51
|
Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry MLS, Wyse ATS, Dutra-Filho CS, Wannmacher CMD, Vargas CR, Wajner M. Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 2007; 25:391-8. [PMID: 17643899 DOI: 10.1016/j.ijdevneu.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/02/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022] Open
Abstract
Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3-hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3-hydroxyglutaric acids or the mixture of glutaric plus 3-hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and (14)CO(2) production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3-hydroxyglutaric (1 mM) and quinolinic acids (0.1 microM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3-hydroxyglutaric with quinolinic acids. In contrast, co-incubation of glutaric plus 3-hydroxyglutaric acids increased glucose utilization, decreased (14)CO(2) generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3-hydroxyglutaric acids-induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3-hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.
Collapse
Affiliation(s)
- Gustavo C Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ueno T, Iguro Y, Yotsumoto G, Fukumoto Y, Nakamura K, Miyamoto TA, Sakata R. Taurine at early reperfusion significantly reduces myocardial damage and preserves cardiac function in the isolated rat heart. Resuscitation 2007; 73:287-95. [PMID: 17353077 DOI: 10.1016/j.resuscitation.2006.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 12/02/2006] [Accepted: 12/11/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The Myocardial protective effects of taurine (TA) are well known. We investigated the optimal phase of giving taurine to reduce myocardial ischaemia-reperfusion injury in isolated rat hearts. METHODS Isolated rat hearts were subjected to 20 min of global ischaemia followed by 60 min of reperfusion under three different conditions: global ischaemia alone (control group; n=8); pre-ischaemic administration of taurine (pre-TA group; n=8), perfusion with 10 mmol/L taurine for 10 min just before ischaemia; post-ischaemic administration of taurine (post-TA group; n=8), perfusion with 10 mmol/L taurine for the first 10 min of reperfusion. Ventricular functional and biochemical variables, the area at risk (AAR), and infarct size (IS) after reperfusion were compared between groups. RESULTS Recovery of ventricular function in the post-TA group was significantly greater than that in the control and pre-TA groups in terms of left ventricular pressure and rate-pressure product. Lipid peroxide product as a marker of oxidant stress in the post-TA group was significantly less than that in the control and pre-TA groups. AAR relative to left ventricular area in the post-TA group was significantly less than that in the control and pre-TA groups. IS relative to AAR in the post-TA group was significantly less than that in the control group. CONCLUSION Taurine administered before or after ischaemia prevents infarction; being a potent free radical scavenging antioxidant, it reduced myocardial injury and provided significantly better functional recovery when given immediately after reperfusion.
Collapse
Affiliation(s)
- Takayuki Ueno
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
53
|
Delwing D, Cornélio AR, Wajner M, Wannmacher CMD, Wyse ATS. Arginine administration reduces creatine kinase activity in rat cerebellum. Metab Brain Dis 2007; 22:13-23. [PMID: 17235684 DOI: 10.1007/s11011-006-9028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/02/2006] [Indexed: 10/23/2022]
Abstract
In the present study were evaluated the in vivo effects of arginine administration on creatine kinase (CK) activity in cerebellum of rats. We also tested the influence of antioxidants, namely alpha-tocopherol and ascorbic acid and the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by Arg in order to investigate the possible participation of nitric oxide (NO) and/or its derivatives peroxynitrite (ONOO(-)) and other/or free radicals on the effects of arginine on CK activity. Sixty-day-old rats were treated with a single i.p. injection of saline (control, group I), arginine (0.8 g/kg) (group II), L-NAME (2.0 mg/kg or 20.0 mg/kg) (group III) or Arg (0.8 g/kg) plus L-NAME (2.0 mg/kg or 20.0 mg/kg) (group IV) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or alpha-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants, the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later. Results showed that total and cytosolic CK activities were significantly inhibited by arginine administration in cerebellum of rats, in contrast to mitochondrial CK activity which was not affected by this amino acid. Furthermore, simultaneous injection of L-NAME (20.0 mg/kg) and treatment with alpha-tocopherol and ascorbic acid prevented these effects. The data indicate that the reduction of CK activity in cerebellum of rats caused by arginine was probably mediated by NO and/or its derivatives ONOO(-)and other free radicals. Considering the importance of CK for the maintenance of energy homeostasis in the brain, if this enzyme inhibition also occurs in hyperargininemic patients, it is possible that CK inhibition may be one of the mechanisms by which arginine is neurotoxic in hyperargininemia.
Collapse
Affiliation(s)
- Débora Delwing
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
54
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
55
|
Ribeiro CAJ, Grando V, Dutra Filho CS, Wannmacher CMD, Wajner M. Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. J Neurochem 2006; 99:1531-42. [PMID: 17230642 DOI: 10.1111/j.1471-4159.2006.04199.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1-14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II-III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1-14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 microm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK-801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, alpha-tocopherol plus ascorbate and the nitric oxide synthase inhibitor l-NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid-induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.
Collapse
Affiliation(s)
- César A J Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
56
|
Webster RP, Macha S, Brockman D, Myatt L. Peroxynitrite treatment in vitro disables catalytic activity of recombinant p38 MAPK. Proteomics 2006; 6:4838-44. [PMID: 16878296 DOI: 10.1002/pmic.200600176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein tyrosine nitration is a post-translational modification occurring under conditions of oxidative stress in a number of diseases. The causative agent of tyrosine nitration is the potent prooxidant peroxynitrite that results from the interaction of nitric oxide and superoxide. We have previously demonstrated existence of nitrotyrosine in placenta from pregnancies complicated by preeclampsia, which suggested the possibility of the existence of nitrated proteins. Nitration of various proteins has been demonstrated to more commonly result in loss of protein function. Potential nitration of p38 MAPK, a critical signaling molecule has been suggested and also tentatively identified in certain in vivo systems. In this study we demonstrate for the first time nitration of recombinant p38 MAPK in vitro and an associated loss of its catalytic activity. LC-MS data identified tyrosine residues Y132, Y245 and Y258 to be nitrated. Nitration of these specific residues was deduced from the 45.0-Da change in mass that these residues exhibited that was consistent with the loss of a proton and addition of the nitro group.
Collapse
Affiliation(s)
- Rose P Webster
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0526, USA.
| | | | | | | |
Collapse
|
57
|
Webster RP, Brockman D, Myatt L. Nitration of p38 MAPK in the placenta: association of nitration with reduced catalytic activity of p38 MAPK in pre-eclampsia. Mol Hum Reprod 2006; 12:677-85. [PMID: 16951426 DOI: 10.1093/molehr/gal071] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peroxynitrite, a potent pro-oxidant formed from the interaction of superoxide and nitric oxide, has been widely reported to be nitrating tyrosine residues in proteins resulting in the formation of nitrotyrosine. Biological nitration of tyrosine, a footprint of oxidative injury, has been found to occur in various pathological states including pre-eclampsia, a leading cause of maternal mortality and increased perinatal mortality. Oxidative stress is a major contributor to endothelial dysfunction in pre-eclampsia. Previously, we have demonstrated increased nitrotyrosine immunostaining in placental villous vascular endothelium, surrounding vascular smooth muscle and villous stroma from pre-eclamptic or diabetic pregnancies. Immunoprecipitation (IP) with antinitrotyrosine antibodies followed by immunoblot analysis identified increased nitration of phospho-p38 mitogen-activated protein kinase (MAPK) in the pre-eclamptic placenta. The catalytic activity of p38 MAPK and concentration of phospho-p38 MAPK was also found to be reduced in placentae from pre-eclamptic pregnancies. Comparison of peptide masses of a 42-kDa protein obtained by mass spectrometry with masses of a theoretical tryptic digest of p38 MAPK that was modified by phosphorylation and nitration identified the protein to be p38 MAPK.
Collapse
Affiliation(s)
- R P Webster
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0526, USA.
| | | | | |
Collapse
|
58
|
Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN. Protein oxidation and cellular homeostasis: Emphasis on metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:93-104. [PMID: 17023064 DOI: 10.1016/j.bbamcr.2006.08.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are generated as the result of a number of physiological and pathological processes. Once formed ROS can promote multiple forms of oxidative damage, including protein oxidation, and thereby influence the function of a diverse array of cellular processes. This review summarizes the mechanisms by which ROS are generated in a variety of cell types, outlines the mechanisms which control the levels of ROS, and describes specific proteins which are common targets of ROS. Additionally, this review outlines cellular processes which can degrade or repair oxidized proteins, and ultimately describes the potential outcomes of protein oxidation on cellular homeostasis. In particular, this review focuses on the relationship between elevations in protein oxidation and multiple aspects of cellular metabolism. Together, this review describes a potential role for elevated levels of protein oxidation contributing to cellular dysfunction and oxidative stress via impacts on cellular metabolism.
Collapse
Affiliation(s)
- Valentina Cecarini
- Post Graduate School of Clinical Biochemistry, Departments of Molecular and Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
59
|
Callahan LA, Supinski GS. Diaphragm and cardiac mitochondrial creatine kinases are impaired in sepsis. J Appl Physiol (1985) 2006; 102:44-53. [PMID: 16916915 DOI: 10.1152/japplphysiol.01204.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies indicate that ATP formation by the electron transport chain is impaired in sepsis. However, it is not known whether sepsis affects the mitochondrial ATP transport system. We hypothesized that sepsis inactivates the mitochondrial creatine kinase (MtCK)-high energy phosphate transport system. To examine this issue, we assessed the effects of endotoxin administration on mitochondrial membrane-bound creatine kinase, an important trans-mitochondrial ATP transport system. Diaphragms and hearts were isolated from control (n = 12) and endotoxin-treated (8 mg.kg(-1).day(-1); n = 13) rats after pentobarbital anesthesia. We isolated mitochondria using techniques that allow evaluation of the functional coupling of mitochondrial creatine kinase MtCK activity to oxidative phosphorylation. MtCK functional activity was established by 1) determining ATP/creatine-stimulated oxygen consumption and 2) assessing total creatine kinase activity in mitochondria using an enzyme-linked assay. We examined MtCK protein content using Western blots. Endotoxin markedly reduced diaphragm and cardiac MtCK activity, as determined both by ATP/creatine-stimulated oxygen consumption and by the enzyme-linked assay (e.g., ATP/creatine-stimulated mitochondrial respiration was 173.8 +/- 7.3, 60.5 +/- 9.3, 210.7 +/- 18.9, was 67.9 +/- 7.3 natoms O.min(-1).mg(-1) in diaphragm control, diaphragm septic, cardiac control, and cardiac septic samples, respectively; P < 0.001 for each tissue comparison). Endotoxin also reduced diaphragm and cardiac MtCK protein levels (e.g., protein levels declined by 39.5% in diaphragm mitochondria and by 44.2% in cardiac mitochondria; P < 0.001 and P = 0.009, respectively, comparing sepsis to control conditions). Our data indicate that endotoxin markedly impairs the MtCK-ATP transporter system; this phenomenon may have significant effects on diaphragm and cardiac function.
Collapse
Affiliation(s)
- Leigh A Callahan
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Georgia, Augusta, Georgia, USA.
| | | |
Collapse
|
60
|
Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 2006; 41:389-405. [PMID: 16879835 DOI: 10.1016/j.yjmcc.2006.06.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/08/2006] [Accepted: 06/14/2006] [Indexed: 12/21/2022]
Abstract
Cardiotoxic side-effects represent a serious complication of anticancer therapy with anthracyclines, in particular with doxorubicin (DXR) being the leading drug of the group. Different hypotheses, accentuating various mechanisms and/or targets, have been proposed to explain DXR-induced cardiotoxicity. This review focuses on the myocardial energetic network as a target of DXR toxic action in heart and highlights the recent advances in understanding its role in development of the DXR related cardiac dysfunction. We present a survey of DXR-induced defects in different steps of cardiac energy metabolism, including reduction of oxidative capacity of mitochondria, changes in the profile of energy substrate utilization, disturbance of energy transfer between sites of energy production and consumption, as well as defects in energy signaling. Considering the wide spectrum and diversity of the changes reported, we attempt to integrate these facts into a common framework and to discuss important functional and temporal relationships between DXR-induced events and the possible underlying molecular mechanisms.
Collapse
|
61
|
de Cavanagh EMV, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1616-25. [PMID: 16410402 DOI: 10.1152/ajpregu.00615.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is associated with cardiovascular damage; however, data on a possible association with kidney damage are scarce. Here, we aimed at investigating whether 1) kidney impairment is related to mitochondrial dysfunction; and 2) ANG II blockade, compared with Ca2+ channel blockade, can reverse potential mitochondrial changes in hypertension. Eight-week-old male spontaneously hypertensive rats (SHR) received water containing losartan (40 mg·kg−1·day−1, SHR+Los), amlodipine (3 mg·kg−1·day−1, SHR+Amlo), or no additions (SHR) for 6 mo. Wistar-Kyoto rats (WKY) were normotensive controls. Glomerular and tubulointerstitial damage, systolic blood pressure, and proteinuria were higher, and creatinine clearance was lower in SHR vs. SHR+Los and WKY. In SHR+Amlo, blood pressure was similar to WKY, kidney function was similar to SHR, and renal lesions were lower than in SHR, but higher than in SHR+Los. In kidney mitochondria from SHR and SHR+Amlo, membrane potential, nitric oxide synthase, manganese-superoxide dismutase and cytochrome oxidase activities, and uncoupling protein-2 content were lower than in SHR+Los and WKY. In SHR and SHR+Amlo, mitochondrial H2O2 production was higher than in SHR+Los and WKY. Renal glutathione content was lower in SHR+Amlo relative to SHR, SHR+Los, and WKY. In SHR and SHR+Amlo, glutathione was relatively more oxidized than in SHR+Los and WKY. Tubulointerstitial α-smooth muscle actin labeling was inversely related to manganese-superoxide dismutase activity and uncoupling protein-2 content. These findings suggest that oxidant stress is associated with renal mitochondrial dysfunction in SHR. The mitochondrial-antioxidant actions of losartan may be an additional or alternative way to explain some of the beneficial effects of AT1-receptor antagonists.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Physical-Chemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Helguera 2365, Buenos Aires 1417, Argentina
| | | | | | | | | | | |
Collapse
|
62
|
Hunt ND, Hyun DH, Allard JS, Minor RK, Mattson MP, Ingram DK, de Cabo R. Bioenergetics of aging and calorie restriction. Ageing Res Rev 2006; 5:125-43. [PMID: 16644290 DOI: 10.1016/j.arr.2006.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/07/2006] [Indexed: 01/25/2023]
Abstract
Aging is a physiological process that involves a multi-factorial set of deleterious changes. These alterations are caused by an exponential increase in damage to macromolecules. This process is likely due to the cumulative effects of oxidative stress over time. One area of ongoing research in gerontology has focused on determining why there is an age-dependent decrease in cellular bioenergetics. The aim of this review is to summarize the recent findings on the effects of aging and calorie restriction on energy metabolism. The effect of calorie restriction on age-associated changes in bioenergetic parameters will be examined.
Collapse
Affiliation(s)
- Nicole D Hunt
- Laboratory of Experimental Gerontology, NIA, NIH, Gerontology Research Center, Box 10, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Yamakura F, Ikeda K. Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 2006; 14:152-61. [PMID: 16140551 DOI: 10.1016/j.niox.2005.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/21/2005] [Accepted: 07/24/2005] [Indexed: 11/16/2022]
Abstract
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.
Collapse
Affiliation(s)
- Fumiyuki Yamakura
- Department of Chemistry, Juntendo University School of Medicine, 1-1 Hiragagakuendai, Inba, Chiba 270-1606, Japan.
| | | |
Collapse
|
64
|
Barschak AG, Ferreira GDC, André KR, Schuck PF, Viegas CM, Tonin A, Dutra Filho CS, Wyse ATS, Wannmacher CMD, Vargas CR, Wajner M. Inhibition of the electron transport chain and creatine kinase activity by ethylmalonic acid in human skeletal muscle. Metab Brain Dis 2006; 21:11-9. [PMID: 16773466 DOI: 10.1007/s11011-006-9000-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/18/2005] [Indexed: 12/13/2022]
Abstract
Ethylmalonic aciduria is a common finding in patients affected by short-chain acyl-CoA dehydrogenase (SCAD) deficiency and other diseases characterized by encephalopathy, muscular symptomatology, and lactic acidemia. Considering that the pathophysiological mechanisms of these disorders are practically unknown and that lactic acidosis suggest an impairment of energy production, the objective of the present work was to investigate the in vitro effect of ethylmalonic acid (EMA), at concentrations varying from 0.25 to 5.0 mM, on important parameters of energy metabolism in human skeletal muscle, such as the activities of the respiratory chain complexes and of creatine kinase, which are responsible for most of the ATP produced and transferred inside the cell. We verified that EMA significantly inhibited the activity of complex I-III at concentrations as low as 0.25 mM, complex II-III at 1 mM and higher concentrations, and complex II at the concentration of 5 mM. In contrast, complex IV was not inhibited by the acid. Finally, we observed that the activity of creatine kinase was significantly inhibited by EMA at the concentrations of 1 and 5 mM. These results suggest that EMA compromises energy metabolism in human skeletal muscle. In case the in vitro effects detected in the present study also occur in vivo, it is tempting to speculate that they may contribute, at least in part, to explain the hypotonia/myopathy, as well as the increased concentrations of lactic acid present in the patients affected by illnesses in which EMA accumulates.
Collapse
Affiliation(s)
- Alethea G Barschak
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
66
|
Brdiczka DG, Zorov DB, Sheu SS. Mitochondrial contact sites: Their role in energy metabolism and apoptosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:148-63. [PMID: 16324828 DOI: 10.1016/j.bbadis.2005.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 09/19/2005] [Accepted: 09/25/2005] [Indexed: 11/27/2022]
Abstract
The energy metabolism of the failing heart is characterised by a 30% decrease of the total adenine nucleotides content and what may be more important by a 60% loss of creatine and creatine phosphate [J.S. Ingwall, R.G. Weiss, Is the failing heart energy starved? On using chemical energy to support cardiac function, Circ. Res. 95 (2004) 35-145]. Besides the effect of these changes on the energy supply, failing heart is known to be more vulnerable to Ca2+ overload and apoptosis-inducing processes. Recent studies have pointed to the critical role of mitochondrial contact sites in controlling both the mitochondrial energy metabolism and Ca2+ homeostasis. This review focuses on the structure and function of protein complexes in mitochondrial contact sites and their regulatory role in the cellular bioenergetics, intra- and extra-mitochondrial Ca2+ levels, and release of apoptosis-inducing factors. Firstly, we review the compositions of different contact sites following by the discussion of experimental data obtained with isolated and reconstituted voltage-dependent anion channel-adenine nucleotide translocase complexes and consequences of the complex disassembling. Furthermore, we describe experiments involving the complex-stabilizing conditions in vitro and in intact cells. At the end, we discuss unsolved problems and opportunities for clinical application of the complex-stabilizing factors.
Collapse
Affiliation(s)
- Dieter G Brdiczka
- Department of Pharmacology and Physiology, Box 711, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
67
|
Royes LFF, Fighera MR, Furian AF, Oliveira MS, Myskiw JDC, Fiorenza NG, Petry JC, Coelho RC, Mello CF. Effectiveness of creatine monohydrate on seizures and oxidative damage induced by methylmalonate. Pharmacol Biochem Behav 2006; 83:136-44. [PMID: 16469366 DOI: 10.1016/j.pbb.2005.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 12/21/2005] [Accepted: 12/29/2005] [Indexed: 01/12/2023]
Abstract
Methylmalonic acidemias are metabolic disorders caused by a severe deficiency of methylmalonyl CoA mutase activity, which are characterized by neurological dysfunction, including convulsions. It has been reported that methylmalonic acid (MMA) accumulation inhibits succinate dehydrogenase (SDH) and beta-hydroxybutyrate dehydrogenase activity and respiratory chain complexes in vitro, leading to decreased CO2 production, O2 consumption and increased lactate production. Acute intrastriatal administration of MMA also induces convulsions and reactive species production. Though creatine has been reported to decrease MMA-induced convulsions and lactate production, it is not known whether it also protects against MMA-induced oxidative damage. In the present study we investigated the effects of creatine (1.2-12 mg/kg, i.p.) and MK-801 (3 nmol/striatum) on the convulsions, striatal content of thiobarbituric acid reactive substances (TBARS) and on protein carbonylation induced by MMA. Moreover, we investigated the effect of creatine (12 mg/kg, i.p.) on the MMA-induced striatal creatine and phosphocreatine depletion. Low doses of creatine (1.2 and 3.6 mg/kg) protected against MMA-induced oxidative damage, but did not protect against MMA-induced convulsions. A high dose of creatine (12 mg/kg, i.p.) and MK-801 (3 nmol/striatum) protected against MMA-induced seizures (evidenced by electrographic recording), protein carbonylation and TBARS production ex vivo. Furthermore, acute creatine administration increased the striatal creatine and phosphocreatine content and protected against MMA-induced creatine and phosphocreatine depletion. Our results suggest that an increase of the striatal high-energy phosphates elicited by creatine protects not only against MMA-induced convulsions, but also against MMA-induced oxidative damage. Therefore, since NMDA antagonists are limited value in the clinics, the present results indicate that creatine may be useful as an adjuvant therapy for methylmalonic acidemic patients.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Bürklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T. The creatine kinase/creatine connection to Alzheimer's disease: CK-inactivation, APP-CK complexes and focal creatine deposits. J Biomed Biotechnol 2006; 2006:35936. [PMID: 17047305 PMCID: PMC1510941 DOI: 10.1155/jbb/2006/35936] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 12/12/2022] Open
Abstract
Cytosolic brain-type creatine kinase (BB-CK), which is coexpressed with ubiquitous mitochondrial uMtCK, is significantly inactivated by oxidation, in Alzheimer's disease (AD) patients. Since CK has been shown to play a fundamental role in cellular energetics of the brain, any disturbance of this enzyme may exasperate the AD disease process. Mutations in amyloid precursor protein (APP) are associated with early onset AD and result in abnormal processing of APP, and accumulation of A beta peptide, the main constituent of amyloid plaques in AD brain. Recent data on a direct interaction between APP and the precursor of uMtCK support an emerging relationship between AD, cellular energy levels and mitochondrial function. In addition, recently discovered creatine (Cr) deposits in the brain of transgenic AD mice, as well as in the hippocampus from AD patients, indicate a direct link between perturbed energy state, Cr metabolism and AD. Here, we review the roles of Cr and Cr-related enzymes and consider the potential value of supplementation with Cr, a potent neuroprotective substance. As a hypothesis, we consider whether Cr, if given at an early time point of the disease, may prevent or delay the course of AD-related neurodegeneration.
Collapse
Affiliation(s)
- Tanja S. Bürklen
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| | - Uwe Schlattner
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
- Laboratory of Fundamental and Applied Bioenergetics,
INSERM E0221, Joseph Fourier University, 38041 Grenoble, Cedex 9, France
| | - Ramin Homayouni
- Department of Neurology, University of Tennessee
Health Science Center, Memphis, TN 38163, USA
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Margaret Rak
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Adriana Szeghalmi
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Theo Wallimann
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| |
Collapse
|
69
|
da C Ferreira G, Viegas CM, Schuck PF, Latini A, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Vargas CR, Wajner M. Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci 2005; 23:687-93. [PMID: 16290044 DOI: 10.1016/j.ijdevneu.2005.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 11/30/2022] Open
Abstract
Glutaric acidemia type I is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric acid (GA). Affected patients present frontotemporal hypotrophy, as well as caudate and putamen injury following acute encephalopathic crises. Considering that the underlying mechanisms of basal ganglia damage in this disorder are poorly known, in the present study we tested the effects of glutaric acid (0.2-5mM) on critical enzyme activities of energy metabolism, namely the respiratory chain complexes I-IV, succinate dehydrogenase and creatine kinase in midbrain of developing rats. Glutaric acid significantly inhibited creatine kinase activity (up to 26%) even at the lowest dose used in the assays (0.2mM). We also observed that CK inhibition was prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of GA was possibly mediated by oxidation of essential thiol groups of the enzyme. In addition, the activities of the respiratory chain complex I-III and of succinate dehydrogenase were also significantly inhibited by 20 and 30%, respectively, at the highest glutaric acid concentration tested (5mM). In contrast, complexes II-III and IV activities of the electron transport chain were not affected by the acid. The effect of glutaric acid on the rate of oxygen consumption in intact mitochondria from the rat cerebrum was also investigated. Glutaric acid (1mM) significantly lowered the respiratory control ratio (state III/state IV) up to 40% in the presence of the respiratory substrates glutamate/malate or succinate. Moreover, state IV respiration linked to NAD and FAD substrates was significantly increased in GA-treated mitochondria while state III was significantly diminished. The results indicate that the major metabolite accumulating in glutaric acidemia type I moderately compromises brain energy metabolism in vitro.
Collapse
Affiliation(s)
- Gustavo da C Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Fleck RMM, Rodrigues Junior V, Giacomazzi J, Parissoto D, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CMD. Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 2005; 46:391-7. [PMID: 15737437 DOI: 10.1016/j.neuint.2004.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/15/2004] [Accepted: 11/27/2004] [Indexed: 11/15/2022]
Abstract
Cystinosis is a disorder associated with lysosomal cystine accumulation caused by defective cystine efflux. Cystine accumulation provokes a variable degree of symptoms depending on the involved tissues. Adult patients may present brain cortical atrophy. However, the mechanisms by which cystine is toxic to the tissues are not fully understood. Considering that brain damage may be developed by energy deficiency, creatine kinase is a thiolic enzyme crucial for energy homeostasis, and disulfides like cystine may alter thiolic enzymes by thiol/disulfide exchange, the main objective of the present study was to investigate the effect of cystine on creatine kinase activity in total homogenate, cytosolic and mitochondrial fractions of the brain cortex from 21-day-old Wistar rats. We performed kinetic studies and investigated the effects of GSH, a biologically occurring thiol group protector, and cysteamine, the drug used for cystinosis treatment, to better understand the effect of cystine on creatine kinase activity. Results showed that cystine inhibited the enzyme activity non-competitively in a dose- and time-dependent way. GSH partially prevented and reversed CK inhibition caused by cystine and cysteamine fully prevented and reversed this inhibition, suggesting that cystine inhibits creatine kinase activity by interaction with the sulfhydryl groups of the enzyme. Considering that creatine kinase is a crucial enzyme for brain cortex energy homeostasis, these results provide a possible mechanism for cystine toxicity and also a new possible beneficial effect for the use of cysteamine in cystinotic patients.
Collapse
Affiliation(s)
- Rochele M Müller Fleck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 - Anexo, CEP 90.035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Medical treatment has been shifted to being more prophylactic as a recent trend. Postgenomic research has unveiled the fact that nutritional intervention has been strongly associated with genetic expressions, which are responsible for a variety of biological functions. Based on these findings, the prophylactic effects of dietary supplement and nutrient have been enthusiastically investigated. Preventing or retarding the onset of diseases has become a more attractive and cost effective strategy in the medical arena. Among other approaches to prevent diseases, antioxidants, which are found in many phytochemicals, have received much attention. However, most natural antioxidants such as alpha-tocopherol, ascorbic acid and others are biologically unstable, poorly soluble in water, and poorly distributed to target sites. Because of these shortcomings further prophylactic applications of dietary supplements have stagnated. This is partially due to a lack of basic awareness of drug delivery system for dietary supplements and nutrients. In this article, we strongly advocate serious consideration of the bioavailability of dietary supplements. Currently, there are some challenging works to improve their bioavailability using delivery systems such as liposomal formulations. We will discuss the target molecules of dietary supplements for prevention of diseases and also introduce the pioneering works of delivery systems for dietary supplements to promote their therapeutic value.
Collapse
Affiliation(s)
- Yoko Shoji
- Department of Microbiology, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
72
|
Dairou J, Malecaze F, Dupret JM, Rodrigues-Lima F. The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress. Mol Pharmacol 2005; 67:1299-306. [PMID: 15644493 DOI: 10.1124/mol.104.009738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobiotic-metabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract, suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by reverse transcription-polymerase chain reaction, Western blotting, and enzyme activity assays. NAT2 mRNA and enzymic activity were also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H(2)O(2) gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photooxidative stresses. Oxidative-dependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals that could contribute to cataractogenesis over time.
Collapse
Affiliation(s)
- Julien Dairou
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
73
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
74
|
Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL. Effects of nitration on the structure and aggregation of α-synuclein. ACTA ACUST UNITED AC 2005; 134:84-102. [PMID: 15790533 DOI: 10.1016/j.molbrainres.2004.11.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/17/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
Substantial evidence suggests that the aggregation of the presynaptic protein alpha-synuclein is a key step in the etiology of Parkinson's disease (PD). Although the molecular mechanisms underlying alpha-synuclein aggregation remain unknown, oxidative stress has been implicated in the pathogenesis of PD. Here, we report the effects of tyrosine nitration on the propensity of human recombinant alpha-synuclein to fibrillate in vitro. The properties of nitrated alpha-synuclein were investigated using a variety of biophysical and biochemical techniques, which revealed that nitration led to formation of a partially folded conformation with increased secondary structure relative to the intrinsically disordered structure of the monomer, and to oligomerization at neutral pH. The degree of self-association was concentration-dependent, but at 1 mg/mL, nitrated alpha-synuclein was predominantly an octamer. At low pH, small-angle X-ray scattering data indicated that the nitrated protein was monomeric. alpha-Synuclein fibrillation at neutral pH was completely inhibited by nitrotyrosination and is attributed to the formation of stable soluble oligomers. The presence of heparin or metals did not overcome the inhibition; however, the inhibitory effect was eliminated at low pH. The addition of nitrated alpha-synuclein inhibited fibrillation of non-modified alpha-synuclein at neutral pH. Potential implications of these findings to the etiology of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Funchal C, Gottfried C, De Almeida LMV, Wajner M, Pessoa-Pureur R. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia 2005; 48:230-40. [PMID: 15390119 DOI: 10.1002/glia.20072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Severe neurological symptoms, cerebral edema, and atrophy are common features of the inherited metabolic disorder maple syrup urine disease (MSUD). However, the pathomechanisms involved in the neuropathology of this disease are not well established. In this study, we investigated the effects of the branched-chain keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-ketoisovaleric (KIV), and alpha-keto-beta-methylvaleric (KMV), which accumulate in MSUD, on astrocyte morphology and cytoskeleton reorganization. Cultured astrocytes from cerebral cortex of neonatal rats were exposed to various concentrations of the BCKA and cell morphology was studied. We observed that these cells changed their usual polygonal morphology when exposed to BCKA, leading to the appearance of fusiform or process-bearing cells. Furthermore, longer exposures to the BCKA elicited cell death at all concentrations studied, attaining massive death at the highest concentrations. Immunocytochemistry with anti-actin or anti-GFAP antibodies revealed that the BCKA induced reorganization of actin and GFAP cytoskeleton. In addition, astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations and cytoskeletal reorganization induced by KIV, indicating that this effect could be mediated by the RhoA signaling pathway. Furthermore, the effects of BCKA on astrocyte morphology were prevented by creatine. In addition, creatine kinase activity was inhibited by KIC and KIV; this inhibition was prevented by creatine, indicating that these keto acids compromise brain energy metabolism. Considering that astroglial cells are critical to brain development and functioning, it is conceivable that alterations of the actin network by BCKA may have important implications in astrocytic function and possibly in the pathogenesis of the neurological dysfunction and brain damage of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
76
|
Reis de Assis D, Maria RDC, Borba Rosa R, Schuck PF, Ribeiro CAJ, da Costa Ferreira G, Dutra-Filho CS, Terezinha de Souza Wyse A, Duval Wannmacher CM, Santos Perry ML, Wajner M. Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency. Brain Res 2005; 1030:141-51. [PMID: 15567346 DOI: 10.1016/j.brainres.2004.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/30/2022]
Abstract
Patients affected by medium-chain acyl CoA dehydrogenase (MCAD) deficiency, a frequent inborn error of metabolism, suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. In the present study, we investigated the in vitro effect of the medium-chain fatty acids (MCFA), at concentrations varying from 0.01 to 3 mM, accumulating in MCAD deficiency on some parameters of energy metabolism in cerebral cortex of young rats. (14)CO(2) production from [U(14)] glucose, [1-(14)C] acetate and [1,5-(14)C] citrate was evaluated by incubating cerebral cortex homogenates from 30-day-old rats in the absence (controls) or presence of octanoic acid, decanoic acid or cis-4-decenoic acid. OA and DA significantly reduced (14)CO(2) production from acetate by around 30-40%, and from glucose by around 70%. DA significantly reduced (14)CO(2) production from citrate by around 40%, while OA did not affect this parameter. cDA inhibited (14)CO(2) production from all tested substrates by around 30-40%. The activities of the respiratory chain complexes and of creatine kinase were also tested in the presence of DA and cDA. Both metabolites significantly inhibited cytochrome c oxidase activity (by 30%) and complex II-III activity (DA, 25%; cDA, 80%). Furthermore, only cDA inhibited complex II activity (by 30%), while complex I-III and citrate synthase were not affected by these MCFA. On the other hand, only cDA reduced the activity of creatine kinase in total homogenates, as well as in mitochondrial and cytosolic fractions from cerebral cortex (by 50%). The data suggest that the major metabolites which accumulate in MCAD deficiency, with particular emphasis to cDA, compromise brain energy metabolism. We presume that these findings may contribute to the understanding of the pathophysiology of the neurological dysfunction of MCAD deficient patients.
Collapse
Affiliation(s)
- Dênis Reis de Assis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lenz H, Schmidt M, Welge V, Schlattner U, Wallimann T, Elsässer HP, Wittern KP, Wenck H, Stäb F, Blatt T. The Creatine Kinase System in Human Skin: Protective Effects of Creatine Against Oxidative and UV Damage In Vitro and In Vivo. J Invest Dermatol 2005; 124:443-52. [PMID: 15675966 DOI: 10.1111/j.0022-202x.2004.23522.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cutaneous aging is characterized by a decline in cellular energy metabolism, which is mainly caused by detrimental changes in mitochondrial function. The processes involved seem to be predominantly mediated by free radicals known to be generated by exogenous noxes, e.g., solar ultraviolet (UV) radiation. Basically, skin cells try to compensate any loss of mitochondrial energetic capacity by extra-mitochondrial pathways such as glycolysis or the creatine kinase (CK) system. Recent studies reported the presence of cytosolic and mitochondrial isoenzymes of CK, as well as a creatine transporter in human skin. In this study, we analyzed the cutaneous CK system, focusing on those cellular stressors known to play an important role in the process of skin aging. According to our results, a stress-induced decline in mitochondrial energy supply in human epidermal cells correlated with a decrease in mitochondrial CK activity. In addition, we investigated the effects of creatine supplementation on human epidermal cells as a potential mechanism to reinforce the endogenous energy supply in skin. Exogenous creatine was taken up by keratinocytes and increased CK activity, mitochondrial function and protected against free oxygen radical stress. Finally, our new data clearly indicate that human skin cells that are energetically recharged with the naturally occurring energy precursor, creatine, are markedly protected against a variety of cellular stress conditions, like oxidative and UV damage in vitro and in vivo. This may have further implications in modulating processes, which are involved in premature skin aging and skin damage.
Collapse
Affiliation(s)
- Holger Lenz
- Department of Cytobiology and Cytopathology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dupret JM, Dairou J, Atmane N, Rodrigues-Lima F. Inactivation of Human Arylamine N‐Acetyltransferase 1 by Hydrogen Peroxide and Peroxynitrite. Methods Enzymol 2005; 400:215-29. [PMID: 16399351 DOI: 10.1016/s0076-6879(05)00012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arylamine N-acetyltransferases (NAT) are xenobiotic-metabolizing enzymes responsible for the acetylation of many arylamine and heterocyclic amines. They therefore play an important role in the detoxification and activation of numerous drugs and carcinogens. Two closely related isoforms (NAT1 and NAT2) have been described in humans. NAT2 is present mainly in the liver and intestine, whereas NAT1 is found in a wide range of tissues. Interindividual variations in NAT genes have been shown to be a potential source of pharmacological and/or pathological susceptibility. Evidence now shows that redox conditions may also contribute to overall NAT activity. This chapter summarizes current knowledge on human NAT1 regulation by reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Jean-Marie Dupret
- CNRS-Unite Mixte de Recherche 7000, Faculte de Medecine, Pitie-Salpetriere, Paris, France
| | | | | | | |
Collapse
|
79
|
Schlattner U, Gehring F, Vernoux N, Tokarska-Schlattner M, Neumann D, Marcillat O, Vial C, Wallimann T. C-terminal Lysines Determine Phospholipid Interaction of Sarcomeric Mitochondrial Creatine Kinase. J Biol Chem 2004; 279:24334-42. [PMID: 15044463 DOI: 10.1074/jbc.m314158200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High affinity interaction between octameric mitochondrial creatine kinase (MtCK) and the phospholipid cardiolipin in the inner mitochondrial membrane plays an important role in metabolite channeling between MtCK and inner membrane adenylate translocator, which itself is tightly bound to cardiolipin. Three C-terminal basic residues revealed as putative cardiolipin anchors in the x-ray structures of MtCK and corresponding to lysines in human sarcomeric MtCK (sMtCK) were exchanged by in vitro mutagenesis (K369A/E, K379Q/A/E, K380Q/A/E) to yield double and triple mutants. sMtCK proteins were bacterially expressed, purified to homogeneity, and verified for structural integrity by enzymatic activity, gel filtration chromatography, and CD spectroscopy. Interaction with cardiolipin and other acidic phospholipids was quantitatively analyzed by light scattering, surface plasmon resonance, and fluorescence spectroscopy. All mutant sMtCKs showed a strong decrease in vesicle cross-linking, membrane affinity, binding capacity, membrane ordering capability, and binding-induced changes in protein structure as compared with wild type. These effects did not depend on the nature of the replacing amino acid but on the number of exchanged lysines. They were moderate for Lys-379/Lys-380 double mutants but pronounced for triple mutants, with a 30-fold lower membrane affinity and an entire lack of alterations in protein structure compared with wild-type sMtCK. However, even triple mutants partially maintained an increased order of cardiolipin-containing membranes. Thus, the three C-terminal lysines determine high affinity sMtCK/cardiolipin interaction and its effects on MtCK structure, whereas low level binding and some effect on membrane fluidity depend on other structural components. These results are discussed in regard to MtCK microcompartments and evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cardiolipins/chemistry
- Cell Membrane/metabolism
- Chromatography, Gel
- Circular Dichroism
- Creatine Kinase/chemistry
- Creatine Kinase, Mitochondrial Form
- Cross-Linking Reagents/pharmacology
- Crystallography, X-Ray
- Humans
- Isoenzymes/chemistry
- Kinetics
- Light
- Liposomes/chemistry
- Lysine/chemistry
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phospholipids/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Sarcomeres/metabolism
- Scattering, Radiation
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrophotometry
- Surface Plasmon Resonance
- Time Factors
- Tryptophan/chemistry
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zürich, Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Tarnopolsky MA, Simon DK, Roy BD, Chorneyko K, Lowther SA, Johns DR, Sandhu JK, Li Y, Sikorska M. Attenuation of free radical production and paracrystalline inclusions by creatine supplementation in a patient with a novel cytochrome b mutation. Muscle Nerve 2004; 29:537-47. [PMID: 15052619 DOI: 10.1002/mus.20020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondrial cytopathies are associated with increased free radical generation and paracrystalline inclusions. Paracrystalline inclusions were serendipitously found in a young male athlete with a very high respiratory exchange ratio during steady-state exercise; he also had an unusually low aerobic capacity. Direct sequencing of the mitochondrial DNA (mtDNA) coding regions revealed a novel missense mutation (G15497A) resulting in a glycine-->serine conversion at a highly conserved site in the cytochrome b gene in the subject, his mother, and sister. Cybrids, prepared by fusion of the subject's platelets with either U87MG rho degrees or SH-SY5Y rho degrees cells, generated higher basal levels of reactive oxygen species (ROS), had a lower adenosine triphosphate (ATP) content, and were more sensitive to oxygen and glucose deprivation and peroxynitrite generation compared to control cybrids with wild-type mtDNA. Cell survival was significantly enhanced with 50 mmol/L creatine monohydrate (CM) administration. The subject was also treated with CM (10 g/d) for a period of 5 weeks and a repeat muscle biopsy showed no paracrystalline inclusions. The results suggest that the development of exercise-induced paracrystalline inclusions may be influenced by the G15497A mtDNA mutation, and that CM mitigates against the pathological consequences of this mutation.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Medicine, McMaster University Medical Center, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
To test the hypothesis that acute hypoglycemia leads to free radical induced alterations in cerebral mitochondria, newborn piglets were subjected to 2 h of insulin-induced hypoglycemia (blood glucose 1 mmol/l). The effects of free radicals were determined in cerebral cortical synaptosomes, mitochondria, and neuronal nuclei by measuring membrane lipid peroxidation. Fragmentation of nuclear and mitochondrial DNA was also examined. Lipid peroxidation was significantly increased in hypoglycemic mitochondrial membranes as compared to controls, but no increase in peroxidation in hypoglycemic synaptosomal or nuclear membranes was observed. An increase in low molecular weight DNA fragments was observed only in mitochondrial DNA from hypoglycemic piglets. We speculate that alteration of cerebral mitochondria due to increased free radical production is one of the early events in the pathogenesis of hypoglycemic brain injury.
Collapse
Affiliation(s)
- Juan R Ballesteros
- Department of Pediatrics, St. Christopher's Hospital for Children, MCP Hahnemann University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
82
|
Cornelio AR, Rodrigues V, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CMD. Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 2004; 22:95-101. [PMID: 15036384 DOI: 10.1016/j.ijdevneu.2003.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/17/2022] Open
Abstract
Hypertryptophanemia is a rare inherited metabolic disorder probably caused by a blockage in the conversion of tryptophan to kynurenine, resulting in the accumulation of tryptophan and some of its metabolites in plasma and tissues of affected patients. The patients present mild-to-moderate mental retardation with exaggerated affective responses, periodic mood swings, and apparent hypersexual behavior. Creatine kinase plays a key role in energy metabolism of tissues with intermittently high and fluctuating energy requirements, such as nervous tissue. The main objective of the present study was to investigate the effect of acute administration of tryptophan on creatine kinase activity in brain cortex of Wistar rats. We also studied the in vitro effect of this amino acid on creatine kinase activity in the brain cortex of non-treated rats. The results indicated that tryptophan inhibits creatine kinase in vitro and in vivo. We also observed that the in vitro inhibition was fully prevented but not reversed by pre-incubation with reduced glutathione, suggesting that the inhibitory effect of tryptophan on CK activity is possibly mediated by oxidation of essential thiol groups of the enzyme and/or long-lasting adduct formation. Considering the importance of creatine kinase for the maintenance of energy homeostasis in the brain, it is conceivable that an inhibition of this enzyme activity in the brain may be one of the mechanisms by which tryptophan might be neurotoxic.
Collapse
Affiliation(s)
- Andrea Renata Cornelio
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
83
|
Dairou J, Atmane N, Rodrigues-Lima F, Dupret JM. Peroxynitrite irreversibly inactivates the human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) in human breast cancer cells: a cellular and mechanistic study. J Biol Chem 2003; 279:7708-14. [PMID: 14672957 DOI: 10.1074/jbc.m311469200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) play an important role in the detoxification and metabolic activation of a variety of aromatic xenobiotics, including numerous carcinogens. Both of the human isoforms, NAT1 and NAT2, display interindividual variations, and associations between NAT genotypes and cancer risk have been established. Contrary to NAT2, NAT1 has a ubiquitous tissue distribution and has been shown to be expressed in cancer cells. Given that the activity of NAT1 depends on a reactive cysteine that can be a target for oxidants, we studied whether peroxynitrite, a highly reactive nitrogen species involved in human carcinogenesis, could inhibit the activity of endogenous NAT1 in MCF7 breast cancer cells. We show here that exposure of MCF7 cells to physiological concentrations of peroxynitrite and to a peroxynitrite generator (3-morpholinosydnonimine N-ethylcarbamide, or SIN1) leads to the irreversible inactivation of NAT1 in cells. Further kinetic and mechanistic analyses using recombinant NAT1 showed that the enzyme is rapidly (k(inact) = 5 x 10(4) m(-1).s(-1)) and irreversibly inactivated by peroxynitrite. This inactivation is due to oxidative modification of the catalytic cysteine. We conclude that the reducing cellular environment of MCF7 cells does not sufficiently protect NAT1 from peroxynitrite-dependent inactivation and that only high concentrations of reduced glutathione could significantly protect NAT1. Thus, cellular generation of peroxynitrite may contribute to carcinogenesis and tumor progression by weakening key cellular defense enzymes such as NAT1.
Collapse
Affiliation(s)
- Julien Dairou
- CNRS-Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| | | | | | | |
Collapse
|
84
|
da Silva CG, Bueno ARF, Schuck PF, Leipnitz G, Ribeiro CAJ, Wannmacher CMD, Wyse ATS, Wajner M. D-2-hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats. Eur J Clin Invest 2003; 33:840-7. [PMID: 14511354 DOI: 10.1046/j.1365-2362.2003.01237.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tissue accumulation of high amounts of D-2-hydroxyglutaric acid (DGA) is the biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (DHGA). Patients affected by this disease usually present hypotonia, muscular weakness, hypertrophy and cardiomyopathy, besides severe neurological findings. However, the underlying mechanisms of muscle injury in this disorder are virtually unknown. MATERIALS AND METHODS In the present study we have evaluated the in vitro role of DGA, at concentrations ranging from 0.25 to 5.0 mM, on total, cytosolic and mitochondrial creatine kinase activities from skeletal and cardiac muscle of 30-day-old Wistar rats. We also tested the effects of various antioxidants on the effects elicited by DGA. RESULTS We first verified that total creatine kinase (CK) activity from homogenates was significantly inhibited by DGA (22-24% inhibition) in skeletal and cardiac muscle, and that this activity was approximately threefold higher in skeletal muscle than in cardiac muscle. We also observed that CK activities from mitochondrial (Mi-CK) and cytosolic (Cy-CK) preparations from skeletal muscle and cardiac muscle were also inhibited (12-35% inhibition) by DGA at concentrations as low as 0.25 mm, with the effect being more pronounced in cardiac muscle preparations. Finally, we verified that the DGA-inhibitory effect was fully prevented by preincubation of the homogenates with reduced glutathione and cysteine, suggesting that this effect is possibly mediated by modification of essential thiol groups of the enzyme. Furthermore, alpha-tocopherol, melatonin and the inhibitor of nitric oxide synthase L-NAME were unable to prevent this effect, indicating that the most common reactive oxygen and nitrogen species were not involved in the inhibition of CK provoked by DGA. CONCLUSION Considering the importance of creatine kinase activity for cellular energy homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA might be an important mechanism involved in the myopathy and cardiomyopathy of patients affected by DHGA.
Collapse
Affiliation(s)
- C G da Silva
- Department of Biochemistry, Institute of Basic Sciences and Health, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lee WH, Gounarides JS, Roos ES, Wolin MS. Influence of peroxynitrite on energy metabolism and cardiac function in a rat ischemia-reperfusion model. Am J Physiol Heart Circ Physiol 2003; 285:H1385-95. [PMID: 12816754 DOI: 10.1152/ajpheart.00808.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-reperfusion generates peroxynitrite (ONOO-), which interacts with many of the systems altered by ischemia-reperfusion. This study examines the influence of endogenously produced ONOO- on cardiac metabolism and function. Nitro-L-arginine (an inhibitor of ONOO- biosynthesis) and urate (a scavenger of ONOO-) were utilized to investigate potential pathophysiological roles for ONOO- in a rat Langendorff heart model perfused with glucose-containing saline at constant pressure and exposed to 30 min of ischemia followed by 60 min of reperfusion. In this model, ischemia-reperfusion decreased contractile function (e.g., left ventricular developed pressure), cardiac work (rate-pressure product), efficiency of O2 utilization, membrane-bound creatine kinase activity, and NMR-detectable ATP and creatine phosphate without significantly altering the recovery of coronary flow, heart rate, lactate release, and muscle pH. Treatment with urate and nitro-L-arginine produced a substantial recovery of left ventricular developed pressure, rate-pressure product, efficiency of O2 utilization, creatine kinase activity, and NMR-detectable creatine phosphate and a partial recovery of ATP. The pattern of effects observed in this study and in previously published work with similar models suggests that ONOO- may alter key steps in the efficiency of mitochondrial high-energy phosphate generation.
Collapse
Affiliation(s)
- Warren H Lee
- Metabolic Cardiovascular Diseases, Novartis Institute for Biomendical Research, Summit, New Jersey 07901, USA
| | | | | | | |
Collapse
|
86
|
da Silva CG, Bueno ARF, Rosa RB, Dutra Filho CS, Wannmacher CMD, Wyse ATS, Wajner M. Inhibition of mitochondrial creatine kinase activity by D-2-hydroxyglutaric acid in cerebellum of young rats. Neurochem Res 2003; 28:1329-37. [PMID: 12938854 DOI: 10.1023/a:1024936129908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
D-2-Hydroxyglutaric aciduria (DHGA) is a neurometabolic disorder biochemically characterized by tissue accumulation and excretion of high amounts of D-2-hydroxyglutaric acid (DGA). Although the affected patients have predominantly severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In previous studies we have demonstrated that DGA, at concentrations as low as 0.25 mM, significantly decreased creatine kinase activity and other parameters of energy metabolism in cerebral cortex of young rats. In the present study, we investigated the effect of DGA (0.25-5 mM) on total creatine kinase (tCK) activity, as well as on CK activity in cytosolic (Cy-CK) and mitochondrial (Mi-CK) preparations from cerebellum of 30-day-old Wistar rats in order to test whether the inhibitory effect of DGA on CK was tissue specific. We verified that tCK (22% inhibition) and Mi-CK (40% inhibition) activities were moderately inhibited by DGA at concentrations of 2.5 mM and higher, in contrast to Cy-CK, which was not affected by the acid. Kinetic studies revealed that the inhibitory effect of DGA was noncompetitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by preincubation of the homogenates with reduced glutathione, suggesting that the inhibition of CK activity by DGA is possibly mediated by modification of essential thiol groups of the enzyme. Our present results therefore demonstrate a relatively weak inhibitory effect of DGA on cerebellum Mi-CK activity, as compared to that provoked in cerebral cortex, and may possibly be related to the neuropathology of DHGA, characterized by cerebral cortex abnormalities.
Collapse
Affiliation(s)
- Cleide G da Silva
- Department of Biochemistry, Institute of Basic Sciences and Health, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
87
|
Strauss KA, Morton DH. Type I glutaric aciduria, part 2: a model of acute striatal necrosis. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2003; 121C:53-70. [PMID: 12888986 DOI: 10.1002/ajmg.c.20008] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type I glutaric aciduria (GA1) is an inborn error of organic acid metabolism that is associated with acute neurological crises, typically precipitated by an infectious illness. The neurological crisis coincides with swelling, metabolic depression, and necrosis of basal ganglia gray matter, especially the putamina and can be visualized as focal, stroke-like, signal hyperintensity on MRI. Here we focus on the stroke-like nature of striatal necrosis and its similarity to brain injury that occurs in infants after hypoxia-ischemia or systemic intoxication with 3-nitropropionic acid (NPA). These conditions share several features including abrupt onset, preferential effect in the striatum and age-specific susceptibility. The pathophysiology of the conditions is reviewed and a model proposed herein. We encourage investigators to test this model in an appropriate experimental system.
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA.
| | | |
Collapse
|
88
|
Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 2003; 27:325-55. [PMID: 12845153 DOI: 10.1385/mn:27:3:325] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/27/2002] [Indexed: 11/11/2022]
Abstract
In inflammatory, infectious, ischemic, and neurodegenerative pathologies of the central nervous system (CNS) glia become "activated" by inflammatory mediators, and express new proteins such as the inducible isoform of nitric oxide synthase (iNOS). Although these activated glia have benefi- cial roles, in vitro they potently kill cocultured neurons, and there is increasing evidence that they contribute to pathology in vivo. Nitric oxide (NO) from iNOS appears to be a key mediator of such glial-induced neuronal death. The high sensitivity of neurons to NO is partly due to NO causing inhibition of respiration, rapid glutamate release from both astrocytes and neurons, and subsequent excitotoxic death of the neurons. NO is a potent inhibitor of mitochondrial respiration, due to reversible binding of NO to cytochrome oxidase in competition with oxygen, resulting in inhibition of energy production and sensitization to hypoxia. Activated astrocytes or microglia cause a potent inhibition of respiration in cocultured neurons due to glial NO inhibiting cytochrome oxidase within the neurons, resulting in ATP depletion and glutamate release. In some conditions, glutamate- induced neuronal death can itself be mediated by N-methyl-D-aspartate (NMDA)-receptor activation of the neuronal isoform of NO synthase (nNOS) causing mitochondrial damage. In addition NO can be converted to a number of reactive derivatives such as peroxynitrite, NO2, N2O3, and S-nitrosothiols that can kill cells in part by inhibiting mitochondrial respiration or activation of mitochondrial permeability transition, triggering neuronal apoptosis or necrosis.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
89
|
da Silva CG, Bueno ARF, Schuck PF, Leipnitz G, Ribeiro CAJ, Wannmacher CMD, Wyse ATS, Wajner M. L-2-hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats. Int J Dev Neurosci 2003; 21:217-24. [PMID: 12781789 DOI: 10.1016/s0736-5748(03)00035-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
L-2-Hydroxyglutaric acid (LGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as L-2-hydroxyglutaric aciduria (LHGA). Although this disorder is predominantly characterized by severe neurological findings and pronounced cerebellum atrophy, the neurotoxic mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA, at 0.25-5mM concentrations, on total creatine kinase (tCK) activity from cerebellum, cerebral cortex, cardiac muscle and skeletal muscle homogenates of 30-day-old Wistar rats. CK activity was measured also in the cytosolic (Cy-CK) and mitochondrial (Mi-CK) fractions from cerebellum. We verified that tCK activity was significantly inhibited by LGA in the cerebellum, but not in cerebral cortex, cardiac muscle and skeletal muscle. Furthermore, CK activity from the mitochondrial fraction was inhibited by LGA, whereas that from the cytosolic fraction of cerebellum was not affected by the acid. Kinetic studies revealed that the inhibitory effect of LGA on Mi-CK was non-competitive in relation to phosphocreatine. Finally, we verified that the inhibitory effect of LGA on tCK was fully prevented by pre-incubation of the homogenates with reduced glutathione (GSH), suggesting that this inhibition is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of creatine kinase activity for energy homeostasis, our results suggest that the selective inhibition of this enzyme activity by increased levels of LGA could be possibly related to the cerebellar degeneration characteristically found in patients affected by L-2-hydroxyglutaric aciduria.
Collapse
Affiliation(s)
- Cleide G da Silva
- Department of Biochemistry, Institute of Basic Sciences and Health, UFRGS, Av. Ramiro Barcellos 2600, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Leipnitz G, Schuck PF, Ribeiro CAJ, Dalcin KB, Assis DR, Barschak AG, Pulrolnik V, Wannmacher CMD, Wyse ATS, Wajner M. Ethylmalonic acid inhibits mitochondrial creatine kinase activity from cerebral cortex of young rats in vitro. Neurochem Res 2003; 28:771-7. [PMID: 12716029 DOI: 10.1023/a:1022874103630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and alpha-tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Laboratório de Erros Inatos do Metabolismo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S39-47; discussion S47-8. [PMID: 12666097 DOI: 10.1002/ana.10479] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is considerable evidence suggesting that mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Parkinson's disease (PD). This possibility has been strengthened by recent studies in animal models, which have shown that a selective inhibitor of complex I of the electron transport gene can produce an animal model that closely mimics both the biochemical and histopathological findings of PD. Several agents are available that can modulate cellular energy metabolism and that may exert antioxidative effects. There is substantial evidence that mitochondria are a major source of free radicals within the cell. These appear to be produced at both the iron-sulfur clusters of complex I as well as the ubiquinone site. Agents that have shown to be beneficial in animal models of PD include creatine, coenzyme Q(10), Ginkgo biloba, nicotinamide, and acetyl-L-carnitine. Creatine has been shown to be effective in several animal models of neurodegenerative diseases and currently is being evaluated in early stage trials in PD. Similarly, coenzyme Q(10) is also effective in animal models and has shown promising effects both in clinical trials of PD as well as in clinical trials in Huntington's disease and Friedreich's ataxia. Many other agents show good human tolerability. These agents therefore are promising candidates for further study as neuroprotective agents in PD.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
92
|
Wendt S, Schlattner U, Wallimann T. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues. J Biol Chem 2003; 278:1125-30. [PMID: 12401781 DOI: 10.1074/jbc.m208572200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.
Collapse
Affiliation(s)
- Silke Wendt
- Institute of Cell Biology, Swiss Federal Institute of Technology, Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
93
|
|
94
|
Schuck PF, Leipnitz G, Ribeiro CAJ, Dalcin KB, Assis DR, Barschak AG, Pulrolnik V, Wannmacher CMD, Wyse ATS, Wajner M. Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochem Res 2002; 27:1633-9. [PMID: 12515316 DOI: 10.1023/a:1021682910373] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Short-chain acyl-CoA dehydrogenase deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of ethylmalonic (EMA) and methylsuccinic (MSA) acids and clinically by severe neurological symptoms. In the present study we investigated the in vitro effects of EMA and MSA on the activity of creatine kinase (CK) in homogenates from cerebral cortex, skeletal and cardiac muscle of rats. EMA significantly inhibited CK activity from cerebral cortex, but did not affect this activity in skeletal and cardiac muscle. Furthermore, MSA had no effect on this enzyme in all tested tissues. Glutathione (GSH), ascorbic acid and alpha-tocopherol, and the nitric oxide synthase inhibitor L-NAME, did not affect the enzyme activity per se, but GSH fully prevented the inhibitory effect of EMA when co-incubated with EMA. In contrast, alpha-tocopherol, ascorbic acid and L-NAME did not influence the inhibitory effect of the acid. The data suggest that inhibition of brain CK activity by EMA is possibly mediated by oxidation of essential groups of the enzyme, which are protected by the potent intracellular, endogenous, naturally occurring antioxidant GSH.
Collapse
Affiliation(s)
- Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Nitric oxide (NO) or its derivatives (reactive nitrogen species, RNS) inhibit mitochondrial respiration in two different ways: (i) an acute, potent, and reversible inhibition of cytochrome oxidase by NO in competition with oxygen; and, (ii) irreversible inhibition of multiple sites by RNS. NO inhibition of respiration may impinge on cell death in several ways. Inhibition of respiration can cause necrosis and inhibit apoptosis due to ATP depletion, if glycolysis is also inhibited or is insufficient to compensate. Inhibition of neuronal respiration can result in excitotoxic death of neurons due to induced release of glutamate and activation of NMDA-type glutamate receptors. Inhibition of respiration may cause apoptosis in some cells, while inhibiting apoptosis in other cells, by mechanisms that are not clear. However, NO can induce (and inhibit) cell death by a variety of mechanisms unrelated to respiratory inhibition.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
96
|
Abstract
Mitochondria constitute a primary locus for the intracellular formation and reactions of peroxynitrite, and these interactions are recognized to contribute to the biological and pathological effects of both nitric oxide ((*)NO) and peroxynitrite. Extra- or intramitochondrially formed peroxynitrite can diffuse through mitochondrial compartments and undergo fast direct and free radical-dependent target molecule reactions. These processes result in oxidation, nitration, and nitrosation of critical components in the matrix, inner and outer membrane, and intermembrane space. Mitochondrial scavenging and repair systems for peroxynitrite-dependent oxidative modifications operate but they can be overwhelmed under enhanced cellular (*)NO formation as well as under conditions that lead to augmented superoxide formation by the electron transport chain. Peroxynitrite can lead to alterations in mitochondrial energy and calcium homeostasis and promote the opening of the permeability transition pore. The effects of peroxynitrite in mitochondrial physiology can be largely rationalized based on the reactivities of peroxynitrite and peroxynitrite-derived carbonate, nitrogen dioxide, and hydroxyl radicals with critical protein amino acids and transition metal centers of key mitochondrial proteins. In this review we analyze (i) the existing evidence for the intramitochondrial formation and reactions of peroxynitrite, (ii) the key reactions and fate of peroxynitrite in mitochondria, and (iii) their impact in mitochondrial physiology and signaling of cell death.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
97
|
Abstract
Although cardiac peroxynitrite formation and attendant protein nitration is an established event in both acute and chronic settings of cardiac failure, the putative intracellular targets involved remain incompletely defined. We have recently shown that the myofibrillar isoform of creatine kinase (a critical energetic controller of cardiomyocyte contractility) may be a particularly sensitive target of peroxynitrite-induced nitration and inactivation in vivo. However, the kinetic and mechanistic aspects of this interaction remain undefined. Here we tested the hypothesis that myofibrillar creatine kinase is sensitive to inhibition by peroxynitrite, and investigated the mechanistic role for tyrosine nitration in this process. Peroxynitrite potently and irreversibly inhibited myofibrillar creatine kinase capacity (Vmax), at concentrations as low as 100 nM, while substrate affinity (Km) was unaffected. Concentration-dependent nitration of myofibrillar creatine kinase was observed. The extent of nitration was linearly related to peroxynitrite concentration and highly correlated to the extent of myofibrillar creatine kinase inhibition. This inhibition was not reversible by treatment with free cysteine (250 microM), but pre-incubation with substrate (phosphocreatine and/or ATP) provided significant protection of MM-CK from both nitration and inhibition. These results suggest that myofibrillar creatine kinase is a highly sensitive target of peroxynitrite-mediated inhibition, and that nitration may mediate this inhibition.
Collapse
Affiliation(s)
- Michael J Mihm
- Division of Pharmacology/College of Pharmacy and OSU Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
98
|
Wendt S, Dedeoglu A, Speer O, Wallimann T, Beal MF, Andreassen OA. Reduced creatine kinase activity in transgenic amyotrophic lateral sclerosis mice. Free Radic Biol Med 2002; 32:920-6. [PMID: 11978494 DOI: 10.1016/s0891-5849(02)00784-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Creatine (Cr), the substrate of the creatine kinase (CK) isoenzymes, was shown to be neuroprotective in several models of neurodegeneration, including amyotrophic lateral sclerosis (ALS). In order to investigate the mechanism of this beneficial effect, we determined CK activities and mitochondrial respiration rates in tissues from G93A transgenic mice, which overexpress a mutant form of human superoxide dismutase associated with familial ALS (FALS). While respiration rates of mitochondria from G93A transgenic or wild-type control mice isolated from spinal cord showed no difference, a significant and dramatic loss of CK activity could be detected in these tissues. In homogenates from spinal cord of G93A transgenic mice, CK activity decreased to 49% and in mitochondrial fractions to 67% compared to CK activities in wild-type control mice. Feeding the G93A transgenic mice with 2% Cr, the same tissues showed no statistically significant increase of CK activity compared to regular fed G93A transgenic mice. Experiments with isolated mitochondria, however, showed that Cr and adenosine triphosphate (ATP) protected mitochondrial CK activity against peroxynitrite-induced inactivation, which may play a role in tissue damage in neurodegeneration. Our data provide evidence for oxidative damage to the CK system in ALS, which may contribute to impaired energy metabolism and neurodegeneration.
Collapse
Affiliation(s)
- Silke Wendt
- Institute for Cell Biology, ETH Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
There is a large body of evidence implicating oxidative damage in the pathogenesis of both normal aging and neurodegenerative diseases. Oxidative damage to proteins has been well established. Although there are a large number of potential oxidative modifications only a few have been systematically studied. The most frequently studied marker of oxidative damage to proteins is protein carbonyl groups. 3-Nitrotyrosine is thought to be a relatively specific marker of oxidative damage mediated by peroxynitrite. Increased concentrations of both protein carbonyls and 3-nitrotyrosine have been documented in both normal aging as well as in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). These findings help to provide a rationale for trials of antioxidants in neurodegenerative diseases.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
100
|
Kuo WN, Kocis JM. Nitration/S-nitrosation of proteins by peroxynitrite-treatment and subsequent modification by glutathione S-transferase and glutathione peroxidase. Mol Cell Biochem 2002; 233:57-63. [PMID: 12083380 DOI: 10.1023/a:1015510207489] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In various peroxynitrite (PN)-treated proteins, the formations of stable 3-nitrotyrosine (nitration) and labile S-nitrosocysteine (S-nitrosation) were observed by employing rapid Western blot in 6 h. The steps of SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and membrane-blotting were performed at 4 degrees C. It was noted that the intensity of immunoreactive bands specific for anti-nitrotyrosine was stronger than that specific for anti-S-nitrosocysteine. Additionally, the intensity was in the manner of a dose-dependency of PN. Nitration/S-nitrosation were formed in the following treated proteins, including bovine serum albumin (BSA), DNase-1, ceruloplasmin, catalase and hemoglobin (Hb). The incubation of PN-pretreated hemoglobin with 1 mM reduced glutathione (GSH) did not change immunoreactivity significantly. However, the addition of glutathione S-transferase (GST) or glutathione peroxidase (GPX) to the above incubation mixture, resulted in decreased immunoreactivity, suggesting GSH may form a transition complex with PN-pretreated hemoglobin and/or partially reduce/modify the treated hemoglobin, thereby increasing the accessibility for the subsequent modification by GST or GPX. Such decreased immunoreactivity indicates that nitrotyrosine and S-nitrosocysteine of treated hemoglobin was, indeed, further modified via (a) converting -NO2 to -NH2 in tyrosine residues, (b) denitrating -NO2 directly/indirectly in tyrosine residues, and/or (c) changing -S-NO to -SH in cysteine residues, or denitrosation. The findings imply similar enzymatic modifications of proteins may also occur in vivo, and therefore play a pivotal role in the NO-related cellular signaling cascade(s).
Collapse
Affiliation(s)
- Wu-Nan Kuo
- Division of Science and Mathematics, Bethune-Cookman College, Daytona Beach, FL 32114, USA
| | | |
Collapse
|