51
|
Hewett PW, Daft EL, Laughton CA, Ahmad S, Ahmed A, Murray JC. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol Med 2006; 12:8-16. [PMID: 16838069 PMCID: PMC1514554 DOI: 10.2119/2005-00046.hewett] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/13/2006] [Indexed: 11/06/2022] Open
Abstract
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.
Collapse
Affiliation(s)
- Peter W Hewett
- Department of Vascular and Reproductive Biology, Institute for Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK. p.w.hewett.@bham.ac.uk
| | | | | | | | | | | |
Collapse
|
52
|
Sarrazin S, Adam E, Lyon M, Depontieu F, Motte V, Landolfi C, Lortat-Jacob H, Bechard D, Lassalle P, Delehedde M. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta Rev Cancer 2005; 1765:25-37. [PMID: 16168566 DOI: 10.1016/j.bbcan.2005.08.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 12/21/2022]
Abstract
Endocan, previously called endothelial cell specific molecule-1, is a soluble proteoglycan of 50 kDa, constituted of a mature polypeptide of 165 amino acids and a single dermatan sulphate chain covalently linked to the serine residue at position 137. This dermatan sulphate proteoglycan, which is expressed by the vascular endothelium, has been found freely circulating in the bloodstream of healthy subjects. Experimental evidence is accumulating that implicates endocan as a key player in the regulation of major processes such as cell adhesion, in inflammatory disorders and tumor progression. Inflammatory cytokines such as TNF-alpha, and pro-angiogenic growth factors such as VEGF, FGF-2 and HGF/SF, strongly increased the expression, synthesis or the secretion of endocan by human endothelial cells. Endocan is clearly overexpressed in human tumors, with elevated serum levels being observed in late-stage lung cancer patients, as measured by enzyme-linked immunoassay, and with its overexpression in experimental tumors being evident by immunohistochemistry. Recently, the mRNA levels of endocan have also been recognized as being one of the most significant molecular signatures of a bad prognosis in several types of cancer including lung cancer. Overexpression of this dermatan sulphate proteoglycan has also been shown to be directly involved in tumor progression as observed in mouse models of human tumor xenografts. Collectively, these results suggest that endocan could be a biomarker for both inflammatory disorders and tumor progression as well as a validated therapeutic target in cancer. On the basis of the recent successes of immunotherapeutic approaches in cancer, the preclinical data on endocan suggests that an antibody raised against the protein core of endocan could be a promising cancer therapy.
Collapse
Affiliation(s)
- S Sarrazin
- ENDOTIS PHARMA, Parc Eurasanté, 70 rue du Dr. Yersin, 59120 Loos, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, Ridley AJ, Randi AM. Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood 2005; 106:1636-43. [PMID: 15920013 DOI: 10.1182/blood-2004-12-4716] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial junctions maintain endothelial integrity and vascular homeostasis. They modulate cell trafficking into tissues, mediate cell-cell contact and regulate endothelial survival and apoptosis. Junctional adhesion molecules such as vascular endothelial (VE)-cadherin and CD31/platelet endothelial cell adhesion molecule (PECAM) mediate contact between adjacent endothelial cells and regulate leukocyte transmigration and angiogenesis. The leukocyte adhesion molecule intercellular adhesion molecule 2 (ICAM-2) is expressed at the endothelial junctions. In this study we demonstrate that endothelial ICAM-2 also mediates angiogenesis. Using ICAM-2-deficient mice and ICAM-2-deficient endothelial cells, we show that the lack of ICAM-2 expression results in impaired angiogenesis both in vitro and in vivo. We show that ICAM-2 supports homophilic interaction, and that this may be involved in tube formation. ICAM-2-deficient cells show defective in vitro migration, as well as increased apoptosis in response to serum deprivation, anti-Fas antibody, or staurosporine. ICAM-2 signaling in human umbilical vein endothelial cells (HUVECs) was found to activate the small guanosine triphosphatase (GTPase) Rac, which is required for endothelial tube formation and migration. These data indicate that ICAM-2 may regulate angiogenesis via several mechanisms including survival, cell migration, and Rac activation. Our findings identify a novel pathway regulating angiogenesis through ICAM-2 and a novel mechanism for Rac activation during angiogenesis.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Imperial College, BHF Cardiovascular Sciences Unit, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Prandini MH, Dreher I, Bouillot S, Benkerri S, Moll T, Huber P. The human VE-cadherin promoter is subjected to organ-specific regulation and is activated in tumour angiogenesis. Oncogene 2005; 24:2992-3001. [PMID: 15735710 PMCID: PMC2800996 DOI: 10.1038/sj.onc.1208483] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial (VE)-cadherin is exclusively expressed at interendothelial junctions of normal and tumour vessels. In this report, we characterized the transcriptional activity of the human VE-cadherin promoter. Transient transfection assays revealed that sequences at positions --1135/-744 and -166/-5 base pairs are critical for promoter activity in endothelial cells. We show that specific sequences in the proximal region interact with Ets and Sp1 family members. Transgenic mice were created and the human VE-cadherin promoter was able to confer correct temporal and spatial expression on the LacZ gene in embryos. In adults, the transgene was specifically and strongly expressed in the lung, heart, ovary, spleen and kidney glomeruli, whereas expression was weak or absent in the vasculature of other organs, including the brain, thymus, liver and skeletal muscle. Neovessels in tumour grafts and Matrigel implants harboured strong stainings, indicating that promoter activity is enhanced in angiogenic situations. Furthermore, Matrigel and transfection assays showed that VE-cadherin promoter is subjected to bFGF induction. Transgene expression was also noticed in extravascular sites of the central nervous system, suggesting that silencer elements may be located elsewhere in the gene. These results are a first step towards addressing the organ- and tumour-specific regulation of the VE-cadherin gene.
Collapse
Affiliation(s)
- Marie-Hélène Prandini
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Stéphanie Bouillot
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Souhila Benkerri
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | | | - Philippe Huber
- Laboratoire de développement et vieillissement de l'endothélium
INSERM : EMI0219CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
- * Correspondence should be adressed to: Philippe Huber
| |
Collapse
|
55
|
Chang CC, Chang TY, Yu CH, Tsai ML. Induction of VE-cadherin in rat placental trophoblasts by VEGF through a NO-dependent pathway. Placenta 2005; 26:234-41. [PMID: 15708125 DOI: 10.1016/j.placenta.2004.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 11/21/2022]
Abstract
Vascular endothelial-cadherin (VE-cadherin), a calcium-dependent homotypic adhesion molecule, contributes to endothelial assembly and VEGF-mediated survival during angiogenesis. In human term placentas, villous vessels and extravillous cytotrophoblasts express VE-cadherin. Therefore, the purpose of this study was to examine if VEGF modulated placental development by increasing the expression of VE-cadherin in rat placentas. Placental tissues from rats on gestation days 14 (G14), 18 (G18) and 21 (G21) were used. Western blot analysis and immunohistochemistry were performed to detect the protein abundance and the distribution of VE-cadherin. A nitric oxide analyzer was used to measure the released nitric oxide (NO) from placental explant culture. With the progression of pregnancy, the abundance of VE-cadherin and the intensity of the immunoreactive staining for VE-cadherin in endovascular trophoblasts and labyrinth trophoblasts were decreased. In explant culture, VEGF (0.01-1.0 ng/ml) increased the protein abundance of VE-cadherin. SNP (an NO donor) or L-arginine (substrate for eNOS) induced the expression of VE-cadherin with the increase of NO production. L-NAME (a NOS inhibitor) reduced the VEGF-increased expression and L-arginine reversed the inhibitory effect of L-NAME. In conclusion, VEGF plays an important role in placental development by the induction of VE-cadherin in trophoblasts, which, in part, maintains the survival of labyrinth trophoblast in rat placentas.
Collapse
Affiliation(s)
- Chih-Ching Chang
- Graduate Institute of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
56
|
Seki T, Hong KH, Yun J, Kim SJ, Oh SP. Isolation of a Regulatory Region of Activin Receptor-Like Kinase 1 Gene Sufficient for Arterial Endothelium-Specific Expression. Circ Res 2004; 94:e72-7. [PMID: 15059937 DOI: 10.1161/01.res.0000127048.81744.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activin receptor-like kinase 1 (Acvrl1; Alk1) is a type I receptor for transforming growth factor-beta (TGF-beta). ALK1 plays a pivotal role in vascular development and is involved in the development of hereditary hemorrhagic telangiectasia 2 (HHT2), a dominantly inherited vascular disorder, and pulmonary hypertension. We have previously shown that Alk1 is expressed predominantly in arterial endothelial cells (ECs). Despite recent discoveries of a number of artery-specific genes, the regulatory elements of these genes have not been characterized. To investigate the cis-acting elements essential for the artery-specific Alk1 expression, we have generated a series of transgenic constructs with various lengths and regions of Alk1 genomic fragments connected to a LacZ reporter gene, and analyzed the reporter gene expression in transgenic mice. We found that a 9.2-kb genomic fragment, which includes 2.7-kb promoter region and the entire intron 2, is sufficient to drive arterial endothelium-specific expression. The defined regulatory region, as well as the transgenic mouse lines, would be invaluable resources in studying the mechanisms underlying angiogenesis, arteriogenesis, and vascular disorders, such as HHT and pulmonary hypertension. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
MESH Headings
- Activin Receptors, Type I/biosynthesis
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Animals
- Arteries/cytology
- Arteries/embryology
- Arteries/growth & development
- Arteries/metabolism
- Binding Sites
- Consensus Sequence
- Endothelium, Vascular/metabolism
- Exons/genetics
- Female
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Humans
- Introns/genetics
- Lac Operon
- Male
- Mice
- Mice, Transgenic
- Neovascularization, Physiologic/genetics
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Homology
- Skin/injuries
- Species Specificity
- Transcription Factors/metabolism
- Wound Healing/genetics
Collapse
Affiliation(s)
- Tsugio Seki
- Department of Physiology and Functional Genomics, University of Florida,Gainesville, Fla 32610, USA
| | | | | | | | | |
Collapse
|
57
|
Lionneton F, Lelièvre E, Baillat D, Stehelin D, Soncin F. Characterization and functional analysis of the p42Ets-1 variant of the mouse Ets-1 transcription factor. Oncogene 2004; 22:9156-64. [PMID: 14668797 DOI: 10.1038/sj.onc.1207241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified the mouse exon VII splice variant of the Ets-1 transcription factor. The variant is expressed in all cell lines which express ets-1, at lower levels, it is also expressed in the mouse embryo in vivo. The corresponding protein, p42Ets-1, is a transcription factor as it is able to bind to specific DNA sequences and to transactivate a bona fide ETS reporter vector. A comparison of optimal DNA-binding sites shows that p42Ets-1 binds to more various DNA sequences than p51Ets-1; p42Ets-1 recognizes the same optimal consensus sequence as p51Ets-1, but also many variations of it, mainly at base -1, which is located just prior to the GGAA/T core sequence. The binding differences were quantified by surface plasmon resonance analyses and the protein region responsible for the differences in DNA sequence recognition located in the Val280-Glu302 fragment, which is encoded by exon VII. The specific DNA-binding properties of each isoform translates into clear differences in activity, p42Ets-1 transactivates the natural VE-cadherin gene promoter through both ETS-binding site (EBS)2 and EBS4 whereas p51Ets-1 is mainly active on EBS4. Altogether, our data suggest that p42Ets-1 acts as a distinct transcription factor from p51Ets-1.
Collapse
Affiliation(s)
- Frédéric Lionneton
- Institut de Biologie de Lille, CNRS UMR 8526, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
58
|
Minami T, Kuivenhoven JA, Evans V, Kodama T, Rosenberg RD, Aird WC. Ets motifs are necessary for endothelial cell-specific expression of a 723-bp Tie-2 promoter/enhancer in Hprt targeted transgenic mice. Arterioscler Thromb Vasc Biol 2003; 23:2041-7. [PMID: 12893685 DOI: 10.1161/01.atv.0000089326.63053.9a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tie-2 is an endothelial cell-specific receptor tyrosine kinase that is involved in the remodeling of blood vessels and angiogenesis. Our goal was to characterize Tie-2 promoter function as a means of providing insight into the mechanisms of endothelial cell-specific gene regulation. METHODS AND RESULTS When targeted to the Hprt locus of mice, a small Tie-2 promoter fragment (containing a 300-bp intronic enhancer coupled upstream to a 423-bp core promoter) (T-short) directed widespread endothelial cell expression in vivo. The T-short promoter contains 2 clusters of Ets sites, one in the first exon, the other in the intronic enhancer. In cultured endothelial cells, a combined mutation of the Ets motifs resulted in a significant reduction in promoter activity. Consistent with these results, the same Ets mutations resulted in a loss of detectable expression of the T-short promoter in all vascular beds with the notable exception of the brain. CONCLUSIONS These results suggest that the T-short promoter contains information for widespread expression in the vascular tree, Ets sites are necessary for in vivo promoter activity, and the shorter Tie-2 fragment may be useful as a tool to direct heterologous gene expression within the intact endothelium.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro Tokyo, 153-8904.
| | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Dancer A, Julien S, Bouillot S, Pointu H, Vernet M, Huber P. Expression of thymidine kinase driven by an endothelial-specific promoter inhibits tumor growth of Lewis lung carcinoma cells in transgenic mice. Gene Ther 2003; 10:1170-8. [PMID: 12833126 DOI: 10.1038/sj.gt.3301981] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The possibility of inhibiting tumor growth by limiting angiogenesis has raised considerable interest. In this study, we examined the feasibility of inhibiting tumor growth by targeting a suicide gene in the endothelium. Toxicity must be directed solely to angiogenic cells. Therefore, we used the herpes simplex virus-thymidine kinase (TK) gene, in combination with the prodrug ganciclovir (GCV), which affects replicative cells. To test this strategy, we produced transgenic mice carrying the TK gene driven by the vascular endothelial (VE)-cadherin promoter. Lewis lung carcinoma cells were injected subcutaneously to establish tumors and to test the effect of GCV on tumor growth. In two independent transgenic lines, GCV treatment (75 mg/kg/day) resulted in a 66-71% reduction of tumor volume at day 20 postimplantation compared to wild-type mice (650 and 550 versus 1930 mm(3), P<0.02 and 0.01, respectively), whereas no significant difference was observed when vehicle alone was injected. Tumor growth inhibition was accompanied by a marked reduction in tumor vascular density (151 versus 276 vessels/mm(2), P<0.05) and an increase in tumor cell death, suggesting that tumor growth inhibition was caused by a reduction in tumor angiogenesis. Our data support the potential utility of endothelial targeting of suicide genes in cancer therapy.
Collapse
Affiliation(s)
- A Dancer
- CEA, Laboratoire de Dévelopement et Vieillissement de l'Endothélium, INSERM EMI 02-19, France
| | | | | | | | | | | |
Collapse
|
61
|
Rance JB, Follows GA, Cockerill PN, Bonifer C, Lane DA, Simmonds RE. Regulation of the human endothelial cell protein C receptor gene promoter by multiple Sp1 binding sites. Blood 2003; 101:4393-401. [PMID: 12560236 DOI: 10.1182/blood-2002-05-1570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human endothelial cell protein C receptor (hEPCR) is normally expressed by the endothelium of large blood vessels, but the molecular basis for its in vivo specificity is uncertain. In this study, DNaseI hypersensitive site mapping demonstrated the presence of a hypersensitive site in the 5' flanking region of the hEPCR gene in endothelial cells and certain transformed cells (HeLa and U937) known to express hEPCR in vitro. Conversely, this site was only weakly hypersensitive in HepG2 cells, cells which do not express hEPCR mRNA. Functional analysis of this 5' flanking region by in vivo dimethylsulfate footprinting in cultured endothelial cells identified multiple regions, containing high and low homology consensus Sp1 binding sequences, that were protected from methylation in endothelial cells. These sequences were not protected in HepG2 cells. Reporter gene analysis of this region in endothelial cells demonstrated the presence of promoter activity conferred by the proximal 572 bp but failed to identify a functional TATA-box. This promoter was inactive in HepG2 cells. Electrophoresis mobility shift assays using endothelial cell nuclear extracts identified Sp1 family proteins binding to sites that were protected during footprinting. Sp1 sites were identified in regions at -368, -232, -226, -201, -146, and -102 bp relative to the translation start site. With the exception of the site at -102 bp, each identified Sp1 binding site made a positive contribution to reporter gene expression, although no individual site was critically important. We conclude that transcription factor binding to Sp1 binding sites in the 5' flanking region is critical for normal hEPCR gene expression in endothelial cells.
Collapse
Affiliation(s)
- James B Rance
- Department of Haematology, Imperial College London-Faculty of Medicine, Hammersmith Hospital Campus, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
62
|
Blancafort P, Magnenat L, Barbas CF. Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 2003; 21:269-74. [PMID: 12592412 DOI: 10.1038/nbt794] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 01/03/2003] [Indexed: 12/22/2022]
Abstract
Despite the critical importance of transcription factors in mediating gene regulation, there exists no general, genome-wide tool that uses transcription factors to induce or silence a target gene or select for a particular phenotype. In the strategy described here, we prepared large combinatorial libraries of artificial transcription factors comprising three or six zinc-finger domains, and selected transcription factor-DNA interactions able to upregulate several genes in human cells. Selected transcription factors either induced the expression of an endothelial-specific differentiation marker, VE-cadherin, in non-endothelial cell lines or, when combined with a repression domain, knocked down expression. Potential binding sites for a number of these transcription factors were mapped along the promoter of CDH5, the gene encoding VE-cadherin. Transcription factor libraries represent a useful approach for studying and modulating gene function in cells and potentially in whole organisms.
Collapse
Affiliation(s)
- Pilar Blancafort
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
63
|
Chen HH, Hippenmeyer S, Arber S, Frank E. Development of the monosynaptic stretch reflex circuit. Curr Opin Neurobiol 2003; 13:96-102. [PMID: 12593987 DOI: 10.1016/s0959-4388(03)00006-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Significant advances have been made during the past few years in our understanding of how the spinal monosynaptic reflex develops. Transcription factors in the Neurogenin, Runt, ETS, and LIM families control sequential steps of the specification of various subtypes of dorsal root ganglia sensory neurons. The initiation of muscle spindle differentiation requires neuregulin 1, derived from Ia afferent sensory neurons, and signaling through ErbB receptors in intrafusal muscle fibers. Several retrograde signals from the periphery are important for the establishment of late connectivity in the reflex circuit. Finally, neurotrophin 3 released from muscle spindles regulates the strength of sensory-motor connections within the spinal cord postnatally.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- Department of Neurobiology, University of Pittsburgh Medical School, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
64
|
Christensen RA, Fujikawa K, Madore R, Oettgen P, Varticovski L. NERF2, a member of the Ets family of transcription factors, is increased in response to hypoxia and angiopoietin-1: a potential mechanism for Tie2 regulation during hypoxia. J Cell Biochem 2002; 85:505-15. [PMID: 11967990 DOI: 10.1002/jcb.10148] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vascular endothelial growth factor (VEGF) and angiopoietins regulate endothelial cell survival and migration and are essential for angiogenesis. Considerable progress has been made towards understanding hypoxia-mediated regulation of VEGF and its receptors. In contrast, little is known about the regulation of angiopoietins and their receptors in hypoxic cells. Using RT-PCR, RNAase protection assay, and Western blotting, we found that Tie1 and Tie2 mRNA and protein levels increased in response to hypoxia in human umbilical vein endothelial cells. Previously, we have shown that NERF2, a member of Ets family of transcription factors that is specifically expressed in endothelial cells, binds to the promoter region of Tie2 and transactivates Tie2 expression. In this study, we show that expression of NERF2 was increased under hypoxia and that this increase temporally correlated with the increase in Tie2 expression. Hypoxia-induced expression of NERF2 and Tie2 was blocked by angiopoietin-2, a competitive inhibitor of angiopoietin-1, and by recombinant soluble extracellular domain of Tie2 but not by VEGF-neutralizing antibodies. In addition, angiopoietin-1 directly induced expression of NERF2 in quiescent cells. These novel findings suggest that angiopoietin-1 regulates expression of NERF2 and its own receptor in hypoxic cells.
Collapse
Affiliation(s)
- Rial A Christensen
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
65
|
Hadri L, Ozog A, Soncin F, Lompré AM. Basal transcription of the mouse sarco(endo)plasmic reticulum Ca2+-ATPase type 3 gene in endothelial cells is controlled by Ets-1 and Sp1. J Biol Chem 2002; 277:36471-8. [PMID: 12119294 DOI: 10.1074/jbc.m204731200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that the sarco(endo)plasmic reticulum Ca(2+)-ATPase type 3 (SERCA3) gene is expressed in many tissues and in a subset of cells such as endothelial, epithelial, and lymphoid lineages. Here we analyzed the mechanisms involved in the regulation of transcription of the SERCA3 gene in endothelial cells. The promoter of the murine SERCA3 gene was isolated, and a single transcription initiation site located 301 bp upstream of the translation initiation site was identified. Analysis of the transcriptional activity of fragments of the SERCA3 promoter showed the existence of a minimal promoter region located between bases -97 and +153 that contains one ETS-binding site (EBS) and two Sp1 elements that are essential for basal transcription. Mutation of the EBS or of the Sp1 sites abolished the basal activity of the promoter. We identified Ets-1 and Sp1 among endothelial nuclear factors that recognize the EBS and Sp1 sites on the promoter. Furthermore, transactivation of the -97/+301 promoter fragment by Ets-1 requires the presence of both the EBS and Sp1 sites, suggesting an interaction of the transcription factors on the gene promoter. Finally, overexpression of Ets-1 induced the expression of SERCA3 in endothelial cells and in fibroblasts.
Collapse
Affiliation(s)
- Lahouaria Hadri
- INSERM U446/Biochimie, IFR-75, Signalisation et Innovation Thérapeutique Tour D4, Faculté de Pharmacie, 92296 Chatenay-Malabry, France
| | | | | | | |
Collapse
|
66
|
Abstract
Our understanding of motor neuron differentiation is rapidly evolving. New studies demonstrate that cells in the periphery of the embryo provide feedback signals for spinal cord motor neurons that are instrumental in the timing and regulation of their development. Two papers in this issue of Neuron identify a motor neuron survival factor, GDNF, and the ETS transcription factor, PEA3, as key components of a signal transduction pathway whose goals are 2-fold: to cluster motor pool-specific cell bodies and to promote axon arborization.
Collapse
Affiliation(s)
- Sonya J Koo
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
67
|
Tsai JC, Zhang J, Minami T, Voland C, Zhao S, Yi X, Lassalle P, Oettgen P, Aird WC. Cloning and characterization of the human lung endothelial-cell-specific molecule-1 promoter. J Vasc Res 2002; 39:148-59. [PMID: 12011586 DOI: 10.1159/000057763] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Endothelial-cell-specific molecule-1 (ESM-1) is a cysteine-rich protein that is expressed primarily in endothelial cells of the lung, kidney and gut. In the present study, we have cloned and sequenced 3,888 bp of the 5' flanking region of the human ESM-1 gene. The full-length promoter directed high-level expression of the luciferase reporter gene in bovine lung microvascular endothelial cells and bovine aortic endothelial cells, but not in nonendothelial cell types. In 5' deletion analyses, a region spanning -81 to +58 was shown to contain information for endothelial-cell-specific expression. Mutational analysis in transient transfection assays uncovered an important role for an Ets-binding motif located between -77 and -74 and a cAMP-response-element (CRE)-like motif located between -68 and -62 in mediating high-level expression in endothelial cells. A second Ets site (-63 to -60) as well as a novel 6-bp palindromic sequence (-58 to -53) were found to inhibit expression. In DNase footprint analyses, both the Ets-binding motifs were protected specifically in endothelial cells, while the CRE-like element and palindrome were protected in endothelial and nonendothelial cells alike. Taken together, these results provide an important foundation for studying endothelial-cell-subtype-specific gene regulation.
Collapse
Affiliation(s)
- Jo C Tsai
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Mass 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
McLaughlin F, Ludbrook VJ, Cox J, von Carlowitz I, Brown S, Randi AM. Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 2001; 98:3332-9. [PMID: 11719371 DOI: 10.1182/blood.v98.12.3332] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has recently been shown that the transcription factor Erg, an Ets family member, drives constitutive expression of the intercellular adhesion molecule 2 (ICAM-2) in human umbilical vein endothelial cells (HUVECs) and that its expression is down-regulated by the pleiotropic cytokine tumor necrosis factor alpha (TNF-alpha). To identify other Erg target genes and to define its function in the endothelium, a combined approach of antisense oligonucleotides (GeneBloc) and differential gene expression was used. Treatment of HUVECs with Erg-specific GeneBloc for 24, 48, and 72 hours suppressed Erg mRNA and protein levels at all time points. Total RNA extracted from HUVECs treated with Erg-specific or control GeneBloc was analyzed for differences in gene expression using high-density, sequence-verified cDNA arrays containing 482 relevant genes. Inhibition of Erg expression resulted in decreased expression of ICAM-2, as predicted. Four more genes decreased in Erg-deficient HUVECs were the extracellular matrix proteins SPARC and thrombospondin, the adhesive glycoprotein von Willebrand factor, and the small GTPase RhoA. Each of these molecules has been directly or indirectly linked to angiogenesis because of its role in vascular remodeling, adhesion, or shape change. Therefore, the role of Erg in vascular remodeling was tested in an in vitro model, and the results showed that HUVECs treated with Erg GeneBloc had a decreased ability to form tubulelike structures when grown on Matrigel. These results suggest that Erg may be a mediator of the TNF-alpha effects on angiogenesis in vivo.
Collapse
Affiliation(s)
- F McLaughlin
- Cell Biology, CardioVascular Systems, and Genomics Units, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | | | | | | | | | | |
Collapse
|
69
|
de Borja PF, Collins N, Du P, Azizkhan-Clifford J, Mudryj M. Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 2001; 20:5737-47. [PMID: 11598016 PMCID: PMC125670 DOI: 10.1093/emboj/20.20.5737] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cyclin A-mediated activation of cyclin-dependent kinases (CDKs) is essential for cell cycle transversal. Cyclin A activity is regulated on several levels and cyclin A elevation in a number of cancers suggests a role in tumorigenesis. In the present study, we used a modified DNA binding site selection and PCR amplification procedure to identify DNA binding proteins that are potential substrates of cyclin A-CDK. One of the sequences identified is the Sp1 transcription factor binding site. Co-immunoprecipitation experiments show that cyclin A and Sp1 can interact physically. In vitro and in vivo phosphorylation studies indicate that cyclin A-CDK complexes can phosphorylate Sp1. The phosphorylation site is located in the N-terminal region of the protein. Cells overexpressing cyclin A have elevated levels of Sp1 DNA binding activity, suggesting that cyclin A-CDK-mediated phosphorylation augments Sp1 DNA binding properties. In co-transfection studies, cyclin A expression stimulated transcription from an Sp1-regulated promoter. Mutation of the phosphorylation site abrogated cyclin A-CDK-dependent phosphorylation, augmentation of Sp1 transactivation function and DNA binding activity.
Collapse
Affiliation(s)
| | - N.Keith Collins
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616 and Martinez Veterans Affairs, Martinez, CA 94553,
Durham Veterans Affairs, Durham, NC 27705 and Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, PA 19102, USA Present address: Laboratory of Women’s Health, NIEHS, RTP, NC 27709-2233, USA Corresponding author e-mail:
| | | | - Jane Azizkhan-Clifford
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616 and Martinez Veterans Affairs, Martinez, CA 94553,
Durham Veterans Affairs, Durham, NC 27705 and Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, PA 19102, USA Present address: Laboratory of Women’s Health, NIEHS, RTP, NC 27709-2233, USA Corresponding author e-mail:
| | - Maria Mudryj
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616 and Martinez Veterans Affairs, Martinez, CA 94553,
Durham Veterans Affairs, Durham, NC 27705 and Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, PA 19102, USA Present address: Laboratory of Women’s Health, NIEHS, RTP, NC 27709-2233, USA Corresponding author e-mail:
| |
Collapse
|
70
|
Dye JF, Leach L, Clark P, Firth JA. Cyclic AMP and acidic fibroblast growth factor have opposing effects on tight and adherens junctions in microvascular endothelial cells in vitro. Microvasc Res 2001; 62:94-113. [PMID: 11516239 DOI: 10.1006/mvre.2001.2333] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial adherens junctions (AJ) and tight junctions (TJ) are important determinants of vascular permeability and cell morphology. Here, we investigate their regulation, in primary human placental microvascular endothelial cell (HPMEC) cultures, by either aFGF plus heparin (ECGS) or elevated cAMP. The proliferation of HPMEC was weakly stimulated by ECGS, while cAMP was inhibitory. ECGS had little effect on transendothelial resistance (TER), but increased macromolecular permeability, whereas cAMP induced a twofold increase in TER and reduced macromolecular permeability. Ultrastructurally, ECGS-treated HPMEC exhibited an "activated" phenotype typified by proliferating cells, with poorly organized cell-cell junctions, whereas cAMP-treated cells appeared quiescent and markedly flattened with extended paracellular junctions, resembling endothelium in situ. The expression and localization of junctional molecules, F-actin, and junctional phosphotyrosine were examined by confocal microscopy and immunoblotting. Junctional molecules in ECGS-treated cells were less organized at lateral membranes than in control cells, whereas in cAMP-treated cells, they were highly localized at continuous contacts. These differences correlated with the intensity of junctional phosphotyrosine, being lowest with cAMP treatment. In the AJ of ECGS-treated and control cells, beta-catenin predominated but in cAMP-treated cells, gamma-catenin/plakoglobin was enriched. In addition, cAMP upregulated junctional expression of VE-cadherin and PECAM-1 and increased the levels of the TJ molecules occludin and ZO-1. The expression levels of junctional components, and their tyrosine phosphorylation, play an important role in dynamic regulation of endothelial cell-cell junctions.
Collapse
Affiliation(s)
- J F Dye
- Division of Biomedical Sciences, Imperial College School of Medicine, South Kensington, SW7 2AZ, UK
| | | | | | | |
Collapse
|
71
|
Abstract
Dynamic changes in chromatin structure through nucleosome remodelling and core histone tail acetylation play important roles in transcriptional regulation. The purification and functional characterization of a nucleosome remodelling and histone deacetylase complex, NuRD, has suggested that nucleosome remodelling and core histone tail modification are potentially linked processes. MTA2, a component of the NuRD complex, plays an important role in regulating histone deacetylase activity of the NuRD complex. Similar to the candidate metastasis associated protein MTA1, an elevated level of MTA2 correlates with cellular proliferation. To understand the regulation of Mta2 transcription, we characterized the mouse Mta2 gene and its transcriptional regulatory elements. We found that MTA2 is encoded by 18 exons that span 10 kb. Primer extension analysis identified a major transcriptional start site locates 259 base pairs upstream of the ATG translational start codon. Transient transfection studies localized its promoter, lacking a canonical TATA box, to within 60 base pairs upstream of the transcriptional start site. Gel-mobility-shift and mutagenesis studies revealed that Sp1 and ETS elements play important roles in regulating Mta2 transcription. Information concerning the regulation of the Mta2 gene expression will be useful in understanding the regulation of NuRD histone deacetylase activity, which in turn will help in our general understanding of the transcriptional repression mechanism.
Collapse
Affiliation(s)
- L Xia
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
72
|
Iljin K, Karkkainen MJ, Lawrence EC, Kimak MA, Uutela M, Taipale J, Pajusola K, Alhonen L, Halmekytö M, Finegold DN, Ferrell RE, Alitalo K. VEGFR3 gene structure, regulatory region, and sequence polymorphisms. FASEB J 2001; 15:1028-36. [PMID: 11292664 DOI: 10.1096/fj.00-0383com] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR-3) is required for cardiovascular development during embryogenesis. In adults, this receptor is expressed in lymphatic endothelial cells, and mutant VEGFR3 alleles have been implicated in human hereditary lymphedema. To better understand the basis of its specific endothelial lineage-restricted expression, we have characterized the VEGFR3 gene and its regulatory 5' flanking region. The human gene contains 31 exons, of which exons 30a and 30b are alternatively spliced. The VEGFR3 proximal promoter is TATA-less and contains stretches of sequences homologous with the mouse Vegfr3 promoter region. In transfection experiments of cultured cells, the Vegfr3 promoter was shown to control endothelial cell-specific transcription of downstream reporter genes. This result was further confirmed in vivo; in a subset of transgenic mouse embryos, a 1.6 kb Vegfr3 promoter fragment directed weak lymphatic endothelial expression of the LacZ marker gene. This suggests that endothelial cell-specific elements occur in the proximal promoter, although further enhancer elements are probably located elsewhere. The sequence, organization, and variation in the VEGFR3 gene and its regulatory region provide important tools for the molecular genetic analysis of the lymphatic system and its disorders.
Collapse
Affiliation(s)
- K Iljin
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Iljin K, Karkkainen MJ, Lawrence EC, Kimak MA, Uutela M, Taipale J, Pajusola K, Alhonen L, HalmekytÖ M, Finegold DN, Ferrell RE, Alitalo K. VEGFR3
gene structure, regulatory region, and sequence polymorphisms. FASEB J 2001. [DOI: 10.1096/fsb2fj000383com] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kristiina Iljin
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| | - Marika J. Karkkainen
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| | | | - Mark A. Kimak
- Department of Human GeneticsUniversity of PittsburghPittsburghPennsylvania15261USA
| | - Marko Uutela
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| | - Jussi Taipale
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| | - Katri Pajusola
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| | - Leena Alhonen
- A. I. Virtanen Institute for Molecular Sciences University of KuopioKuopioFinland
| | - Maria HalmekytÖ
- A. I. Virtanen Institute for Molecular Sciences University of KuopioKuopioFinland
| | - David N. Finegold
- Department of Human GeneticsUniversity of PittsburghPittsburghPennsylvania15261USA
| | - Robert E. Ferrell
- Department of Human GeneticsUniversity of PittsburghPittsburghPennsylvania15261USA
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research Haartman Institute, University of Helsinki00014HelsinkiFinland
| |
Collapse
|
74
|
Sato Y. Role of ETS family transcription factors in vascular development and angiogenesis. Cell Struct Funct 2001; 26:19-24. [PMID: 11345500 DOI: 10.1247/csf.26.19] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ETS family of transcription factors is defined by a conserved DNA-binding ETS domain that forms a winged helix-turn-helix structural motif. This family of transcription factors is involved in a diverse array of biological functions including cellular growth and differentiation, as well as organ development. Among the members of this family, ETS-1, ERG, Fli-1, TEL, and NERF-2 are expressed in endothelial cells and their progenitors. This review will summarize the role of ETS family transcription factors in vascular development and angiogenesis.
Collapse
Affiliation(s)
- Y Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
75
|
Remy P, Baltzinger M. The Ets-transcription factor family in embryonic development: lessons from the amphibian and bird. Oncogene 2000; 19:6417-31. [PMID: 11175358 DOI: 10.1038/sj.onc.1204044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the expression and role of Ets-genes during embryogenesis of amphibians and birds. In addition to overlapping expression domains, some of them exhibit cell type-specific expression. Many of them are expressed in migratory cells: neural crest, endothelial, and pronephric duct cells for instance. They are also transcribed in embryonic areas affected by epithelio-mesenchymal transitions. Both processes involve modifications of cellular adhesion. Ets-family genes appear to coordinate changes in the expression of adhesion molecules and degradation of the extracellular matrix upon regulation of matrix metalloproteinases and their specific inhibitors. These functions are essential for physiological processes like tissue remodelling during embryogenesis or wound healing. Unfortunately they also play a harmful role in metastasis. Recent studies in the nervous system showed that Ets-genes contribute to the establishment of a cellular identity. This identity could rely on definite cell-surface determinants, among which cadherins could play an important role. In addition to cell-type specific expression, other factors contribute to the specificity of function of Ets-genes. These genes have a broad specificity of recognition of target sequences in gene promoters, insufficient for accurate control of gene expression. A fine tuning could arise from combinatorial interactions with other Ets- or accessory proteins.
Collapse
Affiliation(s)
- P Remy
- FRE 2168 du CNRS, IPCB, 21 rue René Descartes, 67084 Strasbourg cedex, France
| | | |
Collapse
|
76
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
77
|
Blair DG, Athanasiou M. Ets and retroviruses - transduction and activation of members of the Ets oncogene family in viral oncogenesis. Oncogene 2000; 19:6472-81. [PMID: 11175363 DOI: 10.1038/sj.onc.1204046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of retroviral-induced oncogenesis in animal systems led to the initial discovery of viral oncogenes and their cellular homologs, and provided critical insights into their role in the neoplastic process. V-ets, the founding member of the ETS oncogene family, was originally identified as part of the fusion oncogene encoded by the avian acute leukemia virus E26 and subsequent analysis of virus induced leukemias led to the initial isolation of two other members of the ETS gene family. PU.1 was identified as a target of insertional activation in the majority of tumors induced by the murine Spleen Focus Forming virus (SFFV), while fli-1 proved to be the target of Friend murine leukemia virus (F-MuLV) in F-MuLV induced erythroleukemia, as well as that of the 10A1 and Graffi viruses. The common features of the erythroid and myeloid diseases induced by these viruses provided the initial demonstration that these and other members of the ETS family play important roles in hematopoietic development as well as disease. This review provides an overview of the role of ETS genes in retrovirally induced neoplasia, their possible mechanisms of action, and how these viral studies relate to current knowledge of the functions of these genes in hematopoiesis.
Collapse
Affiliation(s)
- D G Blair
- National Cancer Institute, Division of Basic Science, Basic Research Laboratory, Oncogene Mechanisms Section, Frederick, Maryland, MD 21702-1207, USA
| | | |
Collapse
|
78
|
Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000; 13:167-77. [PMID: 10981960 DOI: 10.1016/s1074-7613(00)00017-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ETS gene Fli-1 is involved in the induction of erythroleukemia in mice by Friend murine leukemia virus and Ewings sarcoma in children. Mice with a targeted null mutation in the Fli-1 locus die at day 11.5 of embryogenesis with loss of vascular integrity leading to bleeding within the vascular plexus of the cerebral meninges and specific downregulation of Tek/Tie-2, the receptor for angiopoietin-1. We also show that dysmegakaryopoiesis in Fli-1 null embryos resembles that frequently seen in patients with terminal deletions of 11q (Jacobsen or Paris-Trousseau Syndrome). We map the megakaryocytic defects in 14 Jacobsen patients to a minimal region on 11q that includes the Fli-1 gene and suggest that dysmegakaryopoiesis in these patients may be caused by hemizygous loss of Fli-1.
Collapse
Affiliation(s)
- A Hart
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Tajima A, Miyamoto Y, Kadowaki H, Hayashi M. Mouse integrin alphav promoter is regulated by transcriptional factors Ets and Sp1 in melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:377-84. [PMID: 10899572 DOI: 10.1016/s0167-4781(00)00121-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A 17-bp region between the -31 and -15 bp region of the mouse integrin alphav gene is known to be one of the cis-acting elements for promoter activity. Experimental binding of nuclear proteins to the -31/-15 region reveals that the -27/-16 region mediates the binding. The -27/-16 region, GGCTCCTCCTCC, has a TCCTCC motif, one of the Sp1 binding motifs. An anti-Sp1 IgG and an Sp1-binding oligonucleotide interfered with the binding of nuclear proteins to the -27/-16 oligonucleotide, demonstrating that Sp1 binds to the -27/-16 region. In addition to the -27/-16 region, two other regions, -108/-89 and -64/-44, were found to bind to nuclear proteins within the -108/+1 alphav promoter region. An oligonucleotide containing the Ets-binding consensus sequence of CAGGAAGT interfered with their binding, indicating that both regions have a functional Ets-binding site; which is ACGGAAGT from -106 to -99 bp and ACTTCCTC from -61 to -54 bp, as deduced from the sequence. Mutations in or deletions from any one of three cis-acting elements, the two Ets-binding sites or one Sp1-binding site, remarkably decreased the promoter activity detected in the -108/+1 region. Cotransfection of both Sp1 and Ets-1 cDNAs with the -108/+1 region into B16F10 cells increased the promoter activity 2.9-fold. These results demonstrate that Sp1 and Ets cooperate to activate the -108/+1-alphav promoter region.
Collapse
Affiliation(s)
- A Tajima
- Department of Biology, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, 112-8610, Tokyo, Japan
| | | | | | | |
Collapse
|
80
|
Lelièvre E, Mattot V, Huber P, Vandenbunder B, Soncin F. ETS1 lowers capillary endothelial cell density at confluence and induces the expression of VE-cadherin. Oncogene 2000; 19:2438-46. [PMID: 10828886 DOI: 10.1038/sj.onc.1203563] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ets1 is a transcription factor expressed in endothelial cells during angiogenesis but its target genes and function in blood vessel formation are still unknown. We have over-expressed Ets1 as a tagged protein in brain capillary endothelial cells and in 3T3 fibroblasts using a retroviral vector. Over-expression of Ets1 reduced by nearly half cell density at confluence of endothelials but not of fibroblasts. As density at confluence is controlled in part by cadherins, this growth arrest could be due to the up-regulation of these cell contact molecules. Indeed, Ets1 increased the expression of the endothelial-specific VE-cadherin without affecting N-cadherin expression levels. In parallel, both a dominant negative mutant of Ets members and an Ets1 anti-sense oligonucleotide inhibited VE-cadherin expression in endothelial cells. Ets1 bound to two Ets-binding sites located in the proximal region of the VE-cadherin promoter. Mutation of these sites abolished Ets1-induced transactivation of the promoter. The present work is the first demonstration of a function of Ets1 in the regulation of a specific endothelial marker based on its endogenous gene and protein expression.
Collapse
Affiliation(s)
- E Lelièvre
- CNRS EP560 - Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
81
|
Mattot V, Vercamer C, Soncin F, Calmels T, Huguet C, Fafeur V, Vandenbunder B. Constitutive expression of the DNA-binding domain of Ets1 increases endothelial cell adhesion and stimulates their organization into capillary-like structures. Oncogene 2000; 19:762-72. [PMID: 10698494 DOI: 10.1038/sj.onc.1203248] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that the Ets1 transcription factor is expressed in endothelial cells during angiogenesis both in normal and pathological development. We analyse here the effects of the stable expression of an Ets transdominant negative mutant (Ets1-DB), consisting in an Ets1 protein lacking its transactivation domain. A retrovirus containing the Ets1-DB sequence fused to an IRES-Neo sequence was designed and used to infect brain capillary (IBE) and aorta (MAE) mouse endothelial cell lines. Cells expressing this Ets1 mutant were examined for proliferation, migration and adhesion. Consistent changes were observed on cell morphology, with increased spreading and modifications in the organization of the cytoskeleton, and increased cell adhesion. We investigated the ability of endothelial cells to organise into capillary-like structures using three-dimensional gels. On Matrigel, all endothelial cell lines formed a cord-like network within 24 h, with an increased ability of Ets1-DB cells to spread on this substrate. In long term cultures, IBE cells expressing Ets1-DB showed a higher capacity to form branched structures; this effect was potentiated by FGF2. These results demonstrate a role of the Ets transcription factors in the regulation of the adhesive and morphogenetic properties of endothelial cells.
Collapse
Affiliation(s)
- V Mattot
- CNRS EP560-Institut Pasteur de Lille, Institut de Biologie de Lille, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Shirasaki F, Makhluf HA, LeRoy C, Watson DK, Trojanowska M. Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter. Oncogene 1999; 18:7755-64. [PMID: 10618716 DOI: 10.1038/sj.onc.1203360] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tenascin-C (TN-C), an extracellular matrix glycoprotein is expressed during embryonic development, but is present only at low levels in normal adult tissues. TN-C is re-expressed during wound healing, fibrotic diseases and in cancer. To better understand the mechanisms that control TN-C gene expression, we examined the regulation of the human TN-C promoter in human fibroblasts. We demonstrate that a short segment of the TN-C promoter between bp -133 and -27 contains three evolutionarily conserved Ets binding sites (EBS). These three EBSs bind in vitro expressed Fli1 protein and mediate transactivation of the TN-C gene by Fli1. Furthermore, two proximal EBSs contribute significantly to basal activity of the TN-C promoter. GABP, which is present in human fibroblast nuclear extracts, interacts with the two proximal EBSs. In addition, several Sp1 and Sp3 binding sites have been located in close proximity to the EBSs within this promoter region. The studies performed in Drosophila cells demonstrate that either Fli1 or GABPalpha+beta1 functionally interact with Sp1 resulting in a synergistic stimulation of the TN-C promoter activity. In conclusion, this study shows for the first time that the TN-C gene is regulated by Ets proteins, which together with Sp1 act as potent activators of TN-C expression.
Collapse
Affiliation(s)
- F Shirasaki
- Department of Medicine, Division of Rheumatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29425-2229, USA
| | | | | | | | | |
Collapse
|
83
|
McLaughlin F, Ludbrook VJ, Kola I, Campbell CJ, Randi AM. Characterisation of the tumour necrosis factor (TNF)-(alpha) response elements in the human ICAM-2 promoter. J Cell Sci 1999; 112 ( Pt 24):4695-703. [PMID: 10574717 DOI: 10.1242/jcs.112.24.4695] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ICAM-2 is a cell surface adhesion molecule constitutively expressed on the endothelium, involved in leukocyte recruitment into tissues. We recently showed that pro-inflammatory cytokines tumour necrosis factor (TNF)-(alpha) and interleukin (IL)-1(beta) down-regulate ICAM-2 expression at the transcriptional level. Here we investigate the elements in the ICAM-2 promoter required for the TNF-(alpha)-mediated down-regulation. Site directed mutagenesis of the ICAM-2 promoter implicated three consensus sites for Ets transcription factors in basal activity; two of these sites were also involved in the TNF-(alpha)-induced down-regulation. Electrophoretic mobility shift assays (EMSA) performed in human umbilical vein endothelial cells (HUVEC) showed that all three Ets binding sites (EBS) bind nuclear proteins. TNF-(alpha) treatment (10 ng/ml for 24 hours) decreased binding to the double -135/-127EBS, but not to the -44EBS. The Ets family member Erg was found to be constitutively expressed in HUVEC, and TNF-(alpha) down-regulated Erg protein levels. Furthermore, an Erg cDNA transactivated the ICAM-2 promoter when transiently transfected into both HeLa cells and HUVEC. Protein expression of ICAM-2 and Erg was found to be similarly regulated by TNF-(alpha) in an ex vivo artery model. These data suggest that constitutive endothelial genes ICAM-2 and Erg are on the same pathway of cytokine-dependent regulation of gene expression.
Collapse
Affiliation(s)
- F McLaughlin
- Vascular Diseases Unit, GlaxoWellcome Medicines Research Centre, Stevenage, UK
| | | | | | | | | |
Collapse
|
84
|
Baltzinger M, Mager-Heckel AM, Remy P. Xl erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation. Dev Dyn 1999; 216:420-33. [PMID: 10633861 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<420::aid-dvdy10>3.0.co;2-c] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ets gene family encodes transcription factors related to the proto-oncogene c-ets-1 and involved in cell proliferation, differentiation, and oncogenic transformation. We have characterized the Xenopus homologue of the human erg gene, an ets-related-gene, and its expression has been examined throughout early embryonic development. Xl erg encodes at least two proteins, resulting from alternative splicing events. The transcripts are restricted to the forming endocardium, the endothelial cells of the blood vessels and to the neural crest-derived mesenchyme cells of the pharyngial arches. When Xl ERG is expressed ectopically in Xenopus embryos by microinjection of synthetic mRNA, multiple developmental defects are observed. Dorsally injected embryos have their AP axis shortened and present severe defects in eye and somite morphogenesis. Ventrally injected embryos show a posteriorization of the cells having received the message together with ectopic endothelial cell differentiation as revealed by the accumulation of X-msr transcripts. In both cases, accumulation of erythrocytes in structures not connected with the blood circulatory system can be observed. Our data suggest that Xl erg may be involved in cell motility and in the development of the circulatory system.
Collapse
Affiliation(s)
- M Baltzinger
- Mécanismes Moléculaires de la Division Cellulaire et du Développement, CNRS, Strasbourg, France.
| | | | | |
Collapse
|
85
|
Dejana E, Bazzoni G, Lampugnani MG. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 1999; 252:13-9. [PMID: 10502395 DOI: 10.1006/excr.1999.4601] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data collected during the past years indicate that AJ- and more specifically VE-cadherin play an important role in endothelial cell biology. VE-cadherin may transfer information intracellularly through interaction with a complex network of cytoskeletal and signaling molecules. Expression of VE-cadherin is required for the control of vascular permeability and vascular integrity. In addition, the molecule may exert a morphogenetic role modulating the capacity of endothelial cells to organize into tubular-like structures. VE-cadherin presents many structural and sequence homologies to the other members of the family and apparently binds to the same intracellular molecules. However, remarkably, VE-cadherin may transfer specific signals to endothelial cells to modulate their functional reactivity.
Collapse
Affiliation(s)
- E Dejana
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, Milan, Italy.
| | | | | |
Collapse
|
86
|
Abstract
Although the response properties and synaptic projections of muscle sensory neurons have been studied extensively, relatively little is known about how these sensory neurons develop their unique phenotypes during embryonic life. The explosion of new information on neurotrophins, however, has revealed that neurotrophin 3 (NT3) is critically involved in several aspects of this development, including the initial differentiation, survival, and perhaps even the terminal arborizations of muscle sensory neurons within the spinal cord. The ETS family of transcription factors, recently shown to be expressed in these sensory neurons, may help specify their choice of synaptic targets in the central nervous system.
Collapse
Affiliation(s)
- H H Chen
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Bioscience Tower W1452, 3500 Terrace Street, Pittsburgh, Pennsylvania 15213, USA. chenhh+@pitt.edu
| | | |
Collapse
|
87
|
Dube A, Akbarali Y, Sato TN, Libermann TA, Oettgen P. Role of the Ets transcription factors in the regulation of the vascular-specific Tie2 gene. Circ Res 1999; 84:1177-85. [PMID: 10347092 DOI: 10.1161/01.res.84.10.1177] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Tie2 gene encodes a vascular endothelium-specific receptor tyrosine kinase that is required for normal vascular development and is also upregulated during angiogenesis. The regulatory regions of the Tie2 gene that are required for endothelium-specific gene expression in vivo have been identified. However, the transcription factors required for Tie2 gene expression remain largely unknown. We have identified highly conserved binding sites for Ets transcription factors in the Tie2 promoter. Mutations in 2 particular binding sites lead to a 50% reduction in the endothelium-specific activity of the promoter. We have compared the ability of several members of the Ets family to transactivate the Tie2 promoter. Our results demonstrate that 1 of 3 distinct isoforms of the novel Ets transcription factor NERF, NERF2, is expressed in endothelial cells and can strongly transactivate the regulatory regions of the Tie2 gene in comparison to other Ets factors, which have little or no effect. NERF2 can bind to the Tie2 promoter Ets sites in electrophoretic mobility shift assays. These studies support a role for Ets factors in the regulation of vascular-specific gene expression and suggest that the novel Ets factor NERF2 may be a critical transcription factor in specifying the expression of the Tie2 gene in vascular endothelial cells.
Collapse
Affiliation(s)
- A Dube
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
88
|
Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999; 248:358-71. [PMID: 10222128 DOI: 10.1006/excr.1999.4438] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new regulatory region (-108 to -86), named CE, containing potential CRE- and Ets-binding sites has been identified in the murine E-cadherin promoter. The Ets-binding site (at -97 position) negatively modulates the activity of the E-cadherin promoter in expressing keratinocyte cell lines and was responsible for the specific retarded complexes obtained with the CE region. Analysis of the methylation status of the endogenous E-cadherin promoter indicated that silencing of E-cadherin expression in malignant keratinocytes cannot be explained by hypermethylation mechanisms. Furthermore, treatment with 5'-aza-2'-deoxycytidine was unable to induce the expression of E-cadherin in deficient keratinocytes. However, in vivo footprinting analysis of the endogenous E-cadherin promoter showed a very distinct pattern in expressing and nonexpressing keratinocytes. Extensive interactions in the previously postulated proximal regulatory elements and in the CE region were detected in expressing cells, while only some nucleotides of the E-pal element and of the CE region were protected in nonexpressing keratinocytes. These results indicate a complex regulation of the mouse E-cadherin promoter and support a model where the combination of positive (CCAAT-box and GC-rich region) and negative (E-pal element and CE region) cis-acting elements contribute to the final level of E-cadherin gene expression. In addition, our results show that downregulation of E-cadherin expression in transformed epidermal keratinocytes is mainly exerted through the interaction of repressor factor(s) with the E-pal element and to the lack of interaction of positive acting factors with the proximal regions.
Collapse
Affiliation(s)
- I Rodrigo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, Madrid, 28029, Spain
| | | | | |
Collapse
|
89
|
Lan ZJ, Lye RJ, Holic N, Labus JC, Hinton BT. Involvement of polyomavirus enhancer activator 3 in the regulation of expression of gamma-glutamyl transpeptidase messenger ribonucleic acid-IV in the rat epididymis. Biol Reprod 1999; 60:664-73. [PMID: 10026114 DOI: 10.1095/biolreprod60.3.664] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) mRNA-IV and polyomavirus enhancer activator 3 (PEA3) mRNA are highly expressed in the initial segment of the rat epididymis, and both are regulated by testicular factors. PEA3 protein in rat initial segment nuclear extracts has been shown to bind to a PEA3/Ets binding motif, which is derived from the partially characterized GGT mRNA-IV promoter region. This suggests that PEA3 may be involved in regulating transcription from the rat GGT mRNA-IV gene promoter in the initial segment. Using DNA oligonucleotide primers and DNA sequencing analysis, an approximately 1500-basepair (bp) DNA sequence at the 5' region of the promoter was obtained. Using transient transfection, PEA3 activated transcription of the rat GGT mRNA-IV promoter only in cultured epididymal cells from the rat initial segment, but not in Cos-1 or NRK-52E cells. Promoter deletion analysis indicated that a PEA3/Ets binding motif between nucleotides -22 and -17 is the functional site for PEA3 to activate transcription of GGT promoter IV and that an adjacent Sp1 binding motif is also required to maintain promoter IV activity in epididymal cells. Transcriptional activation of promoter IV was shown to be epididymal cell-specific and PEA3-specific. In addition, PEA3 may act as a weak repressor for transcription of promoter IV, probably using a PEA3/Ets binding motif(s) distal to the transcription start site. A model of how PEA3 is involved in the regulation of transcription of GGT promoter IV in epididymal cells is proposed.
Collapse
Affiliation(s)
- Z J Lan
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
90
|
Iljin K, Dube A, Kontusaari S, Korhonen J, Lahtinen I, Oettgen P, Alitalo K. Role of ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. FASEB J 1999; 13:377-86. [PMID: 9973326 DOI: 10.1096/fasebj.13.2.377] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Tie gene encodes an endothelial cell receptor tyrosine kinase necessary for normal vascular development. The Tie gene promoter targets expression of heterologous genes specifically to endothelial cells in transgenic mice. Here we have characterized the promoter sequences critical for endothelial cell-specific activity in cultured cells and transgenic mice. Progressive deletions and site-directed mutations of the promoter showed that the critical endothelial cell-specific elements are an octamer transcription factor binding site and several Ets binding sites located in two clusters within 300 bp upstream of the major transcription initiation site. Among members of the Ets transcription factor family tested, NERF-2 (a novel transcription factor related to the ets factor ELF-1), which is expressed in endothelial cells, and ETS2 showed the strongest transactivation of the Tie promoter; ETS1 gave lower levels of stimulation and the other Ets factors gave little or no transactivation. Furthermore, the Tie promoter directed the production of high amounts of human growth hormone into the circulation of transgenic mice. The secreted amounts correlated with transgene copy number, being relatively insensitive to the effects of the transgene integration site. These properties suggest that Tie promoter activity is controlled by endothelial cell Ets factors and that it has potential for use in vectors for endothelial cell-specific gene expression.
Collapse
Affiliation(s)
- K Iljin
- Molecular/Cancer Biology Laboratory, Haartman Institute and Department of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
91
|
The Vascular Endothelial-Cadherin Promoter Directs Endothelial-Specific Expression in Transgenic Mice. Blood 1999. [DOI: 10.1182/blood.v93.1.184] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
92
|
Abstract
Vascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
93
|
Hewett PW, Daft EL, Murray JC. Cloning and partial characterization of the human tie-2 receptor tyrosine kinase gene promoter. Biochem Biophys Res Commun 1998; 252:546-51. [PMID: 9837743 DOI: 10.1006/bbrc.1998.9690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Tie-2 receptor plays a key role in vascular development, although little is known about the factors controlling its expression. Here we report the first cloning and characterisation of the 5' regulatory region of human tie-2. Multiple transcription start sites were identified between -414 and -265 bp upstream of the start codon using 5' RACE, fluorescent primer extension, and RNase protection assays. The human tie-2 promoter contains several transcription factor-binding sequences including ets, SP-1, AP-1, and GATA-1, but there are no canonical TATA or CCAAT initiation sequences proximal to the transcription start sites. Human tie-2 reporter constructs demonstrated approximately 10-fold greater activity in endothelial cells compared with fibroblasts. In endothelial cells the tie-2 promoter exhibited 5 and 16% of the activity of human tie-1 (830 bp) and KDR (1.1 kb) promoters, respectively. This promoter will be a useful tool for studying factors that regulate tie-2 expression and targeting the vasculature.
Collapse
Affiliation(s)
- P W Hewett
- CRC Academic Department of Clinical Oncology, City Hospital, Nottingham., NG5 1PB, United Kingdom.
| | | | | |
Collapse
|
94
|
Lin JH, Saito T, Anderson DJ, Lance-Jones C, Jessell TM, Arber S. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 1998; 95:393-407. [PMID: 9814709 DOI: 10.1016/s0092-8674(00)81770-5] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Motor function depends on the formation of selective connections between sensory and motor neurons and their muscle targets. The molecular basis of the specificity inherent in this sensory-motor circuit remains unclear. We show that motor neuron pools and subsets of muscle sensory afferents can be defined by the expression of ETS genes, notably PEA3 and ER81. There is a matching in PEA3 and ER81 expression by functionally interconnected sensory and motor neurons. ETS gene expression by motor and sensory neurons fails to occur after limb ablation, suggesting that their expression is coordinated by signals from the periphery. ETS genes may therefore participate in the development of selective sensory-motor circuits in the spinal cord.
Collapse
MESH Headings
- Animals
- Cell Movement
- Chick Embryo
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Extremities/embryology
- Extremities/innervation
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/metabolism
- Mesoderm/metabolism
- Molecular Sequence Data
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkC
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Repressor Proteins
- Signal Transduction
- Spinal Cord/embryology
- Spinal Cord/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- J H Lin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|