51
|
Marchi PH, Vendramini THA, Perini MP, Zafalon RVA, Amaral AR, Ochamotto VA, Da Silveira JC, Dagli MLZ, Brunetto MA. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front Vet Sci 2022; 9:1004122. [PMID: 36262532 PMCID: PMC9573962 DOI: 10.3389/fvets.2022.1004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is the most common nutritional disease in dogs, and its prevalence has increased in recent decades. Several countries have demonstrated a prevalence of obesity in dogs similar to that observed in humans. Chronic low-grade inflammation is a prominent basis used to explain how obesity results in numerous negative health consequences. This is well known and understood, and recent studies have pointed to the association between obesity and predisposition to specific types of cancers and their complications. Such elucidations are important because, like obesity, the prevalence of cancer in dogs has increased in recent decades, establishing cancer as a significant cause of death for these animals. In the same way, intensive advances in technology in the field of human and veterinary medicine (which even proposes the use of animal models) have optimized existing therapeutic methods, led to the development of innovative treatments, and shortened the time to diagnosis of cancer. Despite the great challenges, this review aims to highlight the evidence obtained to date on the association between obesity, inflammation, and cancer in dogs, and the possible pathophysiological mechanisms that link obesity and carcinogenesis. The potential to control cancer in animals using existing knowledge is also presented.
Collapse
Affiliation(s)
- Pedro H. Marchi
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Thiago H. A. Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Mariana P. Perini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Rafael V. A. Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Andressa R. Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa A. Ochamotto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Juliano C. Da Silveira
- Laboratory of Molecular, Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcio A. Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil,Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,*Correspondence: Marcio A. Brunetto
| |
Collapse
|
52
|
Oh JM, Chun S. Ginsenoside CK Inhibits the Early Stage of Adipogenesis via the AMPK, MAPK, and AKT Signaling Pathways. Antioxidants (Basel) 2022; 11:1890. [PMID: 36290613 PMCID: PMC9598147 DOI: 10.3390/antiox11101890] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is considered a health hazard in part due to the associated multiple diseases. As rates of obesity continue to increase, a new strategy for its prevention and treatment is required. Compound-K, an active ingredient in ginseng, possesses antioxidant, anti-inflammatory, and anti-cancer properties. Although ginseng has used as various therapeutics, its potential ability to alleviate metabolic diseases by regulating adipocyte differentiation is still unknown. In this study, we found that CK treatment significantly inhibited lipid droplet and adipogenesis by downregulating the mRNA expression of C/ebpα, Ppar-γ, Fabp4, Srebp1, and adiponectin as well as protein levels of C/EBPα, PPAR-γ, and FABP4. CK also decreased the production of reactive oxygen species (ROS), while it increased endogeneous antioxidant enzymes such as catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) 3 and SOD2. We observed that CK treatment suppressed the expression of cyclin-dependent kinase 1 (CDK1) and cyclin B1 during the mitotic clonal expansion (MCE) of adipocyte differentiation, and it arrested adipocytes at the G2/M stage due to the increased expression of p21 and p27. CK decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 and protein kinase B (AKT) in early-stage adipogenesis. In addition, the inhibition of adipogenesis by CK significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). Interestingly, AMPK pharmacological inhibition with Dorsomorphin limited the effect of CK on suppressing PPAR-γ expression in differentiated 3T3-L1 cells. Our results suggest that CK exerts anti-adipogenic effects in 3T3-L1 cells through the activation of AMPK and inhibition of ERK/p38 and AKT signaling pathways.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Institute of Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
53
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
54
|
Blood and Urinary Biomarkers of Antipsychotic-Induced Metabolic Syndrome. Metabolites 2022; 12:metabo12080726. [PMID: 36005598 PMCID: PMC9416438 DOI: 10.3390/metabo12080726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) is a clustering of at least three of the following five medical conditions: abdominal obesity, high blood pressure, high blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL). Antipsychotic (AP)-induced MetS (AIMetS) is the most common adverse drug reaction (ADR) of psychiatric pharmacotherapy. Herein, we review the results of studies of blood (serum and plasma) and urinary biomarkers as predictors of AIMetS in patients with schizophrenia (Sch). We reviewed 1440 studies examining 38 blood and 19 urinary metabolic biomarkers, including urinary indicators involved in the development of AIMetS. Among the results, only positive associations were revealed. However, at present, it should be recognized that there is no consensus on the role of any particular urinary biomarker of AIMetS. Evaluation of urinary biomarkers of the development of MetS and AIMetS, as one of the most common concomitant pathological conditions in the treatment of patients with psychiatric disorders, may provide a key to the development of strategies for personalized prevention and treatment of the condition, which is considered a complication of AP therapy for Sch in clinical practice.
Collapse
|
55
|
Yoh K, Ikeda K, Nagai S, Horie K, Takeda S, Inoue S. Constitutive activation of estrogen receptor α signaling in muscle prolongs exercise endurance in mice. Biochem Biophys Res Commun 2022; 628:11-17. [DOI: 10.1016/j.bbrc.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
|
56
|
Luo L, Liu M. Adiponectin: friend or foe in obesity and inflammation. MEDICAL REVIEW (2021) 2022; 2:349-362. [PMID: 37724325 PMCID: PMC10388816 DOI: 10.1515/mr-2022-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 09/20/2023]
Abstract
Adiponectin is an adipokine predominantly produced by fat cells, circulates and exerts insulin-sensitizing, cardioprotective and anti-inflammatory effects. Dysregulation of adiponectin and/or adiponectin signaling is implicated in a number of metabolic diseases such as obesity, insulin resistance, diabetes, and cardiovascular diseases. However, while the insulin-sensitizing and cardioprotective effects of adiponectin have been widely appreciated in the field, the obesogenic and anti-inflammatory effects of adiponectin are still of much debate. Understanding the physiological function of adiponectin is critical for adiponectin-based therapeutics for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
57
|
Li Q, Liao S, Pang D, Li E, Liu T, Liu F, Zou Y. The transported active mulberry leaf phenolics inhibited adipogenesis through PPAR-γ and Leptin signaling pathway. J Food Biochem 2022; 46:e14270. [PMID: 35702955 DOI: 10.1111/jfbc.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/10/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The effective components of mulberry leaf polyphenols (MLPs) should be absorbed and transported by the intestinal cells before regulating lipid metabolism. The Caco-2 intestinal epithelial cell and 3 T3-L1 adipocytes were coupled to screen the effective components of MLPs that are being absorbed and transported by intestinal cells. The regulation and molecular mechanism by which the effective components affect adipogenesis were analyzed in this study. Among the 12 main components identified, five main compounds were well absorbed with Papp in the order of benzoic acid > chlorogenic acid > astragaloside > hyperoside > rutin. Chlorogenic acid and benzoic acid were mainly absorbed through passive diffusion, while rutin, astragaloside, and hyperoside were mainly by active transport, of which chlorogenic and rutin absorption were mediated by the efflux protein, P-glycoprotein (P-pg). Based on the transport volume of 2 mg/ml MLPs within 2 h, 25% of the maximum transported MLPs (TMLPs) was a safe concentration for 3 T3-L1 preadipocytes. Except for astragaloside, the other four components showed a significant inhibitory effect on lipid droplets, TG and TC, and chlorogenic acid and benzoic acid had the strongest effect. Additionally, we observed a synergistic effect as TMLPs were the most effective. We hypothesized that TMLPs, chlorogenic acid and benzoic acid suppressed adipogenesis and regulated lipid metabolism by inhibiting PPAR-γ, C/EBP-α, and FAS mRNA while promoting ADIPO and Leptin mRNA expression. PRACTICAL APPLICATIONS: The absorption and adipogenesis inhibition effect of mulberry leaf phenolics were evaluated in this study. The results provided guideline for the development of functional foods in regulating lipid metabolism.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Daorui Pang
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Erna Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Tongxian Liu
- Guangxi Rongshui Furongbei Jiangyuan Agricultural Development Co., Ltd, Liuzhou, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
58
|
Vermeiren E, Van Eyck A, Van De Maele K, Ysebaert M, Makhout S, De Guchtenaere A, Van Helvoirt M, Tanghe A, Naets T, Vervoort L, Braet C, Bruyndonckx L, De Winter B, Verhulst S, Van Hoorenbeeck K. The Predictive Value of Adipokines and Metabolic Risk Factors for Dropouts and Treatment Outcomes in Children With Obesity Treated in a Pediatric Rehabilitation Center. Front Endocrinol (Lausanne) 2022; 13:822962. [PMID: 35769076 PMCID: PMC9234213 DOI: 10.3389/fendo.2022.822962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inpatient pediatric obesity treatments are highly effective, although dropouts and weight regain threaten long-term results. Preliminary data indicate that leptin, adiponectin, and cardiometabolic comorbidities might predict treatment outcomes. Previous studies have mainly focused on the individual role of adipokines and comorbidities, which is counterintuitive, as these risk factors tend to cluster. This study aimed to predict the dropouts and treatment outcomes by pre-treatment patient characteristics extended with cardiometabolic comorbidities (individually and in total), leptin, and adiponectin. METHODS Children aged 8-18 years were assessed before, immediately after and 6 months after a 12-month inpatient obesity treatment. Anthropometric data were collected at each visit. Pre-treatment lipid profiles; glucose, insulin, leptin, and adiponectin levels; and blood pressure were measured. The treatment outcome was evaluated by the change in body mass index (BMI) standard deviation score (SDS) corrected for age and sex. RESULTS We recruited 144 children with a mean age of 14.3 ± 2.2 years and a mean BMI of 36.7 ± 6.2 kg/m2 corresponding to 2.7 ± 0.4 BMI SDS. The 57 patients who dropped out during treatment and the 44 patients who dropped out during aftercare had a higher pre-treatment BMI compared to the patients who completed the treatment (mean BMI, 38.3 ± 6.8 kg/m2 vs 35.7 ± 5.5 kg/m2) and those who completed aftercare (mean BMI, 34.6 ± 5.3 kg/m2 vs 37.7 ± 6.3 kg/m2) (all p<0.05). Additionally, aftercare attenders were younger than non-attenders (mean age, 13.4 ± 2.3 years vs 14.9 ± 2.0, p<0.05).Patients lost on average 1.0 ± 0.4 SDS during treatment and regained 0.4 ± 0.3 SDS post-treatment corresponding to regain of 43 ± 27% (calculated as the increase in BMI SDS post-treatment over the BMI SDS lost during treatment). A higher BMI and more comorbidities inversely predicted BMI SDS reduction in linear regression (all p<0.05).The absolute BMI SDS increase after returning home was predicted by pre-treatment leptin and systolic blood pressure, whereas the post-treatment BMI SDS regain was predicted by pre-treatment age, leptin, and adiponectin levels (all p<0.05) in multivariate linear regressions. CONCLUSION Patients who need treatment the most are at increased risk for dropouts and weight regain, emphasizing the urgent need for interventions to reduce dropout and support inpatients after discharge. Furthermore, this study is the first to report that pre-treatment leptin and adiponectin levels predict post-treatment BMI SDS regain, requiring further research.
Collapse
Affiliation(s)
- Eline Vermeiren
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annelies Van Eyck
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | | | - Marijke Ysebaert
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Sanae Makhout
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Tiffany Naets
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| | - Leentje Vervoort
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
- Department of Developmental Psychology, Radboud University, Nijmegen, Netherlands
| | - Caroline Braet
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| | - Luc Bruyndonckx
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
- Department of Pediatric Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Stijn Verhulst
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Kim Van Hoorenbeeck
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
59
|
New Insights into Adipokines in Gestational Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23116279. [PMID: 35682958 PMCID: PMC9181219 DOI: 10.3390/ijms23116279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic disorder of pregnancy and has considerable short- and long-term consequences for the health of both the mother and the newborn. Within its pathophysiology, genetic, nutritional, epigenetic, immunological, and hormonal components have been described. Within the last two items, it is known that different hormones and cytokines secreted by adipose tissue, known collectively as adipokines, are involved in the metabolic alterations underlying GDM. Although the maternal circulating profile of adipokines in GDM has been extensively studied, and there are excellent reviews on the subject, it is in recent years that more progress has been made in the study of their expression in visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), placenta, and their concentrations in the umbilical circulation. Thus, this review compiles and organizes the most recent findings on the maternal and umbilical circulating profile and the levels of expression of adipokines in VAT, SAT, and placenta in GDM.
Collapse
|
60
|
Meacham CE, Jeffery EC, Burgess RJ, Sivakumar CD, Arora MA, Stanley AM, Colby EM, Crane GM, Zhao Z, Morrison SJ. Adiponectin receptors sustain haematopoietic stem cells throughout adulthood by protecting them from inflammation. Nat Cell Biol 2022; 24:697-707. [PMID: 35513711 PMCID: PMC9107511 DOI: 10.1038/s41556-022-00909-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
How are haematopoietic stem cells (HSCs) protected from inflammation, which increases with age and can deplete HSCs? Adiponectin, an anti-inflammatory factor that is not required for HSC function or haematopoiesis, promotes stem/progenitor cell proliferation after bacterial infection and myeloablation. Adiponectin binds two receptors, AdipoR1 and AdipoR2, which have ceramidase activity that increases upon adiponectin binding. Here we found that adiponectin receptors are non-cell-autonomously required in haematopoietic cells to promote HSC quiescence and self-renewal. Adiponectin receptor signalling suppresses inflammatory cytokine expression by myeloid cells and T cells, including interferon-γ and tumour necrosis factor. Without adiponectin receptors, the levels of these factors increase, chronically activating HSCs, reducing their self-renewal potential and depleting them during ageing. Pathogen infection accelerates this loss of HSC self-renewal potential. Blocking interferon-γ or tumour necrosis factor signalling partially rescues these effects. Adiponectin receptors are thus required in immune cells to sustain HSC quiescence and to prevent premature HSC depletion by reducing inflammation.
Collapse
Affiliation(s)
- Corbin E Meacham
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elise C Jeffery
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca J Burgess
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charukesi D Sivakumar
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Madison A Arora
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne Marie Stanley
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emily M Colby
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve M Crane
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhiyu Zhao
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
61
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
62
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
63
|
Kim D, Howard AG, Blanco E, Burrows R, Correa-Burrows P, Memili A, Albala C, Santos JL, Angel B, Lozoff B, Justice AE, Gordon-Larsen P, Gahagan S, North KE. Dynamic relationships between body fat and circulating adipokine levels from adolescence to young adulthood: The Santiago Longitudinal Study. Nutr Metab Cardiovasc Dis 2022; 32:1055-1063. [PMID: 35181188 PMCID: PMC9107379 DOI: 10.1016/j.numecd.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Adipose tissue secretes adipokines such as adiponectin and leptin, playing important roles in energy metabolism. The longitudinal associations between such adipokines and body fat accumulation have not been established, especially during adolescence and young adulthood and in diverse populations. The study aims to assess the longitudinal association between body fat measured with dual X-ray absorptiometry and plasma adipokines from adolescence to young adulthood. METHODS AND RESULTS Among Hispanic/Latino participants (N = 537) aged 16.8 (SD: 0.3) years of the Santiago Longitudinal Study, we implemented structural equation modeling to estimate the sex-specific associations between adiposity (body fat percent (BF%) and proportion of trunk fat (PTF)) and adipokines (adiponectin and leptin levels) during adolescence (16 y) and these values after 6 years of follow-up (22 y). In addition, we further investigated whether the associations differed by baseline insulin resistance (IR) status. We found evidence for associations between 16 y BF% and 22 y leptin levels (β (SE): 0.58 (0.06) for females; 0.53 (0.05) for males), between 16 y PTF and 22 y adiponectin levels (β (SE): -0.31 (0.06) for females; -0.18 (0.06) for males) and between 16 y adiponectin levels and 22 y BF% (β (SE): 0.12 (0.04) for both females and males). CONCLUSION We observed dynamic relationships between adiposity and adipokines levels from late adolescence to young adulthood in a Hispanic/Latino population further demonstrating the importance of this period of the life course in the development of obesity.
Collapse
Affiliation(s)
- Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Estela Blanco
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA, USA; Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raquel Burrows
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | | | - Aylin Memili
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cecilia Albala
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
64
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
65
|
Delaney KZ, Santosa S. Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females. Obes Rev 2022; 23:e13393. [PMID: 34985183 DOI: 10.1111/obr.13393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) affects males and females disproportionately. In midlife, more males have T2DM than females. The sex difference in T2DM prevalence is, in part, explained by differences in regional adipose tissue characteristics. With obesity, changes to regional adipokine and cytokine release increases the risk of T2DM in both males and females with males having greater levels of TNFα and females having greater levels of leptin, CRP, and adiponectin. Regional immune cell infiltration appears to be pathogenic in both sexes via different routes as males with obesity have greater VAT ATM and a decrease in the protective Treg cells, whereas females have greater SAT ATM and T cells. Lastly, the ability of female adipose tissue to expand all regions through hyperplasia, rather than hypertrophy, protects them against the development of large insulin-resistant adipocytes that dominate male adipose tissue. The objective of this review is to discuss how sex may affect regional differences in adipose tissue characteristics and how these differences may distinguish the development of T2DM in males and females. In doing so, we will show that the origins of T2DM development differ between males and females.
Collapse
Affiliation(s)
- Kerri Z Delaney
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
66
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Diacerein versus adipoRon as adiponectin modulators in experimentally-induced end-stage type 2 diabetes mellitus in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103806. [PMID: 34974166 DOI: 10.1016/j.etap.2021.103806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to evaluate and compare the possible anti-diabetic effects of adipoRon and diacerein in type 2 diabetes mellitus (T2DM) rats. T2DM is marked by impaired oxidative, inflammatory and metabolic signaling. Indeed, T2DM progression is associated with elevated HbA1C%, low adiponectin and insulin concentration. Moreover, in this study epididymal adipose tissue and soleus muscle MDA contents significantly escalated, while serum TAC and epididymal adipose Nrf2 significantly declined. Nevertheless, serum TNF-α, epididymal NLRP3, NF-κB, PPARγ and CD68 expression rose significantly with a parallel significant reduction in serum IL-10 and soleus muscle expression of IRS1. Both adipoRon and diacerein significantly improved adiponectin and insulin secretion with augmentation of anti-oxidant defenses and diminution of oxidative burden, with obvious anti-inflammatory consequences (p < 0.05). Thus, adipoRon and diacerein positively modulated adiponectin expression with down-regulation of NF-κB/NLRP3/PPARγ expression with subsequent improvement in glycemic control, inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
67
|
Green tea extract increases adiponectin and PPARα levels to improve hepatic steatosis. J Nutr Biochem 2022; 103:108957. [DOI: 10.1016/j.jnutbio.2022.108957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
|
68
|
Tarkhnishvili A, Koentges C, Pfeil K, Gollmer J, Byrne NJ, Vosko I, Lueg J, Vogelbacher L, Birkle S, Tang S, Bon-Nawul Mwinyella T, Hoffmann MM, Odening KE, Michel NA, Wolf D, Stachon P, Hilgendorf I, Wallner M, Ljubojevic-Holzer S, von Lewinski D, Rainer P, Sedej S, Sourij H, Bode C, Zirlik A, Bugger H. Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice. J Lipid Atheroscler 2022; 11:161-177. [PMID: 35656151 PMCID: PMC9133777 DOI: 10.12997/jla.2022.11.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.
Collapse
Affiliation(s)
| | - Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nikole J Byrne
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ivan Vosko
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lueg
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Laura Vogelbacher
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Stephan Birkle
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Sibai Tang
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center – University of Freiburg, Germany
| | - Katja E Odening
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Nathaly Anto Michel
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Wallner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
69
|
Jiang H, Pu Y, Li ZH, Liu W, Deng Y, Liang R, Zhang XM, Zuo HD. Adiponectin, May Be a Potential Protective Factor for Obesity-Related Osteoarthritis. Diabetes Metab Syndr Obes 2022; 15:1305-1319. [PMID: 35510046 PMCID: PMC9058006 DOI: 10.2147/dmso.s359330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in elderly individuals and seriously affects quality of life. OA has often been thought to be caused by body weight load, but studies have increasingly shown that OA is an inflammation-mediated metabolic disease. The current existing evidence suggests that OA is associated with obesity-related chronic inflammation as well as abnormal lipid metabolism in obesity, such as fatty acids (FA) and triglycerides. Adiponectin, a cytokine secreted by adipose tissue, can affect the progression of OA by regulating obesity-related inflammatory factors. However, the specific molecular mechanism has not been fully elucidated. According to previous research, adiponectin can promote the metabolism of FA and triglycerides, which indicates that it is a potential protective factor for OA through many mechanisms. This article aims to review the mechanisms of chronic inflammation, FA and triglycerides in OA, as well as the potential mechanisms of adiponectin in regulating chronic inflammation and promoting FA and triglyceride metabolism. Therefore, adiponectin may have a protective effect on obesity-related OA, which could provide new insight into adiponectin and the related mechanisms in OA.
Collapse
Affiliation(s)
- Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Zeng-Hui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Wei Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yan Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Rui Liang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
- Correspondence: Hou-Dong Zuo, Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China, Tel +86-817-2587621, Email
| |
Collapse
|
70
|
Tarantino G, Balsano C, Santini SJ, Brienza G, Clemente I, Cosimini B, Sinatti G. It Is High Time Physicians Thought of Natural Products for Alleviating NAFLD. Is There Sufficient Evidence to Use Them? Int J Mol Sci 2021; 22:13424. [PMID: 34948230 PMCID: PMC8706322 DOI: 10.3390/ijms222413424] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease all over the world due to the obesity pandemic; currently, therapeutic options for NAFLD are scarce, except for diet recommendations and physical activity. NAFLD is characterized by excessive accumulation of fat deposits (>5%) in the liver with subsequent inflammation and fibrosis. Studies in the literature show that insulin resistance (IR) may be considered as the key mechanism in the onset and progression of NAFLD. Recently, using natural products as an alternative approach in the treatment of NAFLD has drawn growing attention among physicians. In this review, the authors present the most recent randomized controlled trials (RCTs) and lines of evidence from animal models about the efficacy of nutraceutics in alleviating NAFLD. Among the most studied substances in the literature, the following molecules were chosen because of their presence in the literature of both clinical and preclinical studies: spirulina, oleuropein, garlic, berberine, resveratrol, curcumin, ginseng, glycyrrhizin, coffee, cocoa powder, epigallocatechin-3-gallate, and bromelain.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, 80100 Naples, Italy;
| | - Clara Balsano
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| | - Silvano Junior Santini
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| | - Giovanni Brienza
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| | - Irma Clemente
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| | - Benedetta Cosimini
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| | - Gaia Sinatti
- MESVA Department, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy; (S.J.S.); (G.B.); (I.C.); (B.C.); (G.S.)
| |
Collapse
|
71
|
Marjani M, Dolab N, Kamkar MZ, Amiriani T, Yuzugulen J, Marjani A. Gender and Body Mass Index-Related Serum Level of Adipokines and Metabolic Syndrome Components in Bipolar Patients who received Lithium and Valproic Acid. Metab Syndr Relat Disord 2021; 20:79-87. [PMID: 34874780 DOI: 10.1089/met.2021.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: This is the study to assess alterations on adiponectin, leptin, and metabolic syndrome components in women and men bipolar disorder (BD) patients with normal weight and obesity who received valproic acid (VPA) and lithium (Li). Methods: Thirty-six women and 51 men were included. Commercial kits were used to determine all parameters. Metabolic syndrome components were determined according to the NCEP ATP III criteria. Results: Patients who received Li and VPA significantly differ in waist circumference (WC) and triglyceride (TG) levels (in women and men). Normal weight patients received both drugs, significant differences were considered in high-density lipoprotein-cholesterol (HDL-C), WC, and TG levels compared to healthy controls, but there were significant differences in TG, leptin, and adiponectin levels in obese patients who received VPA. There were significant negative and positive correlation between leptin and adiponectin and WC and TG in women and men BD patients treated with VPA and Li. There were significant positive correlation between leptin and adiponectin and WC and TG and significant negative correlation with HDL-C in normal weight BD patients treated with VPA and Li, respectively, while there was only a significant positive correlation between leptin and adiponectin, and TG in obese BD patients treated with VPA. Conclusions: It looks like that patients treated with both drugs for our suggested time may increase leptin and adiponectin levels. Correlation differences between leptin and adiponectin, and metabolic syndrome components may be important parameters in women, men, normal weight, and obese BD patients. Monitoring of body composition and adipokines may benefit in medical care of these patients.
Collapse
Affiliation(s)
- Majid Marjani
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| | - Neda Dolab
- Student Research Committee, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Metabolic Disorders Research Center, Golestan University Medical Sciences, Gorgan, Iran
| | - Mohammad Zaman Kamkar
- Department of Psychiatry, Golestan Research Center of Psychiatry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| | - Abdoljalal Marjani
- Department of Biochemistry and Biophysics, Faculty of Medicine, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
72
|
C1q tumor necrosis factor-related protein 1: a promising therapeutic target for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:273-280. [PMID: 34840267 DOI: 10.1097/fjc.0000000000001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Atherosclerosis serves as the pathological basis of most cardiovascular and cerebrovascular diseases. C1q tumor necrosis factor-related protein (CTRP1) is a 35-kDa glycoprotein synthesized by various tissues and cells, such as adipose tissue and macrophages. As an adiponectin paralog, CTRP1 signals through adiponectin receptor 1 (AdipoR1) and participates in a variety of pathophysiological processes. Circulating CTRP1 levels are significantly increased in patients with coronary artery disease. Importantly, CTRP1 was shown to accelerate the development of atherosclerosis by promoting vascular inflammation, macrophage foam cell formation and endothelial barrier dysfunction. This review focused on recent advances regarding the role of CTRP1 in atherogenesis with an emphasis on its potential as a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases.
Collapse
|
73
|
Tang X, Cao Y, Arora G, Hwang J, Sajid A, Brown CL, Mehta S, Marín-López A, Chuang YM, Wu MJ, Ma H, Pal U, Narasimhan S, Fikrig E. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. eLife 2021; 10:e72568. [PMID: 34783654 PMCID: PMC8639152 DOI: 10.7554/elife.72568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yongguo Cao
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Clinical Veterinary Medicine, and Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchunChina
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Courtney L Brown
- Yale Combined Program in the Biological and Biomedical Sciences, Yale UniversityNew HavenUnited States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Hongwei Ma
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College ParkCollege ParkUnited States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
74
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
75
|
Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, Mokrysheva NG. Adiponectin: a pleiotropic hormone with multifaceted roles. PROBLEMY ENDOKRINOLOGII 2021; 67:98-112. [PMID: 35018766 PMCID: PMC9753852 DOI: 10.14341/probl12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 05/28/2023]
Abstract
Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called 'adiponectin paradox'. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.
Collapse
Affiliation(s)
- S. S. Shklyaev
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation;
A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - G. A. Melnichenko
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. N. Volevodz
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. A. Falaleeva
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - S. A. Ivanov
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - N. G. Mokrysheva
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation
| |
Collapse
|
76
|
Ohn J, Been KW, Kim JY, Kim EJ, Park T, Yoon H, Ji JS, Okada‐Iwabu M, Iwabu M, Yamauchi T, Kim YK, Seok C, Kwon O, Kim KH, Lee HH, Chung JH. Discovery of a transdermally deliverable pentapeptide for activating AdipoR1 to promote hair growth. EMBO Mol Med 2021; 13:e13790. [PMID: 34486824 PMCID: PMC8495455 DOI: 10.15252/emmm.202013790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.
Collapse
Affiliation(s)
- Jungyoon Ohn
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyung Wook Been
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Yong Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Eun Ju Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Taeyong Park
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Hye‐Jin Yoon
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jeong Seok Ji
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Miki Okada‐Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Masato Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yeon Kyung Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Chaok Seok
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Ohsang Kwon
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyu Han Kim
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Hyung Ho Lee
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Ho Chung
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| |
Collapse
|
77
|
T-Cadherin and the Ratio of Its Ligands as Predictors of Carotid Atherosclerosis: A Pilot Study. Biomedicines 2021; 9:biomedicines9101398. [PMID: 34680515 PMCID: PMC8533356 DOI: 10.3390/biomedicines9101398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the cardiovascular system, atherogenic low-density lipoproteins (LDL) and the protective hormone adiponectin bind to the same receptor, T-cadherin. In this study, we tested the hypothesis that the ratio of circulating LDL to high-molecular weight (HMW) adiponectin could predict the development of atherosclerosis. Using enzyme-linked immunosorbent assay, we measured the level of circulating HMW adiponectin in the blood of donors together with ultrasound measuring of intima-media thickness (IMT) of carotid arteries. Single-nucleotide polymorphisms in the T-cadherin gene were identified using polymerase chain reaction. We found that carotid artery IMT is inversely correlated with the level of HMW in male subjects. We also found that the G allele of rs12444338 SNP in the T-cadherin gene correlates with a lower level of circulating T-cadherin and thinner IMT and therefore could be considered as an atheroprotective genotype. Despite our data, we could not provide direct evidence for the initial study hypothesis. However, we did uncover an important correlation between circulating T-cadherin and thinner carotid IMT.
Collapse
|
78
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
79
|
Agostino M, Rooney J, Herat L, Matthews J, Simonds A, Northfield SE, Hopper D, Schlaich MP, Matthews VB. TNFSF14-Derived Molecules as a Novel Treatment for Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221910647. [PMID: 34638990 PMCID: PMC8508965 DOI: 10.3390/ijms221910647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin β receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blood Glucose/metabolism
- Computer Simulation
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Homeostasis/drug effects
- Hyperinsulinism/drug therapy
- Hyperinsulinism/metabolism
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/chemical synthesis
- Insulin Resistance
- Lymphotoxin beta Receptor/chemistry
- Lymphotoxin beta Receptor/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Peptides/administration & dosage
- Peptides/chemical synthesis
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction/drug effects
- Treatment Outcome
- Tumor Necrosis Factor Ligand Superfamily Member 14/administration & dosage
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
Collapse
Affiliation(s)
- Mark Agostino
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.A.); (A.S.)
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
- Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Jennifer Rooney
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Lakshini Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Jennifer Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Allyson Simonds
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.A.); (A.S.)
| | - Susan E. Northfield
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.E.N.); (D.H.)
| | - Denham Hopper
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.E.N.); (D.H.)
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Markus P. Schlaich
- Department of Cardiology, Royal Perth Hospital, Perth, WA 6000, Australia;
- Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Department of Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
- Correspondence: ; Tel.: +61-8-9224-0239; Fax: +61-8-9224-0374
| |
Collapse
|
80
|
The Controversial Role of Adiponectin in Appetite Regulation of Animals. Nutrients 2021; 13:nu13103387. [PMID: 34684387 PMCID: PMC8539471 DOI: 10.3390/nu13103387] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Eating disorders and obesity are important health problems with a widespread global epidemic. Adiponectin (AdipoQ), the most abundant adipokine in the plasma, plays important roles in the regulation of energy homeostasis, glucose metabolism and lipid metabolism. Plasma adiponectin concentration is negatively associated with obesity and binge eating disorder. There is a growing interest in the appetite regulation function of adiponectin. However, the effect of AdipoQ on feeding behavior is controversial and closely related to nutritional status and food composition. In this review, we summarize the literatures about the discovery, structure, tissue distribution, receptors and regulation of nutritional status, and focus on the biological function of adiponectin in the regulation of food intake in the central and peripheral system.
Collapse
|
81
|
Nagata T, Adachi Y, Taniguchi A, Kimura Y, Iitaka D, Iwata G, Yamaoka N. Impact of Preoperative Nutritional Indicator on Poor Postoperative Outcomes in Geriatric Patients with Colorectal Cancer. Nutr Cancer 2021; 74:1347-1355. [PMID: 34547938 DOI: 10.1080/01635581.2021.1952625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study aimed to analyze the association between preoperative nutritional assessment and poor postoperative outcomes in geriatric patients with colorectal cancer. This retrospective study included 138 patients aged ≥80 years with colorectal cancer who underwent surgery from January 2013 to December 2018. Patients were classified into two groups according to outcomes, poor group and normal group. Clinicopathological factors were compared between the groups, and the relationships of several nutritional indices were examined. There was no significant difference in sex, age, or preoperative comorbidities. There were significant differences in volume of blood loss and proportion of laparoscopic surgery. The group with poor outcomes had significantly higher neutrophil/lymphocyte ratio (NLR) and modified Glasgow prognostic score (mGPS) than the group with normal outcomes. Multivariate analysis revealed that open approach, high NLR, and category D mGPS were independent risk factors of poor postoperative outcomes in elderly patients with colorectal cancer. Our findings indicate that mGPS and NLR could be useful nutritional indicators of short-term outcomes of surgical treatment in geriatric patients with colorectal cancer. They can be evaluated based on albumin and C-reactive protein levels and blood count, which are inexpensive and beneficial to use in routine clinical practice.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Yuki Adachi
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | | | - Yu Kimura
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Daisuke Iitaka
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - George Iwata
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Nobuki Yamaoka
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| |
Collapse
|
82
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Interplay of KNDy and nNOS neurons: A new possible mechanism of GnRH secretion in the adult brain. Reprod Biol 2021; 21:100558. [PMID: 34509713 DOI: 10.1016/j.repbio.2021.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023]
Abstract
Reproduction in mammals is favoured when there is sufficient energy available to permit the survival of offspring. Neuronal nitric oxide synthase expressing neurons produce nitric oxide in the proximity of the gonadotropin-releasing hormone neurons in the preoptic region. nNOS neurons are an integral part of the neuronal network controlling ovarian cyclicity and ovulation. Nitric oxide can directly regulate the activity of the GnRH neurons and play a vital role neuroendocrine axis. Kisspeptin neurons are essential for the GnRH pulse and surge generation. The anteroventral periventricular nucleus (AVPV), kisspeptin neurons are essential for GnRH surge generation. KNDy neurons are present in the hypothalamus's arcuate nucleus (ARC), co-express NKB and dynorphin, essential for GnRH pulse generation. Kisspeptin-neurokinin B-dynorphin (KNDy) neuroendocrine molecules of the hypothalamus are key components in the central control of GnRH secretion. The hypothalamic neurons kisspeptin, KNDy, nitric oxide synthase (NOS), and other mediators such as leptin, adiponectin, and ghrelin, play an active role in attaining puberty. Kisspeptin signalling is mediated by NOS, which further results in the secretion of GnRH. Neuronal nitric oxide is critical for attaining puberty, but its direct role in adult GnRH secretion is poorly understood. This review mainly focuses on the role of nNOS and its interplay with KNDy neurons in the hormonal regulation of reproduction.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
83
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
84
|
Zhang Y, Zhang Y, Zhuang R, Ma Y, Zhang C, Tang K, Yi H, Jin B. Adiponectin's globular domain inhibits T cell activation by interacting with LAIR-1. Biochem Biophys Res Commun 2021; 573:117-124. [PMID: 34403808 DOI: 10.1016/j.bbrc.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
Adiponectin (APN) is the most abundant adipokine in human plasma, and has insulin-sensitizing effect. Recent studies have reported that APN plays both anti- and pro-inflammatory roles under different circumstances. However, there is a lack of convincing evidence that decipher APN's anti-inflammatory role through the known receptors and their downstream signaling pathways. In this study, we evaluated a new molecular mechanism underlying APN's anti-inflammatory roles. Our results revealed that the globular domain of adiponectin (gAdp) interacted with the inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). In vitro experiments showed that gAdp inhibited activation of the T cells via the LAIR-1, through a process that also involved downstream SHP-2. These findings indicate that LAIR-1 is a novel APN receptor, affirming APN's anti-inflammatory effect. In summary, we have identified a novel mechanism of peripheral immunoregulatory processes that provides baseline information for further studies on gAdp's role and its contribution to inflammation.
Collapse
Affiliation(s)
- Yusi Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunmei Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Kang Tang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongyu Yi
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
85
|
Howlader M, Sultana MI, Akter F, Hossain MM. Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review. Heliyon 2021; 7:e07851. [PMID: 34471717 PMCID: PMC8387910 DOI: 10.1016/j.heliyon.2021.e07851] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Diabetes is currently a growing concern of the age. Prevention and treatment of diabetes is a global health priority. Adiponectin is an adipocyte derived protein hormone that enhances insulin sensitivity and ameliorates diabetes by enhancing fatty acid oxidation and glucose uptake in skeletal muscle and reducing glucose production in the liver. Low serum adiponectin concentrations are associated with diabetes, central obesity, insulin resistance and metabolic syndrome. Adiponectin gene is located on chromosome 3q27, where a locus of susceptibility to diabetes was mapped. Several cross-sectional studies showed that single nucleotide polymorphisms (SNPs) in adiponectin gene (ADIPOQ) were associated with diabetes. SNPs in ADIPOQ help in assessing the association of common variants with levels of adiponectin and the risk of diabetes. Two common SNPs, rs2241766 and rs1501299, have been linked significantly to type 1 diabetes mellitus which endow the world with a block of haplotypes. Experimental evidences also suggest that rs1501299, rs2241766, rs266729, rs17366743, rs17300539, rs182052, rs822396, rs17846866, rs3774261 and rs822393 are significantly associated with type 2 diabetes mellitus which is the predominant form of the disease. In addition, rs2241766 and rs266729 are extensively associated with gestational diabetes, a condition that develops in women during pregnancy. Therefore not a particular single mutation but a number of SNPs in adiponectin gene could be a risk factor for developing diabetes among the individuals worldwide. This study firmly suggests that adiponectin plays a crucial role in the pathogenesis of type 1, type 2 and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Mithu Howlader
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mst Irin Sultana
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| |
Collapse
|
86
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
87
|
Sowka A, Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells 2021; 10:cells10061485. [PMID: 34204799 PMCID: PMC8231548 DOI: 10.3390/cells10061485] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.
Collapse
|
88
|
You J, Sun L, Wang J, Sun F, Wang W, Wang D, Fan X, Liu D, Xu Z, Qiu C, Chen J, Yan H, Liu B. Role of Adiponectin-Notch pathway in cognitive dysfunction associated with depression and in the therapeutic effect of physical exercise. Aging Cell 2021; 20:e13387. [PMID: 34053165 PMCID: PMC8208781 DOI: 10.1111/acel.13387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
A substantial percentage of late‐life depression patients also have an cognitive impairment, which severely affects the life quality, while the co‐occurring mechanisms are still unclear. Physical exercise can ameliorate both depressive behaviors and cognitive dysfunction, but the molecular mechanisms underlying its beneficial effects remain elusive. In this study, we uncover a novel adipose tissue to hippocampus crosstalk mediated by Adiponectin‐Notch pathway, with an impact on hippocampal neurogenesis and cognitive function. Adiponectin, an adipocyte‐derived hormone, could activate Notch signaling in the hippocampus through upregulating ADAM10 and Notch1, two key molecules in the Notch signaling. Chronic stress inhibits the Adiponectin‐Notch pathway and induces impaired hippocampal neurogenesis and cognitive dysfunction, which can be rescued by AdipoRon and running. Inhibition Notch signaling by DAPT mimics the adverse effects of chronic stress on hippocampal neurogenesis and cognitive function. Adiponectin knockout mice display depressive‐like behaviors, associated with inhibited Notch signaling, impaired hippocampal neurogenesis and cognitive dysfunction. Physical exercise could activate Adiponectin‐Notch pathway, and improve hippocampal neurogenesis and cognitive function, while deleting adiponectin gene or inhibiting Notch signaling blocks its beneficial effects. Together, our data not only suggest that Adiponectin‐Notch pathway is involved in the pathogenesis of cognitive dysfunction associated with depression, but also contributes to the therapeutic effect of physical exercise. This work helps to decipher the etiology of cognitive impairment associated with depression and hence will provide a potential innovative therapeutic target for these patients.
Collapse
Affiliation(s)
- Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Linshan Sun
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Jiangong Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Fengjiao Sun
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Xueli Fan
- Department of Neurology Binzhou Medical University Hospital Shandong China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Zhicheng Xu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Changyun Qiu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Jinbo Chen
- Department of Neurology Binzhou Medical University Hospital Shandong China
| | - Haijing Yan
- Department of Pharmacology College of Basic Medicine Binzhou Medical University Yantai China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| |
Collapse
|
89
|
Wu H, Zhang Y, Li Y, Xu J, Wang Y, Li X. Chemical Synthesis and Biological Evaluations of Adiponectin Collagenous Domain Glycoforms. J Am Chem Soc 2021; 143:7808-7818. [PMID: 33979146 DOI: 10.1021/jacs.1c02382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The homogeneously glycosylated 76-amino acid adiponectin collagenous domains (ACDs) with all of the possible 15 glycoforms have been chemically and individually synthesized using stereoselective glycan synthesis and chemical peptide ligation. The following biological and pharmacological studies enabled correlating glycan pattern to function in the inhibition of cancer cell growth as well as the regulation of systemic energy metabolism. In particular, hAdn-WM6877 was tested in detail with different mouse models and it exhibited promising in vivo antitumor, insulin sensitizing, and hepatoprotective activities. Our studies demonstrated the possibility of using synthetic glycopeptides as the adiponectin downsized mimetic for the development of novel therapeutics to treat diseases associated with deficient adiponectin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yiwei Zhang
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yuanxin Li
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Jianchao Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| |
Collapse
|
90
|
Wang Z, Chen Z, Fang F, Qiu W. The role of adiponectin in periodontitis: Current state and future prospects. Biomed Pharmacother 2021; 137:111358. [PMID: 33561644 DOI: 10.1016/j.biopha.2021.111358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin (APN), which is an adipokine primarily secreted by adipose tissue into the peripheral blood, exerts anti-inflammatory and metabolic regulatory functions in many systemic inflammatory diseases. Periodontitis is a localized inflammatory disease and is also the sixth-leading complication of diabetes. Uncontrolled periodontal inflammation gradually destructs the periodontal supporting apparatus and leads to the consequent loss of teeth. Recently, emerging evidence has revealed an association between APN and periodontitis. Herein, we summarize the basic information of APN and its receptor agonists. We also overview current studies considering the role of APN in periodontitis and discuss the potential mechanisms in terms of inflammation and bone metabolism. At last, we outline the correlation between APN and systemic diseases related periodontitis. Above all, APN and its agonists are promising candidates for the treatment of periodontitis, while the underlying mechanisms and clinical translational application require further exploration.
Collapse
Affiliation(s)
- Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, PR China.
| |
Collapse
|
91
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
92
|
Abstract
Type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance and relative insulin insufficiency, has become the most common chronic metabolic disease threatening global health. The preferred therapies for T2DM include lifestyle interventions and the use of anti-diabetic drugs. However, considering their adverse reactions, it is important to find a low-toxicity and effective functional food or drug for diabetes prevention and treatment. Astaxanthin is a potent antioxidant carotenoid found in marine organisms has been reported to prevent diet-induced insulin resistance and hepatic steatosis. To investigate the anti-diabetic effects of astaxanthin, male Wistar rats were fed a high-energy diet for 4 weeks, followed by a low dose streptozotocin (STZ) injection to induce the diabetes model, and the rats were then fed an astaxanthin-containing diet for another 3 weeks. Astaxanthin significantly decreased blood glucose and total cholesterol (TC) levels, and increased blood levels of high density lipoprotein cholesterol (HDL-C) in STZ-induced diabetic rats in a dose dependent manner. These results were associated with increased expression of insulin sensitivity related genes (adiponectin, adipoR1, and adipoR2) in vivo, thereby attenuating STZ-induced diabetes. In addition, we also compared the anti-diabetic effects of astaxanthin and monacolin K, which has been reported to downregulate hyperlipidemia and hyperglycemia. The results revealed that astaxanthin and monacolin K showed similar anti-diabetic effects in STZ-induced diabetic rats. Therefore, astaxanthin may be developed as an anti-diabetic agent in the future.
Collapse
Affiliation(s)
- Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, 310015, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, China
| | - Chunyan Wan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, China
| | - Fen Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, China
| |
Collapse
|
93
|
Bogdanet D, Reddin C, Murphy D, Doheny HC, Halperin JA, Dunne F, O’Shea PM. Emerging Protein Biomarkers for the Diagnosis or Prediction of Gestational Diabetes-A Scoping Review. J Clin Med 2021; 10:1533. [PMID: 33917484 PMCID: PMC8038821 DOI: 10.3390/jcm10071533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Gestational diabetes (GDM), defined as hyperglycemia with onset or initial recognition during pregnancy, has a rising prevalence paralleling the rise in type 2 diabetes (T2DM) and obesity. GDM is associated with short-term and long-term consequences for both mother and child. Therefore, it is crucial we efficiently identify all cases and initiate early treatment, reducing fetal exposure to hyperglycemia and reducing GDM-related adverse pregnancy outcomes. For this reason, GDM screening is recommended as part of routine pregnancy care. The current screening method, the oral glucose tolerance test (OGTT), is a lengthy, cumbersome and inconvenient test with poor reproducibility. Newer biomarkers that do not necessitate a fasting sample are needed for the prompt diagnosis of GDM. The aim of this scoping review is to highlight and describe emerging protein biomarkers that fulfill these requirements for the diagnosis of GDM. Materials and Methods: This scoping review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for scoping reviews using Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing & Allied Health Literature (CINAHL), PubMed, Embase and Web of Science with a double screening and extraction process. The search included all articles published in the literature to July 2020. Results: Of the 3519 original database citations identified, 385 were eligible for full-text review. Of these, 332 (86.2%) were included in the scoping review providing a total of 589 biomarkers studied in relation to GDM diagnosis. Given the high number of biomarkers identified, three post hoc criteria were introduced to reduce the items set for discussion: we chose only protein biomarkers with at least five citations in the articles identified by our search and published in the years 2017-2020. When applied, these criteria identified a total of 15 biomarkers, which went forward for review and discussion. Conclusions: This review details protein biomarkers that have been studied to find a suitable test for GDM diagnosis with the potential to replace the OGTT used in current GDM screening protocols. Ongoing research efforts will continue to identify more accurate and practical biomarkers to take GDM screening and diagnosis into the 21st century.
Collapse
Affiliation(s)
- Delia Bogdanet
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Catriona Reddin
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Dearbhla Murphy
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Helen C. Doheny
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Jose A. Halperin
- Divisions of Haematology, Brigham & Women’s Hospital, Boston, MA 02115, USA;
| | - Fidelma Dunne
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Paula M. O’Shea
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| |
Collapse
|
94
|
Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021; 13:nu13041180. [PMID: 33918360 PMCID: PMC8066826 DOI: 10.3390/nu13041180] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Adiponectin (a protein consisting of 244 amino acids and characterized by a molecular weight of 28 kDa) is a cytokine that is secreted from adipose tissues (adipokine). Available evidence suggests that adiponectin is involved in a variety of physiological functions, molecular and cellular events, including lipid metabolism, energy regulation, immune response and inflammation, and insulin sensitivity. It has a protective effect on neurons and neural stem cells. Adiponectin levels have been reported to be negatively correlated with cancer, cardiovascular disease, and diabetes, and shown to be affected (i.e., significantly increased) by proper healthy nutrition. The present review comprehensively overviews the role of adiponectin in a range of diseases, showing that it can be used as a biomarker for diagnosing these disorders as well as a target for monitoring the effectiveness of preventive and treatment interventions.
Collapse
|
95
|
Zhou Y, Yang Y, Zhou T, Li B, Wang Z. Adiponectin and Thyroid Cancer: Insight into the Association between Adiponectin and Obesity. Aging Dis 2021; 12:597-613. [PMID: 33815885 PMCID: PMC7990371 DOI: 10.14336/ad.2020.0919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the incidence and diagnosis of thyroid cancer have risen dramatically, and thyroid cancer has now become the most common endocrine cancer in the world. The onset of thyroid cancer is insidious, and its progression is slow and difficult to detect. Therefore, early prevention and treatment have important strategic significance. Moreover, an in-depth exploration of the pathogenesis of thyroid cancer is key to early prevention and treatment. Substantial evidence supports obesity as an independent risk factor for thyroid cancer. Adipose tissue dysfunction in the obese state is accompanied by dysregulation of a variety of adipocytokines. Adiponectin (APN) is one of the most pivotal adipocytokines, and its connection with obesity and obesity-related disease has gradually become a hot topic in research. Recently, the association between APN and thyroid cancer has received increasing attention. The purpose of this review is to systematically review previous studies, give prominence to APN, focus on the relationship between APN, obesity and thyroid cancer, and uncover the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,2Department of Endocrinology and Metabolism, Sixth Affiliated Hospital of Kunming Medical University, The People's Hospital of Yuxi City, Yuxi, China
| | - Ying Yang
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Taicheng Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bai Li
- 3School of Medicine, Yunnan University, Kunming, China
| | - Zhanjian Wang
- 4Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
96
|
Association between Single Nucleotide Polymorphism rs9891119 of STAT3 Gene and the Genetic Susceptibility to Type 2 Diabetes in Chinese Han Population from Guangdong. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6657324. [PMID: 33833859 PMCID: PMC8012137 DOI: 10.1155/2021/6657324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Background The aim of this study was to investigate the association between single nucleotide polymorphism (SNP) rs9891119 of the signal transducer and activator of the transcription 3 (STAT3) gene and genetic susceptibility to type 2 diabetes in Chinese Han population from the Guangdong province. Objective The aim of the present study was to explore the relationship between single nucleotide polymorphism rs9891119 of STAT3 gene and type 2 diabetes mellitus (T2DM), which provides a basis for molecular genetic research on the pathogenesis of T2DM in Chinese Han population. Methods In our case-control study, the SNP rs9891119 was picked out from the STAT3 gene and the SNP genotyping was performed by using the SNPscan™ kit in 1092 patients with type 2 diabetes as cases and 1092 normal persons as controls. The distributions of genotype and allele frequencies in two groups were analyzed by SPSS 20.0 software. Results Our results showed that the alleles of A and C of rs9891119 of the STAT3 gene were 54.3 and 45.7% in patients with type 2 diabetes, while 55.5% and 44.5% in the normal persons, which have no statistical significance (P > 0.05). There were also no significant differences in AA, AC, and CC genotype frequencies between type 2 diabetes patients and normal persons. There were no significant differences in codominant, dominant, recessive, and overdominant genetic models of SNP rs9891119 before and after adjusting the covariant factors (P > 0.05). Conclusions Therefore, genetic susceptibility to type 2 diabetes may be not associated with SNP rs9891119 of the STAT3 gene in Chinese Han population from the Guangdong province.
Collapse
|
97
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
98
|
Wang Y, Zheng Y, Li W. Compression loading of osteoclasts attenuated microRNA-146a-5p expression, which promotes angiogenesis by targeting adiponectin. SCIENCE CHINA-LIFE SCIENCES 2021; 65:151-166. [PMID: 33677819 DOI: 10.1007/s11427-020-1869-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
Osteoclastogenesis in alveolar bone induced by compression stress triggers orthodontic tooth movement. Compression stress also stimulates angiogenesis, which is essential for osteoclastogenesis. However, the effects of osteoclastogenesis induced by compression on angiogenesis are poorly understood. In vivo, we found the markers of angiogenesis increased during orthodontic bone remodeling. In vitro, osteoclast-derived exosomes increased proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs), as well as expression of vascular endothelial growth factor and CD31. The promotive effects of exosomes derived from compressed osteoclasts were greater than those derived from osteoclasts without compression. Next, we analyzed changes in the microRNA transcriptome after compression stress and focused on microRNA146a-5p (miR-146a), which was significantly decreased by compression. Transfection of an inhibitor of miR-146a stimulated angiogenesis of HUVECs while miR-146a mimics repressed angiogenesis. Adiponectin (ADP) was confirmed to be a target of miR-146a by dual luciferase reporter assay. In HUVECs treated with exosomes, we detected increased ADP which promoted angiogenesis. Knockdown of ADP in HUVECs reduced the promotive effects of exosomes. Our results demonstrate that the decreased miR-146a observed in osteoclasts after compression promotes angiogenesis by targeting ADP, suggesting a novel method to interfere with bone remodeling induced by compression stress.
Collapse
Affiliation(s)
- Yue Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
99
|
Heyde I, Begemann K, Oster H. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology 2021; 162:6102571. [PMID: 33453099 PMCID: PMC7864004 DOI: 10.1210/endocr/bqab009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Correspondence: Henrik Oster, PhD, Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
100
|
Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis 2021; 20:23. [PMID: 33639960 PMCID: PMC7916299 DOI: 10.1186/s12944-021-01435-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, an alteration in the balance between reactive oxygen species (ROS) generation and antioxidant buffering capacity, has been implicated in the pathogenesis of cardiometabolic disorders (CMD). At physiological levels, ROS functions as signalling mediators, regulates various physiological functions such as the growth, proliferation, and migration endothelial cells (EC) and smooth muscle cells (SMC); formation and development of new blood vessels; EC and SMC regulated death; vascular tone; host defence; and genomic stability. However, at excessive levels, it causes a deviation in the redox state, mediates the development of CMD. Multiple mechanisms account for the rise in the production of free radicals in the heart. These include mitochondrial dysfunction and uncoupling, increased fatty acid oxidation, exaggerated activity of nicotinamide adenine dinucleotide phosphate oxidase (NOX), reduced antioxidant capacity, and cardiac metabolic memory. The purpose of this study is to discuss the link between oxidative stress and the aetiopathogenesis of CMD and highlight associated mechanisms. Oxidative stress plays a vital role in the development of obesity and dyslipidaemia, insulin resistance and diabetes, hypertension via various mechanisms associated with ROS-led inflammatory response and endothelial dysfunction.
Collapse
Affiliation(s)
- Roland Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State Nigeria
- Department of Chemical Sciences, Kings University, Odeomu, Osun Nigeria
| | - Ayodeji Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| |
Collapse
|