51
|
Akiyama T, Shinzawa M, Qin J, Akiyama N. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 2013; 4:249. [PMID: 23986760 PMCID: PMC3752772 DOI: 10.3389/fimmu.2013.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
52
|
Macedo C, Evangelista AF, Marques MM, Octacílio-Silva S, Donadi EA, Sakamoto-Hojo ET, Passos GA. Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology 2013; 218:554-60. [PMID: 22883565 DOI: 10.1016/j.imbio.2012.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023]
Abstract
The autoimmune regulator (Aire) is a transcription factor that controls the ectopic expression of a large set of peripheral tissue antigen (PTA) genes in medullary thymic epithelial cells (mTECs). Recent evidence has demonstrated that Aire releases stalled RNA polymerase II (RNA Pol II) from blockage at the promoter region of its target genes. Given that, in addition to messenger RNAs (mRNA), RNA Pol II also transcribes microRNAs (miRNAs), we raised the hypothesis that Aire might play a role as an upstream controller of miRNA transcription. To test this, we initially analyzed the expression profiles of 662 miRNAs in control and Aire-silenced (siRNA) murine mTEC 3.10 cells using microarrays. The bioinformatics programs SAM and Cluster-TreeView were then used to identify the differentially expressed miRNAs and their profiles, respectively. Thirty Aire-dependent miRNAs were identified in the Aire-silenced mTECs, of which 18 were up- and 12 were down-regulated. The down-regulated miR-376 family was the focus of this study because its members (miR-376a, miR-376b and miR-376c) are located in the genome within the Gm2922 open-reading frame (ORF) gene segment on the chromosome 12F1. The T-boxes (TTATTA) and G-boxes (GATTGG), which represent putative RNA Pol II promoter motifs, were located in a portion spanning 10 kb upstream of the ATG codon of Gm2922. Moreover, we found that Gm2922 encodes an mRNA, which was also down-regulated in Aire-silenced mTECs. These results represent the first evidence that Aire can play a role as a controller of transcription of miRNAs located within genomic regions encompassing ORF and/or mRNA genes.
Collapse
Affiliation(s)
- Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
53
|
Yang S, Bansal K, Lopes J, Benoist C, Mathis D. Aire's plant homeodomain(PHD)-2 is critical for induction of immunological tolerance. Proc Natl Acad Sci U S A 2013; 110:1833-8. [PMID: 23319629 PMCID: PMC3562810 DOI: 10.1073/pnas.1222023110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aire impacts immunological tolerance by regulating the expression of a large set of genes in thymic medullary epithelial cells, thereby controlling the repertoire of self-antigens encountered by differentiating thymocytes. Both humans and mice lacking Aire develop multiorgan autoimmunity. Currently, there are few molecular details on how Aire performs this crucial function. The more amino-terminal of its two plant homeodomains (PHDs), PHD1, helps Aire target poorly transcribed loci by "reading" the methylation status of a particular lysine residue of histone-3, a process that does not depend on the more carboxyl-terminal PHD-2. This study addresses the role of PHD2 in Aire function by comparing the behavior of wild-type and PHD2-deleted Aire in both transfected cells and transgenic mice. PHD2 was required for Aire to interact with sets of protein partners involved in chromatin structure/binding or transcription but not with those implicated in pre-mRNA processing; it also was not required for Aire's nuclear translocation or regional distribution. PHD2 strongly influenced the ability of Aire to regulate the medullary epithelial cell transcriptome and so was crucial for effective central tolerance induction. Thus, Aire's two PHDs seem to play distinct roles in the scenario by which it assures immunological tolerance.
Collapse
Affiliation(s)
| | | | | | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
54
|
Gaetani M, Matafora V, Saare M, Spiliotopoulos D, Mollica L, Quilici G, Chignola F, Mannella V, Zucchelli C, Peterson P, Bachi A, Musco G. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 2012; 40:11756-68. [PMID: 23074189 PMCID: PMC3526288 DOI: 10.1093/nar/gks933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.
Collapse
Affiliation(s)
- Massimiliano Gaetani
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Vittoria Matafora
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Mario Saare
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Luca Mollica
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Francesca Chignola
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Valeria Mannella
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Pärt Peterson
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Angela Bachi
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
55
|
Saare M, Rebane A, Rajashekar B, Vilo J, Peterson P. Autoimmune regulator is acetylated by transcription coactivator CBP/p300. Exp Cell Res 2012; 318:1767-78. [PMID: 22659170 DOI: 10.1016/j.yexcr.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 11/17/2022]
Abstract
The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes.
Collapse
Affiliation(s)
- Mario Saare
- Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
56
|
Wu J, Zhu W, Fu H, Zhang Y, Sun J, Yang W, Li Y. DNA-PKcs interacts with Aire and regulates the expression of toll-like receptors in RAW264.7 cells. Scand J Immunol 2012; 75:479-88. [PMID: 22239103 DOI: 10.1111/j.1365-3083.2012.02682.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The autoimmune regulator (Aire) is a key mediator of the central tolerance for peripheral tissue self-antigen (PTAs) and is involved in the transcriptional control of many antigens in thymic medullary epithelial cells (mTECs). However, the function of Aire in peripheral lymphoid tissues and haematopoietic cells, particularly in monocytes and macrophages, remains poorly understood. We previously found that the expression of Toll-like receptor (TLR) 1, TLR3 and TLR8 was notably upregulated in pEGFPC1/Aire stably transfected RAW264.7 (GFP-Aire/RAW) cells, while the expressions of other TLRs were not significantly changed. The mechanism by which Aire affects TLR1, TLR3 and TLR8 expression is not clear. Interactions with other proteins, such as DNA-dependent protein kinase (DNA-PK), are crucial for regulating the transcriptional activity of Aire. In this study, we found that Aire and DNA-PK catalytic subunit (DNA-PKcs) were co-located in the nucleus of GFP-Aire/RAW cells, and they interact with each other. Small interfering RNA knock-down of DNA-PKcs in these cells decreased the expression of TLR1, TLR3 and TLR8, but no change was observed in pEGFPC1 stably transfected RAW264.7 (GFP/RAW) cells. We did not observe any change in the expressions of other TLRs after DNA-PKcs knock-down in GFP-Aire/RAW or GFP/RAW cells. A similar observation has been made in pEGFPC1/Aire or pEGFPC1 transiently transfected primary peritoneal macrophages. Using a luciferase activity assay, we found the that the transcriptional activity of TLR1, TLR3 and TLR8 promoters was also decreased after knock-down of DNA-PKcs in GFP-Aire/RAW cells. In conclusion, our results suggest that DNA-PKcs may interact with Aire to promote the expression of TLRs in RAW264.7 cells.
Collapse
Affiliation(s)
- J Wu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Pedroza LA, Kumar V, Sanborn KB, Mace EM, Niinikoski H, Nadeau K, Vasconcelos DDM, Perez E, Jyonouchi S, Jyonouchi H, Banerjee PP, Ruuskanen O, Condino-Neto A, Orange JS. Autoimmune regulator (AIRE) contributes to Dectin-1-induced TNF-α production and complexes with caspase recruitment domain-containing protein 9 (CARD9), spleen tyrosine kinase (Syk), and Dectin-1. J Allergy Clin Immunol 2012; 129:464-72, 472.e1-3. [PMID: 21962774 DOI: 10.1016/j.jaci.2011.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. OBJECTIVE To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of β-glucan through the Dectin-1 pathway, which is required for defense against Candida species. METHODS Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. RESULTS PBMCs from patients with APECED syndrome had reduced TNF-α responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-α release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. CONCLUSION AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome.
Collapse
Affiliation(s)
- Luis A Pedroza
- Center for Investigation in Pediatrics, University of Campinas Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M. Autoimmune polyendocrine syndrome type 1: case report and review of literature. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2012; 56:54-66. [PMID: 22460196 DOI: 10.1590/s0004-27302012000100009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/03/2011] [Indexed: 11/22/2022]
Abstract
Autoimmune polyendocrine syndrome type 1 (APECED) is a rare autosomal recessive disorder characterized by autoimmune multiorgan attack. The disease is caused by mutations in the autoimmune regulator gene (AIRE), resulting in defective AIRE protein, which is essential for selftolerance. Clinical manifestations are widely variable. Although the classic triad is composed by mucocutaneous candidiasis, hypoparathyroidism and adrenal failure, many other components may develop. Treatment is based on supplementation of the various deficiencies, and patients require regular follow-up throughout their lifespan. This article describes the case of a patient with the disease, and reviews literature data on the epidemiology, clinical course, immunogenetic aspects, diagnosis and treatment of the syndrome.
Collapse
Affiliation(s)
- Fernanda Guimarães Weiler
- Bone and Mineral Unit, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| | | | | |
Collapse
|
59
|
Lovewell T, Tazi-Ahnini R. Models to explore the molecular function and regulation of AIRE. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2011. [DOI: 10.1016/j.ejmhg.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
60
|
Žumer K, Plemenitaš A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res 2011; 39:7908-19. [PMID: 21724609 PMCID: PMC3185428 DOI: 10.1093/nar/gkr527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/17/2023] Open
Abstract
Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. Although it has been reported that AIRE interacts with proteins involved in nuclear transport, DNA-damage response, chromatin remodeling, transcription and pre-mRNA-splicing, the precise mechanism of AIRE-induced tissue restricted antigen expression has remained elusive. In this study, we investigated an APECED patient mutation that causes the loss of the extreme C-terminus of AIRE and found that this mutant protein is transcriptionaly inactive. When tethered heterologously to DNA, this domain could stimulate transcription and splicing by itself. Moreover, the loss of this C-terminus disrupted interactions with the positive transcription elongation factor b (P-TEFb). Via P-TEFb, AIRE increased levels of RNA polymerase II on and enhanced pre-mRNA splicing of heterologous and endogenous target genes. Indeed, the inhibition of CDK9, the kinase subunit of P-TEFb, inhibited AIRE-induced pre-mRNA splicing of these genes. Thus, AIRE requires P-TEFb to activate transcription elongation and co-transcriptional processing of target genes.
Collapse
Affiliation(s)
- Kristina Žumer
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
61
|
Takeuchi M. Immune tolerance and autoimmune uveoretinitis: the role of the ocular microenvironment. Immunotherapy 2011; 3:1103-11. [PMID: 21913832 DOI: 10.2217/imt.11.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two major self-antigens, S-antigen and interphotoreceptor retinoid-binding protein, which can induce uveoretinitis, exist in the eye. However, immunologic tolerance to these self-antigens is generated and maintained. Two major mechanisms have been demonstrated by which tolerance to tissue-specific self-antigens is maintained. One is central tolerance in the thymus where autoreactive T cells are deleted by medullary thymic epithelial cells expressing the autoimmune regulator gene (Aire) and the other is peripheral tolerance mediated by regulatory T cells such as Foxp3(+)CD25(+)CD4(+) T cells. In addition, the eye is an immune privileged site where indigenous immunomodulatory mechanisms allow immune protection of the eye in a manner that is largely devoid of immunogenic inflammation.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, 3-2 Namiki Tokorozawa Saitama, 359-8513, Japan.
| |
Collapse
|
62
|
Morrot A, Terra-Granado E, Pérez AR, Silva-Barbosa SD, Milićević NM, Farias-de-Oliveira DA, Berbert LR, De Meis J, Takiya CM, Beloscar J, Wang X, Kont V, Peterson P, Bottasso O, Savino W. Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. PLoS Negl Trop Dis 2011; 5:e1268. [PMID: 21858238 PMCID: PMC3156684 DOI: 10.1371/journal.pntd.0001268] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease. The thymus is a primary lymphoid organ that plays an important role on the development of the immune system and maturation of the T cell repertoire. During the normal life span, this organ undergoes involution during the aging and also in the presence of a wide variety of infectious diseases. It has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment. In the acute phase, this results in a severe atrophy of the organ and early release of immature double-positive (DP) T cells into the periphery. The effect of the changes promoted by the parasite infection on thymic central tolerance has remained not clear. The present study shows that the intrathymic key elements that promote the negative selection of thymocytes during the thymopoiesis remains functional in the acute chagasic thymic atrophy. However, we found that the DP cells released into the periphery acquire an activated phenotype and its high frequency in the peripheral blood are associated with severe cardiac forms of human chronic Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yamaguchi Y, Takayanagi A, Chen J, Sakai K, Kudoh J, Shimizu N. Mouse thymic epithelial cell lines expressing "Aire" and peripheral tissue-specific antigens reproduce in vitro negative selection of T cells. Exp Cell Res 2011; 317:2019-30. [PMID: 21683072 DOI: 10.1016/j.yexcr.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/30/2011] [Accepted: 05/01/2011] [Indexed: 12/19/2022]
Abstract
In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire⁺TEC1, Aire⁺TEC2, Aire⁺DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire⁺ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire⁺ cell lines are derived from mTECs and exhibit characteristic natures of "antigen presenting cells" including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire⁺ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease.
Collapse
Affiliation(s)
- Yoshitaka Yamaguchi
- Advanced Research Center for Genome Super Power, Keio University, 2 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Danso-Abeam D, Humblet-Baron S, Dooley J, Liston A. Models of aire-dependent gene regulation for thymic negative selection. Front Immunol 2011; 2:14. [PMID: 22566805 PMCID: PMC3342030 DOI: 10.3389/fimmu.2011.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/21/2011] [Indexed: 11/13/2022] Open
Abstract
Mutations in the autoimmune regulator (AIRE) gene lead to autoimmune polyendocrinopathy syndrome type 1 (APS1), characterized by the development of multi-organ autoimmune damage. The mechanism by which defects in AIRE result in autoimmunity has been the subject of intense scrutiny. At the cellular level, the working model explains most of the clinical and immunological characteristics of APS1, with AIRE driving the expression of tissue-restricted antigens (TRAs) in the epithelial cells of the thymic medulla. This TRA expression results in effective negative selection of TRA-reactive thymocytes, preventing autoimmune disease. At the molecular level, the mechanism by which AIRE initiates TRA expression in the thymic medulla remains unclear. Multiple different models for the molecular mechanism have been proposed, ranging from classical transcriptional activity, to random induction of gene expression, to epigenetic tag recognition effect, to altered cell biology. In this review, we evaluate each of these models and discuss their relative strengths and weaknesses.
Collapse
|
65
|
Eldershaw SA, Sansom DM, Narendran P. Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue. Clin Exp Immunol 2011; 163:296-308. [PMID: 21303359 PMCID: PMC3048612 DOI: 10.1111/j.1365-2249.2010.04316.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2010] [Indexed: 01/07/2023] Open
Abstract
Educational immune tolerance to self-antigens is induced primarily in the thymus where tissue-restricted antigens (TRAs) are presented to T lymphocytes by cells of the thymic stroma - a process known as central tolerance. The expression of these TRAs is controlled in part by a transcription factor encoded by the autoimmune regulatory (Aire) gene. Patients with a mutation of this gene develop a condition known as autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED), characterized by autoimmune destruction of endocrine organs, fungal infection and dental abnormalities. There is now evidence for TRA expression and for mechanisms of functional tolerance outside the thymus. This has led to a number of studies examining Aire expression and function at these extra-thymic sites. These investigations have been conducted across different animal models using different techniques and have often shown discrepant results. Here we review the studies of extra thymic Aire and discuss the evidence for its expression and function in both human and murine systems.
Collapse
Affiliation(s)
- S A Eldershaw
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham, UK. ,uk
| | | | | |
Collapse
|
66
|
Fierabracci A. Recent insights into the role and molecular mechanisms of the autoimmune regulator (AIRE) gene in autoimmunity. Autoimmun Rev 2011; 10:137-143. [PMID: 20850570 DOI: 10.1016/j.autrev.2010.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/09/2010] [Indexed: 12/14/2022]
Abstract
Since many years immunologists have being tried to answer the tantalizing enigma of immunological tolerance. Complex mechanisms in both thymus (central tolerance) and peripheral lymphoid organs (peripheral tolerance) underly lymphocyte tolerance and its maintenance. The genesis of autoimmunity involves environmental and genetic mechanisms, both contributing to the disruption and deregulation of central and peripheral tolerance, allowing autoreactive pathogenetic T and B-cell clones arising. Among genetic factors the autoimmune regulator (AIRE) gene is one of the best candidates to understand the complex scenario of autoimmunity. Autoimmune polyendocrinopathy syndrome type 1 is a rare autosomal recessive disease caused by mutations in the AIRE gene. Therefore, the disorder has certainly been a powerful model to address the question concerning how a tolerant state is achieved or maintained and to explore how it has gone lost in the context of autoimmunity. AIRE has been proposed to function as a 'non classical' transcription factor, strongly implicated in the regulation of organ-specific antigen expression in thymic epithelial cells and in the imposition of T cell tolerance, thus regulating the negative selection of autoreactive T cell clones. A plethora of proposal have been suggested for AIRE's potential mechanism of action, thus regulating the negative selection of autoreactive T cells. In this review recent discoveries are presented into the role and molecular mechanisms of the AIRE protein in APECED and other autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Research Laboratories, Children's Hospital Bambino Gesù, Piazza S. Onofrio, 4, 00165 Rome, Italy.
| |
Collapse
|
67
|
Cai CQ, Zhang T, Breslin MB, Giraud M, Lan MS. Both polymorphic variable number of tandem repeats and autoimmune regulator modulate differential expression of insulin in human thymic epithelial cells. Diabetes 2011; 60:336-44. [PMID: 20876716 PMCID: PMC3012191 DOI: 10.2337/db10-0255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Polymorphic INS-VNTR plays an important role in regulating insulin transcript expression in the human thymus that leads to either insulin autoimmunity or tolerance. The molecular mechanisms underlying the INS-VNTR haplotype-dependent insulin expression are still unclear. In this study, we determined the mechanistic components underlying the differential insulin gene expression in human thymic epithelial cells, which should have profound effects on the insulin autoimmune tolerance induction. RESEARCH DESIGN AND METHODS A repetitive DNA region designated as a variable number of tandem repeats (VNTR) is located upstream of the human insulin gene and correlates with the incidence of type 1 diabetes. We generated six class I and two class III VNTR constructs linked to the human insulin basal promoter or SV40 heterologous promoter/enhancer and demonstrated that AIRE protein modulates the insulin promoter activities differentially through binding to the VNTR region. RESULTS Here we show that in the presence of the autoimmune regulator (AIRE), the class III VNTR haplotype is responsible for an average of three-fold higher insulin expression than class I VNTR in thymic epithelial cells. In a protein-DNA pull-down experiment, AIRE protein is capable of binding to VNTR class I and III probes. Further, the transcriptional activation of the INS-VNTR by AIRE requires the insulin basal promoter. The VNTR sequence loses its activation activity when linked to a heterologous promoter and/or enhancer. CONCLUSIONS These findings demonstrate a type 1 diabetes predisposition encoded by the INS-VNTR locus and a critical function played by AIRE, which constitute a dual control mechanisms regulating quantitative expression of insulin in human thymic epithelial cells.
Collapse
Affiliation(s)
- Chuan Qi Cai
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tao Zhang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mary B. Breslin
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthieu Giraud
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Lan
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Corresponding author: Michael S. Lan,
| |
Collapse
|
68
|
Conteduca G, Ferrera F, Pastorino L, Fenoglio D, Negrini S, Sormani MP, Indiveri F, Scarrà GB, Filaci G. The role of AIRE polymorphisms in melanoma. Clin Immunol 2010; 136:96-104. [PMID: 20363194 DOI: 10.1016/j.clim.2010.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/10/2010] [Accepted: 03/05/2010] [Indexed: 11/20/2022]
Abstract
Polymorphisms of AIRE, a transcription factor that up-regulates intrathymic expression of tissue-specific antigens including melanoma-associated antigens (MAAs), may variably affect the selection of MAAs-specific thymocytes, generating T-cell repertoires protecting or predisposing individuals to melanoma. We found that AIRE single nucleotide polymorphisms (SNPs) rs1055311, rs1800520 and rs1800522 were significantly more frequent in healthy subjects than in melanoma patients, independently from sex, age and stages of melanoma. The presence of these SNPs was associated with increased frequency of two T-cell clonotypes specific for MAGE-1 linking their protective effect to selection/expansion of MAA-specific T cells. Interestingly, mRNA transcribed on the rs1800520 SNP showed increased free energy than the wild type suggesting that its reduced stability may be responsible for the different activity of the polymorphic AIRE molecule. This finding may contribute at identifying subjects with increased risk of developing melanoma or patients with melanoma that may take benefit from immunotherapy.
Collapse
Affiliation(s)
- G Conteduca
- Center of Excellence for Biomedical Research, University of Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Falorni A, Brozzetti A, Torre DL, Tortoioli C, Gambelunghe G. Association of genetic polymorphisms and autoimmune Addison's disease. Expert Rev Clin Immunol 2010; 4:441-56. [PMID: 20477573 DOI: 10.1586/1744666x.4.4.441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoimmune Addison's disease (AAD) is a complex genetic disease that results from the interaction of a predisposing genetic background with as yet unknown environmental factors. The disease is marked by the appearance of circulating autoantibodies against steroid 21-hydroxylase. Mutations of the autoimmune regulator gene are responsible for the so-called autoimmune polyendocrine syndrome type I (APS I), of which AAD is a major disease component. Among genetic factors for isolated AAD and APS II, a major role is played by HLA class II genes: HLA-DRB1 0301-DQA1 0501-DQB1 0201 and DRB1 04-DQA1 0301-DQB1 0302 are positively, and RB1 0403 is negatively, associated with a genetic risk for AAD. The MHC class I chain-related gene A allele 5.1 is strongly and positively associated with AAD. Other gene polymorphisms contributing to genetic risk for AAD are MHC2TA, the gene coding for class II transactivator, the master regulator of class II expression, cytotoxic T lymphocyte antigen-4, PTPN22 and the vitamin D receptor.
Collapse
Affiliation(s)
- Alberto Falorni
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | | | | | | | | |
Collapse
|
70
|
Meloni A, Fiorillo E, Corda D, Incani F, Serra ML, Contini A, Cao A, Rosatelli MC. DAXX is a new AIRE-interacting protein. J Biol Chem 2010; 285:13012-21. [PMID: 20185822 PMCID: PMC2857146 DOI: 10.1074/jbc.m109.037747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 02/09/2010] [Indexed: 01/18/2023] Open
Abstract
The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in the AIRE gene cause the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. To this day, the precise function of the AIRE protein in regulating transcription and its interacting proteins has yet to be entirely clarified. The knowledge of novel AIRE interactors and their precise role will improve our knowledge of its biological activity and address some of the foremost autoimmunity-related questions. In this study, we have used a yeast two-hybrid system to identify AIRE-interacting proteins. This approach led us to the discovery of a new AIRE-interacting protein called DAXX. The protein is known to be a multifunctional adaptor with functions both in apoptosis and in transcription regulation pathways. The interaction between AIRE and DAXX has been validated by in vivo coimmunoprecipitation analysis and colocalization study in mammalian cells. The interaction has been further confirmed by showing in transactivation assays that DAXX exerts a strong repressive role on the transcriptional activity of AIRE.
Collapse
Affiliation(s)
- Allesandra Meloni
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Edoardo Fiorillo
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Denise Corda
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Federica Incani
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Luisa Serra
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonella Contini
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonio Cao
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Maria Cristina Rosatelli
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| |
Collapse
|
71
|
Abramson J, Giraud M, Benoist C, Mathis D. Aire's partners in the molecular control of immunological tolerance. Cell 2010; 140:123-35. [PMID: 20085707 DOI: 10.1016/j.cell.2009.12.030] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 11/13/2009] [Accepted: 12/07/2009] [Indexed: 12/13/2022]
Abstract
Aire induces the expression of a battery of peripheral-tissue self-antigens (PTAs) in thymic stromal cells, promoting the clonal deletion of differentiating T cells that recognize them. Just how Aire targets and induces PTA transcripts remains largely undefined. Screening via Aire-targeted coimmunoprecipitation followed by mass spectrometry, and validating by multiple RNAi-mediated knockdown approaches, we identified a large set of proteins that associate with Aire. They fall into four major functional classes: nuclear transport, chromatin binding/structure, transcription and pre-mRNA processing. One set of Aire interactions centered on DNA protein kinase and a group of proteins it partners with to resolve DNA double-stranded breaks or promote transcriptional elongation. Another set of interactions was focused on the pre-mRNA splicing and maturation machinery, potentially explaining the markedly more effective processing of PTA transcripts in the presence of Aire. These findings suggest a model to explain Aire's widespread targeting and induction of weakly transcribed chromatin regions.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
72
|
Carles CC, Fletcher JC. The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes Dev 2009; 23:2723-8. [PMID: 19952107 DOI: 10.1101/gad.1812609] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During development, trithorax group (trxG) chromatin remodeling complexes counteract repression by Polycomb group (PcG) complexes to sustain active expression of key regulatory genes. Although PcG complexes are well characterized in plants, little is known about trxG activities. Here we demonstrate that the Arabidopsis SAND (Sp100, AIRE-1, NucP41/75, DEAF-1) domain protein ULTRAPETALA1 (ULT1) functions as a trxG factor that counteracts the PcG-repressive activity of CURLY LEAF. In floral stem cells, ULT1 protein associates directly with the master homeotic locus AGAMOUS, inducing its expression by regulating its histone methylation status. Our analysis introduces a novel mechanism that mediates epigenetic switches controlling post-embryonic stem cell fates in plants.
Collapse
Affiliation(s)
- Cristel C Carles
- Plant Gene Expression Center, United States Department of Agriculture/University of California at Berkeley, Albany, California 94710, USA
| | | |
Collapse
|
73
|
Org T, Rebane A, Kisand K, Laan M, Haljasorg U, Andreson R, Peterson P. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet 2009; 18:4699-710. [PMID: 19744957 PMCID: PMC2778368 DOI: 10.1093/hmg/ddp433] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/08/2009] [Indexed: 02/06/2023] Open
Abstract
The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| | - Ana Rebane
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| | - Kai Kisand
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| | - Martti Laan
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| | - Uku Haljasorg
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| | - Reidar Andreson
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of General and Molecular Pathology and
| |
Collapse
|
74
|
Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol 2009; 21:582-9. [PMID: 19833494 PMCID: PMC2787634 DOI: 10.1016/j.coi.2009.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 01/09/2023]
Abstract
The maintenance of immunologic self-tolerance requires the coordination of multiple complementary systems. Studies of the Autoimmune Regulator (Aire) gene have revealed that Aire promotes self-tolerance partly by inducing the transcription of a wide array of tissue-specific antigens (TSAs), particularly in the thymus. The importance of Aire is highlighted by the fact that patients and mice defective in Aire expression develop a multi-organ autoimmune syndrome. In this review we discuss recent progress in our understanding of Aire's control of immune tolerance at the cellular and molecular levels, and also address the potential importance of Aire expression both in the thymus and in the peripheral lymphoid organs. The detection of both Aire and TSA expression by cell populations outside of the thymus raises the possibility that such expression may play a relevant role in the maintenance of self-tolerance.
Collapse
Affiliation(s)
- James M Gardner
- Diabetes Center and the Department of Medicine, University of California, San Francisco, CA 94143-0540, USA
| | | | | | | |
Collapse
|
75
|
Macedo C, Evangelista AF, Magalhães DA, Fornari TA, Linhares LL, Junta CM, Silva GL, Sakamoto-Hojo ET, Donadi EA, Savino W, Passos GAS. Evidence for a network transcriptional control of promiscuous gene expression in medullary thymic epithelial cells. Mol Immunol 2009; 46:3240-4. [PMID: 19720399 DOI: 10.1016/j.molimm.2009.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/17/2022]
Abstract
The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells.
Collapse
Affiliation(s)
- Cláudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Falorni A, Brozzetti A, Calcinaro F, Marzotti S, Santeusanio F. Recent advances in adrenal autoimmunity. Expert Rev Endocrinol Metab 2009; 4:333-348. [PMID: 30781285 DOI: 10.1586/eem.09.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoimmune Addison's disease (AAD) results from the immune-mediated destruction of adrenocortical cells. AAD is a major component of the autoimmune polyendocrine syndromes type 1 (APS 1) and type 2. The adrenal autoimmune process is made evident by the apperance of circulating autoantibodies against the steroidogenic enzyme 21-hydroxylase. Detection of 21-hydroxylase in patients with endocrine autoimmune diseases enables the identification of subjects with preclinical AAD. An impaired response to a corticotrophin stimulation test marks the irreversible stage of preclinical AAD and predicts progression towards clinical AAD in over 80% of cases. APS 1 is caused by mutations of the autoimmune regulator (AIRE) gene, which encodes an activator of transcription, Aire, that induces the expression of autoantigens in thymic medullary epithelial cells and promotes immunological tolerance. Isolated and APS 2-related AAD is an autoimmune disease with evidence for complex genetic susceptibility caused by T-cell-mediated destruction of adrenocortical cells, with a major contribution of HLA genes. The target cells in the adrenal cortex participate in the immune reaction by releasing chemokines, such as CXCL-10, that attract Th1 cells.
Collapse
Affiliation(s)
- Alberto Falorni
- a Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Annalisa Brozzetti
- b Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Filippo Calcinaro
- c Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Stefania Marzotti
- d Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| | - Fausto Santeusanio
- e Department of Internal Medicine, Via E. Dal Pozzo, 06126 Perugia, Italy.
| |
Collapse
|
77
|
Shikama N, Nusspaumer G, Holländer GA. Clearing the AIRE: on the pathophysiological basis of the autoimmune polyendocrinopathy syndrome type-1. Endocrinol Metab Clin North Am 2009; 38:273-88, vii. [PMID: 19328411 DOI: 10.1016/j.ecl.2009.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autoimmune polyendocrine syndrome type-1 clinically manifests as the triad of hypoparathyroidism, primary adrenocortical insufficiency, and chronic mucocutaneous candidiasis. Mutations in the gene that encodes the autoimmune regulator protein, AIRE, have been identified as the cause of the autoimmune polyendocrine syndrome type-1. The loss of immunologic tolerance to tissue-restricted antigens consequent to an absence of AIRE expression in the thymus results in the thymic export of autoreactive T cells that initiate autoimmunity. In this article, we discuss the role of AIRE in autoimmune polyendocrine syndrome type-1 and identify issues that still need to be addressed to fully understand the molecular pathophysiology of this complex syndrome.
Collapse
Affiliation(s)
- Noriko Shikama
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel and The University Children's Hospital (UKBB), Basel, Switzerland
| | | | | |
Collapse
|
78
|
Chignola F, Gaetani M, Rebane A, Org T, Mollica L, Zucchelli C, Spitaleri A, Mannella V, Peterson P, Musco G. The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation. Nucleic Acids Res 2009; 37:2951-61. [PMID: 19293276 PMCID: PMC2685098 DOI: 10.1093/nar/gkp166] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 11/14/2022] Open
Abstract
Plant homeodomain (PHD) fingers are often present in chromatin-binding proteins and have been shown to bind histone H3 N-terminal tails. Mutations in the autoimmune regulator (AIRE) protein, which harbours two PHD fingers, cause a rare monogenic disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE activates the expression of tissue-specific antigens by directly binding through its first PHD finger (AIRE-PHD1) to histone H3 tails non-methylated at K4 (H3K4me0). Here, we present the solution structure of AIRE-PHD1 in complex with H3K4me0 peptide and show that AIRE-PHD1 is a highly specialized non-modified histone H3 tail reader, as post-translational modifications of the first 10 histone H3 residues reduce binding affinity. In particular, H3R2 dimethylation abrogates AIRE-PHD1 binding in vitro and reduces the in vivo activation of AIRE target genes in HEK293 cells. The observed antagonism by R2 methylation on AIRE-PHD1 binding is unique among the H3K4me0 histone readers and represents the first case of epigenetic negative cross-talk between non-methylated H3K4 and methylated H3R2. Collectively, our results point to a very specific histone code responsible for non-modified H3 tail recognition by AIRE-PHD1 and describe at atomic level one crucial step in the molecular mechanism responsible for antigen expression in the thymus.
Collapse
Affiliation(s)
- Francesca Chignola
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Massimiliano Gaetani
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Ana Rebane
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Tõnis Org
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Luca Mollica
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Andrea Spitaleri
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Valeria Mannella
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Pärt Peterson
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
79
|
Abstract
Autoimmune diseases affect a significant segment of the population and are typically thought to be multifactorial in etiology. Autoimmune diseases due to single gene defects are rare, but offer an invaluable window into understanding how defects in the immune system can lead to autoimmunity. In this review, we will focus on autoimmune polyendocrinopathy syndrome type 1 and recent advances in our understanding of this disease. We will also discuss two other monogenic autoimmune diseases: immunodysregulation, polyendocrinopathy, and enteropathy, X-linked and Autoimmune lymphoproliferative syndrome. Importantly, the knowledge and principles gained from studying these diseases have been applicable to more common autoimmune diseases and have opened the door to better diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Maureen A Su
- Diabetes Center and Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
80
|
Abstract
A pool of immature T cells with a seemingly unrestricted repertoire of antigen specificities is generated life-long in the thymus. Amongst these cells are, however, thymocytes that express a strongly self-reactive antigen receptor and hence hold the potential to trigger autoimmunity. To prevent such an outcome, the thymus employs several independent but functionally related strategies that act in parallel to enforce self-tolerance. The deletion of strongly self-reactive thymocytes and the generation of regulatory T cells constitute the two most efficient mechanisms to induce and maintain immunological tolerance. Thymic epithelial cells of the medulla express for this purpose tissue-restricted self-antigens. This review will focus on the cellular and molecular mechanisms operative in the thymus to shape a repertoire of mature T cells tolerant to self-antigens.
Collapse
Affiliation(s)
- G A Holländer
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel and The University Children's Hospital, Switzerland.
| | | |
Collapse
|
81
|
Hubert FX, Kinkel SA, Crewther PE, Cannon PZF, Webster KE, Link M, Uibo R, O'Bryan MK, Meager A, Forehan SP, Smyth GK, Mittaz L, Antonarakis SE, Peterson P, Heath WR, Scott HS. Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3902-18. [PMID: 19265170 DOI: 10.4049/jimmunol.0802124] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autoimmune regulator (AIRE) is an important transcription regulator that mediates a role in central tolerance via promoting the "promiscuous" expression of tissue-specific Ags in the thymus. Although several mouse models of Aire deficiency have been described, none has analyzed the phenotype induced by a mutation that emulates the common 13-bp deletion in human APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) by disrupting the first plant homeodomain in exon 8. Aire-deficient mice with a corresponding mutation showed some disturbance of the medullary epithelial compartment, but at the phenotypic level their T cell compartment appeared relatively normal in the thymus and periphery. An increase in the number of activated T cells was evident, and autoantibodies against several organs were detected. At the histological level, lymphocytic infiltration of several organs indicated the development of autoimmunity, although symptoms were mild and the quality of life for Aire-deficient mice appeared equivalent to wild-type littermates, with the exception of male infertility. Vbeta and CDR3 length analysis suggested that each Aire-deficient mouse developed its own polyclonal autoimmune repertoire. Finally, given the prevalence of candidiasis in APECED patients, we examined the control of infection with Candida albicans in Aire-deficient mice. No increase in disease susceptibility was found for either oral or systemic infection. These observations support the view that additional genetic and/or environmental factors contribute substantially to the overt nature of autoimmunity associated with Aire mutations, even for mutations identical to those found in humans with APECED.
Collapse
Affiliation(s)
- François-Xavier Hubert
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Tykocinski LO, Sinemus A, Kyewski B. The thymus medulla slowly yields its secrets. Ann N Y Acad Sci 2009; 1143:105-22. [PMID: 19076347 DOI: 10.1196/annals.1443.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The past few years have witnessed considerable advances in our understanding of the mechanisms underlying the induction of central tolerance. Medullary thymic epithelial cells (mTECs) play a pivotal role in this process by virtue of promiscuous expression of tissue-restricted autoantigens. This brief review covers progress of the last two years in deciphering the functional interrelationship among TEC development, promiscuous gene expression, and central tolerance. We discuss new insights into signaling pathways directing the differentiation and homeostasis of mTECs, and new clues to the molecular regulation of promiscuous gene expression (pGE), including the role of the transcriptional regulator autoimmune regulator (AIRE). Furthermore, we emphasize the importance of promiscuous expression of particular tissue-restricted self-antigens in preventing organ-specific autoimmunity and evaluate new data supporting the threshold model of central tolerance.
Collapse
Affiliation(s)
- Lars-Oliver Tykocinski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
83
|
Abstract
Mutations in the transcriptional regulator, Aire, cause APECED, a polyglandular autoimmune disease with monogenic transmission. Animal models of APECED have revealed that Aire plays an important role in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a large repertoire of transcripts encoding proteins normally restricted to differentiated organs residing in the periphery. The absence of Aire results in impaired clonal deletion of self-reactive thymocytes, which escape into the periphery and attack a variety of organs. In addition, Aire is a proapoptotic factor, expressed at the final maturation stage of thymic medullary epithelial cells, a function that may promote cross-presentation of the antigens encoded by Aire-induced transcripts in these cells. Transcriptional regulation by Aire is unusual in being very broad, context-dependent, probabilistic, and noisy. Structure/function analyses and identification of its interaction partners suggest that Aire may impact transcription at several levels, including nucleosome displacement during elongation and transcript splicing or other aspects of maturation.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and the Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
84
|
Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8:948-57. [PMID: 19008896 PMCID: PMC2785478 DOI: 10.1038/nri2450] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 5O411, Estonia.
| | | | | |
Collapse
|
85
|
Baker LA, Allis CD, Wang GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 2008; 647:3-12. [PMID: 18682256 PMCID: PMC2656448 DOI: 10.1016/j.mrfmmm.2008.07.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/04/2008] [Indexed: 12/14/2022]
Abstract
Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.
Collapse
Affiliation(s)
- Lindsey A. Baker
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - Gang G. Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
86
|
Musco G, Peterson P. PHD finger of autoimmune regulator: an epigenetic link between the histone modifications and tissue-specific antigen expression in thymus. Epigenetics 2008; 3:310-4. [PMID: 19011376 PMCID: PMC2635555 DOI: 10.4161/epi.3.6.7182] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Methylation of lysine residues on histone H3 tails regulates transcription. A recent addition to the list of known methylated histone binding modules is the plant homeodomain (PHD) finger, which is usually found in nuclear proteins with chromatin-related functions. Autoimmune regulator (AIRE) protein contains two PHD fingers and mutations in AIRE gene cause the monogenic disease autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed in thymic medullary epithelial cells where it promotes the expression of tissue-specific antigens. However the mechanism by which AIRE controls gene expression is currently unknown and the function of its domains, in particular of its PHD fingers is still elusive and controversial. In this review we discuss recent works on AIRE PHD finger(s) providing a new link between the status of histone modifications and the regulation of tissue-specific antigen expression in thymus.
Collapse
Affiliation(s)
- Giovanna Musco
- Biomolecular NMR Laboratory; Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Milan Italy
| | - Pärt Peterson
- Molecular Pathology; University of Tartu; Tartu Estonia
| |
Collapse
|
87
|
Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603-30. [PMID: 18664617 PMCID: PMC2819735 DOI: 10.1210/er.2008-0006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/29/2008] [Indexed: 02/08/2023]
Abstract
Although type 1 diabetes cannot be prevented or reversed, replacement of insulin production by transplantation of the pancreas or pancreatic islets represents a definitive solution. At present, transplantation can restore euglycemia, but this restoration is short-lived, requires islets from multiple donors, and necessitates lifelong immunosuppression. An emerging paradigm in transplantation and autoimmunity indicates that systemic inflammation contributes to tissue injury while disrupting immune tolerance. We identify multiple barriers to successful islet transplantation, each of which either contributes to the inflammatory state or is augmented by it. To optimize islet transplantation for diabetes reversal, we suggest that targeting these interacting barriers and the accompanying inflammation may represent an improved approach to achieve successful clinical islet transplantation by enhancing islet survival, regeneration or neogenesis potential, and tolerance induction. Overall, we consider the proinflammatory effects of important technical, immunological, and metabolic barriers including: 1) islet isolation and transplantation, including selection of implantation site; 2) recurrent autoimmunity, alloimmune rejection, and unique features of the autoimmune-prone immune system; and 3) the deranged metabolism of the islet transplant recipient. Consideration of these themes reveals that each is interrelated to and exacerbated by the other and that this connection is mediated by a systemic inflammatory state. This inflammatory state may form the central barrier to successful islet transplantation. Overall, there remains substantial promise in islet transplantation with several avenues of ongoing promising research. This review focuses on interactions between the technical, immunological, and metabolic barriers that must be overcome to optimize the success of this important therapeutic approach.
Collapse
Affiliation(s)
- Xiaolun Huang
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Su MA, Giang K, Žumer K, Jiang H, Oven I, Rinn JL, DeVoss JJ, Johannes KP, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest 2008; 118:1712-26. [PMID: 18414681 PMCID: PMC2293336 DOI: 10.1172/jci34523] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/27/2008] [Indexed: 01/08/2023] Open
Abstract
Homozygous loss-of-function mutations in AIRE cause autoimmune polyglandular syndrome type 1 (APS 1), which manifests in a classic triad of hypoparathyroidism, adrenal insufficiency, and candidiasis. Interestingly, a kindred with a specific G228W AIRE variant presented with an autosomal dominant autoimmune phenotype distinct from APS 1. We utilized a novel G228W-knockin mouse model to show that this variant acted in a dominant-negative manner to cause a unique autoimmunity syndrome. In addition, the expression of a large number of Aire-regulated thymic antigens was partially inhibited in these animals, demonstrating the importance of quantitative changes in thymic antigen expression in determining organ-specific autoimmunity. Furthermore, the dominant-negative effect of the G228W variant was exerted through recruitment of WT Aire away from active sites of transcription in the nucleus of medullary thymic epithelial cells in vivo. Together, these results may demonstrate a mechanism by which autoimmune predisposition to phenotypes distinct from APS 1 can be mediated in a dominant-negative fashion by Aire.
Collapse
Affiliation(s)
- Maureen A. Su
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Karen Giang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Kristina Žumer
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Huimin Jiang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Irena Oven
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - John L. Rinn
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Jason J. DeVoss
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Kellsey P.A. Johannes
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Wen Lu
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - James Gardner
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Angela Chang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Paula Bubulya
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Howard Y. Chang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - B. Matija Peterlin
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Mark S. Anderson
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
89
|
Hubert FX, Kinkel SA, Webster KE, Cannon P, Crewther PE, Proeitto AI, Wu L, Heath WR, Scott HS. A specific anti-Aire antibody reveals aire expression is restricted to medullary thymic epithelial cells and not expressed in periphery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:3824-32. [PMID: 18322189 DOI: 10.4049/jimmunol.180.6.3824] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.
Collapse
Affiliation(s)
- François-Xavier Hubert
- Division of Molecular and Medicine, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Tatematsu K, Yoshimoto N, Okajima T, Tanizawa K, Kuroda S. Identification of ubiquitin ligase activity of RBCK1 and its inhibition by splice variant RBCK2 and protein kinase Cbeta. J Biol Chem 2008; 283:11575-85. [PMID: 18303026 DOI: 10.1074/jbc.m706961200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a RING-IBR protein, RBCK1, as a protein kinase C (PKC) beta- and zeta-interacting protein, and its splice variant, RBCK2, lacking the C-terminal half including the RING-IBR domain. RBCK1 has been shown to function as a transcriptional activator whose nuclear translocation is prevented by interaction with the cytoplasmic RBCK2. We here demonstrate that RBCK1, like many other RING proteins, also possesses a ubiquitin ligase (E3) activity and that its E3 activity is inhibited by interaction with RBCK2. Moreover, RBCK1 has been found to undergo efficient phosphorylation by PKCbeta. The phosphorylated RBCK1 shows no self-ubiquitination activity in vitro. Overexpression of PKCbeta leads to significant increases in the amounts of intracellular RBCK1, presumably suppressing the proteasomal degradation of RBCK1 through self-ubiquitination, whereas coexpression with PKCalpha, PKCepsilon, and PKCzeta shows no or little effect on the intracellular amount of RBCK1. Taken together, the E3 activity of RBCK1 is controlled by two distinct manners, interaction with RBCK2 and phosphorylation by PKCbeta. It is possible that other RING proteins, such as Parkin, BRCA1, and RNF8, having the E3 activity, are also down-regulated by interaction with their RING-lacking splice variants and/or phosphorylation by protein kinases.
Collapse
Affiliation(s)
- Kenji Tatematsu
- Department of Structural Molecular Biology, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | |
Collapse
|
91
|
Meloni A, Incani F, Corda D, Cao A, Rosatelli MC. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol Immunol 2008; 45:805-9. [PMID: 17675238 DOI: 10.1016/j.molimm.2007.06.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomic autoimmune disease resulting from the defective function of a gene codifying for a transcription factor named autoimmune regulation (AIRE). The AIRE protein contains several domains among which two PHD fingers involved in the transcriptional activation. We investigated the function of the two PHD finger domains and the COOH terminal portion of AIRE by using several mutated constructs transfected in mammalian cells and a luciferase reporter assay. The results predict that the second PHD as well as the COOH terminal regions have marked transactivational properties. The COOH terminal region contains the fourth LXXLL and the PXXPXP motifs which play a critical role in mediating the transactivation capacity of the AIRE protein. Our study provides a definition of the role of the PHD fingers in transactivation and identifies a new transactivation domain of the AIRE protein localized in the COOH terminal region.
Collapse
Affiliation(s)
- Alessandra Meloni
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | | | | | | | | |
Collapse
|
92
|
Ferguson BJ, Alexander C, Rossi SW, Liiv I, Rebane A, Worth CL, Wong J, Laan M, Peterson P, Jenkinson EJ, Anderson G, Scott HS, Cooke A, Rich T. AIRE's CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J Biol Chem 2008; 283:1723-1731. [PMID: 17974569 DOI: 10.1074/jbc.m707211200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Developing T cells encounter peripheral self-antigens in the thymus in order to delete autoreactive clones. It is now known that the autoimmune regulator protein (AIRE), which is expressed in thymic medullary epithelial cells, plays a key role in regulating the thymic transcription of these peripheral tissue-specific antigens. Mutations in the AIRE gene are associated with a severe multiorgan autoimmune syndrome (APECED), and autoimmune reactivities are manifest in AIRE-deficient mice. Functional AIRE protein is expressed as distinct nuclear puncta, although no structural basis existed to explain their relevance to disease. In addressing the cell biologic basis for APECED, we made the unexpected discovery that an AIRE mutation hot spot lies in a caspase recruitment domain. Combined homology modeling and in vitro data now show how APECED mutations influence the activity of this transcriptional regulator. We also provide novel in vivo evidence for AIRE's association with a global transcription cofactor, which may underlie AIRE's focal, genome-wide, alteration of the transcriptome.
Collapse
Affiliation(s)
- Brian J Ferguson
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Clare Alexander
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Simona W Rossi
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ingrid Liiv
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Catherine L Worth
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Joyce Wong
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Martti Laan
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Biomedicum, 50411 Tartu, Estonia
| | - Eric J Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hamish S Scott
- Walter and Eliza Hall Institute of Medical Research, 3050 Melbourne, Australia
| | - Anne Cooke
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Tina Rich
- Department of Pathology, Divisions of Immunology and Cellular Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
93
|
Kont V, Laan M, Kisand K, Merits A, Scott HS, Peterson P. Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol 2008; 45:25-33. [PMID: 17599412 PMCID: PMC1994210 DOI: 10.1016/j.molimm.2007.05.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/15/2007] [Indexed: 12/17/2022]
Abstract
Intrathymic expression of tissue-restricted antigens (TRAs) has been viewed as the key element in the induction of central tolerance and recently, a central role for the autoimmune regulator (Aire) has been suggested in this process. The aim of this study was to establish whether down or up-regulation of Aire leads to alterations in TRA expression and whether this is limited to thymic epithelial cells. This study also characterized whether TRAs follow Aire expression during normal development, and whether thymic microenvironment plays a role in the expression of Aire and TRAs. We did several in vivo and in vitro experiments to manipulate Aire expression and measured expression of four TRAs (Trefoil factor-3, Insulin-2, Major urinary protein-1 and Salivary protein-1) by real-time RT-PCR. Aire had an allele dose-dependent effect on TRA expression in the thymuses of mice from two strains, C57BL/6J and Balb/c, but had no effect on TRA expression in the lymph nodes. In the thymus, Aire and TRAs were both localized in the medulla and were co-expressed during normal development and involution. In the primary stromal cells as well as thymic epithelial cell line, the adenoviral over-expression of Aire resulted in an increase in TRA expression. By manipulating in vitro organ-cultures we showed that thymic microenvironment plays a dominant role in Aire expression whereas TRAs follow the same pattern. The data underline a direct role for Aire in TRA expression and suggest that modulation of Aire has a potential to control central tolerance and autoimmunity.
Collapse
Affiliation(s)
- Vivian Kont
- Molecular Pathology, Biomedicum, Tartu University, Ravila 19, 50411 Tartu, Estonia
| | - Martti Laan
- Molecular Pathology, Biomedicum, Tartu University, Ravila 19, 50411 Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology, Biomedicum, Tartu University, Ravila 19, 50411 Tartu, Estonia
| | - Andres Merits
- Institute of Technology, Tartu University, Tartu, Estonia
| | - Hamish S. Scott
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Pärt Peterson
- Molecular Pathology, Biomedicum, Tartu University, Ravila 19, 50411 Tartu, Estonia
| |
Collapse
|
94
|
Chen J, Yang W, Yu C, Li Y. Autoimmune regulator initiates the expression of promiscuous genes in thymic epithelial cells. Immunol Invest 2008; 37:203-14. [PMID: 18389440 DOI: 10.1080/08820130801967841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The expression of peripheral antigens in the thymus, known as promiscuous gene expression, has been implicated in T cell tolerance and autoimmunity. Here we identified thymic epithelial cells (TECs) as the main cell type that expresses a diverse range of tissue-restricted antigens (TRAs). The TECs of a common autoimmune (non-obese diabetic [NOD]) mouse model express much lower levels of an autoimmune regulator (Aire) and TRAs than normal (Balb/c) TECs. Transfection of an Aire plasmid led to increased levels of TRA expression in cultured TECs from Balb/c and NOD mice; an increase that was enhanced by the presence of thymocytes. These data show that Aire initiates promiscuous gene expression in TECs, and that this function might be under thymocyte control.
Collapse
Affiliation(s)
- Jibing Chen
- Department of Immunology, Norman Bethune Medical College of JiLin University, Chang Chun, China
| | | | | | | |
Collapse
|
95
|
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:74-83. [PMID: 17997173 PMCID: PMC2225445 DOI: 10.1016/j.bbamcr.2007.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/29/2007] [Accepted: 09/21/2007] [Indexed: 01/29/2023]
Abstract
The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA-PK), consisting of Ku70, Ku80 and DNA-PK catalytic subunit (DNA-PKcs), is a novel interaction partner for AIRE. In vitro phosphorylation assays show that the residues Thr68 and Ser156 are DNA-PK phosphorylation sites in AIRE. In addition, we demonstrate that DNA-PKcs is expressed in AIRE positive mTEC cell population and that introduction of mutations into the AIRE phosphorylation sites decrease the capacity of AIRE to activate transcription from reporter promoters. In conclusion, our results suggest that phosphorylation of the AIRE protein at Thr68 and Ser156 by DNA-PK influences AIRE transactivation ability and might have impact on other aspects of the functional regulation of the AIRE protein.
Collapse
Affiliation(s)
- Ingrid Liiv
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Tõnis Org
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Mario Saare
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | | | - Kai Kisand
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Erkki Juronen
- Human Biology and Genetics, University of Tartu, Tartu 50411, Estonia
| | - Leena Valmu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matthew James Bottomley
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia (Rome), Italy
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
- Institute of Medical Technology, University of Tampere, Tampere 33014, Finland
| |
Collapse
|
96
|
Oven I, Brdicková N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol 2007; 27:8815-23. [PMID: 17938200 PMCID: PMC2169392 DOI: 10.1128/mcb.01085-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/17/2007] [Accepted: 10/02/2007] [Indexed: 01/06/2023] Open
Abstract
AIRE is a transcriptional activator that directs the ectopic expression of many tissue-specific genes in medullary thymic epithelial cells, which plays an important role in the negative selection of autoreactive T cells. However, its mechanism of action remains poorly understood. In this study, we found that AIRE regulates the step of elongation rather than initiation of RNA polymerase II. For these effects, AIRE bound and recruited P-TEFb to target promoters in medullary thymic epithelial cells. In these cells, AIRE activated the ectopic transcription of insulin and salivary protein 1 genes. Indeed, by chromatin immunoprecipitation, we found that RNA polymerase II was already engaged on these promoters but was unable to elongate in the absence of AIRE. Moreover, the genetic inactivation of cyclin T1 from P-TEFb abolished the transcription of AIRE-responsive genes and led to lymphocytic infiltration of lacrimal and salivary glands in the CycT1-/- mouse. Our findings reveal critical steps by which AIRE regulates the transcription of genes that control central tolerance in the thymus.
Collapse
Affiliation(s)
- Irena Oven
- Department of Medicine, Rosalind Russell Medical Research Center, University of California-San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
97
|
Meyer T, Ruppert V, Karatolios K, Maisch B. Hereditary long QT syndrome due to autoimmune hypoparathyroidism in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. J Electrocardiol 2007; 40:504-9. [PMID: 17289071 DOI: 10.1016/j.jelectrocard.2006.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 12/14/2006] [Indexed: 01/21/2023]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type I, is a rare autosomal recessively inherited disorder characterized by variable combinations of endocrine and nonendocrine symptoms. In this report, we describe two 20- and 17-year-old Turkish siblings presenting with typical symptoms of APECED, including Addison disease, alopecia, vitiligo, and hypopituitarism, in whom electrocardiographic examinations demonstrated an abnormal prolongation of the QT interval. In both cases, excessive hypocalcemia due to primary hypoparathyroidism was identified as the underlying cause of the long QT syndrome. Sequencing the gene coding for the autoimmune regulator revealed a homozygous missense mutation in exon 14 with a C-to-T transition that resulted in the substitution of proline 539 for leucine in the carboxy-terminal protein molecule. Our data show that a single point mutation in the transcriptional active autoimmune regulator protein is associated with inherited alterations in calcium metabolism resulting from autoimmune reactions against the parathyroid glands. This finding defines a congenital autoimmune disease as a hereditary long QT syndrome.
Collapse
Affiliation(s)
- Thomas Meyer
- Abteilung Innere Medizin-Kardiologie, Philipps-Universität Marburg, Baldingerstrasse, 35033 Marburg, Germany.
| | | | | | | |
Collapse
|
98
|
Abstract
In 1997, the autoimmune regulator (AIRE) gene was identified as the locus underlying susceptibility to the polyendocrine autoimmune disease known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In the intervening 10 years, it has become increasingly clear that this rare disorder has provided us with an illuminative window on one of the most fundamental processes of the immune system--the establishment and maintenance of self tolerance.
Collapse
Affiliation(s)
- Diane Mathis
- The Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
99
|
Cheng MH, Shum AK, Anderson MS. What's new in the Aire? Trends Immunol 2007; 28:321-7. [PMID: 17556019 DOI: 10.1016/j.it.2007.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/17/2007] [Accepted: 05/15/2007] [Indexed: 12/29/2022]
Abstract
Unraveling the mechanisms underlying autoimmune disease remains a difficult challenge. Recent lessons learned from the study of AIRE (autoimmune regulator), the gene responsible for the rare monogenic human syndrome APS-1, highlight the power of genetics to reveal disease pathogenesis. With the discovery of AIRE, central tolerance has re-emerged as a crucial check against autoimmunity. Aire-mediated regulation of diverse self-antigens in the thymus serves as a paradigm for the importance of promiscuous gene expression in the prevention of autoimmune disease. Recent characterization of Aire-targeted antigens continues to bear this out. Here, we review the current progress surrounding the role of Aire in central tolerance from a molecular, genetic and developmental basis.
Collapse
Affiliation(s)
- Mickie H Cheng
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
100
|
Ruan QG, Tung K, Eisenman D, Setiady Y, Eckenrode S, Yi B, Purohit S, Zheng WP, Zhang Y, Peltonen L, She JX. The autoimmune regulator directly controls the expression of genes critical for thymic epithelial function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7173-80. [PMID: 17513766 DOI: 10.4049/jimmunol.178.11.7173] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The autoimmune regulator (Aire) gene plays an essential role in negative selection of T cells and deletion of autoreactive T cells in the thymus. The defect in thymic selection in Aire(-/-) mice was attributed to the repressed expression of tissue-specific Ags in the thymic epithelial cells and defective Ag presentation; however, the molecular mechanism underlying these functions has been elusive. Using the chromatin immunoprecipitation technique, we demonstrate here that Aire binds in vivo to specific DNA sequence motifs and directly regulates thymic expression of genes important for thymic functions including expression of autoantigens, cytokines, transcription factors, and posttranslational modifiers. These results unambiguously established Aire as a key transcriptional regulator of the immune system.
Collapse
Affiliation(s)
- Qing-Guo Ruan
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|