51
|
RNA helicase A acts as a bridging factor linking nuclear β-actin with RNA polymerase II. Biochem J 2009; 420:421-8. [DOI: 10.1042/bj20090402] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Actin, the major component of the cytoplasmic skeleton, has been shown to exist in the nucleus. Nuclear actin functions in several steps of the transcription process, including chromatin remodelling and transcription initiation and elongation. However, as a part of PICs (pre-initiation complexes), the role of actin remains to be elucidated. In the present study, we identified RHA (RNA helicase A) as an actin-interacting protein in PICs. Using immunoprecipitation and immunofluorescence techniques, we have shown that RHA associates with β-actin in the nucleus. A GST (glutathione transferase) pulldown assay using different deletion mutants revealed that the RGG (Arg-Gly-Gly) region of RHA was responsible for the interaction with β-actin, and this dominant-negative mutant reduced the recruitment of Pol II (RNA polymerase II) into PICs. Moreover, overexpression or depletion of RHA could influence the interaction of Pol II with β-actin and β-actin-involved gene transcription regulation. These results suggest that RHA acts as a bridging factor linking nuclear β-actin with Pol II.
Collapse
|
52
|
Sadler AJ, Latchoumanin O, Hawkes D, Mak J, Williams BRG. An antiviral response directed by PKR phosphorylation of the RNA helicase A. PLoS Pathog 2009; 5:e1000311. [PMID: 19229320 PMCID: PMC2637979 DOI: 10.1371/journal.ppat.1000311] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022] Open
Abstract
The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)-mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism.
Collapse
Affiliation(s)
- Anthony J Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
53
|
Corley SM, Gready JE. Identification of the RGG box motif in Shadoo: RNA-binding and signaling roles? Bioinform Biol Insights 2008; 2:383-400. [PMID: 19812790 PMCID: PMC2735946 DOI: 10.4137/bbi.s1075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using comparative genomics and in-silico analyses, we previously identified a new member of the prion-protein (PrP) family, the gene SPRN, encoding the protein Shadoo (Sho), and suggested its functions might overlap with those of PrP. Extended bioinformatics and conceptual biology studies to elucidate Sho’s functions now reveal Sho has a conserved RGG-box motif, a well-known RNA-binding motif characterized in proteins such as FragileX Mental Retardation Protein. We report a systematic comparative analysis of RGG-box containing proteins which highlights the motif’s functional versatility and supports the suggestion that Sho plays a dual role in cell signaling and RNA binding in brain. These findings provide a further link to PrP, which has well-characterized RNA-binding properties.
Collapse
Affiliation(s)
- Susan M Corley
- Computational Proteomics and Therapy Design Group, Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| | | |
Collapse
|
54
|
Izzo A, Regnard C, Morales V, Kremmer E, Becker PB. Structure-function analysis of the RNA helicase maleless. Nucleic Acids Res 2007; 36:950-62. [PMID: 18086708 PMCID: PMC2241912 DOI: 10.1093/nar/gkm1108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified. We evaluated the RNA-binding characteristics of these conserved motifs and their contributions to RNA-stimulated ATPase activity, to helicase activity, as well as to the targeting of MLE to the nucleus and to the X chromosome territory. We find that RB2 is the dominant, conditional RNA-binding module, which is indispensable for ATPase and helicase activity whereas the N-terminal RB1 motif does not bind RNA, but is involved in targeting MLE to the X chromosome. The C-terminal domain containing a glycine-rich heptad repeat adds potential dimerization and RNA-binding surfaces which are not required for helicase activity.
Collapse
Affiliation(s)
- Annalisa Izzo
- Adolf-Butenandt-Institut and Center of integrated Protein Science, München, Germany
| | | | | | | | | |
Collapse
|
55
|
Liu Z, Kenworthy R, Green C, Tang H. Molecular determinants of nucleolar translocation of RNA helicase A. Exp Cell Res 2007; 313:3743-54. [PMID: 17822697 DOI: 10.1016/j.yexcr.2007.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/11/2007] [Accepted: 07/27/2007] [Indexed: 11/30/2022]
Abstract
RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
56
|
Van Herreweghe E, Egloff S, Goiffon I, Jády BE, Froment C, Monsarrat B, Kiss T. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J 2007; 26:3570-80. [PMID: 17611602 PMCID: PMC1949012 DOI: 10.1038/sj.emboj.7601783] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/11/2007] [Indexed: 11/08/2022] Open
Abstract
The 7SK small nuclear RNA (snRNA) regulates RNA polymerase II transcription elongation by controlling the protein kinase activity of the positive transcription elongation factor b (P-TEFb). In cooperation with HEXIM1, the 7SK snRNA sequesters P-TEFb into the kinase-inactive 7SK/HEXIM1/P-TEFb small nuclear ribonucleoprotein (snRNP), and thereby, controls the nuclear level of active P-TEFb. Here, we report that a fraction of HeLa 7SK snRNA that is not involved in 7SK/HEXIM1/P-TEFb formation, specifically interacts with RNA helicase A (RHA), heterogeneous nuclear ribonucleoprotein A1 (hnRNP), A2/B1, R and Q proteins. Inhibition of cellular transcription induces disassembly of 7SK/HEXIM1/P-TEFb and at the same time, increases the level of 7SK snRNPs containing RHA, hnRNP A1, A2/B1, R and Q. Removal of transcription inhibitors restores the original levels of the 7SK/HEXIM1/P-TEFb and '7SK/hnRNP' complexes. 7SK/HEXIM1/P-TEFb snRNPs containing mutant 7SK RNAs lacking the capacity for binding hnRNP A1, A2, R and Q are resistant to stress-induced disassembly, indicating that recruitment of the novel 7SK snRNP proteins is essential for disruption of 7SK/HEXIM1/P-TEFb. Thus, we propose that the nuclear level of active P-TEFb is controlled by dynamic and reversible remodelling of 7SK snRNP.
Collapse
Affiliation(s)
- Elodie Van Herreweghe
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Isabelle Goiffon
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Carine Froment
- Plate-forme protéomique, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France
| | - Bernard Monsarrat
- Plate-forme protéomique, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, IFR109, 118 route de Narbonne, Toulouse Cedex 9, 31062, France. Tel.: +33 561 335 907; Fax: +33 561 335 886; E-mail:
| |
Collapse
|
57
|
Grohman JK, Campo MD, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 2007; 46:3013-22. [PMID: 17311413 PMCID: PMC2271177 DOI: 10.1021/bi0619472] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DEAD-box protein CYT-19 functions in the folding of several group I introns in vivo and a diverse set of group I and group II RNAs in vitro. Recent work using the Tetrahymena group I ribozyme demonstrated that CYT-19 possesses a second RNA-binding site, distinct from the unwinding active site, which enhances unwinding activity by binding nonspecifically to the adjacent RNA structure. Here, we probe the region of CYT-19 responsible for that binding by constructing a C-terminal truncation variant that lacks 49 amino acids and terminates at a domain boundary, as defined by limited proteolysis. This truncated protein unwinds a six-base-pair duplex, formed between the oligonucleotide substrate of the Tetrahymena ribozyme and an oligonucleotide corresponding to the internal guide sequence of the ribozyme, with near-wild-type efficiency. However, the truncated protein is activated much less than the wild-type protein when the duplex is covalently linked to the ribozyme or single-stranded or double-stranded extensions. Thus, the active site for RNA unwinding remains functional in the truncated CYT-19, but the site that binds the adjacent RNA structure has been compromised. Equilibrium binding experiments confirmed that the truncated protein binds RNA less tightly than the wild-type protein. RNA binding by the compromised site is important for chaperone activity, because the truncated protein is less active in facilitating the folding of a group I intron that requires CYT-19 in vivo. The deleted region contains arginine-rich sequences, as found in other RNA-binding proteins, and may function by tethering CYT-19 to structured RNAs, so that it can efficiently disrupt exposed, non-native structural elements, allowing them to refold. Many other DExD/H-box proteins also contain arginine-rich ancillary domains, and some of these domains may function similarly as nonspecific RNA-binding elements that enhance general RNA chaperone activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick Russell
- *To whom correspondence should be addressed. Tel: 512-471-1514; Fax: 512-232-3432; E-mail:
| |
Collapse
|
58
|
Abstract
The interaction of RNA-binding proteins (RBPs) with RNA is a crucial aspect of normal cellular metabolism. Yet, the diverse number of RBPs and RNA motifs to which they bind, the wide range of interaction strengths and the fact that RBPs associate in dynamic complexes have made it challenging to determine whether a particular RNA-binding protein binds a particular RNA. Recent work by three different laboratories has led to the development of new tools to query such interactions in the more physiological environs of cultured cells. The use of these methods has led to insights into (1) the networks of RNAs regulated by a particular protein, (2) the identification of new protein partners within messenger ribonucleoprotein particles and (3) the flux of RNA-binding proteins on an mRNA throughout its lifecycle. Here, I examine these new methods and discuss their relative strengths and current limitations.
Collapse
Affiliation(s)
- Robert B Denman
- Department of Molecular Biology, Laboratory of Biochemical Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
59
|
Tettweiler G, Lasko P. A new model for translational regulation of specific mRNAs. Trends Biochem Sci 2006; 31:607-10. [PMID: 17015016 DOI: 10.1016/j.tibs.2006.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/14/2006] [Accepted: 09/22/2006] [Indexed: 11/22/2022]
Abstract
Recently, RNA helicase A (RHA) has been shown to facilitate translation of specific mRNAs by recognizing and binding to a complex structure at their 5' end known as the post-transcriptional control element. This implicates RHA, a member of the DEXD/H-box protein superfamily, in linking transcription and translation of a specific class of retroviral and cellular mRNAs. This exciting finding suggests a new mechanism for the regulation of the translation of specific transcripts.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Biology and DBRI, McGill University, 1205 Avenue Dr. Penfield, Montréal, Québec H3A 1B1, Canada
| | | |
Collapse
|
60
|
Välineva T, Yang J, Silvennoinen O. Characterization of RNA helicase A as component of STAT6-dependent enhanceosome. Nucleic Acids Res 2006; 34:3938-46. [PMID: 16914450 PMCID: PMC1557814 DOI: 10.1093/nar/gkl539] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) is a regulator of transcription for interleukin-4 (IL-4)-induced genes. The ability of STAT6 to activate transcription depends on functional interaction with other transcription factors and coactivators. We have characterized the mechanism of STAT6-mediated transcriptional activation by identifying STAT6 transcription activation domain (TAD) interacting nuclear proteins. The first of the identified proteins was coactivator protein p100, which regulates IL-4-induced transcription by connecting STAT6 with other transcriptional regulators. Here, we describe RNA helicase A (RHA) as a novel component of STAT6 transcriptosome. In vitro and in vivo experiments indicated that RHA did not directly interact with STAT6, but p100 protein was found to mediate the assembly of the ternary complex of STAT6-p100-RHA. In chromatin immunoprecipitation studies RHA together with p100 enhanced the binding of STAT6 on the human Igɛ promoter after IL-4 stimulation. RHA enhanced the IL-4-induced transcription, and the participation of RHA in IL-4-regulated transcription was supported by RNAi experiments. Our results suggest that RHA has an important role in the assembly of STAT6 transcriptosome. As RHA is also known to interact with chromatin modifying proteins, the RHA containing protein complexes may facilitate the entry of transcriptional apparatus to the IL-4 responsive promoters.
Collapse
Affiliation(s)
- Tuuli Välineva
- Institute of Medical Technology, University of TampereFI-33014 Tampere, Finland
| | - Jie Yang
- Institute of Medical Technology, University of TampereFI-33014 Tampere, Finland
- Department of Immunology, Tianjin Medical UniversityTianjin 300070, Peoples Republic of China
| | - Olli Silvennoinen
- Institute of Medical Technology, University of TampereFI-33014 Tampere, Finland
- Department of Clinical Microbiology, Tampere University HospitalFI-33521 Tampere, Finland
- To whom correspondence should be addressed. Tel: +358 3 3551 7845; Fax: +358 3 3551 8597;
| |
Collapse
|
61
|
Harris D, Zhang Z, Chaubey B, Pandey VN. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol Cell Proteomics 2006; 5:1006-1018. [PMID: 16500930 DOI: 10.1074/mcp.m500429-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.
Collapse
Affiliation(s)
- Dylan Harris
- Department of Biochemistry and Molecular Biology and Centre for the Study of Emerging and Re-emerging Pathogens, University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
62
|
Roy BB, Hu J, Guo X, Russell RS, Guo F, Kleiman L, Liang C. Association of RNA helicase a with human immunodeficiency virus type 1 particles. J Biol Chem 2006; 281:12625-35. [PMID: 16527808 DOI: 10.1074/jbc.m510596200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) belongs to the DEAH family of proteins that are capable of unwinding double-stranded RNA structure. In addition to its involvement in the metabolism of cellular RNA, RHA has been shown to stimulate RNA transcription from the long terminal repeat promoter of human immunodeficiency virus type 1 (HIV-1) as well as to enhance Rev/Rev response element-mediated gene expression. In this study, we provide evidence that RHA associates with HIV-1 Gag in an RNA-dependent manner. This interaction results in specific incorporation of RHA into HIV-1 particles. Knockdown of endogenous RHA in virus producer cells leads to generation of HIV-1 particles that are less infectious in part as a result of restricted reverse transcription. Therefore, RHA represents the first example of cellular RNA helicases that participate in HIV-1 particle production and promote viral reverse transcription.
Collapse
Affiliation(s)
- Bibhuti Bhusan Roy
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
63
|
Aratani S, Oishi T, Fujita H, Nakazawa M, Fujii R, Imamoto N, Yoneda Y, Fukamizu A, Nakajima T. The nuclear import of RNA helicase A is mediated by importin-α3. Biochem Biophys Res Commun 2006; 340:125-33. [PMID: 16375861 DOI: 10.1016/j.bbrc.2005.11.161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-alpha/beta-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-alpha. Furthermore, the nuclear import of RHA-NLS was supported by importin-alpha1 and preferentially importin-alpha3. Our results indicate that the nuclear import of RHA is mediated by the importin-alpha3/importin-beta-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins.
Collapse
Affiliation(s)
- Satoko Aratani
- Department of Genome Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Cheng K, Zou C. Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication. Med Hypotheses 2005; 66:148-53. [PMID: 16140467 DOI: 10.1016/j.mehy.2005.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/04/2005] [Indexed: 11/19/2022]
Abstract
Our previous pre-clinic experimental results have showed that the bacterium infection can be suppressed and the epithelialization can be enhanced by the externally applied rectangular pulsed electrical current stimulation (RPECS). The results are clinically significant for patients, especially for those difficult patients whose skin wounds need long periods to heal. However, the results also raise questions: How does the RPECS accelerate the epithelium cell proliferation? What is the relationship among the bacterium infection, the epithelialization and the RPECS? To answer these questions, we have previously modeled mitosis and cytokinesis mechanisms for animal cells and amitosis for bacteria at a cellular level and in a view of physics. In this paper, we model the separation of nucleotide sequences and the unwinding of a double helix during DNA replication at a molecular level and also in wild types of cells. Firstly, we define a new concept of nucleotide (NT) electromagnetic field (EMF) box (sequence) which carries genetic information: The continuous NT EMF boxes compose a nucleotide strand. Then, we hypothesize the symmetry, repulsion and attraction of NT EMF boxes: If a pair of NT EMF boxes are (quasi) mirror or complementary symmetric about a plane (curve) or point, they repulse or attract from each other because there is a repulsive or attractive EMF force between them. Our models suggest, the repulsive EMF force from children DNA strands simultaneously separates the children DNA strands, splits the hydrogen bonds of parental base pairs, and unwinds the parental double helix while DNA polymerases are synchronously synthesizing the new children DNA strands. To understand the mechanism of epithelialization enhanced with the externally applied RPECS at a molecular level, we hypothesize that the normal separation of nucleotide sequences and unwinding of a double helix during DNA replication could be suppressed in the bacteria but not in the epithelium cells because: (a) the spontaneous EMF in the epithelium could be 1000 times stronger than that in bacteria; (b) the epithelium cells have one more non-conducting envelope (nuclear membrane) to protect the normal separation and unwinding; (c) based on our previous experimental data, the RPECS amount received by the bacteria are three times as much as the amount the epithelium cells receive. Therefore, the epithelium cellular proliferation may be directly, as well as indirectly (e.g., somatic reflex) accelerated by the RPECS.
Collapse
Affiliation(s)
- Kang Cheng
- Science Research, 205 C Hana Road, Edison, NJ 08817, USA.
| | | |
Collapse
|
65
|
Abstract
The double-stranded RNA-binding motif (dsRBM) is an alphabetabetabetaalpha fold with a well-characterized function to bind structured RNA molecules. This motif is widely distributed in eukaryotic proteins, as well as in proteins from bacteria and viruses. dsRBM-containing proteins are involved in processes ranging from RNA editing to protein phosphorylation in translational control and contain a variable number of dsRBM domains. The structural work of the past five years has identified a common mode of RNA target recognition by dsRBMs and dissected this recognition into two functionally separated interaction modes. The first involves the recognition of specific moieties of the RNA A-form helix by two protein loops, while the second is based on the interaction between structural elements flanking the RNA duplex with the first helix of the dsRBM. The latter interaction can be tuned by other protein elements. Recent work has made clear that dsRBMs can also recognize non-RNA targets (proteins and DNA), and act in combination with other dsRBMs and non-dsRBM motifs to play a regulatory role in catalytic processes. The elucidation of functional networks coordinated by dsRBM folds will require information on the precise functional relationship between different dsRBMs and a clarification of the principles underlying dsRBM-protein recognition.
Collapse
Affiliation(s)
- Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan.
| | | |
Collapse
|
66
|
Friedemann J, Grosse F, Zhang S. Nuclear DNA helicase II (RNA helicase A) interacts with Werner syndrome helicase and stimulates its exonuclease activity. J Biol Chem 2005; 280:31303-13. [PMID: 15995249 DOI: 10.1074/jbc.m503882200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A, is involved in transcription and RNA processing. Here, we report that NDH II interacts with the Werner syndrome helicase WRN, an enzyme associated with premature aging and predisposition to tumorigenesis. NDH II was co-purified with WRN, DNA polymerase delta, and replication protein A (70 kDa) during several steps of conventional column chromatography. Co-immunoprecipitations revealed an association between NDH II, WRN, and polymerase delta. We demonstrate a direct protein-protein interaction between WRN and NDH II that is mediated by the N-terminal double-strand RNA-binding domain II and C-terminal RGG box of NDH II and the N-terminal exonuclease domain of WRN. WRN inhibited the DNA-dependent NTPase and DNA helicase activities of NDH II. On the other hand, the 3' --> 5' exonuclease activity of WRN was increased by the presence of NDH II. NDH II directly stimulated the exonuclease domain of WRN, whereas the exonuclease domain of WRN suppressed the DNA-dependent (but not RNA-dependent) ATPase activity of NDH II. These results suggest that the double-strand RNA-binding domain II and RGG box of NDH II together form a protein-protein interaction surface that contacts the exonuclease domain of WRN. Furthermore, NDH II enhanced the degradation of D-loop DNA by the WRN exonuclease. Taken together, these results suggest that NDH II plays a role in promoting the DNA processing function of WRN, which in turn might be necessary for maintaining genomic stability.
Collapse
Affiliation(s)
- Jana Friedemann
- Department of Biochemistry, Institute of Molecular Biotechnology, D-07708 Jena, Germany
| | | | | |
Collapse
|
67
|
Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 2005; 6:376-87. [PMID: 15861180 DOI: 10.1038/nrn1667] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mental retardation protein FMRP is involved in the transport of mRNAs and their translation at synapses. Patients with fragile X syndrome, in whom FMRP is absent or mutated, show deficits in learning and memory that might reflect impairments in the translational regulation of a subset of neuronal mRNAs. The study of FMRP provides important insights into the regulation and functions of local protein synthesis in the neuronal periphery, and increases our understanding of how these functions can produce specific effects at individual synapses.
Collapse
Affiliation(s)
- Claudia Bagni
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma, Italy.
| | | |
Collapse
|
68
|
Parrott AM, Walsh MR, Reichman TW, Mathews MB. RNA binding and phosphorylation determine the intracellular distribution of nuclear factors 90 and 110. J Mol Biol 2005; 348:281-93. [PMID: 15811368 DOI: 10.1016/j.jmb.2005.02.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/20/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA. About half of the NF90 is tethered in the nucleus by RNA bound to the protein's dsRNA-binding motifs. The nuclear localization of NF110 is also dependent on RNA binding but is independent of these motifs, and is governed by contacts made to the protein's unique C terminus. During mitosis, about half of the cytoplasmic NF90 becomes dissociated from RNA, but phosphorylation does not impair the binding affinity of either NF90 or NF110 for dsRNA. We conclude that NF90 and NF110 engage RNA differentially and translocate from the nucleus to the cytoplasm in mitosis because phosphorylation disturbs their interactions with other nuclear proteins.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Biochemistry and Molecular Biology and New Jersey Medical School, UMDNJ, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | |
Collapse
|
69
|
Mischo HE, Hemmerich P, Grosse F, Zhang S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 2004; 280:9586-94. [PMID: 15613478 DOI: 10.1074/jbc.m411444200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Formation of gamma-H2AX foci is a P. O.cellular response to genotoxic stress, such as DNA double strand breaks or stalled replication forks. Here we show that gamma-H2AX foci were also formed when cells were incubated with 0.5 microg/ml DNA intercalating agent actinomycin D. In untreated cells, gamma-H2AX co-immunoprecipitated with Ku70, a subunit of DNA-dependent protein kinase, as well as with nuclear DNA helicase II (NDH II), a DEXH family helicase also known as RNA helicase A or DHX9. This association was increased manifold after actinomycin D treatment. DNA degradation diminished the amount of Ku70 associated with gamma-H2AX but not that of NDH II. In vitro binding studies with recombinant NDH II and H2AX phosphorylated by DNA-dependent protein kinase confirmed a direct physical interaction between NDH II and gamma-H2AX. Thereby, the NDH II DEXH domain alone, i.e. its catalytic core, was able to support binding to gamma-H2AX. Congruently, after actinomycin D treatment, NDH II accumulated in RNA-containing nuclear bodies that predominantly co-localized with gamma-H2AX foci. Taken together, these results suggest that histone gamma-H2AX promotes binding of NDH II to transcriptionally stalled sites on chromosomal DNA.
Collapse
Affiliation(s)
- Hannah Elisabeth Mischo
- Departments of Biochemistry and Molecular Biology, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
70
|
Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, Dave S, Xiao L, Cao K, Zhu Q, Sherman S, Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Ott G, Müller-Hermelink HK, Delabie J, Braziel RM, Jaffe ES, Campo E, Lynch JC, Connors JM, Vose JM, Armitage JO, Grogan TM, Staudt LM, Chan WC. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:159-66. [PMID: 15215171 PMCID: PMC1618550 DOI: 10.1016/s0002-9440(10)63284-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed prognostically important subgroups: germinal center B-cell-like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal large B-cell lymphoma. The t(14;18)(q32;q21) has been reported previously to define a unique subset within the GCB-DLBCL. We evaluated for the translocation in 141 cases of DLBCL that were successfully gene expression profiled. Using a dual-probe fluorescence in situ hybridization assay, we detected the t(14;18) in 17% of DLBCLs and in 34% of the GCB subgroup which contained the vast majority of positive cases. In addition, 12 t(14;18)-positive cases detected by polymerase chain reaction assays on additional samples were added to the fluorescence in situ hybridization-positive cases for subsequent analysis. Immunohistochemical data indicated that BCL2, BCL6, and CD10 protein were preferentially expressed in the t(14;18)-positive cases as compared to t(14;18)-negative cases. Within the GCB subgroup, the expression of BCL2 and CD10, but not BCL6, differed significantly between cases with or without the t(14;18): 88% versus 24% for BCL2 and 72% versus 32% for CD10, respectively. In the GCB-DLBCL subgroup, a heterogeneous group of genes is overexpressed in the t(14;18)-positive subset, among which BCL2 is a significant discriminator. Interestingly, the t(14;18)-negative subset is dominated by overexpression of cell cycle-associated genes, indicating that these tumors are significantly more proliferative, suggesting distinctive pathogenetic mechanisms. However, despite this higher proliferative activity, there was no significant difference in overall or failure-free survival between the t(14;18)-positive and -negative subsets within the GCB subgroup.
Collapse
MESH Headings
- Apoptosis Regulatory Proteins
- Bayes Theorem
- Carrier Proteins/metabolism
- Chromosomes, Human, Pair 14
- Cyclin D1/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement
- Genes, bcl-2
- Germinal Center/pathology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/mortality
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Neprilysin/metabolism
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Survival Analysis
- Survival Rate
- Translocation, Genetic
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tetsuka T, Uranishi H, Sanda T, Asamitsu K, Yang JP, Wong-Staal F, Okamoto T. RNA helicase A interacts with nuclear factor κB p65 and functions as a transcriptional coactivator. ACTA ACUST UNITED AC 2004; 271:3741-51. [PMID: 15355351 DOI: 10.1111/j.1432-1033.2004.04314.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA helicase A (RHA), a member of DNA and RNA helicase family containing ATPase activity, is involved in many steps of gene expression such as transcription and mRNA export. RHA has been reported to bind directly to the transcriptional coactivator, CREB-binding protein, and the tumor suppressor protein, BRCA1, and links them to RNA Polymerase II holoenzyme complex. Using yeast two-hybrid screening, we have identified RHA as an interacting molecule of the p65 subunit of nuclear factor kappaB (NF-kappaB). The interaction between p65 and RHA was confirmed by glutathione-S transferase pull-down assay in vitro, and by co-immunoprecipitation assay in vivo. In transient transfection assays, RHA enhanced NF-kappaB dependent reporter gene expression induced by p65, tumor necrosis factor-alpha, or NF-kappaB inducing kinase. The mutant form of RHA lacking ATP-binding activity inhibited NF-kappaB dependent reporter gene expression induced by these activators. Moreover, depletion of RHA using short interfering RNA reduced the NF-kappaB dependent transactivation. These data suggest that RHA is an essential component of the transactivation complex by mediating the transcriptional activity of NF-kappaB.
Collapse
Affiliation(s)
- Toshifumi Tetsuka
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
Abdelhaleem M. Do human RNA helicases have a role in cancer? Biochim Biophys Acta Rev Cancer 2004; 1704:37-46. [PMID: 15238243 DOI: 10.1016/j.bbcan.2004.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 05/06/2004] [Indexed: 11/24/2022]
Abstract
Human RNA helicases (HRH) represent a large family of enzymes that play important roles in RNA processing. The biochemical characteristics and biological functions of the majority of HRH are still to be determined. However, there are examples of dysregulation of HRH expression in various types of cancer. In addition, some HRH have been shown to be involved in the regulation of, or the molecular interaction with, molecules implicated in cancer. Other helicases take part in fusion transcripts resulting from cancer-associated chromosomal translocation. These findings raise the question of whether HRH can contribute to cancer development/progression. In this review, I summarize the cancer-related features of HRH.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Division of Haematopathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Room 3691 Atrium, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
73
|
Zhong X, Safa AR. RNA Helicase A in the MEF1 Transcription Factor Complex Up-regulates the MDR1 Gene in Multidrug-resistant Cancer Cells. J Biol Chem 2004; 279:17134-41. [PMID: 14769796 DOI: 10.1074/jbc.m311057200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) is a member of the DEAD/H family of RNA helicases and unwinds duplex RNA and DNA. Recent studies have shown that RHA regulates the activity of gene promoters. However, little information is available about the in vivo relevance of RHA in the regulation of natural genes. We previously characterized a nuclear protein (MEF1) that binds to the proximal promoter of the multidrug resistance gene (MDR1) and up-regulates the promoter activity. In the present study, we isolated and identified RHA as a component of the MEF1 complex by using DNA-affinity chromatography and mass spectrometry. The antibody against RHA specifically disrupted the complex formation in electrophoretic mobility shift assay, confirming the identity of RHA. Western blotting showed that RHA in drug-resistant cells had a higher molecular weight than that in drug-sensitive cells. Similar results were obtained when FLAG-tagged RHA was overexpressed in these cells. This size difference probably reflects posttranslational modification(s) of RHA in drug-resistant cells. Chromatin immunoprecipitation revealed that RHA occupies the MDR1 promoter in vivo. Overexpression of RHA enhanced expression of the MDR1 promoter/reporter construct and endogenous P-glycoprotein (P-gp), the MDR1 gene product, and increased drug resistance of drug-resistant cells but not the drug-sensitive counterpart. Introduction of short interfering RNA targeting the RHA gene sequence selectively knocked-down RHA expression and concomitantly reduced P-gp level. Thus, our study demonstrates, for the first time, the involvement of RHA in up-regulation of the MDR1 gene. Interactions of RHA with other protein factors in the MEF1 complex bound to the promoter element may contribute to P-gp overexpression and multidrug resistance phenotype in drug-resistant cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Amino Acid Motifs
- Autoantigens/physiology
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Chromatography, Affinity
- Coloring Agents/pharmacology
- DEAD-box RNA Helicases
- DNA/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Electroporation
- HL-60 Cells
- Humans
- Luciferases/metabolism
- Mass Spectrometry
- Neoplasm Proteins
- Phenotype
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Processing, Post-Translational
- RNA/chemistry
- RNA/metabolism
- RNA Helicases/physiology
- RNA, Small Interfering/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tetrazolium Salts/pharmacology
- Thiazoles/pharmacology
- Transcription Factors/physiology
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Pharmacology and Toxicology and Indiana University Cancer Center, Indianapolis, Indiana 46202
| | | |
Collapse
|
74
|
Yang L, Yang J, Huang Y, Liu ZR. Phosphorylation of p68 RNA helicase regulates RNA binding by the C-terminal domain of the protein. Biochem Biophys Res Commun 2004; 314:622-30. [PMID: 14733953 DOI: 10.1016/j.bbrc.2003.12.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase that was expressed in Escherichia coli. Huang et al. The recombinant protein bound both single-stranded (ss) and double-stranded (ds) RNAs. To further characterize the substrate RNA binding by p68 RNA helicase, we expressed and purified the recombinant N-terminal and C-terminal domains of the protein. RNA-binding property and protein phosphorylation of the recombinant domains of p68 were analyzed. Our data demonstrated that the C-terminal domain of p68 RNA helicase bound ssRNA. More interestingly, the C-terminal domain was a target of protein kinase C (PKC). Phosphorylation of the C-terminal domain of p68 abolished its RNA binding. Based on our observations, we propose that the C-terminal domain is an RNA substrate binding site for p68. The protein phosphorylation by PKC regulates the RNA binding of p68 RNA helicase, which consequently controls the enzymatic activities of the protein.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
75
|
Zhang S, Köhler C, Hemmerich P, Grosse F. Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus. Exp Cell Res 2004; 293:248-58. [PMID: 14729462 DOI: 10.1016/j.yexcr.2003.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 microg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport.
Collapse
Affiliation(s)
- Suisheng Zhang
- Department of Biochemistry, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
76
|
Zhang S, Schlott B, Görlach M, Grosse F. DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 2004; 32:1-10. [PMID: 14704337 PMCID: PMC373260 DOI: 10.1093/nar/gkg933] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An RNA-dependent association of Ku antigen with nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), was found in nuclear extracts of HeLa cells by immunoprecipitation and by gel filtration chromatography. Both Ku antigen and NDH II were associated with hnRNP complexes. Two-dimensional gel electrophoresis showed that Ku antigen was most abundantly associated with hnRNP C, K, J, H and F, but apparently not with others, such as hnRNP A1. Unexpectedly, DNA-dependent protein kinase (DNA-PK), which comprises Ku antigen as the DNA binding subunit, phosphorylated hnRNP proteins in an RNA-dependent manner. DNA-PK also phosphorylated recombinant NDH II in the presence of RNA. RNA binding assays displayed a preference of DNA-PK for poly(rG), but not for poly(rA), poly(rC) or poly(rU). This RNA binding affinity of DNA-PK can be ascribed to its Ku86 subunit. Consistently, poly(rG) most strongly stimulated the DNA-PK-catalyzed phosphorylation of NDH II. RNA interference studies revealed that a suppressed expression of NDH II altered the nuclear distribution of hnRNP C, while silencing DNA-PK changed the subnuclear distribution of NDH II and hnRNP C. These results support the view that DNA-PK can also function as an RNA-dependent protein kinase to regulate some aspects of RNA metabolism, such as RNA processing and transport.
Collapse
Affiliation(s)
- Suisheng Zhang
- Department of Biochemistry, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
77
|
Hung ML, Chao P, Chang KY. dsRBM1 and a proline-rich domain of RNA helicase A can form a composite binder to recognize a specific dsDNA. Nucleic Acids Res 2003; 31:5741-53. [PMID: 14500838 PMCID: PMC206459 DOI: 10.1093/nar/gkg759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The double-stranded RNA-binding motif (dsRBM) is a widely distributed motif frequently found within proteins with sequence non-specific RNA duplex-binding activity. In addition to the binding of double-stranded RNA, some dsRBMs also participate in complex formation via protein-protein interactions. Interestingly, a lot of proteins containing multiple dsRBMs have only some of their dsRBMs with the expected RNA duplex-binding competency proven, while the functions of the other dsRBMs remain unknown. We show here that the dsRBM1 of RNA helicase A (RHA) can cooperate with a C-terminal domain of proline-rich content to gain novel nucleic acid-binding activities. This integrated nucleic acid-binding module is capable of associating with the consensus sequences of the constitutive transport element (CTE) RNA of type D retrovirus against RNA duplex competitors. Remarkably, binding activity for double-stranded DNA corresponding to the consensus sequences of the cyclic-AMP responsive element also resides within this composite nucleic acid binder. It thus suggests that the dsRBM fold can be used as a platform for the building of a ligand binding module capable of non-RNA macromolecule binding with an accessory sequence, and functional assessment for a newly identified protein containing dsRBM fold should be more cautious.
Collapse
Affiliation(s)
- Ming-Lung Hung
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | | | | |
Collapse
|
78
|
Henning D, So RB, Jin R, Lau LF, Valdez BC. Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production. J Biol Chem 2003; 278:52307-14. [PMID: 14559904 DOI: 10.1074/jbc.m310846200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intricate production of ribosomal RNA is well defined in yeast, but its complexity in higher organisms is barely understood. We recently showed that down-regulation of nucleolar protein RNA helicase II/Gualpha (RH-II/Gualpha or DDX21) in Xenopus oocytes inhibited processing of 20 S rRNA to 18 S and contributed to degradation of 28 S rRNA (Yang, H., Zhou, J., Ochs, R. L., Henning, D., Jin, R., and Valdez, B. C. (2003) J. Biol. Chem. 278, 38847-38859). Since no nucleolar RNA helicase has been functionally characterized in mammalian cells, we used short interfering RNA to search for functions for RH-II/Gualpha and its paralogue RH-II/Gubeta in rRNA production. Silencing of RH-II/Gualpha by more than 80% in HeLa cells resulted in an almost 80% inhibition of 18 and 28 S rRNA production. This inhibition could be reversed by exogenous expression of wild type RH-II/Gualpha. A helicase-deficient mutant form having ATPase activity was able to rescue the production of 28 S but not 18 S rRNA. A phenotype exhibiting inhibition of 18 S and 28 S rRNA production was also observed when the paralogue RH-II/Gubeta was overexpressed. Both down-regulation of RH-II/Gualpha and overexpression of RH-II/Gubeta slowed cell proliferation. The opposite effects of the two paralogues suggest antagonistic functions.
Collapse
Affiliation(s)
- Dale Henning
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
79
|
Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332:85-98. [PMID: 12946349 DOI: 10.1016/s0022-2836(03)00885-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
81
|
Reichman TW, Mathews MB. RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110. RNA (NEW YORK, N.Y.) 2003; 9:543-554. [PMID: 12702813 PMCID: PMC1370420 DOI: 10.1261/rna.2181103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 01/17/2003] [Indexed: 05/24/2023]
Abstract
Nuclear factor 110 (NF110) belongs to the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA) binding proteins that regulate gene expression at the transcriptional level in vertebrates. The proteins are identical at their N terminus, which functions as a negative regulatory region, but have distinct C termini as a result of alternate splicing. Maximal transcriptional activity of NF110 requires its C-terminal domain and a central domain that contains a nuclear localization signal and two dsRNA-binding motifs (dsRBMs). We find that dsRNA binding is reduced by RGG and GQSY motifs present in the C-terminal region. To directly evaluate the role of RNA binding in transactivation, we conducted site-directed mutagenesis to substitute conserved residues in one or both of the dsRBMs. The mutations reduced the ability of NF110 to stimulate gene expression to an extent that paralleled the mutants' reduced ability to bind dsRNA. Full activity was restored when the dsRBM-containing region of NF110 was replaced with the RNA-binding region of the protein kinase PKR. Finally, NF110-mediated transactivation was inhibited by cotransfection of a plasmid encoding an artificial highly structured RNA. These data suggest that NF110 and its homologs are regulated by cis-acting domains present in some of the protein isoforms, and via interactions with RNAs that bind to their dsRBMs. We propose a model in which structured RNAs regulate gene expression by modulating transcription through interactions with members of the NF90 protein family.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark 01701-1709, USA
| | | |
Collapse
|
82
|
Abstract
We identified DDX32 as gene predicted to encode a 743 amino acid protein containing a helicase-like domain based on its homology to the conserved helicase domain of the DEAH family of helicases. The helicase domain of DDX32 has a novel sequence including a signature sequence of DDIH in motif II and several substitutions in other motifs. DDX32 has a murine orthologue and shares the presence of conserved sequences, other than the eight canonical helicase motifs, with DEAH helicases across species. Expression studies show that DDX32 is widespread but specifically down-regulated in acute lymphoblastic leukemias. DDX32 gene has 11 exons and is located on 10q26 chromosomal band. An alternatively spliced message lacking exon 4 in the coding region is present in several tissues. Our results suggest that DDX32 is a novel gene, which might play a role in normal and/or abnormal lymphopoiesis.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Department of Paediatric Laboratory Medicine, Division of Haematopathology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Ont., Toronto, Canada.
| |
Collapse
|
83
|
Zhang S, Buder K, Burkhardt C, Schlott B, Görlach M, Grosse F. Nuclear DNA helicase II/RNA helicase A binds to filamentous actin. J Biol Chem 2002; 277:843-53. [PMID: 11687588 DOI: 10.1074/jbc.m109393200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear DNA helicase II (NDH II), also designated RNA helicase A, is a multifunctional protein involved in transcription, RNA processing, and transport. Here we report that NDH II binds to F-actin. NDH II was partially purified from HeLa nuclear extracts by ion-exchange chromatography on Bio-Rex 70 and DEAE-Sepharose. Upon gel-filtration chromatography on Sepharose 4B, partially purified NDH II resolved into two distinct peaks. The first NDH II peak, corresponding to the void volume of Sepharose 4B, displayed coelution with an abundant 42-kDa protein that was subsequently identified as actin. Several nuclear proteins such as RNA polymerase II, the U5 small nuclear ribonucleoprotein (RNP)-associated WD40 protein, and heterogeneous nuclear RNPs (hnRNPs) copurified with NDH II. However, only hnRNPs A1 and C were found together with NDH II and actin polymers during gel filtration. NDH II and hnRNP C from the HeLa nuclear extract coeluted with F-actin on Sepharose 4B in an RNase-resistant manner, whereas hnRNP A1 was nearly completely removed from F-actin-associated hnRNP complexes following RNA digestion. The association of NDH II and hnRNP C with F-actin was abolished by gelsolin, an F-actin-depolymerizing protein that fragments actin polymers into oligomers or monomers. Furthermore, NDH II co-immunoprecipitated with F-actin and hnRNP C, respectively. In vitro translated NDH II coeluted with F-actin on Sepharose 4B, whereas no coelution with F-actin was observed for in vitro translated hnRNP A1 or C1. Binding to F-actin requires an intact C terminus of NDH II and most likely a native protein conformation. Electron microscopy indicated a close spatial proximity among NDH II, hnRNP C, and F-actin within the HeLa nucleus. These results suggest an important function of NDH II in mediating the attachment of hnRNP-mRPP RNP complexes to the actin nucleoskeleton for RNA processing, transport, or other actin-related processes.
Collapse
Affiliation(s)
- Suisheng Zhang
- Department of Biochemistry, Institute of Molecular Biotechnology, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M, Fukamizu A, Nakajima T. Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol 2001; 21:4460-9. [PMID: 11416126 PMCID: PMC87106 DOI: 10.1128/mcb.21.14.4460-4469.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicase A (RHA) is a member of an ATPase/DNA and RNA helicase family and is a homologue of Drosophila maleless protein (MLE), which regulates X-linked gene expression. RHA is also a component of holo-RNA polymerase II (Pol II) complexes and recruits Pol II to the CREB binding protein (CBP). The ATPase and/or helicase activity of RHA is required for CREB-dependent transcription. To further understand the role of RHA on gene expression, we have identified a 50-amino-acid transactivation domain that interacts with Pol II and termed it the minimal transactivation domain (MTAD). The protein sequence of this region contains six hydrophobic residues and is unique to RHA homologues and well conserved. A mutant with this region deleted from full-length RHA decreased transcriptional activity in CREB-dependent transcription. In addition, mutational analyses revealed that several tryptophan residues in MTAD are important for the interaction with Pol II and transactivation. These mutants had ATP binding and ATPase activities comparable to those of wild-type RHA. A mutant lacking ATP binding activity was still able to interact with Pol II. In CREB-dependent transcription, the transcriptional activity of each of these mutants was less than that of wild-type RHA. The activity of the double mutant lacking both functions was significantly lower than that of each mutant alone, and the double mutant had a dominant negative effect. These results suggest that RHA could independently regulate CREB-dependent transcription either through recruitment of Pol II or by ATP-dependent mechanisms.
Collapse
Affiliation(s)
- S Aratani
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Vindigni A, Ochem A, Triolo G, Falaschi A. Identification of human DNA helicase V with the far upstream element-binding protein. Nucleic Acids Res 2001; 29:1061-7. [PMID: 11222755 PMCID: PMC29729 DOI: 10.1093/nar/29.5.1061] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand in an ATP- and Mg(2+)-dependent fashion. The enzyme is not processive and can also unwind partial RNA-RNA duplexes such as HDH IV and HDH VIII. The M:(r) determined by SDS-PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the 'FUSE' DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.
Collapse
Affiliation(s)
- A Vindigni
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | |
Collapse
|
86
|
Fujii R, Okamoto M, Aratani S, Oishi T, Ohshima T, Taira K, Baba M, Fukamizu A, Nakajima T. A Role of RNA Helicase A in cis-Acting Transactivation Response Element-mediated Transcriptional Regulation of Human Immunodeficiency Virus Type 1. J Biol Chem 2001; 276:5445-51. [PMID: 11096080 DOI: 10.1074/jbc.m006892200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) has two double-stranded (ds) RNA-binding domains (dsRBD1 and dsRBD2). These domains are conserved with the cis-acting transactivation response element (TAR)-binding protein (TRBP) and dsRNA-activated protein kinase (PKR). TRBP and PKR are involved in the regulation of HIV-1 gene expression through their binding to TAR RNA. This study shows that RHA also plays an important role in TAR-mediated HIV-1 gene expression. Wild-type RHA preferably bound to TAR RNA in vitro and in vivo. Overexpression of wild type RHA strongly enhanced viral mRNA synthesis and virion production as well as HIV-1 long terminal repeat-directed reporter (luciferase) gene expression. Substitution of lysine for glutamate at residue 236 in dsRBD2 (RHA(K236E)) reduced its affinity for TAR RNA and impaired HIV-1 transcriptional activity. These results indicate that TAR RNA is a preferred target of RHA dsRBDs and that RHA enhances HIV-1 transcription in vivo in part through the TAR-binding of RHA.
Collapse
Affiliation(s)
- R Fujii
- Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Myöhänen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem 2001; 276:1634-42. [PMID: 11038348 DOI: 10.1074/jbc.m004481200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p16(INK4a) is frequently altered in human cancer, often through epigenetically mediated transcriptional silencing. However, little is known about the transcriptional regulation of this gene. To learn more about such control, we initiated studies of proteins that bind to the promoter in cancer cells that do, and do not, express the gene. We identify RNA helicase A (RHA) as a protein that binds much better to the p16(INK4a) promoter in the expressing cells. RHA has not previously been characterized to manifest sequence-specific DNA interaction but does so to the sequence 5' CGG ACC GCG TGC GC 3' in the p16(INK4a) promoter. The Drosophila homologue to RHA, maleless (Mle), functions in the fly for 2-fold activation of male X-chromosome genes. In our experimental setting, RHA induces a similar modest up-regulation of the p16(INK4a) promoter that is dependent upon its sequence-specific interaction. Mle colocalizes with hyperacetylated H4Ac16 on the X-chromosome and some autosomal loci. The decreased binding of RHA to p16(INK4a) in our cells, where the gene is transcriptionally inactive, is associated with decreased amounts of RHA that immunoprecipitate with acetylated lysine antibodies. Finally, we show RHA to be a cellular substrate for caspase-3, which decreases its sequence-specific binding to p16(INK4a) by cleavage of the N terminus. Thus, we have identified a new protein interaction with the p16(INK4a) promoter that involves an important protein for transcriptional modulation. This interaction is decreased in cancer cells, where this gene is aberrantly transcriptionally silent.
Collapse
Affiliation(s)
- S Myöhänen
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
88
|
Sung YJ, Conti J, Currie JR, Brown WT, Denman RB. RNAs that interact with the fragile X syndrome RNA binding protein FMRP. Biochem Biophys Res Commun 2000; 275:973-80. [PMID: 10973830 DOI: 10.1006/bbrc.2000.3405] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fragile X protein FMRP is an RNA binding protein whose targets are not well known; yet, these RNAs may play an integral role in the disease's etiology. Using a biotinylated-FMRP affinity resin, we isolated RNAs from the parietal cortex of a normal adult that bound FMRP. These RNAs were amplified by differential display (DDRT-PCR) and cloned and their identities determined. Nine candidate RNAs were isolated; five RNAs, including FMR1 mRNA, encoded known proteins. Four others were novel. The specificity of binding was demonstrated for each candidate RNA. The domains required for binding a subset of the RNAs were delineated using FMRP truncation mutant proteins and it was shown that only the KH2 domain was required for binding. Binding occurred independently of homoribopolymer binding to the C-terminal arginine-glycine-rich region (RGG box), suggesting that FMRP may bind multiple RNAs simultaneously.
Collapse
Affiliation(s)
- Y J Sung
- Department of Molecular Biology, Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | | | | | |
Collapse
|
89
|
Ohlstein B, Lavoie CA, Vef O, Gateff E, McKearin DM. The Drosophila cystoblast differentiation factor, benign gonial cell neoplasm, is related to DExH-box proteins and interacts genetically with bag-of-marbles. Genetics 2000; 155:1809-19. [PMID: 10924476 PMCID: PMC1461197 DOI: 10.1093/genetics/155.4.1809] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selection of asymmetric cell fates can involve both intrinsic and extrinsic factors. Previously we have identified the bag-of-marbles (bam) gene as an intrinsic factor for cystoblast fate in Drosophila germline cells and shown that it requires active product from the benign gonial cell neoplasm (bgcn) gene. Here we present the cloning and characterization of bgcn. The predicted Bgcn protein is related to the DExH-box family of RNA-dependent helicases but lacks critical residues for ATPase and helicase functions. Expression of the bgcn gene is extremely limited in ovaries but, significantly, bgcn mRNA is expressed in a very limited number of germline cells, including the stem cells. Also, mutations in bgcn dominantly enhance a bam mutant phenotype, further corroborating the interdependence of these two genes' functions. On the basis of known functions of DExH-box proteins, we propose that Bgcn and Bam may be involved in regulating translational events that are necessary for activation of the cystoblast differentiation program.
Collapse
Affiliation(s)
- B Ohlstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | |
Collapse
|
90
|
Abstract
Highly structured and double-stranded (ds) RNAs are adaptable and potent biochemical entities. They interact with dsRNA-binding proteins (RBPs), the great majority of which contain a sequence called the dsRNA-binding motif (dsRBM). This approximately 70-amino-acid sequence motif forms a tertiary structure that interacts with dsRNA, with partially duplexed RNA and, in some cases, with RNA-DNA hybrids, generally without obvious RNA sequence specificity. At least nine families of functionally diverse proteins contain one or more dsRBMs. The motif also participates in complex formation through protein-protein interactions.
Collapse
Affiliation(s)
- I Fierro-Monti
- Dept of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185 South Orange Ave., Newark, NJ 07103-2714, USA
| | | |
Collapse
|
91
|
Takeda Y, Caudell P, Grady G, Wang G, Suwa A, Sharp GC, Dynan WS, Hardin JA. Human RNA Helicase A Is a Lupus Autoantigen That Is Cleaved During Apoptosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Proteolytic cleavage by caspases is the central event in cells undergoing apoptosis. Cleaved proteins are often targeted by autoantibodies, suggesting that the cleavage of self Ags enhances immunogenicity and is prone to induce an autoimmune response. We found autoantibodies that immunoprecipitated a 140-kDa RNA-associated protein, provisionally designated Pa, in 11 of 350 patient sera that were positive for antinuclear Abs in an immunofluorescence test. The Pa protein gave rise to three fragments with m.w. ranging from 120–130 kDa during anti-Fas-activated apoptosis. Pure caspase-3 cleaved the Pa protein into a 130-kDa fragment corresponding to the largest of these three products. Peptide sequence analysis of a tryptic digest from immunoaffinity-purified Pa showed 100% identity to human RNA helicase A (RHA). The identity of Pa with RHA was further confirmed by immunoblotting with rabbit anti-RHA Ab using anti-Pa immunoprecipitates as substrates. All 10 anti-RHA-positive patients who were clinically analyzed were diagnosed as having systemic lupus erythematosus, and 7 of them had lupus nephritis. RHA is a multifunctional protein with roles in cellular RNA synthesis and processing. Inactivation of RHA by cleavage may be an important part of the process leading to programmed cell death. The cleaved RHA fragments that are produced during apoptosis may trigger an autoimmune response in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yoshihiko Takeda
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| | - Patricia Caudell
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| | - Giuia Grady
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| | - Grace Wang
- †Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Akira Suwa
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| | - Gordon C. Sharp
- †Department of Medicine, University of Missouri, Columbia, MO 65212
| | - William S. Dynan
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| | - John A. Hardin
- *Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912; and
| |
Collapse
|
92
|
Isono K, Yamamoto H, Satoh K, Kobayashi H. An Arabidopsis cDNA encoding a DNA-binding protein that is highly similar to the DEAH family of RNA/DNA helicase genes. Nucleic Acids Res 1999; 27:3728-35. [PMID: 10471743 PMCID: PMC148629 DOI: 10.1093/nar/27.18.3728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A cDNA encoding a putative RNA and/or DNA helicase has been isolated from Arabidopsis thaliana cDNA libraries. The cloned cDNA is 5166 bases long, and its largest open reading frame encodes 1538 amino acids. The central region of the predicted protein is homologous to a group of nucleic acid helicases from the DEAD/H family. However, the N- and C-terminal regions of the Arabidopsis cDNA product are distinct from these animal DEIH proteins. We have found that the C-terminal region contains three characteristic sequences: (i) two DNA-binding segments that form a probe helix (PH) involved in DNA recognition; (ii) an SV40-type nuclear localization signal; and (iii) 11 novel tandem-repeat sequences each consisting of about 28 amino acids. We have designated this cDNA as NIH (nuclear DEIH-boxhelicase). Functional character-ization of a recombinant fusion product containing the repeated region indicates that NIH may form homodimers, and that this is the active form in solution. Based on this information and the observation that the sequence homology is limited to the DEAH regions, we conclude that the biological roles of the plant helicase NIH differ from those of the animal DEIH family.
Collapse
Affiliation(s)
- K Isono
- Laboratory of Plant Cell Technology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
93
|
Zhang S, Herrmann C, Grosse F. Nucleolar localization of murine nuclear DNA helicase II (RNA helicase A). J Cell Sci 1999; 112 ( Pt 16):2693-703. [PMID: 10413677 DOI: 10.1242/jcs.112.16.2693] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear DNA helicase II (NDH II) is a highly conserved member of the DEXH superfamily of eukaryotic helicases, whose physiological role is still unclear. To explore the function of NDH II, we studied the intracellular distribution of NDH II of different mammalian species by immunofluorescence and compared these findings with the known role of the Drosophila homologue MLE that is involved in sex-specific gene dosage compensation. NDH II displayed an apparent nucleolar localization in murine cells, whereas in cells from all other mammalian species examined so far the protein was confined to the nucleoplasm and apparently excluded from the nucleoli. The nucleolar localization of mouse NDH II strongly suggests a role in ribosomal RNA biosynthesis. Immunoelectron microscopic studies revealed that the mouse NDH II was found at the dense fibrillar components of the nucleoli, and a significant percentage of NDH II molecules colocalized with the RNA polymerase I (Pol I) transcription factor UBF (upstream binding factor). Additionally, the nucleolar localization of NDH II coincided with a preferential immunolabeling pattern of nascent transcripts with bromouridine (BrUMP). Furthermore, mouse NDH II redistributed in mitosis in a manner highly correlated with Pol I activity. Conditions leading to the inhibition of Pol I activity in the interphase decreased the amount of NDH II in the nucleoli that diffused into the nucleoplasm and the cytosol. Contrary to the effect of inhibiting rRNA synthesis, treatment of mouse cells with the translation inhibitor cycloheximide did not compromise the nucleolar localization of murine NDH II.
Collapse
Affiliation(s)
- S Zhang
- Department of Biochemistry and Department of Electron Microscopy and Molecular Cytology, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | |
Collapse
|
94
|
Tang H, McDonald D, Middlesworth T, Hope TJ, Wong-Staal F. The carboxyl terminus of RNA helicase A contains a bidirectional nuclear transport domain. Mol Cell Biol 1999; 19:3540-50. [PMID: 10207077 PMCID: PMC84146 DOI: 10.1128/mcb.19.5.3540] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human RNA helicase A was recently identified to be a shuttle protein which interacts with the constitutive transport element (CTE) of type D retroviruses. Here we show that a domain of 110 amino acids at the carboxyl terminus of helicase A is both necessary and sufficient for nuclear localization as well as rapid nuclear export of glutathione S-transferase fusion proteins. The import and export activities of this domain overlap but are separable by point mutations. This bidirectional nuclear transport domain (NTD) has no obvious sequence homology to previously identified nuclear import or export signals. However, the Ran-dependent nuclear import of NTD was efficiently competed by excess amounts of the nuclear localization signal (NLS) peptide from simian virus 40 large T antigen, suggesting that import is mediated by the classical NLS pathway. The nuclear export pathway accessed by NTD is insensitive to leptomycin B and thus is distinct from the leucine-rich nuclear export signal pathway mediated by CRM1.
Collapse
Affiliation(s)
- H Tang
- Department of Biology and Department of Medicine, University of California, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
95
|
Zhang S, Herrmann C, Grosse F. Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A). J Cell Sci 1999; 112 ( Pt 7):1055-64. [PMID: 10198287 DOI: 10.1242/jcs.112.7.1055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A, seems to function as a pre-mRNA and mRNA binding protein in human cells. Immunofluorescence studies of NDH II gave a highly diffused nucleoplasmic staining that was similar to that of hnRNP A1 but differed from the localization of the RNA splicing factor Sc-35. Upon transcriptional inhibition, NDH II migrated from the nucleus into the cytoplasm. During mitosis, NDH II was released into the cytoplasm during pro- to metaphase, and was gradually recruited back into telophase nuclei. The timing of nuclear import of NDH II at telophase was found to be later than that of hnRNP A1 but paralleled that of Sc-35. At the ultrastructural level, both NDH II and hnRNP A1 were identified within perichromatin ribonucleoparticle fibrils. However, the subnuclear distributions of NDH II and hnRNP A1 were not overlapping. NDH II could be extracted together with poly(A)-containing mRNA from HeLa cell nuclei and, to a much lesser extent, from the cytoplasm. Following transcriptional inhibition, NDH II was preferentially associated with mRNA from the cytosol, which biochemically confirmed the microscopic observations. Although NDH II is mainly a nuclear enzyme, it is apparently not associated with the nuclear matrix, since it could be extracted with 2 M NaCl from DNase I-treated nuclei. Our cellular and biochemical observations strongly suggest that NDH II is a pre-mRNA and mRNA binding protein. Its significant affinity for ssDNA, but not for dsDNA, points to a transient role in DNA binding during the process of transcript formation. According to our model, single-stranded DNA might be necessary to retain NDH II in the nuclear compartment.
Collapse
Affiliation(s)
- S Zhang
- Department of Biochemistry and Department of Electron Microscopy and Molecular Cytology, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | |
Collapse
|
96
|
Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 1998; 19:254-6. [PMID: 9662397 DOI: 10.1038/930] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The breast cancer specific tumour suppressor protein, BRCA1 (refs 1,2), activates transcription when linked with a DNA-binding domain and is a component of the RNA polymerase II (Pol II) holoenzyme. We show here that RNA helicase A (RHA) protein links BRCA1 to the holoenzyme complex. The region of BRCA1 which interacts with RHA and, thus, the holoenzyme complex, corresponds to subregions of the BRCT domain of BRCA1 (ref. 9). This interaction was shown to occur in yeast nuclei, and expression in human cells of a truncated RHA molecule which retains binding to BRCA1 inhibited transcriptional activation mediated by the BRCA1 carboxy terminus. These data are the first to identify a specific protein interaction with the BRCA1 C-terminal domain and are consistent with the model that BRCA1 functions as a transcriptional coactivator.
Collapse
Affiliation(s)
- S F Anderson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
97
|
Loor G, Zhang SJ, Zhang P, Toomey NL, Lee MY. Identification of DNA replication and cell cycle proteins that interact with PCNA. Nucleic Acids Res 1997; 25:5041-6. [PMID: 9396813 PMCID: PMC147130 DOI: 10.1093/nar/25.24.5041] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.
Collapse
Affiliation(s)
- G Loor
- University of Miami, Department of Biochemistry and Molecular Biology and Medicine, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|