51
|
Bhattacharjee A, Yang H, Duffy M, Robinson E, Conrad-Antoville A, Lu YW, Capps T, Braiterman L, Wolfgang M, Murphy MP, Yi L, Kaler SG, Lutsenko S, Ralle M. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria. J Biol Chem 2016; 291:16644-58. [PMID: 27226607 PMCID: PMC4974379 DOI: 10.1074/jbc.m116.727248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).
Collapse
Affiliation(s)
| | | | - Megan Duffy
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Emily Robinson
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Arianrhod Conrad-Antoville
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Tony Capps
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Michael Wolfgang
- Cell Biology Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Michael P Murphy
- the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom, and
| | - Ling Yi
- the Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen G Kaler
- the Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239,
| |
Collapse
|
52
|
Öhrvik H, Logeman B, Turk B, Reinheckel T, Thiele DJ. Cathepsin Protease Controls Copper and Cisplatin Accumulation via Cleavage of the Ctr1 Metal-binding Ectodomain. J Biol Chem 2016; 291:13905-13916. [PMID: 27143361 DOI: 10.1074/jbc.m116.731281] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential metal ion for embryonic development, iron acquisition, cardiac function, neuropeptide biogenesis, and other critical physiological processes. Ctr1 is a high affinity Cu(+) transporter on the plasma membrane and endosomes that exists as a full-length protein and a truncated form of Ctr1 lacking the methionine- and histidine-rich metal-binding ectodomain, and it exhibits reduced Cu(+) transport activity. Here, we identify the cathepsin L/B endolysosomal proteases functioning in a direct and rate-limiting step in the Ctr1 ectodomain cleavage. Cells and mice lacking cathepsin L accumulate full-length Ctr1 and hyper-accumulate copper. As Ctr1 also transports the chemotherapeutic drug cisplatin via direct binding to the ectodomain, we demonstrate that the combination of cisplatin with a cathepsin L/B inhibitor enhances cisplatin uptake and cell killing. These studies identify a new processing event and the key protease that cleaves the Ctr1 metal-binding ectodomain, which functions to regulate cellular Cu(+) and cisplatin acquisition.
Collapse
Affiliation(s)
- Helena Öhrvik
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| | - Brandon Logeman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Freiburg 79104 Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104 Germany
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|
53
|
Analysis of time-course gene expression profiles to study regulation of cell growth in fed-batch bioreactors. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
54
|
Zatulovskaia YA, Ilyechova EY, Puchkova LV. The Features of Copper Metabolism in the Rat Liver during Development. PLoS One 2015; 10:e0140797. [PMID: 26474410 PMCID: PMC4608700 DOI: 10.1371/journal.pone.0140797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed.
Collapse
Affiliation(s)
- Yulia A Zatulovskaia
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina Y Ilyechova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| | - Ludmila V Puchkova
- Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russia; Laboratory of trace element metabolism, ITMO University, St. Petersburg, Russia
| |
Collapse
|
55
|
Sappal R, MacDougald M, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:51-63. [PMID: 26022556 DOI: 10.1016/j.aquatox.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of HRO and Cu were most common in CI and II respiratory indices. Our study suggests that warm acclimation blunts sensitivity of the ETS to temperature rise and that HRO and warm acclimation impose mitochondrial changes that sensitize the ETS to Cu. Overall, our study highlights the significance of the ETS in mitochondrial bioenergetic dysfunction caused by thermal stress, HRO and Cu exposure.
Collapse
Affiliation(s)
- Ravinder Sappal
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Michelle MacDougald
- Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
56
|
Jones MWM, de Jonge MD, James SA, Burke R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J Biol Inorg Chem 2015; 20:979-87. [PMID: 26153547 DOI: 10.1007/s00775-015-1281-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
The main role of the animal gastrointestinal (GI) tract is the selective absorption of dietary nutrients from ingested food sources. One class of vital micronutrients are the essential biometals such as copper, zinc and iron, which participate in a plethora of biological process, acting as enzymatic or structural co-factors for numerous proteins and also as important cellular signalling molecules. To help elucidate the mechanisms by which biometals are absorbed from the diet, we mapped elemental distribution in entire, intact Drosophila larval GI tracts using synchrotron X-ray fluorescence microscopy. Our results revealed distinct regions of the GI tract enriched for specific metals. Copper was found to be concentrated in the copper cell region but also in the region directly anterior to the copper cells and unexpectedly, in the middle midgut/iron cell region as well. Iron was observed exclusively in the iron cell region, confirming previous work with iron-specific histological stains. Zinc was observed throughout the GI tract with an increased accumulation in the posterior midgut region, while manganese was seen to co-localize with calcium specifically in clusters in the distal Malpighian tubules. This work simultaneously reveals distribution of a number of biologically important elements in entire, intact GI tracts. These distributions revealed not only a previously undescribed Ca/Mn co-localization, but also the unexpected presence of additional Cu accumulations in the iron cell region.
Collapse
Affiliation(s)
- Michael W M Jones
- Australian Synchrotron, 800 Blackburn Road, Clayton, 3168, Australia
| | | | | | | |
Collapse
|
57
|
Pfeiffenberger J, Mogler C, Gotthardt DN, Schulze-Bergkamen H, Litwin T, Reuner U, Hefter H, Huster D, Schemmer P, Członkowska A, Schirmacher P, Stremmel W, Cassiman D, Weiss KH. Hepatobiliary malignancies in Wilson disease. Liver Int 2015; 35:1615-1622. [PMID: 25369181 DOI: 10.1111/liv.12727] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS & AIMS Reports of hepatobiliary malignancies in Wilson disease are sparse. The aim of this study was to evaluate hepatobiliary malignancies in Wilson disease patients concerning the clinical course of tumour disease and pathological analysis of tumour tissue. METHODS Multicenter cohort study of patients with confirmed diagnosis of Wilson disease treated at the Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland, the university hospitals Heidelberg, Duesseldorf and Dresden, Germany, and the Department of Hepatology, University Leuven, Belgium. Occurrence, treatment and outcome of hepatobiliary tumours were analysed retrospectively. RESULTS Of a total of 1186 patients, fourteen developed hepatobiliary malignancies. Eight were hepatocellular carcinomas (HCC) and six were intrahepatic cholangiocellular carcinomas (ICC). The prevalence of hepatobiliary malignancies in the cohort was 1.2% and the incidence was 0.28 per 1000 person years. Pathological analysis of tumour material showed no abnormal copper concentration. CONCLUSIONS The rate of hepatobiliary malignancies in Wilson disease is very low, even in cirrhotic patients. As a result of the relevant number of ICC in addition to HCC histological analysis through surgical resection or biopsy should be mandatory when a suspect liver lesion is detected. The influence of copper depletion from Wilson disease-specific medical treatment on tumour activity remains to be elucidated.
Collapse
Affiliation(s)
- Jan Pfeiffenberger
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. Proc Natl Acad Sci U S A 2015; 112:2314-9. [PMID: 25675478 DOI: 10.1073/pnas.1413003112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ∼90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.
Collapse
|
59
|
Li Y, Zhao Y, Chan W, Wang Y, You Q, Liu C, Zheng J, Li J, Yang S, Yang R. Selective Tracking of Lysosomal Cu2+ Ions Using Simultaneous Target- and Location-Activated Fluorescent Nanoprobes. Anal Chem 2014; 87:584-91. [DOI: 10.1021/ac503240x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yinhui Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yirong Zhao
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Winghong Chan
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yijun Wang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Qihua You
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Changhui Liu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Jing Zheng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Sheng Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Collaborative Innovation Center for Chemistry
and Molecular Medicine, Hunan University, Changsha, 410082, China
| |
Collapse
|
60
|
Sappal R, MacDonald N, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C. Interactions of copper and thermal stress on mitochondrial bioenergetics in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:10-20. [PMID: 25310891 DOI: 10.1016/j.aquatox.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Thermal stress may influence how organisms respond to concurrent or subsequent chemical, physical and biotic stressors. To unveil the potential mechanisms via which thermal stress modulates metals-induced bioenergetic disturbances, the interacting effects of temperature and copper (Cu) were investigated in vitro. Mitochondria isolated from rainbow trout livers were exposed to a range of Cu concentrations at three temperatures (5, 15 and 25 °C) with measurement of mitochondrial complex I (mtCI)-driven respiratory flux indices and uncoupler-stimulated respiration. Additional studies assessed effects of temperature and Cu on mtCI enzyme activity, induction of mitochondrial permeability transition pore (MPTP), swelling kinetics and mitochondrial membrane potential (MMP). Maximal and basal respiration rates, as well as the proton leak, increased with temperature with the Q10 effects being higher at lower temperatures. The effect of Cu depended on the mitochondrial functional state in that the maximal respiration was monotonically inhibited by Cu exposure while low and high Cu concentrations stimulated and inhibited the basal respiration/proton leak, respectively. Importantly, temperature exacerbated the effects of Cu by lowering the concentration of the metal required for toxicity and causing loss of thermal dependence of mitochondrial respiration. Mitochondrial complex I activity was inhibited by Cu but was not affected by incubation temperature. Compared with the calcium (Ca) positive control, Cu-imposed mitochondrial swelling exhibited variable kinetics depending on the inducing conditions, and was highly temperature-sensitive. A partial reversal of the Cu-induced swelling by cyclosporine A was observed suggesting that it is in part mediated by MPTP. Interestingly, the combination of high Cu and high temperature not only completely inhibited mitochondrial swelling but also greatly increased the respiratory control ratio (RCR) relative to the controls. Copper exposure also caused marked MMP dissipation which was reversed by N-acetyl cysteine and vitamin E suggesting a role of reactive oxygen species (ROS) in this response. Taken together, Cu impairs oxidative phosphorylation in part by inhibiting the electron transport chain (ETC), stimulating proton leak, inducing MPTP and dissipating MMP, with high temperature exacerbating these effects. Thus environmental temperature rise due to natural phenomenon or global climate change may sensitize fish to Cu toxicity by exacerbating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ravinder Sappal
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Nicole MacDonald
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Mark Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC V9W 2C2, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
61
|
Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 2014; 10:1034-42. [PMID: 25344811 PMCID: PMC4232477 DOI: 10.1038/nchembio.1662] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022]
Abstract
We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu(+) accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu(+) became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.
Collapse
Affiliation(s)
- Anne Hong-Hermesdorf
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Marcus Miethke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Sheel C Dodani
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Jefferson Chan
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Dulmini Barupala
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, USA
| | - Dylan W Domaille
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Dyna I Shirasaki
- Department of Biological Chemistry, University of California, Los Angeles, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.Institute for Genomics and Proteomics, University of California, Los Angeles, USA.Department of Biological Chemistry, University of California, Los Angeles, USA
| | - Peter K Weber
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, USA
| | - Jennifer Pett-Ridge
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, USA
| | - Christopher J Chang
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| |
Collapse
|
62
|
Copper: toxicological relevance and mechanisms. Arch Toxicol 2014; 88:1929-38. [PMID: 25199685 DOI: 10.1007/s00204-014-1355-y] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023]
Abstract
Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated.
Collapse
|
63
|
de Jonge MD, Ryan CG, Jacobsen CJ. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1031-47. [PMID: 25177992 PMCID: PMC4151681 DOI: 10.1107/s160057751401621x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/11/2014] [Indexed: 05/22/2023]
Abstract
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.
Collapse
Affiliation(s)
- Martin D. de Jonge
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Christopher G. Ryan
- CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168, Australia
| | - Chris J. Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| |
Collapse
|
64
|
Lutsenko S. Modifying factors and phenotypic diversity in Wilson's disease. Ann N Y Acad Sci 2014; 1315:56-63. [PMID: 24702697 DOI: 10.1111/nyas.12420] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wilson's disease (WD) is a human disorder of copper homeostasis caused by mutations in the copper-transporting ATPase ATP7B. WD is characterized by copper accumulation, predominantly in the liver and brain, hepatic pathology, and wide differences between patients in the age of onset and the spectrum of symptoms. Several factors contribute to the phenotypic variability of WD. The WD-causing mutations produce a wide range of changes in stability, activity, intracellular localization, and trafficking of ATP7B; the nonpathogenic genetic polymorphisms may contribute to the phenotype. In Atp7b(-/-) mice, a mouse model of WD, an abnormal intracellular distribution of copper in the liver triggers distinct changes in the transcriptome; these mRNA profiles might be used to more specifically define disease progression. The major effect of accumulating copper on lipid metabolism and especially cholesterol homeostasis in mice and humans suggests the importance of fat and cholesterol metabolism as modifying factors in WD.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
65
|
Gateau C, Delangle P. Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease. Ann N Y Acad Sci 2014; 1315:30-6. [DOI: 10.1111/nyas.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christelle Gateau
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| | - Pascale Delangle
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| |
Collapse
|
66
|
Semisch A, Ohle J, Witt B, Hartwig A. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 2014; 11:10. [PMID: 24520990 PMCID: PMC3943586 DOI: 10.1186/1743-8977-11-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. Methods The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Results Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. Conclusions The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.
Collapse
Affiliation(s)
| | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, Karlsruhe 76131, Germany.
| |
Collapse
|
67
|
Huster D. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson's disease. Ann N Y Acad Sci 2014; 1315:37-44. [PMID: 24697742 DOI: 10.1111/nyas.12337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wilson's disease (WD) is caused by ATP7B mutations and results in copper accumulation and toxicity in liver and brain tissues. The specific mechanisms underlying copper toxicity are still poorly understood. Mouse models have revealed new insights into pathomechanisms of hepatic WD. Mitochondrial damage is observed in livers of WD patients and in mouse models; copper induces fragmentation of mitochondrial membrane lipids, particularly cardiolipin, with deleterious effects on both mitochondrial integrity and function. Copper accumulation also induces chronic inflammation in WD livers, which is followed by regeneration in parts of the liver and occasionally neoplastic proliferation. Gene expression studies using microarrays have aided our understanding of the molecular basis of these changes. Copper overload alters cholesterol biosynthesis in hepatocytes resulting in reduced liver and serum cholesterol. Experiments are currently underway to elucidate the link between copper and cholesterol metabolism. These findings may facilitate the development of specific therapies to ameliorate WD progression.
Collapse
Affiliation(s)
- Dominik Huster
- Department of Gastroenterology and Oncology, Deaconess Hospital Leipzig, Academic Teaching Hospital University of Leipzig, Germany
| |
Collapse
|
68
|
Holmes-Hampton GP, Tong WH, Rouault TA. Biochemical and biophysical methods for studying mitochondrial iron metabolism. Methods Enzymol 2014; 547:275-307. [PMID: 25416363 DOI: 10.1016/b978-0-12-801415-8.00015-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a heavily utilized element in organisms and numerous mechanisms accordingly regulate the trafficking, metabolism, and storage of iron. Despite the high regulation of iron homeostasis, several diseases and mutations can lead to the misregulation and often accumulation of iron in the cytosol or mitochondria of tissues. To understand the genesis of iron overload, it is necessary to employ various techniques to quantify iron in organisms and mitochondria. This chapter discusses techniques for determining the total iron content of tissue samples, ranging from colorimetric determination of iron concentrations, atomic absorption spectroscopy, inductively coupled plasma-optical emission spectroscopy, and inductively coupled plasma-mass spectrometry. In addition, we discuss in situ techniques for analyzing iron including electron microscopic nonheme iron histochemistry, electron energy loss spectroscopy, synchrotron X-ray fluorescence imaging, and confocal Raman microscopy. Finally, we discuss biophysical methods for studying iron in isolated mitochondria, including ultraviolet-visible, electron paramagnetic resonance, X-ray absorbance, and Mössbauer spectroscopies. This chapter should aid researchers to select and interpret mitochondrial iron quantifications.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA.
| |
Collapse
|
69
|
Cho J, Pradhan T, Lee YM, Kim JS, Kim S. A calix[2]triazole[2]arene-based fluorescent chemosensor for probing the copper trafficking pathway in Wilson's disease. Dalton Trans 2014; 43:16178-82. [DOI: 10.1039/c4dt02208d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We herein present a synthesis of a new fluorescent chemosensor for Cu2+and its application to Wilson's disease cell model to probe the copper trafficking pathway.
Collapse
Affiliation(s)
- Jihee Cho
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| | - Tuhin Pradhan
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Yun Mi Lee
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Sanghee Kim
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| |
Collapse
|
70
|
In silico investigation of the ATP7B gene: insights from functional prediction of non-synonymous substitution to protein structure. Biometals 2013; 27:53-64. [PMID: 24253677 DOI: 10.1007/s10534-013-9686-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/07/2013] [Indexed: 01/22/2023]
Abstract
ATP7B is a copper-transporting ATPase that plays a key role in the regulation of copper homeostasis. Mutations in the ATP7B gene are causative for Wilson's disease, and recent reports have suggested that genetic variants are associated with susceptibility to Alzheimer's disease. Unfortunately, it is difficult to profile experimentally novel genetic variants in the ATP7B gene, because the human protein X-ray structure is not yet entirely understood. In order to investigate ATP7B non-synonymous substitutions, we used an in silico amino acid sequence-based approach. Specifically, we analyzed 337 ATP7B non-synonymous substitutions, which included Wilson's disease-causing mutations (DVs) and non Wilson's disease-causing variants (NDVs), with an algorithm that estimated a combined probability (cPdel) of an amino acidic change to be deleterious for the protein function. This approach appeared to reliably indentify the probability of DVs and NDVs to be deleterious and to profile still unknown gene variants. Specifically, after analyzing ATP7B protein domains with the cPdel method, we found results in line with the predicted-modeled domains and some new suggestions. In conclusion, a functional survey of amino acid changes in the ATP7B protein is provided herein, and we suggest that this bioinformatic method can furnish information about novel ATP7B mutations. Furthermore, the same approach can be applied to other uncharacterized proteins.
Collapse
|
71
|
Gu S, Yang H, Qi Y, Deng X, Zhang L, Guo Y, Huang Q, Li J, Shi X, Song Z, Deng H. Novel ATPase Cu(2+) transporting beta polypeptide mutations in Chinese families with Wilson's disease. PLoS One 2013; 8:e66526. [PMID: 23843956 PMCID: PMC3699604 DOI: 10.1371/journal.pone.0066526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/24/2022] Open
Abstract
Wilson's disease (WD) is an autosomal recessive inherited disorder caused by mutations in the ATPase Cu(2+) transporting beta polypeptide gene (ATP7B). The detailed metabolism of copper-induced pathology in WD is still unknown. Gene mutations as well as the possible pathways involved in the ATP7B deficiency were documented. The ATP7B gene was analyzed for mutations in 18 Chinese Han families with WD by direct sequencing. Cell viability and apoptosis analysis of ATP7B small interfering RNA (siRNA)-treated human liver carcinoma (HepG2) cells were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst 33342 staining. Finally, the expression of B-cell CLL/lymphoma 2 (BCL2), BCL2-associated X protein (BAX), sterol regulatory element binding protein 1 (SREBP1), and minichromosome maintenance protein 7 (MCM7) of ATP7B siRNA-treated cells were tested by real-time polymerase chain reaction (real-time PCR) and Western blot analysis. Twenty different mutations including four novel mutations (p.Val145Phe, p.Glu388X, p.Thr498Ser and p.Gly837X) in the ATP7B gene were identified in our families. Haplotype analysis revealed that founder effects for four mutations (p.Arg778Leu, p.Pro992Leu, p.Ile1148Thr and p.Ala1295Val) existed in these families. Transfection of HepG2 cells with ATP7B siRNA resulted in decreased mRNA expression by 86.3%, 93.1% and 90.8%, and decreased protein levels by 58.5%, 85.5% and 82.1% at 24, 48 and 72 hours, respectively (All P<0.01). In vitro study revealed that the apoptotic, cell cycle and lipid metabolism pathway may be involved in the mechanism of WD. Our results revealed that the genetic cause of 18 Chinese families with WD and ATP7B deficiency-induce apoptosis may result from imbalance in cell cycle and lipid metabolism pathway.
Collapse
Affiliation(s)
- Shaojuan Gu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Huarong Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Qi
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
72
|
Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 2013; 733:83-91. [PMID: 23463874 DOI: 10.1016/j.mrfmmm.2012.03.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper ions are well suited to facilitate formation of reactive oxygen species (ROS) that can damage biomolecules, including DNA and chromatin. That this can occur in vitro with isolated DNA or chromatin,or by exposure of cultured mammalian cells to copper complexed with various agents, has been well demonstrated. Whether that is likely to occur in vivo is not as clear. This review addresses the question of whether and how copper ions or complexes – in forms that could be present in vivo, damage DNA and chromosome structure and/or promote epigenetic changes that can lead to pathology and diseases, including cancer and neurological conditions such as Alzheimer's disease, Lewy body dementias, and spongiform encephalopathies. This question is considered in light of our knowledge that copper-dependent enzymes are important contributors to antioxidant defense, and that the mammalian organism has robust mechanisms for maintaining constant levels of copper not only in body fluids but in its major organs. Overall,and except in unusual genetic states that lead to copper overload in specific cells (particularly those in liver), it appears that excessive intake of copper is not a significant factor in the development of disease states.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
73
|
Vogt S, Ralle M. Opportunities in multidimensional trace metal imaging: taking copper-associated disease research to the next level. Anal Bioanal Chem 2013; 405:1809-20. [PMID: 23079951 PMCID: PMC3566297 DOI: 10.1007/s00216-012-6437-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/07/2012] [Accepted: 09/18/2012] [Indexed: 01/09/2023]
Abstract
Copper plays an important role in numerous biological processes across all living systems predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly regulated and disturbances lead to severe disorders such as Wilson disease and Menkes disease. Age-related changes of copper metabolism have been implicated in other neurodegenerative disorders such as Alzheimer disease. The role of copper in these diseases has been a topic of mostly bioinorganic research efforts for more than a decade, metal-protein interactions have been characterized, and cellular copper pathways have been described. Despite these efforts, crucial aspects of how copper is associated with Alzheimer disease, for example, are still only poorly understood. To take metal-related disease research to the next level, emerging multidimensional imaging techniques are now revealing the copper metallome as the basis to better understand disease mechanisms. This review describes how recent advances in X-ray fluorescence microscopy and fluorescent copper probes have started to contribute to this field, specifically in Wilson disease and Alzheimer disease. It furthermore provides an overview of current developments and future applications in X-ray microscopic methods.
Collapse
Affiliation(s)
- Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
| | - Martina Ralle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
74
|
Medici V, Shibata NM, Kharbanda KK, LaSalle JM, Woods R, Liu S, Engelberg JA, Devaraj S, Török NJ, Jiang JX, Havel PJ, Lönnerdal B, Kim K, Halsted CH. Wilson's disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology 2013; 57:555-65. [PMID: 22945834 PMCID: PMC3566330 DOI: 10.1002/hep.26047] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatic methionine metabolism may play an essential role in regulating methylation status and liver injury in Wilson's disease (WD) through the inhibition of S-adenosylhomocysteine hydrolase (SAHH) by copper (Cu) and the consequent accumulation of S-adenosylhomocysteine (SAH). We studied the transcript levels of selected genes related to liver injury, levels of SAHH, SAH, DNA methyltransferases genes (Dnmt1, Dnmt3a, Dnmt3b), and global DNA methylation in the tx-j mouse (tx-j), an animal model of WD. Findings were compared to those in control C3H mice, and in response to Cu chelation by penicillamine (PCA) and dietary supplementation of the methyl donor betaine to modulate inflammatory and methylation status. Transcript levels of selected genes related to endoplasmic reticulum stress, lipid synthesis, and fatty acid oxidation were down-regulated at baseline in tx-j mice, further down-regulated in response to PCA, and showed little to no response to betaine. Hepatic Sahh transcript and protein levels were reduced in tx-j mice with consequent increase of SAH levels. Hepatic Cu accumulation was associated with inflammation, as indicated by histopathology and elevated serum alanine aminotransferase (ALT) and liver tumor necrosis factor alpha (Tnf-α) levels. Dnmt3b was down-regulated in tx-j mice together with global DNA hypomethylation. PCA treatment of tx-j mice reduced Tnf-α and ALT levels, betaine treatment increased S-adenosylmethionine and up-regulated Dnmt3b levels, and both treatments restored global DNA methylation levels. CONCLUSION Reduced hepatic Sahh expression was associated with increased liver SAH levels in the tx-j model of WD, with consequent global DNA hypomethylation. Increased global DNA methylation was achieved by reducing inflammation by Cu chelation or by providing methyl groups. We propose that increased SAH levels and inflammation affect widespread epigenetic regulation of gene expression in WD.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis
| | - Rima Woods
- Department of Medical Microbiology and Immunology, University of California Davis
| | - Sarah Liu
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | | | | | - Natalie J. Török
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Joy X. Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Peter J. Havel
- Department of Molecular Biosciences, University of California Davis
- Department of Nutrition, University of California Davis
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis
| | - Charles H. Halsted
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| |
Collapse
|
75
|
McRae R, Lai B, Fahrni CJ. Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 2013; 5:52-61. [PMID: 23212029 PMCID: PMC3769613 DOI: 10.1039/c2mt20176c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.
Collapse
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| |
Collapse
|
76
|
Qin Z, Lai B, Landero J, Caruso JA. Coupling transmission electron microscopy with synchrotron radiation X-ray fluorescence microscopy to image vascular copper. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:1043-1049. [PMID: 23093768 DOI: 10.1107/s090904951203405x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Recently, using synchrotron radiation X-ray fluorescence microscopy (SRXRF), the copper accumulation in rat aortic elastin and copper topography in human THP-1 cell monolayer have been described. However, it is necessary to locate more accurately cellular copper in the vascular cells and tissues. In the current study, SRXRF coupling with transmission electron microscopy (TEM) was used to image copper in sections of human THP-1 cells and mouse aorta. The results showed that sections of 1 µm thickness are required for SRXRF producing a correlative image with TEM between copper topography and cellular ultrastructure. As compared with SRXRF alone, coupling TEM with SRXRF can clearly identify the location of copper in the nucleus and nucleolus in non-dividing THP-1 cell sections, and can differentiate the copper location at elastic laminae from collagen in mouse aortic sections. Thus, these results revealed new information about the copper topography in vascular cells and tissues and highlighted the potential of TEM-SRXRF to investigate the role of copper in macrophage and aortic homeostasis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
77
|
Vadhanam MV, Thaiparambil J, Gairola CG, Gupta RC. Oxidative DNA adducts detected in vitro from redox activity of cigarette smoke constituents. Chem Res Toxicol 2012; 25:2499-504. [PMID: 22994544 DOI: 10.1021/tx300312f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cigarette smoke contains a variety of carcinogens, cocarcinogens, mutagens, and tumor promoters. In addition to polycyclic aromatic carcinogens and tobacco-specific nitrosamines, cigarette smoke also contains an abundance of catechols, aldehydes, and other constituents, which are DNA damaging directly or indirectly; therefore, they can also contribute to cigarette smoke-mediated carcinogenicity. In this study, we investigated the potential of cigarette smoke constituents to induce oxidative damage to DNA through their capacity to redox cycle. When DNA (300 μg/mL) was incubated with cigarette smoke condensate (0.2 mg of tobacco particulate matter/mL) and CuCl(2) as a catalyst (50-100 μM), a variety of oxidative DNA adducts were detected by (32)P-postlabeling/TLC. Of the total adduct burden (2114 ± 419 adducts/10(6) nucleotides), over 40% of all adducts were attributed to the benchmark oxidative DNA lesion, 8-oxodeoxyguanosine (8-oxodG). Adducts were formed dose dependently. Essentially, similar adduct profiles were obtained when cigarette smoke condensate was substituted with ortho- and para-dihydroxybenzenes. Vehicle treatment with Cu(2+) or CSC alone did not induce any significant amount of oxidative DNA damage. Furthermore, coincubation of cigarette smoke condensate and ortho-dihydroxybenzene with DNA resulted in a higher amount of oxidative DNA adducts than obtained with the individual entity, suggesting that adducts presumably originated from catechols or catechol-like compounds in cigarette smoke condensate. Adducts resulting from both cigarette smoke condensate and pure dihydroxybenzenes were chromatographically identical to adducts formed by reaction of DNA with H(2)O(2), which is known to produce 8-oxodG, and many other oxidative DNA adducts. When the cigarette smoke condensate-DNA reaction was performed in the presence of ellagic acid, a known antioxidant, the adduct formation was inhibited dose dependently, further suggesting that adducts originated from oxidative pathway. Our data thus provide evidence of the capacity of catechols or catechol-like constituents in cigarette smoke to produce oxidative DNA damage, which may contribute to the tumor-promoting activity of cigarette smoke.
Collapse
Affiliation(s)
- Manicka V Vadhanam
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
78
|
Paunesku T, Wanzer MB, Kirillova EN, Muksinova KN, Revina VS, Lyubchansky ER, Grosche B, Birschwilks M, Vogt S, Finney L, Woloschak GE. X-ray fluorescence microscopy for investigation of archival tissues. HEALTH PHYSICS 2012; 103:181-186. [PMID: 22951477 PMCID: PMC3716449 DOI: 10.1097/hp.0b013e31824e7023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several recent efforts in the radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from lifelong studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is x-ray fluorescence microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for the study of metal content, speciation, and localization in cells, tissues, and organs. Here the authors review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples, which show that the quality of archival tissues allows XFM investigation.
Collapse
Affiliation(s)
- T Paunesku
- Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Ward 13-007, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 2012; 35:167-75. [PMID: 21336677 DOI: 10.1007/s10753-011-9302-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Collapse
|
80
|
Abstract
The movement of key transition metal ions is recognized to be of critical importance in the interaction between macrophages and intracellular pathogens. The present study investigated the role of copper in mouse macrophage responses to Salmonella enterica sv. Typhimurium. The copper chelator BCS (bathocuproinedisulfonic acid, disodium salt) increased intracellular survival of S. Typhimurium within primary mouse BMM (bone-marrow-derived macrophages) at 24 h post-infection, implying that copper contributed to effective host defence against this pathogen. Infection of BMM with S. Typhimurium or treatment with the TLR (Toll-like receptor) 4 ligand LPS (lipopolysaccharide) induced the expression of several genes encoding proteins involved in copper transport [Ctr (copper transporter) 1, Ctr2 and Atp7a (copper-transporting ATPase 1)], as well as the multi-copper oxidase Cp (caeruloplasmin). Both LPS and infection with S. Typhimurium triggered copper accumulation within punctate intracellular vesicles (copper 'hot spots') in BMM as indicated by the fluorescent reporter CS1 (copper sensor 1). These copper hot spots peaked in their accumulation at approximately 18 h post-stimulation and were dependent on copper uptake into cells. Localization studies indicated that the copper hot spots were in discrete vesicles distinct from Salmonella containing vacuoles and lysosomes. We propose that copper hot spot formation contributes to antimicrobial responses against professional intracellular bacterial pathogens.
Collapse
|
81
|
Wilmarth P, Short K, Fiehn O, Lutsenko S, David L, Burkhead JL. A systems approach implicates nuclear receptor targeting in the Atp7b(-/-) mouse model of Wilson's disease. Metallomics 2012; 4:660-8. [PMID: 22565294 PMCID: PMC3695828 DOI: 10.1039/c2mt20017a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Wilson's disease (WD) is an inherited disorder of copper metabolism characterized by liver disease and/or neurologic and psychiatric pathology. The disease is a result of mutation in ATP7B, which encodes the ATP7B copper transporting ATPase. Loss of copper transport function by ATP7B results in copper accumulation primarily in the liver, but also in other organs including the brain. Studies in the Atp7b(-/-) mouse model of WD revealed specific transcript and metabolic changes that precede development of liver pathology, most notably downregulation of transcripts in the cholesterol biosynthetic pathway. In order to gain insight into the molecular mechanisms of transcriptomic and metabolic changes, we used a systems approach analysing the pre-symptomatic hepatic nuclear proteome and liver metabolites. We found that ligand-activated nuclear receptors FXR/NR1H4 and GR/NR3C1 and nuclear receptor interacting partners are less abundant in Atp7b(-/-) hepatocyte nuclei, while DNA repair machinery and the nucleus-localized glutathione peroxidase, SelH, are more abundant. Analysis of metabolites revealed an increase in polyol sugar alcohols, indicating a change in osmotic potential that precedes hepatocyte swelling observed later in disease. This work is the first application of quantitative Multidimensional Protein Identification Technology (MuDPIT) to a model of WD to investigate protein-level mechanisms of WD pathology. The systems approach using "shotgun" proteomics and metabolomics in the context of previous transcriptomic data reveals molecular-level mechanisms of WD development and facilitates targeted analysis of hepatocellular copper toxicity.
Collapse
Affiliation(s)
- Phillip Wilmarth
- Dept. Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239
| | - Kristopher Short
- Dept. Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508. Fax: 01 907 7864607; Tel: 01 907 7864765
| | - Oliver Fiehn
- University of California Davis Genome Center, Davis, California 95616
| | - Svetlana Lutsenko
- Dept. Physiology, The Johns Hopkins University, Baltimore, MD, 21205
| | - Larry David
- Dept. Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239
| | - Jason L. Burkhead
- Dept. Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508. Fax: 01 907 7864607; Tel: 01 907 7864765
| |
Collapse
|
82
|
Gray LW, Peng F, Molloy SA, Pendyala VS, Muchenditsi A, Muzik O, Lee J, Kaplan JH, Lutsenko S. Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load. PLoS One 2012; 7:e38327. [PMID: 22802922 PMCID: PMC3390108 DOI: 10.1371/journal.pone.0038327] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
Body copper homeostasis is regulated by the liver, which removes excess copper
via bile. In Wilson's disease (WD), this function is disrupted due to
inactivation of the copper transporter ATP7B resulting in hepatic copper
overload. High urinary copper is a diagnostic feature of WD linked to liver
malfunction; the mechanism behind urinary copper elevation is not fully
understood. Using Positron Emission Tomography-Computed Tomography (PET-CT)
imaging of live Atp7b−/− mice at
different stages of disease, a longitudinal metal analysis, and characterization
of copper-binding molecules, we show that urinary copper elevation is a specific
regulatory process mediated by distinct molecules. PET-CT and atomic absorption
spectroscopy directly demonstrate an age-dependent decrease in the capacity of
Atp7b−/− livers to accumulate
copper, concomitant with an increase in urinary copper. This reciprocal
relationship is specific for copper, indicating that cell necrosis is not the
primary cause for the initial phase of metal elevation in the urine. Instead,
the urinary copper increase is associated with the down-regulation of the
copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper
Carrier, SCC, in the urine. SCC is also elevated in the urine of the
liver-specific Ctr1−/− knockouts, which
have normal ATP7B function, suggesting that SCC is a normal metabolite carrying
copper in the serum. In agreement with this hypothesis, partially purified
SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic
down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper
via kidney when liver function is impaired. These results demonstrate that the
body regulates copper export through more than one mechanism; better
understanding of urinary copper excretion may contribute to an improved
diagnosis and monitoring of WD.
Collapse
Affiliation(s)
- Lawrence W. Gray
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Fangyu Peng
- Department of Radiology, University of Texas
Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shannon A. Molloy
- Department of Biochemistry and Molecular
Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of
America
| | - Venkata S. Pendyala
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics
and Department of Radiology, Wayne State University, School of Medicine,
Detroit, Michigan, United States of America
| | - Jaekwon Lee
- Redox Biology Center, Department of
Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of
America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular
Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of
America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
- * E-mail:
| |
Collapse
|
83
|
Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1580-93. [PMID: 22387373 DOI: 10.1016/j.bbamcr.2012.02.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022]
Abstract
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Tracy Nevitt
- Department of Pharmacology, Duke University Medical School, Durham, NC 27710, USA
| | | | | |
Collapse
|
84
|
Hasan NM, Lutsenko S. Regulation of copper transporters in human cells. CURRENT TOPICS IN MEMBRANES 2012; 69:137-61. [PMID: 23046650 DOI: 10.1016/b978-0-12-394390-3.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for normal growth and development of human organisms. The role of copper as a cofactor of important metabolic enzymes, such as cytochrome c oxidase, superoxide dismutase, lysyl oxidase, dopamine-β-hydroxylase, and many others, has been well established. In recent years, new regulatory roles of copper have emerged. Accumulating evidence points to the involvement of copper in lipid metabolism, antimicrobial defense, neuronal activity, resistance of tumor cells to platinum-based chemotherapeutic drugs, kinase-mediated signal transduction, and other essential cellular processes. For many of these processes, the precise mechanism of copper action remains to be established. Nevertheless, it is increasingly clear that many regulatory and signaling events are associated with changes in the intracellular localization and abundance of copper transporters, as well as distinct compartmentalization of copper itself. In this review, we discuss current data on regulation of the localization and abundance of copper transporters in response to metabolic and signaling events in human cells. Regulation by kinase-mediated phosphorylation will be addressed along with the emerging area of the redox-driven control of copper transport. We highlight mechanistic questions that await further testing.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
85
|
Early gestational gene transfer with targeted ATP7B expression in the liver improves phenotype in a murine model of Wilson's disease. Gene Ther 2011; 19:1085-94. [PMID: 22158007 DOI: 10.1038/gt.2011.186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ideal gene therapy for metabolical liver disorders would target hepatocytes before the onset of disease and be durable, non-toxic and non-immunogenic. Early gestational gene transfer can achieve such goals. Here, we demonstrate that prenatal gene transfer of human Atp7b reduces liver pathology and improves biochemical markers in Atp7b(-/-) mice, a murine model of Wilson's disease (WD). Following prenatal injection of lentivirus vector containing the human Atp7b gene under the transcriptional control of a liver-specific promoter, the full-length ATP7B was detectable in mouse livers for the entire duration of experiments (20 weeks after birth). In contrast to a marked pathology in non-injected animals, livers from age-matched treated mice consistently demonstrated normal gross and histological morphology. Hepatic copper content was decreased in the majority of treated mice, although remaining copper levels varied. Improvement of hepatic copper metabolism was further apparent from the presence of copper-bound ceruloplasmin in the sera and normalization of the mRNA levels for HMG CoA-reductase. With this approach, the complete loss of copper transport function can be ameliorated, as evident from phenotypical improvement in treated Atp7b(-/-) mice. This study provides proof of principle for in utero gene therapy in WD and other liver-based enzyme deficiencies.
Collapse
|
86
|
He K, Chen Z, Ma Y, Pan Y. Identification of high-copper-responsive target pathways in Atp7b knockout mouse liver by GSEA on microarray data sets. Mamm Genome 2011; 22:703-13. [PMID: 21997183 DOI: 10.1007/s00335-011-9359-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/22/2011] [Indexed: 01/16/2023]
Affiliation(s)
- Kan He
- School of Agriculture and Biology, Department of Animal Sciences, Shanghai Jiao Tong University, Shanghai, Peoples' Republic of China.
| | | | | | | |
Collapse
|
87
|
Burkhead JL, Gray LW, Lutsenko S. Systems biology approach to Wilson's disease. Biometals 2011; 24:455-66. [PMID: 21380607 PMCID: PMC3106420 DOI: 10.1007/s10534-011-9430-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/19/2011] [Indexed: 12/12/2022]
Abstract
Wilson's disease (WD) is a severe disorder of copper misbalance, which manifests with a wide spectrum of liver pathology and/or neurologic and psychiatric symptoms. WD is caused by mutations in a gene encoding a copper-transporting ATPase ATP7B and is accompanied by accumulation of copper in tissues, especially in the liver. Copper-chelation therapy is available for treatment of WD symptoms and is often successful, however, significant challenges remain with respect to timely diagnostics and treatment of the disease. The lack of genotype-phenotype correlation remains unexplained, the causes of fulminant liver failure are not known, and the treatment of neurologic symptoms is only partially successful, underscoring the need for better understanding of WD mechanisms and factors that influence disease manifestations. Recent gene and protein profiling studies in animal models of WD began to uncover cellular processes that are primarily affected by copper accumulation in the liver. The results of such studies, summarized in this review, revealed new molecular players and pathways (cell cycle and cholesterol metabolism, mRNA splicing and nuclear receptor signaling) linked to copper misbalance. A systems biology approach promises to generate a comprehensive view of WD onset and progression, thus helping with a more fine-tune treatment and monitoring of the disorder.
Collapse
|
88
|
Qin Z, Toursarkissian B, Lai B. Synchrotron radiation X-ray fluorescence microscopy reveals a spatial association of copper on elastic laminae in rat aortic media. Metallomics 2011; 3:823-8. [PMID: 21589993 DOI: 10.1039/c1mt00033k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper, an essential trace metal in humans, plays an important role in elastic formation. However, little is known about the spatial association between copper, elastin, and elastin producing cells. The aorta is the largest artery; the aortic media is primarily composed of the elastic lamellae and vascular smooth muscle cells, which makes it a good model to address this issue. Synchrotron radiation X-ray fluorescence microscopy (SRXRF) is a new generation technique to investigate the spatial topography of trace metals in biological samples. Recently, we utilized this technique to determine the topography of copper as well as other trace elements in aortic media of Sprague Dawley rats. A standard rat diet was used to feed Sprague Dawley rats, which contains the normal dietary requirements of copper and zinc. Paraffin embedded segments (4 μm of thickness) of thoracic aorta were analyzed using a 10 keV incident monochromatic X-ray beam focusing on a spot size of 0.3 μm × 0.2 μm (horizontal × vertical). The X-ray spectrum was measured using an energy-dispersive silicon drift detector for elemental topography. Our results showed that phosphorus, sulfur, and zinc are predominately distributed in the vascular smooth muscle cells, whereas copper is dramatically accumulated in elastic laminae, indicating a preferential spatial association of copper on elastic laminae in aortic media. This finding sheds new light on the role of copper in elastic formation. Our studies also demonstrate that SRXRF allows for the visualization of trace elements in tissues and cells of rodent aorta with high spatial resolution and provides an opportunity to study the role of trace elements in vasculature.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|
89
|
Novel techniques and newer markers for the evaluation of “proximal tubular dysfunction”. Int Urol Nephrol 2011; 43:1107-15. [DOI: 10.1007/s11255-011-9914-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
90
|
Nery FG, Marques I, Magalhaes M, Miranda HP. Wilson's Disease and Ulcerative Colitis in the Same Patient: Just A Coincidence? A Case Report and Literature Review. Gastroenterology Res 2010; 3:287-289. [PMID: 27942310 PMCID: PMC5139858 DOI: 10.4021/gr271w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2010] [Indexed: 11/23/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic relapsing inflammatory bowel disease (IBD). Wilson’s disease (WD) is a disorder of copper (Cu) metabolism due to inherited mutations in a gene encoding a putative Cu-transporting P-type ATPase, with a heterogeneous clinical presentation that includes hepatic, neurological, or psychiatric symptoms. The case of a 17-year-old female that presented with severe liver failure, three years after UC onset, and in which diagnosis of WD was established is reported. We review the literature and discuss the possible association between the two rare diseases. Although evidence of a common genetic background between UC and WD has not been described, high Cu serum level is present in both diseases. Cu is one of the trace elements necessary for antioxidant defenses during inflammatory processes, affecting the production of free radicals of oxygen and the levels of cellular antioxidants. The presence of both entities in the same patient may suggest abnormal metabolism of Cu or be just a coincidence.
Collapse
Affiliation(s)
- Filipe G Nery
- Medicine Service, CHP - Hospital Sto Antonio, Porto, Portugal
| | - Irene Marques
- Medicine Service, CHP - Hospital Sto Antonio, Porto, Portugal
| | | | | |
Collapse
|