51
|
Uesaka S, Miyazaki K, Ito H. Age-related changes and sex differences in chondroitin sulfate isomers and hyaluronic acid in normal synovial fluid. Mod Rheumatol 2014; 14:470-5. [DOI: 10.3109/s10165-004-0351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
52
|
Spinal deformity in aged zebrafish is accompanied by degenerative changes to their vertebrae that resemble osteoarthritis. PLoS One 2013; 8:e75787. [PMID: 24086633 PMCID: PMC3782452 DOI: 10.1371/journal.pone.0075787] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Age-related degenerative changes within the vertebral column are a significant cause of morbidity with considerable socio-economic impact worldwide. An improved understanding of these changes through the development of experimental models may lead to improvements in existing clinical treatment options. The zebrafish is a well-established model for the study of skeletogenesis with significant potential in gerontological research. With advancing age, zebrafish frequently develop gross deformities of their vertebral column, previously ascribed to reduced trunk muscle tone. In this study, we assess degenerative changes specifically within the bone and cartilage of the vertebral column of zebrafish at 1, 2 and 3-years of age. We show increased frequency and severity of spinal deformities/curvatures with age. Underlying the most severe phenotypes are partial or complete vertebral dislocations and focal thickening of the vertebral bone at the joint margins. MicroCT examination demonstrates small defects, fractures and morphological evidence suggestive of bone erosion and remodeling (i.e. osteophytes) within the vertebrae during aging, but no significant change in bone density. Light and electron microscopic examination reveal striking age-related changes in cell morphology, suggestive of chondroptosis, and tissue remodelling of the vertebral cartilage, particularly within the pericellular micro-environment. Glycosaminoglycan analysis of the vertebral column by HPLC demonstrates a consistent, age-related increase in the yield of total chondroitin sulfate disaccharide, but no change in sulfation pattern, supported by immunohistochemical analysis. Immunohistochemistry strongly identifies all three chondroitin/dermatan sulphate isoforms (C-0-S, C-4-S/DS and C-6-S) within the vertebral cartilage, particularly within the pericellular micro-environment. In contrast, keratan sulfate immunolocalises specifically with the notochordal tissue of the intervertebral disc, and its labelling diminishes with age. In summary, these observations raise the prospect that zebrafish, in addition to modelling skeletal development, may have utility in modelling age-related degenerative changes that affect the skeleton during senescence.
Collapse
|
53
|
Lee JC, Min HJ, Lee S, Seong SC, Lee MC. Effect of chondroitinase ABC on adhesion and behavior of synovial membrane-derived mesenchymal stem cells in rabbit partial-thickness chondral defects. J Orthop Res 2013; 31:1293-301. [PMID: 23629810 DOI: 10.1002/jor.22353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 03/01/2013] [Indexed: 02/04/2023]
Abstract
Transplanted cells may have difficulty attaching to the surface of partial-thickness chondral lesions because of the anti-adhesive properties of the proteoglycan rich matrix. Therefore, the current study attempts to evaluate the effect of chondroitinase ABC (chABC) on the adhesion and behavior of transplanted synovial membrane-derived mesenchymal stem cells (SDSCs) in rabbit partial-thickness chondral defects. In ex vivo adhesion experiments, chABC treatment (0.1 U/ml) was increased in SDSC attachment to the cartilage explants, and significantly diminished by pretreatment with neutralizing antibody against fibronectin. In the in vivo experiments, 1 day and 4 weeks after the chABC treatment (0.1 and 1 U/ml), the immunoreactivity (IR) against CS-56 (intact chondroitin sulfate antibody) was markedly decreased; however, the IR of 2B6 (stub of the chondroitin 4-sulfate chain), 3B3 (stub of the chondroitin 6-sulfate chain), and fibronectin was increased. At 12 weeks, this IR returned to normal except in the high-dose chABC-treated group (1 U/ml). Furthermore, the attachment of SDSCs to the chondral defects after chABC treatment was increased at 7 days compared with that in the chondral defects pretreated with saline. However, the tissue repaired by SDSCs was negatively stained for type II collagen at 12 weeks. In conclusion, these results showed that the exposure to fibronectin by chABC treatment enhances the attachment of SDSCs to partial-thickness chondral defects. However, the tissue regenerated by SDSCs showed lack of hyaline cartilage regeneration. Thus, to understand the fate of transplanted MSCs in cartilage defect is very important for successful cell therapies.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, #28 Yongondong, Chongnogu, Seoul, 110-744, Republic of Korea
| | | | | | | | | |
Collapse
|
54
|
The age-related changes in cartilage and osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916530. [PMID: 23971049 PMCID: PMC3736507 DOI: 10.1155/2013/916530] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes' low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA) in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.
Collapse
|
55
|
The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconj J 2013; 30:717-25. [DOI: 10.1007/s10719-013-9475-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 11/26/2022]
|
56
|
Hayes AJ, Mitchell RE, Bashford A, Reynolds S, Caterson B, Hammond CL. Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis. Dev Dyn 2013; 242:778-89. [PMID: 23576310 PMCID: PMC3698701 DOI: 10.1002/dvdy.23970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. RESULTS We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. CONCLUSIONS The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton.
Collapse
Affiliation(s)
- Anthony J Hayes
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Ruth E Mitchell
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| | - Andrew Bashford
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Scott Reynolds
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| | - Bruce Caterson
- Connective Tissue Biology Laboratory, Cardiff School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff UniversityCardiff, United Kingdom
| | - Chrissy L Hammond
- Departments of Biochemistry and Physiology and Pharmacology, University of BristolBristol, United Kingdom
| |
Collapse
|
57
|
Kulmala KAM, Karjalainen HM, Kokkonen HT, Tiitu V, Kovanen V, Lammi MJ, Jurvelin JS, Korhonen RK, Töyräs J. Diffusion of ionic and non-ionic contrast agents in articular cartilage with increased cross-linking--contribution of steric and electrostatic effects. Med Eng Phys 2013; 35:1415-20. [PMID: 23622944 DOI: 10.1016/j.medengphy.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. DESIGN Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. RESULTS The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (p<0.05) and contents of Pent and LP (p=0.001) increased significantly due to the treatment. However, the proteoglycan concentration was not systematically altered after the treatment. Water content was significantly (-3.5%, p=0.007) lower after the treatment. CONCLUSIONS Since non-ionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance.
Collapse
Affiliation(s)
- K A M Kulmala
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J. Comparative glycomics of leukocyte glycosaminoglycans. FEBS J 2013; 280:2447-61. [PMID: 23480678 DOI: 10.1111/febs.12231] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans (GAGs) vary widely in disaccharide and oligosaccharide content in a tissue-specific manner. Nonetheless, there are common structural features, such as the presence of highly sulfated non-reducing end domains on heparan sulfate (HS) chains. Less clear are the patterns of expression of GAGs on specific cell types. Leukocytes are known to express GAGs primarily of the chondroitin sulfate (CS) type. However, little is known regarding the properties and structures of the GAG chains, their variability among normal subjects, and changes in structure associated with disease conditions. We isolated peripheral blood leukocyte populations from four human donors and extracted GAGs. We determined the relative and absolute disaccharide abundances for HS and CS GAGs classes using size exclusion chromatography-mass spectrometry (SEC-MS). We found that all leukocytes express HS chains with a level of sulfation that is more similar to heparin than to organ-derived HS. The levels of HS expression follows the trend T cells/B cells > monocytes/natural killer cells > polymorphonuclear leukocytes (PMNs). In addition, CS abundances were considerably higher than total HS but varied considerably in a leukocyte cell type-specific manner. Levels of CS were higher for myeloid lineage cells (PMNs and monocytes) than for lymphoid cells (B, T and natural killer (NK) cells). This information establishes the range of GAG structures expressed on normal leukocytes and is necessary for subsequent inquiry into disease conditions.
Collapse
Affiliation(s)
- Chun Shao
- Department of Biochemistry, Boston University School of Medicine, Boston University Medical Campus, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
59
|
Jmeian Y, Hammad LA, Mechref Y. Fast and Efficient Online Release of N-Glycans from Glycoproteins Facilitating Liquid Chromatography–Tandem Mass Spectrometry Glycomic Profiling. Anal Chem 2012; 84:8790-6. [DOI: 10.1021/ac301855v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yazen Jmeian
- METACyt Biochemical Analysis Center, Department of
Chemistry, Indiana University, Bloomington,
Indiana 47405, United States
| | - Loubna A. Hammad
- METACyt Biochemical Analysis Center, Department of
Chemistry, Indiana University, Bloomington,
Indiana 47405, United States
| | - Yehia Mechref
- METACyt Biochemical Analysis Center, Department of
Chemistry, Indiana University, Bloomington,
Indiana 47405, United States
| |
Collapse
|
60
|
Farnsworth NL, Antunez LR, Bryant SJ. Influence of chondrocyte maturation on acute response to impact injury in PEG hydrogels. J Biomech 2012; 45:2556-63. [DOI: 10.1016/j.jbiomech.2012.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022]
|
61
|
Taylor DW, Ahmed N, Hayes AJ, Ferguson P, Gross AE, Caterson B, Kandel RA. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes. J Histochem Cytochem 2012; 60:576-87. [PMID: 22610463 DOI: 10.1369/0022155412449018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.
Collapse
Affiliation(s)
- Drew W Taylor
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
62
|
Mertz EL, Facchini M, Pham AT, Gualeni B, De Leonardis F, Rossi A, Forlino A. Matrix disruptions, growth, and degradation of cartilage with impaired sulfation. J Biol Chem 2012; 287:22030-42. [PMID: 22556422 DOI: 10.1074/jbc.m110.116467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth.
Collapse
Affiliation(s)
- Edward L Mertz
- Section on Physical Biochemistry, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Chou CH, Kuo TF, Lin CC, Tsai JC, Lin FH. GLYCOSAMINOGLYCAN SYNTHESIS OF CHONDROCYTES IN FIBRIN GLUE WITH GHC6S PARTICLES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237208000945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Articular cartilage provides functions of lubrication to shear stress and protection from compressive force, but it has poor ability to repair itself after suffering damage. The advanced method of tissue engineering is developed and used to maintain cell functions for tissue regeneration. In order to improve the ECM synthesis for the regeneration, many materials have been examined on chondrocytes or other cell sources. In this study, fibrinogen was concentrated from plasma cryoprecipitation and then polymerized by thrombin into fibrin. Gelatin/hyaluronic acid/chondroitin-6-sulfate (GHC6S) was prepared by the cross-linking reaction with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and ground in liquid nitrogen to particles. The GHC6S particles were mixed with fibrin glue as the tissue engineering scaffold. Porcine articular cartilage chondrocytes were expanded and seeded into the scaffolds. The engineered constructs were cultured and harvested after cultured for 1 and 2 weeks. Morphology of GHC6S particle was examined by scanning electron microscopy (SEM). Total glycosaminoglycans (GAGs) and sulfated GAGs were quantified by p-dimethylaminobenzaldehyde reaction and 1,9-dimethymethylene blue (DMMB) assay, respectively. The results demonstrated that the total GAGs, especially the content of nonsulfated GAGs, hyaluronic acid, were increased with time in chondrocytes growing in fibrin glue with GHC6S particles. It suggested that the GHC6S in fibrin glue chondrocyte kept the GAGs synthesis, which could help resist the compressive force. Therefore, the GHC6S particles mixed within fibrin glue can be used as a promising scaffold for articular tissue engineering.
Collapse
Affiliation(s)
- Cheng-Hung Chou
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Tzong-Fu Kuo
- Department of Animal Science, National Taiwan University, Taipei 10772, Taiwan
| | - Chien-Cheng Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Che Tsai
- Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan
- Department of Materials Engineering, Tatung University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
64
|
Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 2012; 20:423-35. [PMID: 22173730 PMCID: PMC3282009 DOI: 10.1007/s00167-011-1818-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity. Level of evidence IV.
Collapse
|
65
|
Calamia V, Fernández-Puente P, Mateos J, Lourido L, Rocha B, Montell E, Vergés J, Ruiz-Romero C, Blanco FJ. Pharmacoproteomic study of three different chondroitin sulfate compounds on intracellular and extracellular human chondrocyte proteomes. Mol Cell Proteomics 2011; 11:M111.013417. [PMID: 22203690 DOI: 10.1074/mcp.m111.013417] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS) is a symptomatic slow acting drug for osteoarthritis (OA) widely used for the treatment of this highly prevalent disease, characterized by articular cartilage degradation. However, little is known about its mechanism of action, and recent large scale clinical trials have reported variable results on OA symptoms. Herein, we aimed to study the modulations in the intracellular proteome and the secretome of human articular cartilage cells (chondrocytes) treated with three different CS compounds, with different origin or purity, by two complementary proteomic approaches. Osteoarthritic cells were treated with 200 μg/ml of each brand of CS. Quantitative proteomics experiments were carried out by the DIGE and stable isotope labeling with amino acids in cell culture (SILAC) techniques, followed by LC-MALDI-MS/MS analysis. The DIGE study, carried out on chondrocyte whole cell extracts, led to the detection of 46 spots that were differential between conditions in our study: 27 were modulated by CS1, 4 were modulated by CS2, and 15 were modulated by CS3. The SILAC experiment, carried out on the subset of chondrocyte-secreted proteins, allowed us to identify 104 different proteins. Most of them were extracellular matrix components, and 21 were modulated by CS1, 13 were modulated by CS2, and 9 were modulated by CS3. Each of the studied compounds induces a characteristic protein profile in OA chondrocytes. CS1 displayed the widest effect but increased the mitochondrial superoxide dismutase, the cartilage oligomeric matrix protein, and some catabolic or inflammatory factors like interstitial collagenase, stromelysin-1, and pentraxin-related protein. CS2 and CS3, on the other hand, increased a number of structural proteins, growth factors, and extracellular matrix proteins. Our study shows how, from the three CS compounds tested, CS1 induces the activation of inflammatory and catabolic pathways, whereas CS2 and CS3 induce an anti-inflammatory and anabolic response. The data presented emphasize the importance of employing high quality CS compounds, supported by controlled clinical trials, in the therapy of OA. Finally, the present work exemplifies the usefulness of proteomic approaches in pharmacological studies.
Collapse
Affiliation(s)
- Valentina Calamia
- Osteoarticular and Aging Research Lab, Proteomics Unit, ProteoRed/ISCIII, Rheumatology Division, INIBIC-CHU A Coruña, As Xubias 84, 15006 A Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kim M, Kraft JJ, Volk AC, Pugarelli J, Pleshko N, Dodge GR. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: molecular composition using FT-IRIS. J Orthop Res 2011; 29:1881-7. [PMID: 21630329 PMCID: PMC4617763 DOI: 10.1002/jor.21467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 05/04/2011] [Indexed: 02/04/2023]
Abstract
Maintenance of chondrocyte phenotype and robust expression and organization of macromolecular components with suitable cartilaginous properties is an ultimate goal in cartilage tissue engineering. We used a self-aggregating suspension culture (SASC) method to produce an engineered cartilage, "cartilage tissue analog" (CTA). With an objective of understanding the stability of phenotype of the CTA over long periods, we cultured chondrocytes up to 4 years and analyzed the matrix. Both early (eCTAs) (6 months) and aged (aCTAs) (4 years) showed type II collagen throughout with higher concentrations near the edge. Using Fourier transform-infrared imaging spectroscopy (FT-IRIS), proteoglycan/collagen ratio of eCTA was 2.8 times greater than native cartilage at 1 week, but the ratio was balanced to native level (p = 0.017) by 36 weeks. Surprisingly, aCTAs maintained the hyaline characteristics, but there was evidence of calcification within the tissue with a distinct range of intensities. Mineral/matrix ratio of those aCTA with "intensive" calcification was significantly higher (p = 0.017) than the "partial," but when compared to native bone the ratio of "intensive" aCTAs was 2.4 times lower. In this study we utilized the imaging approach of FT-IRIS and have shown that a biomaterial formed is compositionally closely related to natural cartilage for long periods in culture. We show that this culture platform can maintain a CTA for extended periods of time (4 years) and under those conditions signs of mineralization can be found. This method of cartilage tissue engineering is a promising method to generate cartilaginous biomaterial and may have potential to be utilized in both cartilage and boney repairs.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Biological Sciences, University of Delaware, Newark, Delaware,Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 422 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6081
| | - Jeffrey J. Kraft
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Andrew C. Volk
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Joan Pugarelli
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Nancy Pleshko
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania
| | - George R. Dodge
- Department of Biological Sciences, University of Delaware, Newark, Delaware,Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 422 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6081
| |
Collapse
|
67
|
Lauder RM, Huckerby TN, Nieduszynski IA, Sadler IH. Characterisation of oligosaccharides from the chondroitin/dermatan sulphates: 1H and 13C NMR studies of oligosaccharides generated by nitrous acid depolymerisation. Carbohydr Res 2011; 346:2222-7. [DOI: 10.1016/j.carres.2011.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
|
68
|
Pitsillides AA, Beier F. Cartilage biology in osteoarthritis--lessons from developmental biology. Nat Rev Rheumatol 2011; 7:654-63. [PMID: 21947178 DOI: 10.1038/nrrheum.2011.129] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular and molecular mechanisms responsible for the initiation and progression of osteoarthritis (OA), and in particular cartilage degeneration in OA, are not completely understood. Increasing evidence implicates developmental processes in OA etiology and pathogenesis. Herein, we review this evidence. We first examine subtle changes in cartilage development and the specification and formation of joints, which predispose to OA development, and second, we review the switch from an articular to a hypertrophic chondrocyte phenotype that is thought to be part of the OA pathological process ultimately resulting in cartilage degeneration. The latest studies are summarized and we discuss the concepts emerging from these findings in cartilage biology, in the light of our understanding of the developmental processes involved.
Collapse
Affiliation(s)
- Andrew A Pitsillides
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
69
|
Stanton H, Melrose J, Little CB, Fosang AJ. Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1616-29. [PMID: 21914474 DOI: 10.1016/j.bbadis.2011.08.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/20/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Proteoglycans are key components of extracellular matrices, providing structural support as well as influencing cellular behaviour in physiological and pathological processes. The diversity of proteoglycan function reported in the literature is equally matched by diversity in proteoglycan structure. Members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family of enzymes degrade proteoglycans and thereby have the potential to alter tissue architecture and regulate cellular function. In this review, we focus on ADAMTS enzymes that degrade the lectican and small leucine-rich repeat families of proteoglycans. We discuss the known ADAMTS cleavage sites and the consequences of cleavage at these sites. We illustrate our discussion with examples from the literature in which ADAMTS proteolysis of proteoglycans makes profound changes to tissue function.
Collapse
Affiliation(s)
- Heather Stanton
- University of Melbourne, Department of Paediatrics, Australia.
| | | | | | | |
Collapse
|
70
|
|
71
|
Abstract
Glycosaminoglycans (GAGs) play a critical role in the binding and activation of growth factors in cell signal transduction required for biological development. A glycomics approach can be used to examine GAG content, composition, and structure in stem cells in order to characterize their general differentiation. Specifically, this method may be used to evaluate chondrogenic differentiations by profiling for the GAG content of the differentiated cells. Here, embryonic-like teratocarcinoma cells, NCCIT, a developmentally pluripotent cell line, were used as a model for establishing GAG glycomic methods, but will be easily transferrable to embryonic stem cell cultures.
Collapse
|
72
|
Piripi S, Williams M, Thompson K. On the Sulfation Pattern of Polysaccharides in the Extracellular Matrix of Sheep with Chondrodysplasia. Cartilage 2011; 2:36-9. [PMID: 26069567 PMCID: PMC4300791 DOI: 10.1177/1947603510377465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Chondroitin sulfate is the major sulfated polysaccharide attached to the core protein, aggrecan, in the hyaline cartilage matrix. Sulfation of the cartilage matrix polysaccharide is vital for normal matrix integrity and compressive stiffness of the tissue and is therefore crucial to normal cartilage formation and consequently to endochondral ossification. Several forms of chondrodysplasia, a condition resulting in clear macroscopic deficiencies in the mechanical properties of the cartilage and characterized by reduced levels of sulfate, have been identified in both human beings and animals. DESIGN In this study, the authors used capillary electrophoresis to investigate the sulfation state of extracted chondroitin sulfate polymers. RESULTS Significantly, cartilage from affected sheep had a lower ratio of the chondroitin-derived enzymatically liberated disaccharides Δdi-mono4S to Δdi-mono6S, demonstrating reduced levels of chondroitin 4-sulfate, but not chondroitin 6-sulfate, in chondrodysplastic sheep compared to age-matched controls at all ages measured. CONCLUSION This supports the hypothesis that a difference in chondroitin sulfate disaccharides is detectable in affected newborn lambs prior to the development of lesions.
Collapse
Affiliation(s)
- S.A. Piripi
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - M.A.K. Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand,MacDiarmid Institute for Nanotechnology and Advanced Materials, Wellington, New Zealand,Martin Williams, Private Bag 11 222 Palmerston North, 4442 New Zealand
| | - K.G. Thompson
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
73
|
Abstract
Osteoarthritis (OA) is the most common cause of chronic disability in older adults. Although classically considered a "wear and tear" degenerative condition of articular joints, recent studies have demonstrated an inflammatory component to OA that includes increased activity of several cytokines and chemokines in joint tissues that drive production of matrix-degrading enzymes. Rather than directly causing OA, aging changes in the musculoskeletal system contribute to the development of OA by making the joint more susceptible to the effects of other OA risk factors that include abnormal biomechanics, joint injury, genetics, and obesity. Age-related sarcopenia and increased bone turnover may also contribute to the development of OA. Understanding the basic mechanisms by which aging affects joint tissues should provide new targets for slowing or preventing the development of OA.
Collapse
Affiliation(s)
- Richard F Loeser
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
74
|
Im AR, Park Y, Kim YS. Isolation and characterization of chondroitin sulfates from sturgeon (Acipenser sinensis) and their effects on growth of fibroblasts. Biol Pharm Bull 2010; 33:1268-73. [PMID: 20686217 DOI: 10.1248/bpb.33.1268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan that composed of hexosamine (D-galactosamine) and hexuronic acid (D-glucuronic acid) unit arranged in an alternating unbranched sequence. CS is an essential component of the extracellular matrix (ECM) of connective tissue. It is mainly covalently attached to core proteins in the form of proteoglycans so that it exhibits specific interactions with proteins for cell growth, differentiation, division and migration. In this study, CSs were purified from the cartilage and backbone of sturgeon (Acipenser sinensis). To characterize their biochemical properties, we performed disaccharide compositional analysis after chondroitinase ABC digestion, high performance size exclusion chromatography (HPSEC) and (1)H-NMR spectroscopy. We also investigated the effects of CSs on fibroblast proliferation and adhesion to determine whether wound healing was accelerated in vitro and proliferation of different mitogen-activated protein kinases (MAPK) signaling pathways was facilitated. The CS purified from sturgeon cartilage was primarily composed of 4-sulfated CS (88.8%) and sturgeon backbone CS contains more than 60% 6-sulfated CS. The average molecular weights of CSs obtained from sturgeon cartilage and backbone were found to be 8 and 43 kDa, respectively. Our results showed that both CSs are able to increase cell adhesion, induce proliferation and migration on fibroblasts and may accelerate wound healing by inducing MAPK signaling pathways.
Collapse
Affiliation(s)
- A-Rang Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
75
|
Toyoda M, Narimatsu H, Kameyama A. Enrichment method of sulfated glycopeptides by a sulfate emerging and ion exchange chromatography. Anal Chem 2010; 81:6140-7. [PMID: 19572564 DOI: 10.1021/ac900592t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfated glycoproteins are of growing importance for biomarker discovery, as well as for investigating molecular recognition processes. Mass spectrometry (MS) has become a powerful technique for the characterization of glycans and glycoproteins. However, characterization and detection of sulfated glycopeptides by MS is difficult because of the low abundance and low ionization efficiency of these molecules. To overcome this problem, we developed a novel enrichment procedure for sulfated glycopeptides. The procedure consists of anion exchange chromatography and a sulfate emerging (SE) method which controls the net charge of peptides by utilizing limited proteolyzes and modification with acetohydrazide. Using this procedure, we are able to enrich and characterize the sulfated glycopeptides of bovine luteinizing hormone (bLH). Furthermore, we demonstrate the enrichment and detection of sulfated glycopeptides from a complex mixture comprising human serum spiked with bLH at a concentration of 0.1%.
Collapse
Affiliation(s)
- Masaaki Toyoda
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | |
Collapse
|
76
|
Abstract
Although older age is the greatest risk factor for osteoarthritis (OA), OA is not an inevitable consequence of growing old. Radiographic changes of OA, particularly osteophytes, are common in the aged population, but symptoms of joint pain may be independent of radiographic severity in many older adults. Ageing changes in the musculoskeletal system increase the propensity to OA but the joints affected and the severity of disease are most closely related to other OA risk factors such as joint injury, obesity, genetics and anatomical factors that affect joint mechanics. The ageing changes in joint tissues that contribute to the development of OA include cell senescence that results in development of the senescent secretory phenotype and ageing changes in the matrix including formation of advanced glycation end-products that affect the mechanical properties of joint tissues. An improved mechanistic understanding of joint ageing will likely reveal new therapeutic targets to slow or halt disease progression. The ability to slow progression of OA in older adults will have enormous public health implications given the ageing of our population and the increase in other OA risk factors such as obesity.
Collapse
Affiliation(s)
- A Shane Anderson
- Section of Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
77
|
Heinegård D. Fell-Muir Lecture: Proteoglycans and more--from molecules to biology. Int J Exp Pathol 2010; 90:575-86. [PMID: 19958398 DOI: 10.1111/j.1365-2613.2009.00695.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this article the organization and functional details of the extracellular matrix, with particular focus on cartilage, are described. All tissues contain a set of molecules that are arranged to contribute structural elements. Examples are fibril-forming collagens forming major fibrillar networks in most tissues. The assembly process is regulated by a number of proteins (thrombospondins, LRR-proteins, matrilins and other collagens) that can bind to the collagen molecule and in many cases remain bound to the formed fibre providing additional stability and enhancing networking to other structural networks. One such network is formed by collagen VI molecules assembled to beaded filaments in the matrix catalysed by interactions with small proteoglycans of the LRR-family, which remain bound to the filament providing for interactions via a linker of a matrilin to other matrix constituents like collagen fibres and the large proteoglycans, e.g. aggrecan in cartilage. Aggrecan is contributing an extreme anionic charge density to the extracellular matrix, which by osmotic effects leads to water retention and strive to swelling, resisted by the tensile properties of the collagen fibres. Aggrecan is bound via one end to hyaluronan, including such molecules retained at the cell surface, to form very large molecular entities that interact with other constituents of the matrix, e.g. fibulins that can form their own network. Other important interactions are those with cell surface receptors such as integrins, heparan sulphfate proteoglycans, hyaluronan receptors and others. Many of the molecules with an ability to interact with these receptors can also bind to molecules in the matrix and provide a bridge from the matrix to the cell and induce various responses. In pathology, there is an imbalance in matrix turnover with often excessive proteolytic breakdown. This results in the formation of protein fragments, where cleavage provides information on the active enzyme. Those fragments released can be specifically detected employing antibodies specific to the cleavage site and used to diagnose and monitor e.g. joint disease at early stages.
Collapse
Affiliation(s)
- Dick Heinegård
- Department of Clinical Sciences, Section for Rheumatology, Molecular Skeletal Biology, Lund University, Lund, Sweden.
| |
Collapse
|
78
|
Palmer AW, Wilson CG, Baum EJ, Levenston ME. Composition-function relationships during IL-1-induced cartilage degradation and recovery. Osteoarthritis Cartilage 2009; 17:1029-39. [PMID: 19281879 PMCID: PMC2745941 DOI: 10.1016/j.joca.2009.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 11/24/2008] [Accepted: 02/16/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the relationships between biochemical composition and mechanical properties of articular cartilage explants during interleukin-1 (IL-1)-induced degradation and post-exposure recovery. DESIGN Bovine articular cartilage explants were cultured for up to 32 days with or without 20 ng/mL IL-1. The dynamic shear modulus |G*(dyn)| and equilibrium and dynamic unconfined compression moduli (E(equil) and |E*(dyn)|) were measured at intervals throughout the culture period. In a subsequent recovery study, explants were cultured for 4 days with or without 20ng/mL IL-1 and for an additional 16 days in control media. The dynamic moduli |E*(dyn)| and |G*(dyn)| were measured at intervals during degeneration and recovery. Conditioned media and explant digests were assayed for sulfated glycosaminoglycans (sGAG) and collagen content. RESULTS Continuous IL-1 stimulation triggered progressive decreases in E(equil), |E*(dyn)|, and |G*(dyn)| concomitant with the sequential release of sGAG and collagen from the explants. Brief IL-1 exposure resulted in a short release of sGAG but not collagen, followed by a gradual and incomplete repopulation of sGAG. The temporary sGAG depletion was associated with decreases in both |E*(dyn)| and |G*(dyn)| which also recovered after removal of IL-1. During IL-1-induced degradation and post-exposure recovery, explant mechanical properties correlated well with tissue sGAG concentration. CONCLUSIONS As previously shown for developing cartilages and engineered cartilage constructs, cytokine-induced changes in sGAG concentration (i.e., fixed charge density) are coincident with changes in compressive and shear properties of articular cartilage. Further, recovery of cartilage mechanical properties can be achieved by relief from proinflammatory stimuli and subsequent restoration of tissue sGAG concentration.
Collapse
Affiliation(s)
- Ashley W. Palmer
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Christopher G. Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Elyse J. Baum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332
| | - Marc E. Levenston
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332,To whom correspondence should be addressed: Marc E. Levenston, Ph.D. Stanford University Department of Mechanical Engineering 233 Durand Building Stanford, CA 94305-4038 phone: (650) 723-9464 fax: (650) 725-1587
| |
Collapse
|
79
|
Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 2009; 17:971-9. [PMID: 19303469 PMCID: PMC2713363 DOI: 10.1016/j.joca.2009.03.002] [Citation(s) in RCA: 501] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Age-related changes in multiple components of the musculoskeletal system may contribute to the well established link between aging and osteoarthritis (OA). This review focused on potential mechanisms by which age-related changes in the articular cartilage could contribute to the development of OA. METHODS The peer-reviewed literature published prior to February 2009 in the PubMed database was searched using pre-defined search criteria. Articles, selected for their relevance to aging and articular chondrocytes or cartilage, were summarized. RESULTS Articular chondrocytes exhibit an age-related decline in proliferative and synthetic capacity while maintaining the ability to produce pro-inflammatory mediators and matrix degrading enzymes. These findings are characteristic of the senescent secretory phenotype and are most likely a consequence of extrinsic stress-induced senescence driven by oxidative stress rather than intrinsic replicative senescence. Extracellular matrix changes with aging also contribute to the propensity to develop OA and include the accumulation of proteins modified by non-enzymatic glycation. CONCLUSION The effects of aging on chondrocytes and their matrix result in a tissue that is less able to maintain homeostasis when stressed, resulting in breakdown and loss of the articular cartilage, a hallmark of OA. A better understanding of the basic mechanisms underlying senescence and how the process may be modified could provide novel ways to slow the development of OA.
Collapse
Affiliation(s)
- R F Loeser
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
80
|
DONG WEI, ZHANG YAXU, LIU HUI, GAO BEN, LI DE, YANG JIANBO. Detection of Unsaturated Disaccharides, Pyridinoline, and Hydroxyproline in Urine of Patients with Kashin-Beck Disease: Comparison with Controls in an Endemic Area. J Rheumatol 2009; 36:816-21. [DOI: 10.3899/jrheum.080642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.To investigate the pathologic status of adult patients with Kashin-Beck disease (KBD) in an endemic area of China through detection of 5 biochemical markers in their urine, and to study the correlations between these markers and KBD.Methods.A total of 55 patients with KBD over age 40 years were recruited and divided into groups, Grade 1 and Grade 2, according to clinical diagnosis criteria for KBD and our inclusion criteria; 25 healthy persons were enrolled into a control group. The first-time urine of the 80 participants was collected in the morning. Three unsaturated disaccharides, pyridinoline (PYD), and hydroxyproline (HYP) were detected in urine samples with high performance liquid chromatography, ELISA, and a chemical kit. Mean levels of these markers were compared in the 3 groups.Results.The mean concentrations of 3 unsaturated disaccharides and PYD in the Grade 2 group were significantly higher than levels in the Grade 1 group and controls (p < 0.05). There was no significant difference between findings in the Grade 1 group and controls. Levels of 3 unsaturated disaccharides correlated with each other (p < 0.01). The correlation coefficient between PYD and HYP was 0.470 (p < 0.01). Except for HYP, the other markers all correlated with grade of KBD, rather than age or sex of subjects.Conclusion.The cartilage degradation of patients with Grade 2 KBD was more severe than that of Grade 1 patients and controls. The pathologic condition of Grade 1 patients was mild. Except for HYP, the markers we investigated specifically reflected the pathologic bone metabolism of adult patients with KBD. Trial registration number ChiCTR-TRC-00000140.
Collapse
|
81
|
Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Düggelin M, Baschong W, Daniels AU, Friederich NF, Aszodi A, Aebi U. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. NATURE NANOTECHNOLOGY 2009; 4:186-92. [PMID: 19265849 DOI: 10.1038/nnano.2008.410] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/13/2008] [Indexed: 05/03/2023]
Abstract
The pathological changes in osteoarthritis--a degenerative joint disease prevalent among older people--start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.
Collapse
Affiliation(s)
- Martin Stolz
- M.E. Müller Institute for Structural Biology, Biozentrum University of Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Magdalou J, Netter P, Fournel-Gigleux S, Ouzzine M. [Agrecan and articular cartilage: assessment of glycosyltransferases for the restoration of cartilage matrix in osteoarthritis]. ACTA ACUST UNITED AC 2008; 202:281-8. [PMID: 19094927 DOI: 10.1051/jbio:2008029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Articular cartilage is a connective tissue containing a single type of cells, chondrocytes, which synthesise a dense extracellular matrix, mainly composed of collagens, hyaluronic acid and proteoglycans. These macromolecules play a major role in the resistance and elastic properties of the tissue. They also favour interactions with small active substances, such as growth factors and cytokines. Chondrocytes have a low metabolic capacity in relatively hypoxic conditions and absence of vascular supply. In physiopathological conditions, such as osteoarthritis (OA), progressive and irreversible degradation of matrix components is occurring. With the aim of developing new and efficient therapies against OA, we investigated the molecular mechanisms that initiate the disease, in order to identify key-proteins. These targets should hopefully lead to the design of new drugs able to stop degradation and restore cartilage. One of the earliest molecular events in OA is the degradation of aggrecan, the most abundant proteoglycan. The glycosaminoglycan (GAG) chains, chondroitin-sulfate, attached on the core protein, are subjected to hydrolysis into smaller fragments. We were interested in the glycosyltransferases that catalyse the formation of the polysaccharidic chains, namely those involved in the common tetrasaccharidic protein linkage region, GlcAbeta1,3Galbeta1,3Galbeta 1,4Xyl-O-Serine. The galactose beta1,3-glucuronosyltransférase-I (GlcAT-I) which catalyses the final step of this primer and which is markedly repressed during OA is an attractive target in that respect. Indeed, the human recombinant enzyme was found to play a pivotal role in GAG synthesis. Moreover, overexpression of GlcAT-I in cartilage explants treated with IL1beta was able to fully counteract proteoglycan depletion induced by the cytokine. These results prompted us to investigate the structure, function and regulation of this enzyme. This study provides the basis for several therapy approaches (gene delivery, design of glycomimetics able to initiate GAG synthesis) to promote cartilage repair.
Collapse
Affiliation(s)
- Jacques Magdalou
- UMR CNRS-Université Henri Poincaré-Nancy "Physiopathologie et Pharmacologie Articulaires", France.
| | | | | | | |
Collapse
|
83
|
Lauder RM. Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement Ther Med 2008; 17:56-62. [PMID: 19114230 DOI: 10.1016/j.ctim.2008.08.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/29/2008] [Accepted: 08/29/2008] [Indexed: 01/13/2023] Open
Abstract
Chondroitin sulphate (CS) is widely consumed orally by humans, and non-humans as it is believed to be beneficial for those with joint-related pathologies. Data concerning the functions of chondroitin sulphate in this, and other, biological systems are being actively extended. However, it is important to appreciate that chondroitin sulphate molecules represent a heterogeneous population the structure of which varies with source. As commercially available chondroitin sulphate is derived from a range of sources, and the molecular functions of chondroitin sulphate depend upon the structure, there are a range of structures available with differing potential for therapeutic impacts on a range of pathologies. While the safety of CS is not presently in doubt, poor quality finished products have the potential to compromise clinical and lab-based studies and will fail to give consumers all of the benefits available. Major parameters including bioavailability and uptake have been studied but it is clear that significant challenges remain in the identification of composition, sequence and size impacts on function, understanding how the consumed material is altered during uptake and travels to a site of action and how it exerts an influence on biological processes. If we understand these factors it may be possible to predict impacts upon biological processes and identify specific chondroitin sulphate structures which may target specific pathologies.
Collapse
Affiliation(s)
- Robert M Lauder
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
84
|
Nap RJ, Szleifer I. Structure and interactions of aggrecans: statistical thermodynamic approach. Biophys J 2008; 95:4570-83. [PMID: 18689463 PMCID: PMC2576360 DOI: 10.1529/biophysj.108.133801] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
Weak polyelectrolytes tethered to cylindrical surfaces are investigated using a molecular theory. These polymers form a model system to describe the properties of aggrecan molecules, which is one of the main components of cartilage. We have studied the structural and thermodynamical properties of two interacting aggrecans with a molecular density functional theory that incorporates the acid-base equilibrium as well as the molecular properties: including conformations, size, shape, and charge distribution of all molecular species. The effect of acidity and salt concentration on the behavior is explored in detail. The repulsive interactions between two cylindrical-shaped aggrecans are strongly influenced by both the salt concentration and the pH. With increasing acidity, the polyelectrolytes of the aggrecan acquire charge and with decreasing salt concentration those charges become less screened. Consequently the interactions increase in size and range with increasing acidity and decreasing salt concentration. The size and range of the forces offers a possible explanation to the aggregation behavior of aggrecans and for their ability to resist compressive forces in cartilage. Likewise, the interdigitation of two aggrecan molecules is strongly affected by the salt concentration as well as the pH. With increasing pH, the number of charges increases, causing the repulsions between the polymers to increase, leading to a lower interdigitation of the two cylindrical polymer layers of the aggrecan molecules. The low interdigitation in charged polyelectrolytes layers provides an explanation for the good lubrication properties of polyelectrolyte layers in general and cartilage in particular.
Collapse
Affiliation(s)
- Rikkert J Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
85
|
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Osteoarthritis Cartilage 2008; 16:1387-94. [PMID: 18485747 DOI: 10.1016/j.joca.2008.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/30/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the synergistic effect of chondroitin sulfate (CS) and cyclic pressure on the biochemical and morphological properties of chondrocytes isolated from articular cartilage and cultured in alginate matrix. METHODS The chondrocytes obtained from articular cartilage of goat femoropatellar joint were isolated and cultured in alginate matrix. The cells were exposed to CS (100 microg/ml) along with cyclic pressure of 1.2 MPa and 2.4 MPa and biochemical analysis of DNA, proteoglycan, collagen and protease activity was carried out in different matrix fractions, i.e., cellular matrix (CM) and further removed matrix (FRM) and in culture medium. The morphological studies of chondrocytes were carried out using transmission electron microscopy (TEM). RESULTS The treatment of chondrocytes with CS along with cyclic pressure increased the rate of cell proliferation relative to control (without load and in the absence of CS) and CS alone (P<0.001). The proteoglycan content in CM increased in the presence of CS alone (P<0.05) as well as CS with cyclic pressure (P<0.001). The specific activity of protease in CM and FRM decreased in the presence of CS with cyclic pressure relative to control (P<0.001). The TEM images showed abundant CM, improved cell morphology and matrix organization in the presence of CS and cyclic load treatment. CONCLUSIONS The results of this study suggested that in the presence of CS along with cyclic loading, the cellular ability to utilize and incorporate exogenous CS as extracellular matrix improved, as compared to CS alone.
Collapse
|
86
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
87
|
Rudd TR, Skidmore MA, Guimond SE, Cosentino C, Torri G, Fernig DG, Lauder RM, Guerrini M, Yates EA. Glycosaminoglycan origin and structure revealed by multivariate analysis of NMR and CD spectra. Glycobiology 2008; 19:52-67. [PMID: 18832453 DOI: 10.1093/glycob/cwn103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Principal component analysis (PCA) is a method of simplifying complex datasets to generate a lower number of parameters, while retaining the essential differences and allowing objective comparison of large numbers of datasets. Glycosaminoglycans (GAGs) are a class of linear sulfated carbohydrates with diverse sequences and consequent complex conformation and structure. Here, PCA is applied to three problems in GAG research: (i) distinguishing origins of heparin preparations, (ii) structural analysis of heparin derivatives, and (iii) classification of chondroitin sulfates (CS). The results revealed the following. (i) PCA of heparin (13)C NMR spectra allowed their origins to be distinguished and structural differences were identified. (ii) Analysis of the information-rich (1)H and (13)C NMR spectra of a series of systematically modified heparin derivatives uncovered underlying properties. These included the presence of interactions between residues, providing evidence that a degree of degeneracy exists in linkage geometry and that a different degree of variability exists for the two types of glycosidic linkage. The relative sensitivity of each position (C or H nucleus) in the disaccharide repeating unit to changes in O-, N-sulfation and N-acetylation was also revealed. (iii) Analysis of the (1)H NMR and CD spectra of a series of CS samples from different origins allowed their structural classification and highlighted the power of employing complementary spectroscopic methods in concert with PCA.
Collapse
Affiliation(s)
- Timothy R Rudd
- School of Biological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Otsuki S, Nakajima M, Lotz M, Kinoshita M. Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: site-specific correlation with weight-bearing force based on femorotibial angle measurement. J Orthop Res 2008; 26:1194-8. [PMID: 18383185 DOI: 10.1002/jor.20571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study analyzed glycosaminoglycan (GAG) content in specific compartments of the knee joint to determine the impact of malalignment and helped refine indications for osteotomy. To assess malalignment, the radiological femorotibial angle (FTA) was measured and knee joints were also graded for OA severity with the Kellgren/Lawrence (K/L) classification. Cartilage samples were obtained from 36 knees of 32 OA patients undergoing total knee replacement surgery. Explants were harvested from the medial femoral condyle (MFC), lateral femoral condyle (LFC), patellar groove (PG), and lateral posterior femoral condyle (LPC). Concentrations of hyaluronic acid (HA) and chondroitin sulfate (CS) were measured by high-performance liquid chromatography (HPLC). With OA severity, the average FTA significantly increased. HA and CS content in MFC was negatively correlated with radiographic FTA. In LFC, HA ratio, which is HA content in lateral condyle divided by medial condyle and chondroitin 6 sulfate, increased until about 190 degrees FTA. Importantly, at >190 degrees these contents were significantly decreased. HA and CS content of the femoral condyle shows topographic differences that are related to OA grade and weight-bearing force based on FTA. The clinical relevance is that osteotomy may not be indicated for patients with severe varus (>190 degrees) abnormalities.
Collapse
Affiliation(s)
- Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan.
| | | | | | | |
Collapse
|
89
|
Zinellu A, Sotgia S, Usai MF, Zinellu E, Lepedda AJ, Deiana L, Formato M, Carru C. Short-end injection capillary electrophoresis for quantification of plasma chondroitin sulfate isomer disaccharides. Anal Bioanal Chem 2008; 391:2865-8. [DOI: 10.1007/s00216-008-2202-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/14/2008] [Accepted: 05/21/2008] [Indexed: 11/28/2022]
|
90
|
Otsuki S, Taniguchi N, Grogan SP, D'Lima D, Kinoshita M, Lotz M. Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Arthritis Res Ther 2008; 10:R61. [PMID: 18507859 PMCID: PMC2483452 DOI: 10.1186/ar2432] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/04/2008] [Accepted: 05/28/2008] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Changes in sulfation of cartilage glycosaminoglycans as mediated by sulfatases can regulate growth factor signaling. The aim of this study was to analyze expression patterns of recently identified extracellular sulfatases Sulf-1 and Sulf-2 in articular cartilage and chondrocytes. METHODS Sulf-1 and Sulf-2 expressions in human articular cartilage from normal donors and patients with osteoarthritis (OA) and in normal and aged mouse joints were analyzed by real-time polymerase chain reaction, immunohistochemistry, and Western blotting. RESULTS In normal articular cartilage, Sulf-1 and Sulf-2 mRNAs and proteins were expressed predominantly in the superficial zone. OA cartilage showed significantly higher Sulf-1 and Sulf-2 mRNA expression as compared with normal human articular cartilage. Sulf protein expression in OA cartilage was prominent in the cell clusters. Western blotting revealed a profound increase in Sulf protein levels in human OA cartilage. In normal mouse joints, Sulf expression was similar to human cartilage, and with increasing age, there was a marked upregulation of Sulf. CONCLUSION The results show low levels of Sulf expression, restricted to the superficial zone in normal articular cartilage. Sulf mRNA and protein levels are increased in aging and OA cartilage. This increased Sulf expression may change the sulfation patterns of heparan sulfate proteoglycans and growth factor activities and thus contribute to abnormal chondrocyte activation and cartilage degradation in OA.
Collapse
Affiliation(s)
- Shuhei Otsuki
- Division of Arthritis Research, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Hitchcock AM, Yates KE, Costello CE, Zaia J. Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 2008; 8:1384-97. [PMID: 18318007 DOI: 10.1002/pmic.200700787] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homeostasis of connective joint tissues depends on the maintenance of an extracellular matrix, consisting of an integrated assembly of collagens, glycoproteins, proteoglycans, and glycosaminoglycans (GAGs). Isomeric chondroitin sulfate (CS) glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work profiles the CS epitopes expressed by different joint tissues as a function of age and osteoarthritis. GAGs were extracted from joint tissues (cartilage, tendon, ligment, muscle, and synovium) and partially depolymerized using chondroitinase enzymes. The oligosaccharide products were differentially stable isotope labeled by reductive amination using 2-anthranilic acid-d(0) or -d(4) and subjected to amide-hydrophilic interaction chromatography (HILIC) online LC-MS/MS. The analysis presented herein enables simultaneous profiling of the expression of nonreducing end, linker region, and Delta-unsaturated interior oligosaccharide domains of the CS chains among the different joint tissues. The results provide important new information on the changes to the expression of CS GAG chains during disease and development.
Collapse
Affiliation(s)
- Alicia M Hitchcock
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
92
|
Sharma A, Wood LD, Richardson JB, Roberts S, Kuiper NJ. Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage. Arthritis Res Ther 2008; 9:R79. [PMID: 17697352 PMCID: PMC2206378 DOI: 10.1186/ar2278] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/05/2007] [Accepted: 08/14/2007] [Indexed: 12/02/2022] Open
Abstract
Currently, autologous chondrocyte implantation (ACI) is the most commonly used cell-based therapy for the treatment of isolated femoral condyle lesions of the knee. A small number of centres performing ACI have reported encouraging long-term clinical results, but there is currently a lack of quantitative and qualitative biochemical data regarding the nature of the repair tissue. Glycosaminoglycan (GAG) structure influences physiological function and is likely to be important in the long-term stability of the repair tissue. The objective of this study was to use fluorophore-assisted carbohydrate electrophoresis (FACE) to both quantitatively and qualitatively analyse the GAG composition of repair tissue biopsies and compare them with age-matched cadaveric controls. We used immunohistochemistry to provide a baseline reference for comparison. Biopsies were taken from eight patients (22 to 52 years old) 1 year after ACI treatment and from four cadavers (20 to 50 years old). FACE quantitatively profiled the GAGs in as little as 5 μg of cartilage. The pattern and intensity of immunostaining were generally comparable with the data obtained with FACE. In the ACI repair tissue, there was a twofold reduction in chondroitin sulphate and keratan sulphate compared with age-matched control cartilage. By contrast, there was an increase in hyaluronan with significantly shorter chondroitin sulphate chains and less chondroitin 6-sulphate in repair tissue than control cartilage. The composition of the repair tissue thus is not identical to mature articular cartilage.
Collapse
Affiliation(s)
- Aarti Sharma
- Institute of Science & Technology in Medicine (ISTM), University of Keele, Staffordshire, ST5 5BG, UK
| | - Lindsay D Wood
- Institute of Science & Technology in Medicine (ISTM), University of Keele, Staffordshire, ST5 5BG, UK
| | - James B Richardson
- Institute of Orthopaedics, Robert Jones & Agnes Hunt (RJAH) Orthopaedic Hospital, ISTM, University of Keele, Oswestry, Shropshire, SY10 7AG, UK
| | - Sally Roberts
- Centre for Spinal Studies, RJAH Orthopaedic Hospital, ISTM, University of Keele, Oswestry, Shropshire, SY10 7AG, UK
| | - Nicola J Kuiper
- Institute of Science & Technology in Medicine (ISTM), University of Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
93
|
High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris. Protein Expr Purif 2008; 57:226-33. [DOI: 10.1016/j.pep.2007.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/17/2022]
|
94
|
Brown MP, Trumble TN, Sandy JD, Merritt KA. A simplified method of determining synovial fluid chondroitin sulfate chain length. Osteoarthritis Cartilage 2007; 15:1443-5. [PMID: 17632019 DOI: 10.1016/j.joca.2007.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 05/26/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether dimethylmethylene blue (DMMB) analysis, when combined with agarose gel filtration chromatography (Superose 6), can be performed instead of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine chondroitin sulfate (CS) chain length in synovial fluid (SF). METHODS SF was obtained from (1) normal horses after 8 weeks of rest, (2) the same horses after 9 months of treadmill training, and (3) horses with osteochondral (OC) injury from racing. SF CS concentrations and chain lengths were determined by gel chromatography and DMMB analysis and compared with previous results determined by FACE analysis on the same samples. RESULTS DMMB analysis showed that SF CS peak chain length in the OC injury group increased significantly (18.7 kDa) when compared to rested and exercised normal horses (15.6 kDa). The assay had a positive predictive value of 71% and a negative predictive value of 75% for discriminating between normal and injured joints. CONCLUSIONS We report a simple and inexpensive DMMB analysis of SF CS chain length, which, when coupled with Superose 6 chromatography, discriminates between normal and post-injury joints. Similar to our previous FACE analysis results [Brown MP, Trumble TN, Plaas AHK, Sandy JD, Romano M, Hernandez J, et-al. Exercise and injury increase chondroitin sulfate chain length and decrease hyaluronan chain length in synovial fluid. Osteoarthritis Cartilage 2007;15], our DMMB results show an increase in the chain length of the CS in the SF of injured joints.
Collapse
Affiliation(s)
- M P Brown
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-1432, USA
| | | | | | | |
Collapse
|
95
|
Sauerland K, Steinmeyer J. Intermittent mechanical loading of articular cartilage explants modulates chondroitin sulfate fine structure. Osteoarthritis Cartilage 2007; 15:1403-9. [PMID: 17574451 DOI: 10.1016/j.joca.2007.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 05/01/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in the sulfation pattern of chondroitin sulfate (CS) chains of proteoglycans have been associated with aging and degeneration of articular cartilage. The purpose of the present study was to investigate systematically the effect of load amplitudes, frequencies and load durations of intermittently applied mechanical pressure on the sulfation of CS chains of cultured bovine articular cartilage explants. METHODS Using a sinusoidal waveform of 0.5 Hz frequency, cyclic compressive pressure of 0.1-1.0 MPa was applied for 10s followed by a period of unloading lasting 10-1000 s. These intermittent loading protocols were repeated for a total duration of 1-6 days. Newly synthesized as well as endogenous CS chains were isolated, depolymerized and subsequently quantitated after fractionation by high-performance anion-exchange chromatography. RESULTS Increasing the mechanical demands on cartilage explants by elevating either the duration or the frequency of loading can significantly alter the fine structure of newly synthesized CS in that less chains terminate on galNAc4,6S and, in that simultaneously the ratio of the internal disaccharides DeltaDi6S to DeltaDi4S is increased. Similar results were obtained with explants being slightly mechanically challenged by low magnitudes of loads. CONCLUSION Our data show for the first time that intermittent loading of articular cartilage explants can significantly alter the sulfation pattern of the terminal CS residues as well as of the internal disaccharides. Furthermore, our results indicate that explants possess a physiological window of stress in which they are able to produce also a normal extracellular matrix.
Collapse
Affiliation(s)
- K Sauerland
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University Clinics Giessen and Marburg GmbH, Paul-Meimberg-Strasse 3, 35385 Giessen, Germany
| | | |
Collapse
|
96
|
Brown MP, Trumble TN, Plaas AHK, Sandy JD, Romano M, Hernandez J, Merritt KA. Exercise and injury increase chondroitin sulfate chain length and decrease hyaluronan chain length in synovial fluid. Osteoarthritis Cartilage 2007; 15:1318-25. [PMID: 17543547 DOI: 10.1016/j.joca.2007.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVES (1) To investigate the effects of exercise and osteochondral (OC) injury on synovial fluid (SF) chondroitin sulfate (CS) and hyaluronan (HA) concentration and chain length, (2) to compare SF and cartilage CS data from joints with OC fragmentation, and (3) to compare SF CS and HA profiles with those seen in serum from the same horses. METHODS Serum and SF were obtained from (1) normal horses after 8 weeks rest, (2) the same horses after 9 months treadmill training, and (3) horses with OC injury from racing. Articular cartilage was also collected from group 3 horses. Concentrations and chain lengths of CS and HA were determined by gel chromatography and fluorophore-assisted carbohydrate electrophoresis. RESULTS SF CS peak chain length in the OC injury group increased significantly (18.7kDa) when compared to rested horses (11.6kDa), with exercise producing an intermediate chain length (15.6kDa). Cartilage and serum from the OC injury group had the abnormally long CS chains seen in SF from these horses. Total SF HA was significantly lower in the OC injury group compared to the rested group. Both the OC injury group and the exercised group had significant decreases in SF HA chain length compared to the rested group. CONCLUSIONS Chain length of SF CS was increased by exercise and OC injury. Exercise resulted in a modest increase, whereas OC injury caused a marked increase. In contrast to CS, SF HA chain length was decreased by OC injury, and to a lesser extent by exercise. Chain length analysis of SF CS and HA may provide a useful tool for evaluation of joint health.
Collapse
Affiliation(s)
- M P Brown
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-1432, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Kaplan LD, Royce B, Meier B, Hoffmann JM, Barlow JD, Lu Y, Stampfli HF. Mechanical chondroplasty: early metabolic consequences in vitro. Arthroscopy 2007; 23:923-9. [PMID: 17868830 DOI: 10.1016/j.arthro.2007.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to determine the depth of penetration from mechanical chondroplasty and metabolic consequences of this procedure on the remaining articular cartilage. METHODS Mechanical chondroplasty was performed in vitro on a portion of fresh grade I or II articular cartilage from 8 human knee arthroplasty specimens. Treated and control (untreated) explants (approximately 30 mg) were cut from the cartilage. The explants were divided into 2 groups, day 1 and day 4, placed separately in a 48-well plate containing media, and incubated at 37 degrees C for 24 hours. After the 24-hour incubation, the explants were weighed on day 1 and day 4, and explant media were removed and tested for total proteoglycan synthesis and aggrecan synthesis. At time 0, 2 sets (2.6 mm each) of treated and control cartilage slices were cut with a precision saw. One set was stained for confocal laser microscopy via a cytotoxicity stain to determine cell viability. The second set was stained with H&E to determine depth of penetration. RESULTS The mean depth of penetration was 252.8 +/- 78 microm. There was no significant difference (P > .25) between total proteoglycan synthesis for control versus treatment groups on day 1 or 4. Aggrecan synthesis was significantly reduced on day 1 when normalized for tissue weight (P = .019) and double-stranded deoxyribonucleic acid (P = .004). On day 4, no significant difference was detected. Confocal laser microscopy did not show cell death below the zone of treatment. CONCLUSIONS There was no significant metabolic consequence caused by chondroplasty to the remaining articular cartilage, and the zone of injury was limited to the treatment area. CLINICAL RELEVANCE Mechanical chondroplasty causes no significant metabolic consequences to articular cartilage under these conditions.
Collapse
Affiliation(s)
- Lee D Kaplan
- Department of Orthopedics and Rehabilitation, University of Wisconsin Hospital and Clinic, Madison, Wisconsin, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Zinellu A, Pisanu S, Zinellu E, Lepedda AJ, Cherchi GM, Sotgia S, Carru C, Deiana L, Formato M. A novel LIF-CE method for the separation of hyaluronan- and chondroitin sulfate-derived disaccharides: Application to structural and quantitative analyses of human plasma low- and high-charged chondroitin sulfate isomers. Electrophoresis 2007; 28:2439-47. [PMID: 17577197 DOI: 10.1002/elps.200600668] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The report describes a rapid and simple CE method using LIF detection for the analysis of unsaturated disaccharides obtained from enzymatic depolymerization of plasma chondroitin sulfate (CS) isomers. The disaccharide reducing groups were labeled with 2-aminoacridone (AMAC). The fluorotagged products can be separated by reversed-polarity CE using a sodium acetate buffer, pH 3.8, in the presence of 0.05% methylcellulose. The choice of the appropriate electrophoretic conditions was performed after a deep analysis of the most important parameters affecting analyte separation. In particular, the effect of both run buffer concentration and pH on resolution, efficiency, migration times, and peak area was evaluated. The selected electrophoretic conditions allowed us to separate the CS isomers-derived Delta-disaccharides in less than 12 min, also resolving the nonsulfated disaccharides released from CS isomers from those released from hyaluronan (HA). Moreover, these conditions gave a good reproducibility of both the migration times (CV%, 0.25) and the peak areas (CV%, 1.4). Intra- and interassay CV were 5.37 and 7.23%, respectively, and analytical recovery was about 86%. The applicability of the above method to the quantitative and structural disaccharide analyses of plasma CS isomers was investigated. Data obtained from 44 healthy human subjects were compared with those obtained by a fluorophore-assisted carbohydrate electrophoresis (FACE) reference assay, by using the Passing and Bablok regression and Bland-Altman tests. The developed method could represent a good tool for an ultrasensitive analysis of CS isomers in biological samples from different sources, particularly when samples are available in very low amounts.
Collapse
Affiliation(s)
- Angelo Zinellu
- Dipartimento di Scienze Biomediche, Cattedra di Biochimica Clinica, Università degli Studi di Sassari, Italia.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Estrella RP, Whitelock JM, Packer NH, Karlsson NG. Graphitized Carbon LC−MS Characterization of the Chondroitin Sulfate Oligosaccharides of Aggrecan. Anal Chem 2007; 79:3597-606. [PMID: 17411012 DOI: 10.1021/ac0622227] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel in-gel endoglycosidase technique to study oligosaccharides with graphitized carbon LC-MS has revealed differences in the sulfation profile between the linkage and repeat regions of chondroitin sulfate on aggrecan. Bovine articular cartilage aggrecan was isolated in a composite agarose PAGE gel or diluted in ammonium acetate buffer and was digested overnight with chondroitinase ABC. Including a chemical release/reduction protocol after digestion, we could separate and detect three differentially sulfated chondroitin sulfate disaccharides of the repeat region (DeltaUA1-3GalNAc0/4/6S-ol) from the three differentially sulfated linkage region hexasaccharides (DeltaUA1-3GalNAc0/4/6Sbeta1-4GlcAbeta1-3Galbeta1-3Galbeta1-4Xylitol). Graphitized carbon LC-MS in the negative ion mode was able to resolve isomeric disaccharides and linkage region hexasaccharides. Specific MS2 and MS3 enabled us to confirm the sulfate location on all oligosaccharides by comparing their fragmentation with sulfated disaccharide standards. The presence of unsulfated, 6-sulfated, and 4-sulfated linkage regions was correlated with positive Western blot staining with the respective CS linkage region neoepitope antibodies (1B5, 3B3, 2B6) on digested aggrecan. Our strategy of examining linkage region and repeat region profiles is applicable to screening GAGs from various biological samples in order to detect differences between normal and disease states.
Collapse
Affiliation(s)
- Ruby P Estrella
- Proteome Systems Ltd., Locked Bag 2073, North Ryde Sydney, NSW 1670 Australia
| | | | | | | |
Collapse
|
100
|
Irungu J, Dalpathado DS, Go EP, Jiang H, Ha HV, Bousfield GR, Desaire H. Method for characterizing sulfated glycoproteins in a glycosylation site-specific fashion, using ion pairing and tandem mass spectrometry. Anal Chem 2007; 78:1181-90. [PMID: 16478110 DOI: 10.1021/ac051554t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural analysis of sulfated glycans is essential in understanding their biological significance. Here, we present a new approach to characterize sulfated glycans present on glycoproteins. The analysis is performed on glycopeptides, so information about the sulfated species is obtained in a glycosylation site-specific manner. This method employs an ion-pairing reagent to stabilize the SO3 group of the glycopeptide, allowing useful information to be obtained during MS/MS experiments. The amount of structural information obtained from (+)ESI-MS/MS of the ion-pair complexes for sulfated glycopeptides of equine thyroid stimulating hormone is compared with information obtained by (-)ESI-MS/MS of the underivatized, sulfated glycopeptides. The results indicate that this new method provides detailed insights into the sequence, branching, and type of N-glycans present, compared to analysis via (-)ESI-MS/MS.
Collapse
Affiliation(s)
- Janet Irungu
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|