51
|
Contribution of smFRET to Chromatin Research. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins.
Collapse
|
52
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
53
|
Kim B, Seol J, Kim YK, Lee JB. Single-molecule visualization of mRNA circularization during translation. Exp Mol Med 2023; 55:283-289. [PMID: 36720916 PMCID: PMC9981743 DOI: 10.1038/s12276-023-00933-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Translation is mediated by precisely orchestrated sequential interactions among translation initiation components, mRNA, and ribosomes. Biochemical, structural, and genetic techniques have revealed the fundamental mechanism that determines what occurs and when, where and in what order. Most mRNAs are circularized via the eIF4E-eIF4G-PABP interaction, which stabilizes mRNAs and enhances translation by recycling ribosomes. However, studies using single-molecule fluorescence imaging have allowed for the visualization of complex data that opposes the traditional "functional circularization" theory. Here, we briefly introduce single-molecule techniques applied to studies on mRNA circularization and describe the results of in vitro and live-cell imaging. Finally, we discuss relevant insights and questions gained from single-molecule research related to translation.
Collapse
Affiliation(s)
- Byungju Kim
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jincheol Seol
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea.
| |
Collapse
|
54
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525885. [PMID: 36789411 PMCID: PMC9928041 DOI: 10.1101/2023.01.27.525885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 41125 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - João M. Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Micha B. A. Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
55
|
Marklund E, Ke Y, Greenleaf WJ. High-throughput biochemistry in RNA sequence space: predicting structure and function. Nat Rev Genet 2023; 24:401-414. [PMID: 36635406 DOI: 10.1038/s41576-022-00567-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
RNAs are central to fundamental biological processes in all known organisms. The set of possible intramolecular interactions of RNA nucleotides defines the range of alternative structural conformations of a specific RNA that can coexist, and these structures enable functional catalytic properties of RNAs and/or their productive intermolecular interactions with other RNAs or proteins. However, the immense combinatorial space of potential RNA sequences has precluded predictive mapping between RNA sequence and molecular structure and function. Recent advances in high-throughput approaches in vitro have enabled quantitative thermodynamic and kinetic measurements of RNA-RNA and RNA-protein interactions, across hundreds of thousands of sequence variations. In this Review, we explore these techniques, how they can be used to understand RNA function and how they might form the foundations of an accurate model to predict the structure and function of an RNA directly from its nucleotide sequence. The experimental techniques and modelling frameworks discussed here are also highly relevant for the sampling of sequence-structure-function space of DNAs and proteins.
Collapse
Affiliation(s)
- Emil Marklund
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuxi Ke
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
56
|
Zhang Y, Ji Z, Wang X, Cao Y, Pan H. Single-Molecule Study of DNAzyme Reveals Its Intrinsic Conformational Dynamics. Int J Mol Sci 2023; 24:ijms24021212. [PMID: 36674728 PMCID: PMC9864658 DOI: 10.3390/ijms24021212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and functions. Similar to protein enzymes and ribozymes, DNAzymes have been found to undergo conformational changes in a metal-ion-dependent manner for catalysis. Despite the important role the conformation plays in the catalysis process, such structural and dynamic information might not be revealed by conventional approaches. Here, by using the single-molecule fluorescence resonance energy transfer (smFRET) technique, we were able to investigate the detailed conformational dynamics of a uranyl-specific DNAzyme 39E. We observed conformation switches of 39E to a folded state with the addition of Mg2+ and to an extended state with the addition of UO22+. Furthermore, 39E can switch to a more compact configuration with or without divalent metal ions. Our findings reveal that 39E can undergo conformational changes spontaneously between different configurations.
Collapse
Affiliation(s)
- Yiming Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Wenzhou–Kean University, Wenzhou 325060, China
| | - Zongzhou Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan 250117, China
- National Laboratory of Solid–State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
57
|
Ghoneim M, Musselman CA. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes. J Fluoresc 2023; 33:413-421. [PMID: 36435903 PMCID: PMC9957830 DOI: 10.1007/s10895-022-03093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Single molecule FRET (Forster resonance energy transfer) is very powerful method for studying biomolecular binding dynamics and conformational transitions. Only a few donor - acceptor dye pairs have been characterized for use in single-molecule FRET (smFRET) studies. Hence, introducing and characterizing additional FRET dye pairs is important in order to widen the scope of applications of single-molecule FRET in biomolecular studies. Here we characterize the properties of the Cy3.5 and Cy5.5 dye pair under FRET at the single-molecule level using naked double-stranded DNA (dsDNA) and the nucleosome. We show that this pair of dyes is photostable for ~ 5 min under continuous illumination. We also report Cy3.5-Cy5.5 FRET proximity dependence and stability in the presence of several biochemical buffers and photoprotective reagents in the context of double-stranded DNA. Finally, we demonstrate compatibility of the Cy3.5-Cy5.5 pair for smFRET in vitro studies of nucleosomes.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 80045, Aurora, CO, USA.
| | - Catherine A. Musselman
- grid.430503.10000 0001 0703 675XBiochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO USA
| |
Collapse
|
58
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
59
|
Okafor I, Ha T. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics. J Phys Chem B 2022; 127:45-51. [PMID: 36563314 PMCID: PMC9841515 DOI: 10.1021/acs.jpcb.2c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CRISPR Cas9 is an RNA guided endonuclease that is part of a bacterial adaptive immune system. Single guide RNA (sgRNA) can be designed to target genomic DNA, making Cas9 a programmable DNA binding/cutting enzyme and allowing applications such as epigenome editing, controlling transcription, and targeted DNA insertion. Some of the main hurdles against an even wider adoption are off-target effects and variability in Cas9 editing outcomes. Most studies that aim to understand the mechanisms that underlie these two areas have focused on Cas9 DNA binding, DNA unwinding, and target cleavage. The assembly of Cas9 RNA ribonucleoprotein complex (RNP) precedes all these steps and includes sgRNA folding and Cas9 binding to sgRNA. We know from the crystal structure of the Cas9 RNP what the final sgRNA conformation is. However, the assembly dynamics has not been studied in detail and a better understanding of RNP assembly could lead to better-designed sgRNAs and better editing outcomes. To study this process, we developed a single molecule FRET assay to monitor the conformation of the sgRNA and the binding of Cas9 to sgRNA. We labeled the sgRNA with a donor fluorophore and an acceptor fluorophore such that when the sgRNA folds, there are changes in FRET efficiency. We measured sgRNA folding dynamics under different ion conditions, under various methods of folding (refolding vs vectorial), and with or without Cas9. sgRNA that closely mimics the sgRNA construct used for high resolution structural analysis of the Cas9-gRNA complex showed two main FRET states without Cas9, and Cas9 addition shifted the distribution toward the higher FRET state attributed to the properly assembled complex. Even in the absence of Cas9, folding the sgRNA vectorially using a superhelicase-dependent release of the sgRNA in the direction of transcription resulted in almost exclusively high FRET state. An addition of Cas9 during vectorial folding greatly reduced a slow-folding fraction. Our studies shed light on the heterogeneous folding dynamics of sgRNA and the impact of co-transcriptional folding and Cas9 binding in sgRNA folding. Further studies of sequence dependence may inform rational design of sgRNAs for optimal function.
Collapse
Affiliation(s)
- Ikenna
C. Okafor
- Department
of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Taekjip Ha
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States,Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States,Department
of Biomedical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States,Howard
Hughes Medical Institute, Baltimore, Maryland 21205, United States,
| |
Collapse
|
60
|
Abstract
This unit describes the basic principles of Förster resonance energy transfer (FRET). Beginning with a brief summary of the history of FRET applications, the theory of FRET is introduced in detail using figures to explain all the important parameters of the FRET process. After listing various approaches for measuring FRET efficiency, several pieces of advice are given on choosing the appropriate instrumentation. The unit concludes with a discussion of the limitations of FRET measurements followed by a few examples of the latest FRET applications, including new developments such as spectral flow cytometric FRET, single-molecule FRET, and combinations of FRET with super-resolution or lifetime imaging microscopy and with molecular dynamics simulations. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
61
|
Bandyopadhyay D, Mishra PP. Revealing the DNA Unwinding Activity and Mechanism of Fork Reversal by RecG While Exposed to Variants of Stalled Replication-fork at Single-Molecular Resolution. J Mol Biol 2022; 434:167822. [PMID: 36108776 DOI: 10.1016/j.jmb.2022.167822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
RecG, belonging to the category of Superfamily-2 plays a vital role in rescuing different kinds of stalled fork. The elemental mechanism of the helicase activity of RecG with several non-homologous stalled fork structures resembling intermediates formed during the process of DNA repair has been investigated in the present study to capture the dynamic stages of genetic rearrangement. The functional characterization has been exemplified through quantifying the response of the substrate in terms of their molecular heterogeneity and dynamical response by employing single-molecule fluorescence methods. An elevated processivity of RecG is observed for the stalled fork where progression of lagging daughter strand is ahead as compared to that of the leading strand. Through precise alteration of its function in terms of unwinding, depending upon the substrate DNA, RecG catalyzes the formation of Holliday junction from a stalled fork DNA. RecG is found to adopt an asymmetric mode of locomotion to unwind the lagging daughter strand for facilitating formation of Holliday junction that acts as a suitable intermediate for recombinational repair pathway. Our results emphasize the mechanism adopted by RecG during its 'sliding back' mode along the lagging daughter strand to be 'active translocation and passive unwinding'. This also provide clues as to how this helicase decides and controls the mode of translocation along the DNA to unwind.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India. https://twitter.com/DebolinaBandyo2
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
62
|
Loop-Mediated Isothermal Amplification-Based Microfluidic Platforms for the Detection of Viral Infections. Curr Infect Dis Rep 2022; 24:205-215. [PMID: 36341307 PMCID: PMC9628606 DOI: 10.1007/s11908-022-00790-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Purpose of Review Easy-to-use, fast, and accurate virus detection method is essential for patient management and epidemic surveillance, especially during severe pandemics. Loop-mediated isothermal amplification (LAMP) on a microfluidic platform is suitable for detecting infectious viruses, regardless of the availability of medical resources. The purpose of this review is to introduce LAMP-based microfluidic devices for virus detection, including their detection principles, methods, and application. Recent Findings Facing the uncontrolled spread of viruses, the large-scale deployment of LAMP-based microfluidic platforms at the grassroots level can help expand the coverage of nucleic acid testing and shorten the time to obtain test reports. Microfluidic chip technology is highly integrated and miniaturized, enabling precise fluid control for effective virus detection. Performing LAMP on miniaturized systems can reduce analysis time, reagent consumption and risk of sample contamination, and improve analytical performance. Summary Compared to traditional benchtop protocols, LAMP-based microfluidic devices reduce the testing time, reagent consumption, and the risk of sample contamination. In addition to simultaneous detection of multiple target genes by special channel design, microfluidic chips can also integrate digital LAMP to achieve absolute quantification of target genes.
Collapse
|
63
|
Zeng Y, Dai W, Ma R, Li Z, Ou Z, Wang C, Yu Y, Zhu T, Liu X, Wang T, Xu H. Distinguishing Ultrafast Energy Transfer in Atomically Thin MoS 2 /WS 2 Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204317. [PMID: 36148858 DOI: 10.1002/smll.202204317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Van der Waals semiconducting heterostructures, known as stacks of atomically thin transition-metal dichalcogenide (TMD) layers, have recently been reported as new quantum materials with fascinating optoelectronic properties and novel functionalities. These discoveries are significantly related to the interfacial carrier dynamics of the excited states. Carrier dynamics have been reported to be predominantly driven by the ultrafast charge transfer (CT) process; however, the energy transfer (ET) process remains elusive. Herein, the ET process in MoS2 /WS2 heterostructures via transient absorption microscopy is reported. By analyzing the ultrafast dynamics using various MoS2 /WS2 interfaces, an ET rate of ≈240 fs is obtain, which is not trivial to the CT process. This study elucidates the role of the ET process in interfacial carrier dynamics and provides guidance for engineering interfaces for optoelectronic and quantum applications of TMD heterostructures.
Collapse
Affiliation(s)
- Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Wei Dai
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Rundong Ma
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Cheng Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Yiling Yu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoze Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
64
|
Harris PD, Lerner E. Identification and quantification of within-burst dynamics in singly labeled single-molecule fluorescence lifetime experiments. BIOPHYSICAL REPORTS 2022; 2. [PMID: 36204594 PMCID: PMC9534301 DOI: 10.1016/j.bpr.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-molecule spectroscopy has revolutionized molecular biophysics and provided means to probe how structural moieties within biomolecules spatially reorganize at different timescales. There are several single-molecule methodologies that probe local structural dynamics in the vicinity of a single dye-labeled residue, which rely on fluorescence lifetimes as readout. Nevertheless, an analytical framework to quantify dynamics in such single-molecule single dye fluorescence bursts, at timescales of microseconds to milliseconds, has not yet been demonstrated. Here, we suggest an analytical framework for identifying and quantifying within-burst lifetime-based dynamics, such as conformational dynamics recorded in single-molecule photo-isomerization-related fluorescence enhancement. After testing the capabilities of the analysis on simulations, we proceed to exhibit within-burst millisecond local structural dynamics in the unbound α-synuclein monomer. The analytical framework provided in this work paves the way for extracting a full picture of the energy landscape for the coordinate probed by fluorescence lifetime-based single-molecule measurements.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
65
|
Liu S, Lin X, Zhang B. Chromatin fiber breaks into clutches under tension and crowding. Nucleic Acids Res 2022; 50:9738-9747. [PMID: 36029149 PMCID: PMC9508854 DOI: 10.1093/nar/gkac725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
66
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
67
|
Roßmann K, Akkaya KC, Poc P, Charbonnier C, Eichhorst J, Gonschior H, Valavalkar A, Wendler N, Cordes T, Dietzek-Ivanšić B, Jones B, Lehmann M, Broichhagen J. N-Methyl deuterated rhodamines for protein labelling in sensitive fluorescence microscopy. Chem Sci 2022; 13:8605-8617. [PMID: 35974762 PMCID: PMC9337740 DOI: 10.1039/d1sc06466e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodamine fluorophores are setting benchmarks in fluorescence microscopy. Herein, we report the deuterium (d12) congeners of tetramethyl(silicon)rhodamine, obtained by isotopic labelling of the four methyl groups, show improved photophysical parameters (i.e. brightness, lifetimes) and reduced chemical bleaching. We explore this finding for SNAP- and Halo-tag labelling in live cells, and highlight enhanced properties in several applications, such as fluorescence activated cell sorting, fluorescence lifetime microscopy, stimulated emission depletion nanoscopy and single-molecule Förster-resonance energy transfer. We finally extend this idea to other dye families and envision deuteration as a generalizable concept to improve existing and to develop new chemical biology probes.
Collapse
Affiliation(s)
- Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Kerem C Akkaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Pascal Poc
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | | | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Abha Valavalkar
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München Großhaderner Str. 2-4, Planegg-Martinsried 82152 Germany
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute for Photonic Technology Jena e.V. (Leibniz-IPHT), Research Department Functional Interfaces Jena Germany
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London London W12 0NN UK
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
- Department of Chemical Biology, Max Planck Institute for Medical Research Heidelberg Germany
| |
Collapse
|
68
|
Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, Narducci A, Thomas GH, Cordes T, Hagelueken G. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nat Commun 2022; 13:4396. [PMID: 35906222 PMCID: PMC9338047 DOI: 10.1038/s41467-022-31945-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | | |
Collapse
|
69
|
Yi J, Yeou S, Lee NK. DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions. J Am Chem Soc 2022; 144:13137-13145. [PMID: 35839423 PMCID: PMC9335521 DOI: 10.1021/jacs.2c02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA, a noncanonical helical structure of double-stranded DNA (dsDNA), plays pivotal roles in various biological processes, including transcription regulation. Mechanical stresses on dsDNA, such as twisting and stretching, help to form Z-DNA. However, the effect of DNA bending, one of the most common dsDNA deformations, on Z-DNA formation is utterly unknown. Here, we show that DNA bending induces the formation of Z-DNA, that is, more Z-DNA is formed as the bending force becomes stronger. We regulated the bending force on dsDNA by using D-shaped DNA nanostructures. The B-Z transition was observed by single-molecule fluorescence resonance energy transfer. We found that as the bending force became stronger, Z-DNA was formed at lower Mg2+ concentrations. When dsDNA contained cytosine methylations, the B-Z transition occurred at 78 mM Mg2+ (midpoint) in the absence of the bending force. However, the B-Z transition occurred at a 28-fold lower Mg2+ concentration (2.8 mM) in the presence of the bending force. Monte Carlo simulation suggested that the B-Z transition stabilizes the bent form via the formation of the B-Z junction with base extrusion, which effectively releases the bending stress on DNA. Our results clearly show that the bending force facilitates the B-Z transition under physiological salt conditions.
Collapse
Affiliation(s)
- Jaehun Yi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
70
|
Yeou S, Hwang J, Yi J, Kim C, Kim SK, Lee NK. Cytosine methylation regulates DNA bendability depending on the curvature. Chem Sci 2022; 13:7516-7525. [PMID: 35872822 PMCID: PMC9242020 DOI: 10.1039/d1sc07115g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Cytosine methylation plays an essential role in many biological processes, such as nucleosome inactivation and regulation of gene expression. The modulation of DNA mechanics may be one of the regulatory mechanisms influenced by cytosine methylation. However, it remains unclear how methylation influences DNA mechanics. Here, we show that methylation has contrasting effects on the bending property of dsDNA depending on DNA curvature. We directly applied bending force on 30 base pairs of dsDNA using a D-shaped DNA nanostructure and measured the degree of bending using single-molecule fluorescence resonance energy transfer without surface immobilization. When dsDNA is weakly bent, methylation increases the stiffness of dsDNA. The stiffness of dsDNA increased by approximately 8% with a single methylation site for 30 bp dsDNA. When dsDNA is highly bent by a strong force, it forms a kink, i.e., a sharp bending of dsDNA. Under strong bending, methylation destabilizes the non-kink form compared with the kink form, which makes dsDNA near the kink region apparently more bendable. However, if the kink region is methylated, the kink form is destabilized, and dsDNA becomes stiffer. As a result, methylation increases the stiffness of weakly bent dsDNA and concurrently can promote kink formation, which may stabilize the nucleosome structure. Our results provide new insight into the effect of methylation, showing that cytosine methylation has opposite effects on DNA mechanics depending on its curvature and methylation location.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jihee Hwang
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Jaehun Yi
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Cheolhee Kim
- National Science Museum Daejeon 34143 Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University 08832 Seoul Republic of Korea
| |
Collapse
|
71
|
Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat Methods 2022; 19:751-758. [PMID: 35637303 PMCID: PMC9184284 DOI: 10.1038/s41592-022-01491-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
Label-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel. NSM facilitates accurate determination of molecular weight from the measured optical contrast and of the hydrodynamic radius from the measured diffusivity, from which information about the conformational state can be inferred. Furthermore, we demonstrate its applicability to the analysis of a complex biofluid, using conditioned cell culture medium containing extracellular vesicles as an example. We foresee the application of NSM to monitor conformational changes, aggregation and interactions of single biomolecules, and to analyze single-cell secretomes. Nanofluidic scattering microscopy enables label-free, quantitative measurements of the molecular weight and hydrodynamic radius of biological molecules and nanoparticles freely diffusing inside a nanofluidic channel.
Collapse
|
72
|
Li D, Zhou P, Hu Y, Li G, Xia L. POSS-based fluorescence sensor for rapid analysis of β-carotene in health products. LUMINESCENCE 2022; 37:1290-1299. [PMID: 35614877 DOI: 10.1002/bio.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Recent years, fluorescent organic-inorganic hybrid nanomaterials have received a lot of interest as potential fluorescent sensor materials. In this study, fluorescent organic-inorganic hybrid nanomaterials (POSS@ANT) were created utilizing polyhedral oligomeric silsesquioxane as the precursor and 9,10-bromoanthracene as the monomer. The morphology and composition of POSS@ANT, as well as its pore characteristics and fluorescence properties were studied. And POSS@ANT displayed steady fluorescence emission at an excitation wavelength of 374 nm. Then a β-carotene fluorescence sensor was developed using the capacity of β-carotene to quench the fluorescence of POSS@ANT. The quenching process is linked to acceptor electron transfer and energy transfer, and the sensor has a high selectivity for β-carotene. This β-carotene fluorescence analysis method we established has a linear range of 0.2-4.3 mg/L and a detection limit of 0.081 mg/L. Finally, it was used to quantify β-carotene in health products, the recovery rate was 91.1% - 109.9%, the RSD was 2.2% - 4.3%, and the results were compatible with the results of high-performance liquid chromatography. The approach is reliable and can be used to determine β-carotene in health products.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Peipei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Yudovich S, Marzouqe A, Kantorovitsch J, Teblum E, Chen T, Enderlein J, Miller EW, Weiss S. Electrically Controlling and Optically Observing the Membrane Potential of Supported Lipid Bilayers. Biophys J 2022; 121:2624-2637. [PMID: 35619563 DOI: 10.1016/j.bpj.2022.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Adan Marzouqe
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Joseph Kantorovitsch
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Eti Teblum
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Germany
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Shimon Weiss
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Departments of Chemistry and Biochemistry, Physiology, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
74
|
Chakraborty A, Krause L, Klostermeier D. Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy. Methods 2022; 204:428-441. [PMID: 35304246 DOI: 10.1016/j.ymeth.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.
Collapse
Affiliation(s)
| | - Linda Krause
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany.
| |
Collapse
|
75
|
Poyton MF, Feng XA, Ranjan A, Lei Q, Wang F, Zarb JS, Louder RK, Park G, Jo MH, Ye J, Liu S, Ha T, Wu C. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. SCIENCE ADVANCES 2022; 8:eabj5509. [PMID: 35263135 PMCID: PMC8906749 DOI: 10.1126/sciadv.abj5509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Nucleosomal histone H2A is exchanged for its variant H2A.Z by the SWR1 chromatin remodeler, but the mechanism and timing of histone exchange remain unclear. Here, we quantify DNA and histone dynamics during histone exchange in real time using a three-color single-molecule FRET assay. We show that SWR1 operates with timed precision to unwrap DNA with large displacement from one face of the nucleosome, remove H2A-H2B from the same face, and rewrap DNA, all within 2.3 s. This productive DNA unwrapping requires full SWR1 activation and differs from unproductive, smaller-scale DNA unwrapping caused by SWR1 binding alone. On an asymmetrically positioned nucleosome, SWR1 intrinsically senses long-linker DNA to preferentially exchange H2A.Z on the distal face as observed in vivo. The displaced H2A-H2B dimer remains briefly associated with the SWR1-nucleosome complex and is dissociated by histone chaperones. These findings reveal how SWR1 coordinates DNA unwrapping with histone dynamics to rapidly and accurately place H2A.Z at physiological sites on chromatin.
Collapse
Affiliation(s)
- Matthew F. Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Qin Lei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jasmin S. Zarb
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert K. Louder
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Giho Park
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Myung Hyun Jo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
76
|
Hadzic MCAS, Sigel RKO, Börner R. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2439:173-190. [PMID: 35226322 DOI: 10.1007/978-1-0716-2047-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).
Collapse
Affiliation(s)
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
77
|
Harris PD, Narducci A, Gebhardt C, Cordes T, Weiss S, Lerner E. Multi-parameter photon-by-photon hidden Markov modeling. Nat Commun 2022; 13:1000. [PMID: 35194038 PMCID: PMC8863987 DOI: 10.1038/s41467-022-28632-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H2MM) is an analysis tool that can quantify FRET dynamics of single biomolecules, even if they occur on the sub-millisecond timescale. However, dye photophysical transitions intertwined with FRET dynamics may cause artifacts. Here, we introduce multi-parameter H2MM (mpH2MM), which assists in identifying FRET dynamics based on simultaneous observation of multiple experimentally-derived parameters. We show the importance of using mpH2MM to decouple FRET dynamics caused by conformational changes from photophysical transitions in confocal-based smFRET measurements of a DNA hairpin, the maltose binding protein, MalE, and the type-III secretion system effector, YopO, from Yersinia species, all exhibiting conformational dynamics ranging from the sub-second to microsecond timescales. Overall, we show that using mpH2MM facilitates the identification and quantification of biomolecular sub-populations and their origin.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Alessandra Narducci
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los Angeles, CA, USA
- CaliforniaNanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
78
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
79
|
Zhu M, Lu D, Milani AH, Mahmoudi N, King SM, Saunders BR. Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering. J Colloid Interface Sci 2022; 608:378-385. [PMID: 34626983 DOI: 10.1016/j.jcis.2021.09.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Nanosized probes that report their changes in dimensions within networks in response to environmental stimuli are potentially important for applications such as drug delivery, load-supporting hydrogels and soft robotics. Recently, we developed a fluorescent pH-responsive nanogel (NG) that used Förster-resonance energy transfer (FRET) to report changes in the probe separation and NG swelling within hydrogels using photoluminescence (PL) spectroscopy. However, FRET cannot measure nanoparticle dimensions and is subject to artefacts. Here, we report the use of small-angle neutron scattering (SANS) to study both the NGs in dispersion and in polyacrylamide (PAAm) gels as a function of pH. We compare the PL and SANS data for both systems and as a function of pH. The SANS data for the dispersed NGs indicate that they have a core-shell structure with a swollen mesh size of ∼1.0 nm. We hypothesized that the NGs inside the PAAm gel would show the same general changes in scattering as the pH is increased, as observed for the dispersed NGs, and this is confirmed by the data. In summary, the data confirm that PL is a suitable (accessible) method for reporting internal environmental changes within gels using NG probes.
Collapse
Affiliation(s)
- Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
| | - Dongdong Lu
- School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
| | - Amir H Milani
- School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
| | - Najet Mahmoudi
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Stephen M King
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK
| | - Brian R Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester M13 9PL, UK
| |
Collapse
|
80
|
Qiu X, Xu J, Cardoso Dos Santos M, Hildebrandt N. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Acc Chem Res 2022; 55:551-564. [PMID: 35084817 DOI: 10.1021/acs.accounts.1c00691] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The necessity to scrutinize more and more biological molecules and interactions both in solution and on the cellular level has led to an increasing demand for sensitive and specific multiplexed diagnostic analysis. Photoluminescence (PL) detection is ideally suited for multiplexed biosensing and bioimaging because it is rapid and sensitive and there is an almost unlimited choice of fluorophores that provide a large versatility of photophysical properties, including PL intensities, spectra, and lifetimes.The most frequently used technique to detect multiple parameters from a single sample is spectral (or color) multiplexing with different fluorophores, such as organic dyes, fluorescent proteins, quantum dots, or lanthanide nanoparticles and complexes. In conventional PL biosensing approaches, each fluorophore requires a distinct detection channel and excitation wavelength. This drawback can be overcome by Förster resonance energy transfer (FRET) from lanthanide donors to other fluorophore acceptors. The lanthanides' multiple and spectrally narrow emission bands over a broad spectral range can overlap with several different acceptors at once, thereby allowing FRET from one donor to multiple acceptors. The lanthanides' extremely long PL lifetimes provide two important features. First, time-gated (TG) detection allows for efficient suppression of background fluorescence from the biological environment or directly excited acceptors. Second, temporal multiplexing, for which the PL lifetimes are adjusted by the interaction with the FRET acceptor, can be used to determine specific biomolecules and/or their conformation via distinct PL decays. The high signal-to-background ratios, reproducible and precise ratiometric and homogeneous (washing-free) sensing formats, and higher-order multiplexing capabilities of lanthanide-based TG-FRET have resulted in significant advances in the analysis of biomolecular recognition. Applications range from fundamental analysis of biomolecular interactions and conformations to high-throughput and point-of-care in vitro diagnostics and DNA sequencing to advanced optical encoding, using both liquid and solid samples and in situ, in vitro, and in vivo detection with high sensitivity and selectivity.In this Account, we discuss recent advances in lanthanide-based TG-FRET for the development and application of advanced immunoassays, nucleic acid sensing, and fluorescence imaging. In addition to the different spectral and temporal multiplexing approaches, we highlight the importance of the careful design and combination of different biological, organic, and inorganic molecules and nanomaterials for an adjustable FRET donor-acceptor distance that determines the ultimate performance of the diagnostic assays and conformational sensors in their physiological environment. We conclude by sharing our vision on how progress in the development of new sensing concepts, material combinations, and instrumentation can further advance TG-FRET multiplexing and accelerate its translation into routine clinical practice and the investigation of challenging biological systems.
Collapse
Affiliation(s)
- Xue Qiu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingyue Xu
- nanofret.com, Laboratoire COBRA, Université de Rouen Normandie, Normandie Université, CNRS, INSA Rouen, 76000 Rouen, France
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Niko Hildebrandt
- nanofret.com, Laboratoire COBRA, Université de Rouen Normandie, Normandie Université, CNRS, INSA Rouen, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
81
|
Sielaff H, Dienerowitz F, Dienerowitz M. Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases. NANOSCALE 2022; 14:2327-2336. [PMID: 35084006 DOI: 10.1039/d1nr05754e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FOF1-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment. In addition, we are able to monitor complete reaction cycles and to selectively trap active molecules based on their smFRET signal, thus speeding up the data acquisition process. We demonstrate the capability of our method to study the dynamics of single molecules by recording the ATP-hydrolysis driven rotation of individual FOF1-ATP synthase molecules over numerous reaction cycles and extract their kinetic rates. We argue that our method is not limited to motor proteins. Instead, it can be applied to monitor conformational changes with millisecond time resolution for a wide range of enzymes, thereby making it a versatile tool for studying protein dynamics.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore, Singapore
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
82
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
83
|
Malinen AM, Bakermans J, Aalto-Setälä E, Blessing M, Bauer DLV, Parilova O, Belogurov GA, Dulin D, Kapanidis AN. Real-Time Single-Molecule Studies of RNA Polymerase-Promoter Open Complex Formation Reveal Substantial Heterogeneity Along the Promoter-Opening Pathway. J Mol Biol 2022; 434:167383. [PMID: 34863780 PMCID: PMC8783055 DOI: 10.1016/j.jmb.2021.167383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/25/2023]
Abstract
The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the β' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland; Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Jacob Bakermans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Emil Aalto-Setälä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Martin Blessing
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - David L V Bauer
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Olena Parilova
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | | | - David Dulin
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany; Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford.
| |
Collapse
|
84
|
Ochmann SE, Schröder T, Schulz CM, Tinnefeld P. Quantitative Single-Molecule Measurements of Membrane Charges with DNA Origami Sensors. Anal Chem 2022; 94:2633-2640. [PMID: 35089694 DOI: 10.1021/acs.analchem.1c05092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charges in lipid head groups generate electrical surface potentials at cell membranes, and changes in their composition are involved in various signaling pathways, such as T-cell activation or apoptosis. Here, we present a DNA origami-based sensor for membrane surface charges with a quantitative fluorescence read-out of single molecules. A DNA origami plate is equipped with modifications for specific membrane targeting, surface immobilization, and an anionic sensing unit consisting of single-stranded DNA and the dye ATTO542. This unit is anchored to a lipid membrane by the dye ATTO647N, and conformational changes of the sensing unit in response to surface charges are read out by fluorescence resonance energy transfer between the two dyes. We test the performance of our sensor with single-molecule fluorescence microscopy by exposing it to differently charged large unilamellar vesicles. We achieve a change in energy transfer of ∼10% points between uncharged and highly charged membranes and demonstrate a quantitative relation between the surface charge and the energy transfer. Further, with autocorrelation analyses of confocal data, we unravel the working principle of our sensor that is switching dynamically between a membrane-bound state and an unbound state on the timescale of 1-10 ms. Our study introduces a complementary sensing system for membrane surface charges to previously published genetically encoded sensors. Additionally, the single-molecule read-out enables investigations of lipid membranes on the nanoscale with a high spatial resolution circumventing ensemble averaging.
Collapse
Affiliation(s)
- Sarah E Ochmann
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Clara M Schulz
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
85
|
Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun 2022; 13:493. [PMID: 35078979 PMCID: PMC8789820 DOI: 10.1038/s41467-022-28040-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasonic neuromodulation has the unique potential to provide non-invasive control of neural activity in deep brain regions with high spatial precision and without chemical or genetic modification. However, the biomolecular and cellular mechanisms by which focused ultrasound excites mammalian neurons have remained unclear, posing significant challenges for the use of this technology in research and potential clinical applications. Here, we show that focused ultrasound excites primary murine cortical neurons in culture through a primarily mechanical mechanism mediated by specific calcium-selective mechanosensitive ion channels. The activation of these channels results in a gradual build-up of calcium, which is amplified by calcium- and voltage-gated channels, generating a burst firing response. Cavitation, temperature changes, large-scale deformation, and synaptic transmission are not required for this excitation to occur. Pharmacological and genetic inhibition of specific ion channels leads to reduced responses to ultrasound, while over-expressing these channels results in stronger ultrasonic stimulation. These findings provide a mechanistic explanation for the effect of ultrasound on neurons to facilitate the further development of ultrasonic neuromodulation and sonogenetics as tools for neuroscience research.
Collapse
Affiliation(s)
- Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David R Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jerome Lacroix
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
86
|
Ha T, Kaiser C, Myong S, Wu B, Xiao J. Next generation single-molecule techniques: Imaging, labeling, and manipulation in vitro and in cellulo. Mol Cell 2022; 82:304-314. [PMID: 35063098 PMCID: PMC12104962 DOI: 10.1016/j.molcel.2021.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Christian Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
87
|
Oleksiievets N, Sargsyan Y, Thiele JC, Mougios N, Sograte-Idrissi S, Nevskyi O, Gregor I, Opazo F, Thoms S, Enderlein J, Tsukanov R. Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Commun Biol 2022; 5:38. [PMID: 35017652 PMCID: PMC8752799 DOI: 10.1038/s42003-021-02976-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.
Collapse
Affiliation(s)
- Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Yelena Sargsyan
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Jan Christoph Thiele
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Oleksii Nevskyi
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Ingo Gregor
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
- Biochemistry and Molecular Medicine, Medical School, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen, Germany.
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
| |
Collapse
|
88
|
Kinetics of DNA looping by Anabaena sensory rhodopsin transducer (ASRT) by using DNA cyclization assay. Sci Rep 2021; 11:23721. [PMID: 34887464 PMCID: PMC8660804 DOI: 10.1038/s41598-021-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
DNA cyclization assay together with single-molecule FRET was employed to monitor protein-mediated bending of a short dsDNA (~ 100 bp). This method provides a simple and easy way to monitor the structural change of DNA in real-time without necessitating prior knowledge of the molecular structures for the optimal dye-labeling. This assay was applied to study how Anabaena sensory rhodopsin transducer (ASRT) facilitates loop formation of DNA as a possible mechanism for gene regulation. The ASRT-induced DNA looping was maximized at 50 mM of Na+, while Mg2+ also played an essential role in the loop formation.
Collapse
|
89
|
Structural dynamics in the evolution of a bilobed protein scaffold. Proc Natl Acad Sci U S A 2021; 118:2026165118. [PMID: 34845009 PMCID: PMC8694067 DOI: 10.1073/pnas.2026165118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins conduct numerous complex biological functions by use of tailored structural dynamics. The molecular details of how these emerged from ancestral peptides remains mysterious. How does nature utilize the same repertoire of folds to diversify function? To shed light on this, we analyzed bilobed proteins with a common structural core, which is spread throughout the tree of life and is involved in diverse biological functions such as transcription, enzymatic catalysis, membrane transport, and signaling. We show here that the structural dynamics of the structural core differentiate predominantly via terminal additions during a long-period evolution. This diversifies substrate specificity and, ultimately, biological function. Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Collapse
|
90
|
Longatte G, Lisi F, Bakthavathsalam P, Böcking T, Gaus K, Tilley RD, Gooding JJ. Biomolecular Binding under Confinement: Statistical Predictions of Steric Influence in Absence of Long-Distance Interactions. Chemphyschem 2021; 23:e202100765. [PMID: 34856050 DOI: 10.1002/cphc.202100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
We propose a theoretical model for the influence of confinement on biomolecular binding at the single-molecule scale at equilibrium, based on the change of the number of microstates (localization and orientation) upon reaction. Three cases are discussed: DNA sequences shorter and longer than the single strain DNA Kuhn length and spherical proteins, confined into a spherical container (liposome, droplet, etc.). The influence of confinement is found to be highly dependent on the molecular structure and significant for large molecules (relative to container size).
Collapse
Affiliation(s)
- Guillaume Longatte
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fabio Lisi
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Padmavathy Bakthavathsalam
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
91
|
Abstract
Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.
Collapse
Affiliation(s)
- Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
92
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
93
|
Ochmann SE, Joshi H, Büber E, Franquelim HG, Stegemann P, Saccà B, Keyser UF, Aksimentiev A, Tinnefeld P. DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. NANO LETTERS 2021; 21:8634-8641. [PMID: 34662130 DOI: 10.1021/acs.nanolett.1c02584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Signal transmission in neurons goes along with changes in the transmembrane potential. To report them, different approaches, including optical voltage-sensing dyes and genetically encoded voltage indicators, have evolved. Here, we present a DNA nanotechnology-based system and demonstrated its functionality on liposomes. Using DNA origami, we incorporated and optimized different properties such as membrane targeting and voltage sensing modularly. As a sensing unit, we used a hydrophobic red dye anchored to the membrane and an anionic green dye at the DNA to connect the nanostructure and the membrane dye anchor. Voltage-induced displacement of the anionic donor unit was read out by fluorescence resonance energy transfer (FRET) changes of single sensors attached to liposomes. A FRET change of ∼5% for ΔΨ = 100 mV was observed. The working mechanism of the sensor was rationalized by molecular dynamics simulations. Our approach holds potential for an application as nongenetically encoded membrane sensors.
Collapse
Affiliation(s)
- Sarah E Ochmann
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61820, United States
| | - Ece Büber
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Pierre Stegemann
- Center of Medical Biotechnology (ZMB) and Center for Nano Integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Barbara Saccà
- Center of Medical Biotechnology (ZMB) and Center for Nano Integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61820, United States
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
94
|
Talele S, King JT. Fast and robust two-dimensional inverse Laplace transformation of single-molecule fluorescence lifetime data. Biophys J 2021; 120:4590-4599. [PMID: 34461104 DOI: 10.1016/j.bpj.2021.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/08/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
Fluorescence spectroscopy at the single-molecule scale has been indispensable for studying conformational dynamics and rare states of biological macromolecules. Single-molecule two-dimensional (2D) fluorescence lifetime correlation spectroscopy is an emerging technique that holds promise for the study of protein and nucleic acid dynamics, as the technique is 1) capable of resolving conformational dynamics using a single chromophore, 2) resolves forward and reverse transitions independently, and 3) has a dynamic window ranging from microseconds to seconds. However, the calculation of a 2D fluorescence relaxation spectrum requires an inverse Laplace transform (ILT), which is an ill-conditioned inversion that must be estimated numerically through a regularized minimization. Current methods for performing ILTs of fluorescence relaxation can be computationally inefficient, sensitive to noise corruption, and difficult to implement. Here, we adopt an approach developed for NMR spectroscopy (T1-T2 relaxometry) to perform one-dimensional (1D) and 2D-ILTs on single-molecule fluorescence spectroscopy data using singular-valued decomposition and Tikhonov regularization. This approach provides fast, robust, and easy to implement Laplace inversions of single-molecule fluorescence data. We compare this approach to the widely used maximal entropy method.
Collapse
Affiliation(s)
- Saurabh Talele
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
95
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
96
|
Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021; 8:725541. [PMID: 34540899 PMCID: PMC8446445 DOI: 10.3389/fmolb.2021.725541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster's resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| |
Collapse
|
97
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
98
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
99
|
Furth N, Shilo S, Cohen N, Erez N, Fedyuk V, Schrager AM, Weinberger A, Dror AA, Zigron A, Shehadeh M, Sela E, Srouji S, Amit S, Levy I, Segal E, Dahan R, Jones D, Douek DC, Shema E. Unified platform for genetic and serological detection of COVID-19 with single-molecule technology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34075385 PMCID: PMC8168389 DOI: 10.1101/2021.05.25.21257501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic raises the need for diverse diagnostic approaches to rapidly detect different stages of viral infection. The flexible and quantitative nature of single-molecule imaging technology renders it optimal for development of new diagnostic tools. Here we present a proof-of-concept for a single-molecule based, enzyme-free assay for detection of SARS-CoV-2. The unified platform we developed allows direct detection of the viral genetic material from patients' samples, as well as their immune response consisting of IgG and IgM antibodies. Thus, it establishes a platform for diagnostics of COVID-19, which could also be adjusted to diagnose additional pathogens.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Shilo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Vadim Fedyuk
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander M Schrager
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amiel A Dror
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Asaf Zigron
- Oral and Maxillofacial Department, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mona Shehadeh
- Clinical Laboratories division, Clinical Biochemistry and Endocrinology laboratory, Galilee Medical Center, Naharia, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Eyal Sela
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Srouji
- Oral and Maxillofacial Department, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Itzchak Levy
- Sheba Medical Center, Ramat Gan, Israel.,Sackler Medical School, Tel Aviv university, Tel Aviv, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
100
|
Furth N, Shilo S, Cohen N, Erez N, Fedyuk V, Schrager AM, Weinberger A, Dror AA, Zigron A, Shehadeh M, Sela E, Srouji S, Amit S, Levy I, Segal E, Dahan R, Jones D, Douek DC, Shema E. Unified platform for genetic and serological detection of COVID-19 with single-molecule technology. PLoS One 2021; 16:e0255096. [PMID: 34310620 PMCID: PMC8312974 DOI: 10.1371/journal.pone.0255096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022] Open
Abstract
The COVID-19 pandemic raises the need for diverse diagnostic approaches to rapidly detect different stages of viral infection. The flexible and quantitative nature of single-molecule imaging technology renders it optimal for development of new diagnostic tools. Here we present a proof-of-concept for a single-molecule based, enzyme-free assay for detection of SARS-CoV-2. The unified platform we developed allows direct detection of the viral genetic material from patients' samples, as well as their immune response consisting of IgG and IgM antibodies. Thus, it establishes a platform for diagnostics of COVID-19, which could also be adjusted to diagnose additional pathogens.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Shilo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Vadim Fedyuk
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander M. Schrager
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amiel A. Dror
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Asaf Zigron
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Oral and Maxillofacial Department, Galilee Medical Center, Nahariya, Israel
| | - Mona Shehadeh
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Clinical Laboratories Division, Clinical Biochemistry and Endocrinology Laboratory, Galilee Medical Center, Naharia, Israel
| | - Eyal Sela
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Oral and Maxillofacial Department, Galilee Medical Center, Nahariya, Israel
| | | | - Itzchak Levy
- Sheba Medical Center, Ramat Gan, Israel
- Sackler Medical School, Tel Aviv university, Tel Aviv, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Jones
- SeqLL, Woburn, MA, United States of America
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|