiency of transduction of the ovarian cancer cell line SKOV3.ip1. This enhancement in transduction is dependent on the binding of the coupled FGF2 to its high-affinity receptor and is independent of coxsackie and adenovirus viral receptors. In an intraperitoneal model of ovarian cancer, Ad/PEG/FGF2 generates increased transgene expression in tumor tissue compared to unmodified Ad. Furthermore, polymer modification of adenovirus vectors results in reduced localization of adenovirus to nontarget tissues and a marked decrease in Th1 and Th2 T cell responses. In conclusion, the approach described here may lead to the development of a gene therapy vector capable of targeting a therapeutic gene to diseased cells, while minimizing toxicity and expression in other tissues.
Collapse
Affiliation(s)
- Julia Lanciotti
- Genzyme Corporation, 31 New York Avenue, Framingham, Massachusetts 01701, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS, Rich D, Blackburn A, Sands B, Gibson B, Randlev B, Freeman S. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 2003; 10:341-52. [PMID: 12719704 DOI: 10.1038/sj.cgt.7700585] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ONYX-015 is an adenovirus that selectively replicates in p53 dysfunctional or mutated malignant cells. We performed a pilot trial to determine the safety and feasibility of treatment with ONYX-015 delivered intravenously in patients with advanced malignancy. One cohort of five patients received ONYX-015 once a week for 6 weeks at a dose of 2 x 10(12) particles per infusion in combination with weekly infusions of irinotecan (CPT11, 125 mg per week) and 5-fluorouracil (5FU, 500 mg per week). A second cohort of five patients received the combination of ONYX-015 at a dose of 2 x 10(11) particles per week for 6 weeks in combination with interleukin 2 (IL 2, 1.1 x 10(6) units daily via subcutaneous injection for 5 days each week for 4 weeks). Toxicity attributable to ONYX-015 was limited to transient fever. All patients demonstrated elevations in neutralizing antibody titers within 4 weeks of the infusion of ONYX-015. Serum levels of IL-6, IL-10, tumor necrosis factor-alpha, and interferon-gamma increased within 6 hours of viral infusion, suggesting immune activation. This response was more pronounced in the cohort of patients who received 2 x 10(12) particles per infusion. Two patients demonstrated uptake of viral particles in malignant tissue by quantitative PCR. Electron microscopy confirmed selective cytoplasmic viral particles within malignant cells but not within adjacent normal tissue in a third patient. In conclusion ONYX-015 can be administered safely in combination with CPT11, 5FU or low-dose IL 2 and is able to access malignant tissue following intravenous infusion. Further investigation of ONYX-015, possibly with agents that may modulate replication activity, or duration of virus survival, is indicated.
Collapse
|
91
|
Woodberry T, Gardner J, Elliott SL, Leyrer S, Purdie DM, Chaplin P, Suhrbier A. Prime boost vaccination strategies: CD8 T cell numbers, protection, and Th1 bias. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2599-604. [PMID: 12594287 DOI: 10.4049/jimmunol.170.5.2599] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination strategies involving priming with DNA and boosting with a poxvirus vector have emerged as a preferred combination for the induction of protective CD8 T cell immunity. Using IFN-gamma ELISPOT and a series of DNA plasmid, peptide, and modified vaccinia Ankara (MVA) vaccine combinations, we demonstrate that the DNA/MVA combination was uniquely able to enhance IFN-gamma secretion by Ag-specific CD8 T cells. However, CD8 T cell populations induced by DNA/MVA vaccination failed to show an enhanced capability to mediate protection in an IFN-gamma-independent influenza challenge model. The DNA/MVA vaccine strategy was also not unique in its ability to induce high numbers of CD8 T cells, with optimal strategies simply requiring the use of vaccine modalities that individually induce high numbers of CD8 T cells. These experiments argue that rivals to DNA/poxvirus vaccination strategies for the induction of optimal protective CD8 T cell responses are likely to emerge.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Female
- Genetic Vectors/immunology
- Humans
- Immunization, Secondary/methods
- Influenza A virus/growth & development
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Interferon-gamma/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th1 Cells/virology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Tonia Woodberry
- Queensland Institute of Medical Research, Cooperative Research Center for Vaccine Technology, Australian Center for International & Tropical Health & Nutrition, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
92
|
Ghazizadeh S, Kalish RS, Taichman LB. Immune-mediated loss of transgene expression in skin: implications for cutaneous gene therapy. Mol Ther 2003; 7:296-303. [PMID: 12668125 PMCID: PMC7587125 DOI: 10.1016/s1525-0016(03)00013-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A clearer understanding of the immune-mediated loss of transgene from cutaneous epithelium is necessary for development of effective clinical gene therapy protocols for patients who carry null mutations in the target gene. We have used retrovirus-mediated transfer of lacZ to mouse skin as a model to investigate the mechanism of immune-mediated transgene loss in skin. Transduction of C57Bl/6 mouse skin resulted in elicitation of both humoral and cellular immune responses. Antibody responses did not play a major role in the loss of transgene. Infiltration of the transduced skin with CD4(+) and CD8(+) cells and induction of transgene-specific cytotoxic T lymphocytes implied a role for T-cell-mediated responses. Transduction of mice deficient in either major histocompatibility complex (MHC) class I or class II molecules resulted in transient transgene expression. Only in MHC(-/-) mice lacking expression of both class I and class II MHC molecules was persistent transgene expression seen. These data indicate a primary role for T-cell-mediated responses in the immune-mediated loss of transgene expression. Furthermore, CD4 and CD8 T cells have overlapping roles and either population can effectively eliminate transduced cells. Therefore, long-term cutaneous gene therapy may require development of strategies to interfere with activation or function of both T cell populations.
Collapse
Affiliation(s)
- Soosan Ghazizadeh
- Department of Oral Biology and Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794-8702, USA.
| | | | | |
Collapse
|
93
|
Freytag SO, Paielli D, Wing M, Rogulski K, Brown S, Kolozsvary A, Seely J, Barton K, Dragovic A, Kim JH. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model. Int J Radiat Oncol Biol Phys 2002; 54:873-85. [PMID: 12377341 DOI: 10.1016/s0360-3016(02)03005-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in an adjuvant setting with external beam radiation therapy (EBRT) in an experimental prostate cancer model in preparation for a Phase I clinical study in humans. METHODS For efficacy studies, i.m. DU145 and intraprostatic LNCaP C4-2 tumors were established in immune-deficient mice. Tumors were injected with the lytic, replication-competent Ad5-CD/TKrep adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene. Two days later, mice were administered 1 week of 5-fluorocytosine + ganciclovir (GCV) prodrug therapy and fractionated doses of EBRT (trimodal therapy). Tumor control rate of trimodal therapy was compared to that of EBRT alone. For toxicology studies, immune-competent male mice received a single intraprostatic injection (10(10) vp) of the replication-competent Ad5-CD/TKrep adenovirus. Two days later, mice were administered 4 weeks of 5-fluorocytosine + GCV prodrug therapy and 56 Gy EBRT to the pelvic region. The toxicity of trimodal therapy was assessed by histopathologic analysis of major organs and clinical chemistries. RESULTS In both the i.m. DU145 and intraprostatic LNCaP C4-2 tumor models, trimodal therapy significantly improved primary tumor control beyond that of EBRT alone. In the DU145 model, trimodal therapy resulted in a tumor growth delay (70 days) that was more than twice that (32 days) of EBRT alone. Whereas EBRT failed to eradicate DU145 tumors, trimodal therapy resulted in 25% tumor cure. In the LNCaP C4-2 tumor model, EBRT slowed the growth of intraprostatic tumors, but resulted in no tumor cures, and 57% of the mice developed retroperitoneal lymph node metastases at 3 months. By contrast, trimodal therapy resulted in 44% tumor cure and reduced significantly the percentage (13%) of lymph node metastases relative to EBRT alone. Overall, trimodal therapy was associated with little toxicity. A comparison of the major histopathologic findings among the treatment groups indicated that most of the locoregional (prostate, seminal vesicles, urinary bladder) pathology was attributable to the combined effects of the Ad5-CD/TKrep vector and EBRT and that the prodrugs contributed little to this effect. Importantly, trimodal therapy did not exacerbate inflammation of the rectum and intestines beyond that of EBRT alone. CONCLUSION Together, the results support the thesis that replication-competent adenovirus-mediated double suicide gene therapy may be a safe and effective adjuvant to EBRT and provide a sound scientific rationale for human trials.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health Systems, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Van Linthout S, Lusky M, Collen D, De Geest B. Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Ther 2002; 9:1520-8. [PMID: 12407424 DOI: 10.1038/sj.gt.3301824] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 05/27/2002] [Indexed: 11/09/2022]
Abstract
Gene transfer with 'gutted' vectors is associated with persistent transgene expression and absence of hepatotoxicity, but the requirement of helper viruses hampers efficient production and leads to contamination of viral batches with these helper-viruses. In the present study, gene transfer with a helper-virus independent E(1)/E(3)/E(4)-deleted adenoviral vector induced persistent expression of human apo A-I (200 +/- 16 mg/dl at day 35, 190 +/- 15 mg/dl at 4 months, 170 +/- 16 mg/dl at 6 months) and stable transgene DNA levels (3.5 +/- 0.60 at day 35, 3.3 +/- 0.39 at 4 months, 3.1 +/- 0.47 mg/dl at 6 months) in C57BL/6 mice in the absence of significant toxicity. The vector contained the 1.5 kb human alpha(1)-antitrypsin promoter in front of the genomic human apo A-I sequence and four copies of the human apo E enhancer (hAAT.gA-I.4xapoE) and was deleted in E(1), E(3) and E(4). Reintroduction of E(4) ORF 3 and E(4) ORF 4 in the viral backbone caused a more than four-fold decline of transgene DNA between day 35 and 4 months after transfer both in wild-type and in C57BL/6 SCID and C57BL/6 Rag-1(-/-) mice, indicating that the effect of E(4) ORF 3 and E(4) ORF 4 is independent of a cellular immune response against viral epitopes. Co-injection of an E(1)-deleted vector containing no expression cassette and the E(1)/E(3)/E(4)-deleted vector containing the hAAT.gA-I.4xapoE expression cassette indicated that E(4) gene products destabilize transgene DNA in trans. Gene transfer with an E(1)/E(3)/E(4)-deleted vector containing only E(4) ORF 3 and the hAAT.gA-I.4xapoE expression cassette was associated with transgene DNA decline, but not with hepatotoxicity, indicating that transgene DNA persistence and hepatotoxicity are dissociated processes. After transfer with E(1)/E(3)/E(4)-deleted vectors containing expression cassettes with a different promoter or a different position of the apo E enhancers, transgene DNA levels were less stable than after transfer with the vector containing hAAT.gA-I.4xapoE, indicating that the expression cassette is an important determinant of episomal stability. In conclusion, gene transfer with an E(1)/E(3)/E(4)-deleted vector containing the hAAT.gA-I.4xapoE expression cassette induces persistent expression of human apo A-I in the absence of hepatotoxicity. Transgene DNA turnover is independent of an adaptive cellular immune response against viral epitopes and of hepatotoxicity. E(1)/E(3)/E(4)-deleted vectors containing transgenes under control of the hAAT promoter in combination with four copies of the human apo E enhancer may be suitable for hepatocyte-specific overexpression of transgenes after gene transfer. doi:10.1038/sj.gt.3301824
Collapse
Affiliation(s)
- S Van Linthout
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | | | |
Collapse
|
95
|
Biggar WD, Klamut HJ, Demacio PC, Stevens DJ, Ray PN. Duchenne muscular dystrophy: current knowledge, treatment, and future prospects. Clin Orthop Relat Res 2002:88-106. [PMID: 12151886 DOI: 10.1097/00003086-200208000-00012] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cloning of the dystrophin gene has led to major advances in the understanding of the molecular genetic basis of Duchenne, Becker, and other muscular dystrophies associated with mutations in genes encoding members of the dystrophin-associated glycoprotein complex. The recent introduction of pharmaceutical agents such as prednisone has shown great promise in delaying the progression of Duchenne muscular dystrophy but there remains a need to develop more long-term therapeutic interventions. Knowledge of the nature of the dystrophin gene and the glycoprotein complex has led many researchers to think that somatic gene replacement represents the most promising approach to treatment. The potential use of this strategy has been shown in the mdx mouse model of Duchenne muscular dystrophy, where germ line gene transfer of either a full-length or a smaller Becker-type dystrophin minigene prevents necrosis and restores normal muscle function.
Collapse
Affiliation(s)
- W Douglas Biggar
- Bloorview MacMillan Children's Centre and Department of Paediatrics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
96
|
Abstract
Drug-induced immune-mediated hepatic injury is an adverse immune response against the liver that results in a disease with hepatitic, cholestatic, or mixed clinical features. Drugs such as halothane, tienilic acid, dihydralazine, and anticonvulsants trigger a hepatitic reaction, and drugs such as chlorpromazine, erythromycins, amoxicillin-calvulanic acid, sulfonamides and sulindac trigger a cholestatic or mixed reaction. Unstable metabolites derived from the metabolism of the drug may bind to cellular proteins or macromolecules, leading to a direct toxic effect on hepatocytes. Protein adducts formed in the metabolism of the drug may be recognized by the immune system as neoantigens. Immunocyte activation may then generate autoantibodies and cell-mediated immune responses, which in turn damage the hepatocytes. Cytochromes 450 are the major oxidative catalysts in drug metabolism, and they can form a neoantigen by covalently binding with the drug metabolite that they produce. Autoantibodies that develop are selectively directed against the particular cytochrome isoenzyme that metabolized the parent drug. The hapten hypothesis proposes that the drug metabolite can act as a hapten and can modify the self of the individual by covalently binding to proteins. The danger hypothesis proposes that the immune system only responds to a foreign antigen if the antigen is associated with a danger signal, such as cell stress or cell death. Most clinically overt adverse hepatic events associated with drugs are unpredictable, and they have intermediate (1 to 8 weeks) or long latency (up to 12 months) periods characteristic of hypersensitivity reactions. Immune-mediated drug-induced liver disease nearly always disappears or becomes quiescent when the drug is removed. Methyldopa, minocycline, and nitrofurantoin can produce a chronic hepatitis resembling AIH if the drug is continued.
Collapse
Affiliation(s)
- Zhang-Xu Liu
- Department of Microbiology/Immunology, Keck School of Medicine, University of Southern California, Norris Cancer Center, Room 6318, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | |
Collapse
|
97
|
Zhang HG, Xie J, Xu L, Yang P, Xu X, Sun S, Wang Y, Curiel DT, Hsu HC, Mountz JD. Hepatic DR5 induces apoptosis and limits adenovirus gene therapy product expression in the liver. J Virol 2002; 76:5692-700. [PMID: 11991997 PMCID: PMC137014 DOI: 10.1128/jvi.76.11.5692-5700.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major limitation of adenovirus (Ad) gene therapy product expression in the liver is subsequent elimination of the hepatocytes expressing the gene therapy product. This elimination is caused by both necrosis and apoptosis related to the innate and cell-mediated immune response to the Ad. Apoptosis of hepatocytes can be induced by the innate immune response by signaling through death domain receptors on hepatocytes including the tumor necrosis factor alpha (TNF-alpha) receptor (TNFR), Fas, and death domain receptors DR4 and DR5. We have previously shown that blocking signaling through TNFR enhances and prolongs gene therapy product expression in the liver. In the present study, we constructed an Ad that produces a soluble DR5-Fc (AdsDR5), which is capable of neutralizing TNF-related apoptosis-inducing ligand (TRAIL). AdsDR5 prevents TRAIL-mediated apoptosis of CD3-activated T cells and decreases hepatocyte apoptosis after AdCMVLacZ administration and enhances the level and duration of lacZ transgene expression in the liver. In addition to blocking TRAIL and directly inhibiting apoptosis, AdsDR5 decreases production of gamma interferon (IFN-gamma) and TNF-alpha and decreases NK cell activation, all of which limit Ad-mediated transgene expression in the liver. These results indicate that (i) AdsDR5 produces a DR5-Fc capable of neutralizing TRAIL, (ii) AdsDR5 can reduce activation of NK cells and reduce induction of IFN-gamma and TNF-alpha after Ad administration, and (iii) administration of AdsDR5 can enhance Ad gene therapy in the liver.
Collapse
MESH Headings
- Adenoviruses, Human
- Animals
- Antigens, CD/metabolism
- Antigens, CD/pharmacology
- Apoptosis
- Apoptosis Regulatory Proteins
- Aspartate Aminotransferases/metabolism
- Cells, Cultured
- Cytomegalovirus/genetics
- Gene Expression
- Genetic Therapy
- Genetic Vectors
- Hepatocytes/cytology
- Humans
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lac Operon
- Liver/metabolism
- Lymphocyte Activation
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Spleen/cytology
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Transgenes
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Boulis NM, Turner DE, Imperiale MJ, Feldman EL. Neuronal survival following remote adenovirus gene delivery. J Neurosurg 2002; 96:212-9. [PMID: 12450285 DOI: 10.3171/spi.2002.96.2.0212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECT Virus-mediated central nervous system gene delivery is a promising means of treating traumatized tissue or degenerative diseases. In the present study, the authors examined gene expression and neuronal survival in the spinal cord after sciatic nerve administration of an adenovirus vector expressing a LacZ reporter gene. METHODS The time course of adenovirus gene expression, DNA fragmentation, and neuronal density were quantified in rat lumbar spinal cord by staining for beta-galactosidase (beta-Gal), terminal deoxynucleotidyl transferase, and cresyl violet after microinjection of either saline or the reporter virus into rat sciatic nerve. The expression of beta-Gal following remote vector delivery peaked at 7 days and declined thereafter but was not accompanied by neuronal cell death, as measured by DNA fragmentation. No significant difference in spinal motor neuron density was detected between virus-treated and control rats at any time point examined. Although the spinal cords removed from rats treated with cyclosporine prior to adenovirus injection contained substantially more neurons staining for beta-Gal at 7 days (67% of total neurons), the decay in the number of stained neurons was not paralleled by a decline in motor neuron density. CONCLUSIONS The authors conclude that remote gene expression is suppressed by a noncytolytic process.
Collapse
Affiliation(s)
- Nicholas M Boulis
- Section of Neurosurgery and Department of Neurology, Center for Gene Therapy, University of Michigan, Ann Arbor, USA.
| | | | | | | |
Collapse
|
99
|
Bowen GP, Borgland SL, Lam M, Libermann TA, Wong NCW, Muruve DA. Adenovirus vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B. Hum Gene Ther 2002; 13:367-79. [PMID: 11860704 DOI: 10.1089/10430340252792503] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenovirus vectors for gene therapy activate responses in the host that result in acute inflammation of transduced tissues. Our previous studies in vivo demonstrate that chemokines, including the C-C chemokine RANTES (regulated on activation, normal T cell expressed and secreted), contribute to the acute inflammation induced by adenovirus vectors. Various first-generation adenovirus vectors, including adCMV beta gal, were equally capable of inducing the expression of RANTES 3 hr after transduction in epithelial HeLa and REC cells. Deletional analysis of the human RANTES promoter revealed that induction by adCMV beta gal required the elements spanning base pairs -90 to -25 of the gene. Electrophoretic mobility shift assays demonstrated that nuclear extracts from adCMV beta gal-transduced HeLa cells bound to an NF-kappa B site at position -54. Overexpression of I-kappa B alpha suppressed adCMV beta gal induction of RANTES, confirming that this process was dependent on the nuclear translocation of NF-kappa B. The coxsackievirus-adenovirus receptor (CAR)-independent, serotype 3 adenovirus was equally capable of inducing the expression of RANTES in HeLa cells. This observation suggested that binding to CAR was not specifically required in adenovirus vector-induced RANTES expression. The use of RGD peptides to block adCMV beta gal interactions with alpha(v)-integrins reduced RANTES expression but also transduction efficiency. In CAR-deficient P815 cells, binding of adCMV beta gal to alpha(v)-integrins without efficient cell transduction did not result in increased RANTES expression. Expression of human CAR in P815 cells increased the binding and transduction efficiency of adCMV beta gal and resulted in RANTES expression in these cells. These results suggest that the induction of RANTES by adenovirus vectors is dependent on efficient interaction with its cell surface receptors and vector internalization. Understanding the biology of the host response to adenovirus vectors will impact the design of future generations of these agents aimed at reducing their immunogenicity and improving their safety.
Collapse
Affiliation(s)
- Gloria P Bowen
- Department of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
100
|
Schiedner G, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S. Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 2002; 76:1600-9. [PMID: 11799154 PMCID: PMC135880 DOI: 10.1128/jvi.76.4.1600-1609.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.
Collapse
Affiliation(s)
- Gudrun Schiedner
- Center for Molecular Medicine (ZMMK), University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|