51
|
The Flavonoid Hesperidin Methyl Chalcone Targets Cytokines and Oxidative Stress to Reduce Diclofenac-Induced Acute Renal Injury: Contribution of the Nrf2 Redox-Sensitive Pathway. Antioxidants (Basel) 2022; 11:antiox11071261. [PMID: 35883752 PMCID: PMC9312103 DOI: 10.3390/antiox11071261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of cellular resistance to oxidant products. Previous data evidenced HMC can activate Nrf2 signaling, providing antioxidant protection against diverse pathological conditions. However, its effects on kidney damage caused by non-steroidal anti-inflammatory drugs (NSAIDs) have not been evaluated so far. Mice received a nephrotoxic dose of diclofenac (200 mg/kg) orally followed by intra-peritoneal (i.p.) administration of HMC (0.03–3 mg/kg) or vehicle. Plasmatic levels of urea, creatinine, oxidative stress, and cytokines were assessed. Regarding the kidneys, oxidative parameters, cytokine production, kidney swelling, urine NGAL, histopathology, and Nrf2 mRNA expression and downstream targets were evaluated. HMC dose-dependently targeted diclofenac systemic alterations by decreasing urea and creatinine levels, and lipid peroxidation, as well as IL-6, IFN-γ, and IL-33 production, and restored antioxidant properties in plasma samples. In kidney samples, HMC re-established antioxidant defenses, inhibited lipid peroxidation and pro-inflammatory cytokines and upregulated IL-10, reduced kidney swelling, urine NGAL, and histopathological alterations. Additionally, HMC induced mRNA expression of Nrf2 and its downstream effectors HO-1 and Nqo1, as well as reduced the levels of Keap1 protein detected in renal tissue. The present data demonstrate HMC is a potential compound for the treatment of acute renal damage caused by diclofenac, a routinely prescribed non-steroidal anti-inflammatory drug.
Collapse
|
52
|
Potential Protective Effects of Antioxidants against Cyclophosphamide-Induced Nephrotoxicity. Int J Nephrol 2022; 2022:5096825. [PMID: 35469319 PMCID: PMC9034963 DOI: 10.1155/2022/5096825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclophosphamide is an alkylating antineoplastic agent, and it is one of the most successful drugs with wide arrays of clinical activity. It has been in use for several types of cancer treatments and as an immunosuppressive agent for the management of autoimmune and immune-mediated diseases. Nowadays, its clinical use is limited due to various toxicities, including nephrotoxicity. Even though the mechanisms are not well understood, cyclophosphamide-induced nephrotoxicity is reported to be mediated through oxidative stress. This review focuses on the potential role of natural and plant-derived antioxidants in preventing cyclophosphamide-induced nephrotoxicity.
Collapse
|
53
|
Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J Pers Med 2022; 12:jpm12040548. [PMID: 35455664 PMCID: PMC9025702 DOI: 10.3390/jpm12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a major and serious global health problem that leads to kidney damage as well as multiple systemic diseases. Early diagnosis and treatment are two major measures to prevent further deterioration of kidney function and to delay adverse outcomes. However, the paucity of early, predictive and noninvasive biomarkers has undermined our ability to promptly detect and treat this common clinical condition which affects more than 10% of the population worldwide. Despite all limitations, kidney function is still measured by serum creatinine, cystatin C, and albuminuria, as well as estimating glomerular filtration rate using different equations. This review aims to provide comprehensive insight into diagnostic methods available for early detection of CKD. In the review, we discuss the following topics: (i) markers of glomerular injury; (ii) markers of tubulointerstitial injury; (iii) the role of omics; (iv) the role of microbiota; (v) and finally, the role of microRNA in the early detection of CKD. Despite all novel findings, none of these biomarkers have met the criteria of an ideal early marker. Since the central role in CKD progression is the proximal tubule (PT), most data from the literature have analyzed biomarkers of PT injury, such as KIM-1 (kidney injury molecule-1), NGAL (neutrophil gelatinase-associated lipocalin), and L-FABP (liver fatty acid-binding protein).
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Nephrology and Hemodialysis, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Disorders, University Hospital of Split, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Correspondence:
| |
Collapse
|
54
|
Yang C, Wu Y, Wang L, Li S, Zhou J, Tan Y, Song J, Xing H, Yi K, Zhan Q, Zhao J, Wang Q, Yuan X, Kang C. Glioma-derived exosomes hijack the blood-brain barrier to facilitate nanocapsule delivery via LCN2. J Control Release 2022; 345:537-548. [PMID: 35341902 DOI: 10.1016/j.jconrel.2022.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Exosomes are small extracellular vehicles which could transport genetic materials and proteins between cells. Although there are reports about exosomes crossing the blood-brain barrier (BBB), the underlying mechanisms still need further study. We found that exosomes from primary brain tumors could upregulate the expression of Lipocalin-2 (LCN2) in bEnd.3 brain microvascular endothelial cells (BMVECs). Furthermore, exosomes increased the membrane fluidity of bEnd.3 cells in an LCN2 dependent manner. Both intraperitoneal injection and caudal vein injection of LCN2 increased the number of nanocapsules crossing the BBB. Evans Blue staining revealed that LCN2 does not interrupt the integrity of the BBB, as observed in the traumatic brain injury model. Tandem mass tags quantitative proteomics and bioinformatics analysis revealed that LCN2 is upregulated by exosomes via the JAK-STAT3 pathway, but not delivered from exosomes. Knocking down LCN2 in bEnd.3 cells significantly abrogated the effect of exosomes on BMVEC membrane fluidity. Previously, we have reported that 2-methacryloyloxyethyl phosphorylcholine (MPC) and a peptide crosslinker could encapsulate mAbs to achieve nanocapsules. The nanocapsules containing choline analogs could effectively penetrate the BBB to deliver therapeutic monoclonal antibodies (tAbs) to the glioma. However, the delivered tAbs could be significantly reduced by blocking the release of exosomes from the gliomas. Application of tAb nanocapsules prior to treatment with MK2206, an AKT pathway inhibitor that has been shown to inhibit the production of exosomes, resulted in a better combination. Insights from this study provide a mechanistic framework with regard to how glioblastomas hijack BMVECs using exosomes. In addition, we provide a strategy for maximizing the effect of the choline-containing nanocapsules and MK2206 combination. These results also demonstrate the therapeutic role of tAbs in glioblastoma and brain tumor metastasis, by shedding new light on strategies that can be used for BBB-penetrating therapies.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Lin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Jia Song
- Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Huike Xing
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| |
Collapse
|
55
|
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. Int J Mol Sci 2022; 23:ijms23062906. [PMID: 35328327 PMCID: PMC8955255 DOI: 10.3390/ijms23062906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•−) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•− formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•− formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•− formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•− formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Collapse
|
56
|
Li Z, McKenna Z, Fennel Z, Nava RC, Wells A, Ducharme J, Houck J, Morana K, Mermier C, Kuennen M, Magalhaes FDC, Amorim F. The combined effects of exercise-induced muscle damage and heat stress on acute kidney stress and heat strain during subsequent endurance exercise. Eur J Appl Physiol 2022; 122:1239-1248. [PMID: 35237867 DOI: 10.1007/s00421-022-04919-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The purpose of the study was to investigate the combined effect of downhill running and heat stress on muscle damage, as well as on heat strain and kidney stress during subsequent running in the heat. METHODS In a randomized cross-over study, ten non-heat-acclimated, physically active males completed downhill running in temperate (EIMD in Temp) and hot (EIMD in Hot) conditions followed by an exercise-heat stress (HS) test after 3-h seated rest. Blood and urine samples were collected immediately pre- and post-EIMD and HS, and 24 h post-EIMD (post-24 h). Core temperature and thermal sensation were measured to evaluate heat strain. Serum creatine kinase (CK), maximal voluntary isometric contraction of the quadriceps (MVC) and perceived muscle soreness were measured to evaluate muscle damage. Urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) levels were measured to indicate acute kidney stress. RESULTS CK, MVC and perceived soreness were not different between conditions at any timepoints. In the EIMD in Hot condition, urinary NGAL was significantly elevated from pre- to post-HS (pre-HS: 6.56 {1.53-12.24} ng/min, post-HS: 13.72 {7.67-21.46} ng/min, p = 0.034). Such elevation of NGAL or KIM-1 was not found in the EIMD in Temp condition. CONCLUSIONS As compared with downhill running in a temperate environment, downhill running in a hot environment does not appear to aggravate muscle damage. However, elevated NGAL levels following EIMD in a hot environment suggest such exercise may increase risk of mild acute kidney injury during subsequent endurance exercise in the heat.
Collapse
Affiliation(s)
- Zidong Li
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA. .,Department of Health and Human Performance, Northwestern State University, Natchitoches, LA, USA.
| | - Zachary McKenna
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Zachary Fennel
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Roberto Carlos Nava
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA.,Research Division, Joslin Diabetes Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew Wells
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA.,Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Jeremy Ducharme
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan Houck
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA.,Department of Health and Human Performance, Roanoke College, Salem, VA, USA
| | - Kylie Morana
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Christine Mermier
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Matthew Kuennen
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Flavio de Castro Magalhaes
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Fabiano Amorim
- Department of Health, Exercise and Sport Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
57
|
Tsai HC, Ou SM, Wu CC, Huang CC, Hsieh JT, Tseng PY, Lee CY, Yang CY, Tarng DC. Pentraxin 3 Predicts Arteriovenous Fistula Functional Patency Loss and Mortality in Chronic Hemodialysis Patients. Am J Nephrol 2022; 53:148-156. [PMID: 35220304 DOI: 10.1159/000522049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Viable vascular access is the lifeline for hemodialysis patients. In the nondialysis population, emerging evidence suggests that circulating pentraxin 3 (PTX3), neutrophil gelatinase-associated lipocalin (NGAL), and chitinase-3-like protein 1 (CHI3L1) are associated with cardiovascular inflammation and endothelial injury. However, predictive values of these three biomarkers on arteriovenous fistula (AVF) outcomes are unknown. METHODS This prospective observational cohort study enrolled 135 hemodialysis patients using AVF and then followed them for 3 years. Plasma levels of PTX3, NGAL, and CHI3L1 were measured. Patients were followed up prospectively for two clinical outcomes, including AVF functional patency loss and death. Cox proportional hazards regression models were used to analyze hazard ratios for the commencement of AVF functional patency loss and mortality. RESULTS Among 135 patients, the mean age was 66.0 ± 15.7 years old and 48.1% were male. The plasma level of PTX3, NGAL, and CHI3L1 was 2.8 ± 2.3 ng/mL, 349.2 ± 111.4 ng/mL, and 185.5 ± 66.8 ng/mL, respectively. During a 3-year follow-up period, the plasma level of PTX3 was an independent predictor for AVF functional patency loss (per 1 ng/mL increase, HR 1.112 [95% CI: 1.001-1.235], p = 0.048). Besides, patients with higher plasma levels of PTX3 were more likely to suffer from cardiovascular mortality (per 1 ng/mL increase, HR 1.320 [95% CI: 1.023-1.703], p = 0.033), infectious mortality (per 1 ng/mL increase, HR 1.394 [95% CI: 1.099-1.769], p = 0.006), and all-cause mortality (per 1 ng/mL increase, HR 1.233 [95% CI: 1.031-1.476], p = 0.022). CONCLUSIONS The plasma level of PTX3, not NGAL or CHI3L1, was associated with higher risks of AVF functional patency loss in chronic hemodialysis patients, showing its value in reflecting AVF endothelial dysfunction. Furthermore, PTX3 also predicts mortality in chronic hemodialysis patients.
Collapse
Affiliation(s)
- Heng-Cheng Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Wu
- Cardiovascular Center, Hsinchu Branch, National Taiwan University Hospital, Hsinchu, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chin-Chou Huang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jyh-Tong Hsieh
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yu Tseng
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Chiu-Yang Lee
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yu Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu, Taiwan
| |
Collapse
|
58
|
Ali H, Abu-Farha M, Alshawaf E, Devarajan S, Bahbahani Y, Al-Khairi I, Cherian P, Alsairafi Z, Vijayan V, Al-Mulla F, Al Attar A, Abubaker J. Association of significantly elevated plasma levels of NGAL and IGFBP4 in patients with diabetic nephropathy. BMC Nephrol 2022; 23:64. [PMID: 35148702 PMCID: PMC8840773 DOI: 10.1186/s12882-022-02692-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a type of progressive kidney disease affecting approximately 40% of patients with diabetes. Current DN diagnostic criteria predominantly rely on albuminuria and serum creatinine (sCr) levels. However, the specificity and reliability of both markers are limited. Hence, reliable biomarkers are required for early diagnosis to effectively manage DN progression. Methods In this study, a cohort of 159 individuals were clinically evaluated and the plasma levels of NGAL, IGFBP-1, IGFBP-3, and IGFBP-4 were determined using Multiplexing Assays. Additionally, the association between the plasma levels of NGAL, IGFBP-1, IGFBP-3, and IGFBP-4 in patients with DN were compared to those in patients with T2D without kidney disease and control participants. Results Circulating level of NGAL were significantly higher in people with DN compared to people with T2D and non-diabetic groups (92.76 ± 7.5, 57.22 ± 8.7, and 52.47 ± 2.9 mg/L, respectively; p < 0.0001). IGFBP-4 showed a similar pattern, where it was highest in people with DN (795.61 ng/ml ±130.7) compared to T2D and non-diabetic people (374.56 ng/ml ±86.8, 273.06 ng/ml ±27.8 respectively, ANOVA p < 0.01). The data from this study shows a significant positive correlation between NGAL and IGFBP-4 in people with DN (ρ = .620, p < 0.005). IGFBP-4 also correlated positively with creatinine level and negatively with eGFR, in people with DN supporting its involvement in DN. Conclusion The data from this study shows a parallel increase in the plasma levels of NGAL and IGFBP-4 in DN. This highlights the potential to use these markers for early diagnosis of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02692-z.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.,Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| | - Vidya Vijayan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdulnabi Al Attar
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait.,Diabetology Unit, Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait.
| |
Collapse
|
59
|
Brattinga B, Plas M, Spikman JM, Rutgers A, de Haan JJ, Absalom AR, van der Wal-Huisman H, de Bock GH, van Leeuwen BL. The association between the inflammatory response following surgery and post-operative delirium in older oncological patients: a prospective cohort study. Age Ageing 2022; 51:afab237. [PMID: 35180288 PMCID: PMC9160877 DOI: 10.1093/ageing/afab237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Post-operative delirium (POD) is associated with increased morbidity and mortality rates in older patients. Neuroinflammation, the activation of the intrinsic immune system of the brain, seems to be one of the mechanisms behind the development of POD. The aim of this study was to explore the association between the perioperative inflammatory response and the development of POD in a cohort of older oncological patients in need for surgery. METHODS In this prospective cohort study, patients 65 years and older in need for oncologic surgery were included. Inflammatory markers C-reactive protein (CRP), interleukin-1 beta (IL-1β), IL-6, IL10 and Neutrophil gelatinase-associated lipocalin (NGAL) were measured in plasma samples pre- and post-operatively. Delirium Observation Screening Scale (DOS) was used as screening instrument for POD in the first week after surgery. In case of positive screening, diagnosis of POD was assessed by a clinician. RESULTS Between 2010 and 2016, plasma samples of 311 patients with median age of 72 years (range 65-89) were collected. A total of 38 (12%) patients developed POD in the first week after surgery. The perioperative increase in plasma levels of IL-10 and NGAL were associated with POD in multivariate logistic regression analysis (OR 1.33 [1.09-1.63] P = 0.005 and OR 1.30 [1.03-1.64], P = 0.026, respectively). The biomarkers CRP, IL-1β and IL-6 were not significantly associated with POD. CONCLUSIONS Increased surgery-evoked inflammatory responses of IL-10 and NGAL are associated with the development of POD in older oncological patients. The outcomes of this study contribute to understanding the aetiology of neuroinflammation and the development of POD.
Collapse
Affiliation(s)
- Baukje Brattinga
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Matthijs Plas
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Jacoba M Spikman
- University of Groningen, University Medical Center Groningen, Department of Neurology, 9700 RB Groningen, The Netherlands
| | - Abraham Rutgers
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9700 RB Groningen, The Netherlands
| | - Jacco J de Haan
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, 9700 RB Groningen, The Netherlands
| | - Anthony R Absalom
- University of Groningen, University Medical Center Groningen, Department of Anesthesiology, 9700 RB Groningen, The Netherlands
| | - Hanneke van der Wal-Huisman
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Geertruida H de Bock
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9700 RB Groningen, The Netherlands
| | - Barbara L van Leeuwen
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| |
Collapse
|
60
|
Elgazzar YMY, Ghanem MM, Abdel-Raof YM, Kandiel MMM, Helal MAY. Evaluation of symmetric dimethylarginine and Doppler ultrasonography in the diagnosis of gentamicin-induced acute kidney injury in dogs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8779-8789. [PMID: 34490572 DOI: 10.1007/s11356-021-16086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Acute kidney injury is a common problem in dogs and is associated with significant morbidity and mortality. So, the present study aimed to evaluate symmetric dimethylarginine (SDMA) and Doppler ultrasonography including resistive index (RI) in the diagnosis of acute kidney injury in dogs. Ten healthy mongrel dogs were injected with gentamicin sulfate 10% at the dose of 30 mg/kg body weight daily for 10 days for induction of acute kidney injury. Clinical, biochemical, ultrasonographic, and Doppler ultrasonographic examinations and urinalysis were performed for all dogs on 0 day before induction, on the 5th day, and on the 10th day of induction. The results of the current study showed significant increase in plasma level of SDMA, serum urea, creatinine, phosphorus, and potassium and a significant decrease in serum sodium, calcium, and chloride on the 5th day and 10th day of induction, and there was an increase in renal cortical echogenicity of the right and left kidney compared to adjacent liver and spleen, respectively. RI value showed a significant increase on the 5th day and 10th day of induction. The present study showed that SDMA is a sensitive and promising biomarker for diagnosis of acute kidney injury in dogs compared to routine biomarkers; also, the RI of Doppler ultrasonography is useful for early identifying acute kidney injury when the only observable change is an increase in cortical echogenicity.
Collapse
Affiliation(s)
- Youssef M Y Elgazzar
- Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Mohamed M Ghanem
- Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Yassein M Abdel-Raof
- Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Mohamed M M Kandiel
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt
| | - Mahmoud A Y Helal
- Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kalyobiya, 13736, Egypt.
| |
Collapse
|
61
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
62
|
A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022; 601:606-611. [PMID: 34987225 DOI: 10.1038/s41586-021-04264-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Gram-negative bacteria are responsible for an increasing number of deaths caused by antibiotic-resistant infections1,2. The bacterial natural product colistin is considered the last line of defence against a number of Gram-negative pathogens. The recent global spread of the plasmid-borne mobilized colistin-resistance gene mcr-1 (phosphoethanolamine transferase) threatens the usefulness of colistin3. Bacteria-derived antibiotics often appear in nature as collections of similar structures that are encoded by evolutionarily related biosynthetic gene clusters. This structural diversity is, at least in part, expected to be a response to the development of natural resistance, which often mechanistically mimics clinical resistance. Here we propose that a solution to mcr-1-mediated resistance might have evolved among naturally occurring colistin congeners. Bioinformatic analysis of sequenced bacterial genomes identified a biosynthetic gene cluster that was predicted to encode a structurally divergent colistin congener. Chemical synthesis of this structure produced macolacin, which is active against Gram-negative pathogens expressing mcr-1 and intrinsically resistant pathogens with chromosomally encoded phosphoethanolamine transferase genes. These Gram-negative bacteria include extensively drug-resistant Acinetobacter baumannii and intrinsically colistin-resistant Neisseria gonorrhoeae, which, owing to a lack of effective treatment options, are considered among the highest level threat pathogens4. In a mouse neutropenic infection model, a biphenyl analogue of macolacin proved to be effective against extensively drug-resistant A. baumannii with colistin-resistance, thus providing a naturally inspired and easily produced therapeutic lead for overcoming colistin-resistant pathogens.
Collapse
|
63
|
Tekin Neijmann Ş, Kural A, Sever N, Doğan H, Sarıkaya S. Evaluation of renal function in rats with moderate and mild brain trauma. ULUS TRAVMA ACIL CER 2022; 28:1-7. [PMID: 34967428 PMCID: PMC10443170 DOI: 10.14744/tjtes.2020.29015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/17/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND We aimed to diagnose possible acute kidney injury (AKI) with new early biochemical markers in patients who were admitted to the emergency department frequently with mild and moderate brain trauma, and to prevent possible complications, shorten the duration of treatment and hospital stay. With this purpose, we decided to reach our scientific target using the experimental rat model. METHODS Wistar albino rats were included our experiment. Fifteen rats were randomly separated into three groups: Sham control (n=1: Underwent craniotomy alone), control (n=7: Without craniotomy), and trauma group (n=7: Underwent craniotomy followed by brain injury). RESULTS There were no significant differences groups creatinine levels within 0 and 24 h (0.35±0.02 and 0.33±0.03, respectively, p>0.05). Plasma NGAL and KIM1 concentrations were statistically significant different in both control and trauma groups (Friedman p<0.05) and significant differences at both NGAL and KIM-1 concentrations at dual comparisons by means of all sampling time (0-2 h, 0-24 h, and 2-24 h) (Wilcoxon p<0.001, after Bonferroni correction). CONCLUSION The presence of AKI in patients with mild-to-moderate brain trauma increases the risk of mortality. Early diagnosis of AKI reduces the hospitalization period and requiring of dialysis. Diagnosis of AKI within 24 h with early biomarkers and starting therapy is crucial issues.
Collapse
Affiliation(s)
- Şebnem Tekin Neijmann
- Department of Biochemistry, Health Science University, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, İstanbul-Turkey
| | - Alev Kural
- Department of Biochemistry, Health Science University, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, İstanbul-Turkey
| | - Nurten Sever
- Department of Pathology, Health Science University, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, İstanbul-Turkey
| | - Halil Doğan
- Department of Emergency Medicine, Health Science University, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, İstanbul-Turkey
| | - Sezgin Sarıkaya
- Department of Emergency Medicine, Yeditepe University Faculty of Medicine, İstanbul-Turkey
| |
Collapse
|
64
|
Ali H, Abu-Farha M, Hammad MM, Devarajan S, Bahbahani Y, Al-Khairi I, Cherian P, Alsairafi Z, Vijayan V, Al-Mulla F, Attar AA, Abubaker J. Potential Role of N-Cadherin in Diagnosis and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:882700. [PMID: 35712247 PMCID: PMC9194471 DOI: 10.3389/fendo.2022.882700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes affecting about half the people with diabetes and the leading cause of end stage renal disease (ESRD). Albuminuria and creatinine levels are currently the classic markers for the diagnosis of DN. However, many shortcomings are arising from the use of these markers mainly because they are not specific to DN and their levels are altered by multiple non-pathological factors. Therefore, the aim of this study is to identify better markers for the accurate and early diagnosis of DN. The study was performed on 159 subjects including 42 control subjects, 50 T2D without DN and 67 T2D subjects with DN. Our data show that circulating N-cadherin levels are significantly higher in the diabetic patients who are diagnosed with DN (842.6 ± 98.6 mg/l) compared to the diabetic patients who do not have DN (470.8 ± 111.5 mg/l) and the non-diabetic control group (412.6 ± 41.8 mg/l). We also report that this increase occurs early during the developmental stages of the disease since N-cadherin levels are significantly elevated in the microalbuminuric patients when compared to the healthy control group. In addition, we show a significant correlation between N-cadherin levels and renal markers including creatinine (in serum and urine), urea and eGFR in all the diabetic patients. In conclusion, our study presents N-cadherin as a novel marker for diabetic nephropathy that can be used as a valuable prognostic and diagnostic tool to slow down or even inhibit ESRD.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Maha M. Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Vidya Vijayan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Abdulnabi Al Attar
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Diabetology Unit, Amiri Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- *Correspondence: Jehad Abubaker,
| |
Collapse
|
65
|
Urinary neutrophil gelatinase-associated lipocalin: Acute kidney injury in liver cirrhosis. Clin Chim Acta 2021; 523:339-347. [PMID: 34666028 DOI: 10.1016/j.cca.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Acute kidney injury (AKI) in liver cirrhosis is associated with poor clinical outcomes including an increased long and short-term mortality. The common type of AKI observed in patients with cirrhosis are prerenal AKI (PRA), hepatorenal syndrome (HRS) and acute tubular necrosis (ATN). Despite the growing knowledge and uniform definition for the diagnosis of AKI, there are several challenges including, early diagnosis and management. Precisely differentiating the type of AKI is critical, as therapies differ significantly. In this review, we summarize AKI in liver cirrhosis, their definition, pathophysiology and deficiencies of using the existing biomarker, serum creatinine. We outline the current clinical evidence on the novel biomarker urinary neutrophil gelatinase-associated lipocalin (uNGAL) and its potential role as a biomarker in the early detection, differentiation and prognostication of AKI. This review also briefly talks about other forthcoming biomarkers which hold promise in the management of AKI in liver cirrhosis.
Collapse
|
66
|
Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. Int J Mol Sci 2021; 22:ijms221910606. [PMID: 34638943 PMCID: PMC8508693 DOI: 10.3390/ijms221910606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.
Collapse
|
67
|
Mostafa RE, Morsi AH, Asaad GF. Anti-inflammatory effects of saxagliptin and vildagliptin against doxorubicin-induced nephrotoxicity in rats: attenuation of NLRP3 inflammasome up-regulation and tubulo-interstitial injury. Res Pharm Sci 2021; 16:547-558. [PMID: 34522201 PMCID: PMC8407158 DOI: 10.4103/1735-5362.323920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 05/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background and purpose: The clinical use of the chemotherapeutic drug, doxorubicin (DXR), is significantly limited by its extensive multi-organ toxicity. Dipeptidyl peptidase-4 (DPP4) is over-expressed in oxidative stress, inflammation and apoptosis. DPP4 inhibitors have proven pleiotropic effects. The study investigates the protective effects of some DDP4 inhibitors; namely, saxagliptin (SAX) and vildagliptin (VIL) against DXR-induced nephrotoxicity in rats. Experimental approach: Forty rats were divided into 4 groups. Group I served as normal control. Nephrotoxicity was induced in the remaining 3 groups by single-DXR injection (15 mg/kg, i.p.). Groups III and IV administered oral SAX (10 mg/kg) and VIL (10 mg/kg) for 2 weeks. Findings/Results: DXR-control rats showed deteriorated renal functions, elevated renal inflammatory parameters (tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and inducible nitric oxide synthase (iNOS)), up-regulated nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and significant tubulointerstitial injury manifested by elevated neutrophil gelatinase-associated lipocalin concentration and distorted renal histopathological pictures. Immunohistochemical studies showed increased iNOS and Bax positivity in renal tissues of DXR-control rats. Treatment with SAX and VIL significantly attenuated DXR-induced nephrotoxicity via alleviation of all the above-mentioned parameters when compared to DXR-control rats. Conclusion and implications: The study elucidated the possible mechanisms beyond DXR-induced nephrotoxicity to be through inflammation plus tubulointerstitial injury. DXR nephrotoxicity has been linked to TNF-α, IL-1β, and NLRP3 inflammasome up-regulation and iNOS expression. The protective role of SAX and VIL in mitigating the tubular injury and inflammatory effects of DXR on renal tissues has been tested and proved.
Collapse
Affiliation(s)
- Rasha Ezzat Mostafa
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Azza Hassan Morsi
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gihan Farag Asaad
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
68
|
Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021; 142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Acute kidney disease due to renal ischemia/reperfusion (I/R) is a major clinical problem without effective therapies. The injured tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT). It will loss epithelial phenotypes and express the mesenchymal characteristics. The formation of scar tissue in the interstitial space during renal remodeling is caused by the excessive accumulation of extracellular matrix components and induced fibrosis. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on renal remodeling after injury. The inhibitory role of CAEA on EMT was determined by western blotting, real-time PCR, and immunohistochemistry staining. Treating renal epithelial cells with CAEA in TGF-β exposed cell culture successfully maintained the content of E-cadherin and inhibited the expression of mesenchymal marker, indicating that CAEA prevented renal epithelial cells undergo EMT after TGF-β exposure. Unilateral renal I/R were performed in mice to induce renal remodeling models. CAEA can protect against I/R-induced renal remodeling by inhibiting inflammatory reactions and consecutively inhibiting TGF-β-induced EMT, characterized by the preserved E-cadherin expression and alleviated α-SMA and collagen expression, as well as the alleviated of renal fibrosis. We also revealed that CAEA may exhibits biological activity by targeting TGFBRI. CAEA may antagonize TGF-β signaling by interacting with TGFBR1, thereby blocking binding between TGF-β and TGFBR1 and reducing downstream signaling, such as Smad3 phosphorylation. Our data support the administration of CAEA after I/R as a viable method for preventing the progression of acute renal injury to renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan
| | - Tzu-Tang Wei
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
69
|
Michon A, Durrbach A, Gautier JC, Benain X, Lunven C, Jagerschmidt A, Aubert C, Poetz O, Joos T, Gury T, Becquemont L. Investigation of new biomarkers of kidney injury in renal transplant recipients undergoing graft biopsy. Clin Transplant 2021; 35:e14408. [PMID: 34196434 DOI: 10.1111/ctr.14408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
AIM Urinary and blood kidney biomarkers (BM) remain insufficient for early kidney injury detection. We aimed to compare new kidney BM with histopathological data in kidney allograft recipients. METHODS Blood and urine samples were collected from consecutive adult patients just before graft biopsy. All kidney samples were classified according to the Banff 2007 classification. The diagnostic performance of 16 new BM was compared to those of urinary proteins, blood urea nitrogen, eGFR, and serum creatinine to identify histopathological groups. RESULTS Two hundred and twenty-three patients were analyzed. Microalbuminuria and urinary proteins performed well to discriminate glomerular injury from slightly modified renal parenchyma (SMRP). Urinary neutrophil gelatinase-associated lipocalin (NGAL) had the best performance relative to SMRP (AUROC .93) for acute tubular necrosis (ATN) diagnosis. Other BM had a slightly lower AUROC (.89). For the comparison of ATN to acute rejection, several new urinary BM (NGAL, cystatin C, MCP1) and classical BM (eGFR, serum creatinine) gave similar AUROC values (from .80 to .85). Urinary NGAL values in patients with ATN were 10-time higher than those with acute rejection (P=.0004). CONCLUSION The new BM did not outperform classical BM in the context of renal transplantation. Urinary NGAL may be useful for distinguishing between ATN and acute rejection.
Collapse
Affiliation(s)
- Arthur Michon
- Nephrology Department, Bicêtre University Hospital, APHP, Paris, France
| | - Antoine Durrbach
- University Paris Saclay, Paris, France.,INSERM UMRS-1186, Gustave Roussy Institute, Paris, France.,Nephrology Department, Henri Mondor, University Hospital, APHP, Paris, France
| | | | - Xavier Benain
- Biostatistics and Programming, Sanofi R&D, Paris, France
| | | | | | - Catherine Aubert
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Paris, France
| | - Oliver Poetz
- SIGNATOPE GmbH, Paris, France.,Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas Joos
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Paris, France.,Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thierry Gury
- Nephrology Department, Henri Mondor, University Hospital, APHP, Paris, France
| | - Laurent Becquemont
- Nephrology Department, Bicêtre University Hospital, APHP, Paris, France.,University Paris Saclay, Paris, France.,CESP/INSERM U1018 (Centre de Recherche en Épidémiologie et Santé des Populations), Paris, France
| |
Collapse
|
70
|
Aufhauser DD, Hernandez P, Concors SJ, O'Brien C, Wang Z, Murken DR, Samanta A, Beier UH, Krumeich L, Bhatti TR, Wang Y, Ge G, Wang L, Cheraghlou S, Wagner FF, Holson EB, Kalin JH, Cole PA, Hancock WW, Levine MH. HDAC2 targeting stabilizes the CoREST complex in renal tubular cells and protects against renal ischemia/reperfusion injury. Sci Rep 2021; 11:9018. [PMID: 33907245 PMCID: PMC8079686 DOI: 10.1038/s41598-021-88242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Histone/protein deacetylases (HDAC) 1 and 2 are typically viewed as structurally and functionally similar enzymes present within various co-regulatory complexes. We tested differential effects of these isoforms in renal ischemia reperfusion injury (IRI) using inducible knockout mice and found no significant change in ischemic tolerance with HDAC1 deletion, but mitigation of ischemic injury with HDAC2 deletion. Restriction of HDAC2 deletion to the kidney via transplantation or PAX8-controlled proximal renal tubule-specific Cre resulted in renal IRI protection. Pharmacologic inhibition of HDAC2 increased histone acetylation in the kidney but did not extend renal protection. Protein analysis demonstrated increased HDAC1-associated CoREST protein in HDAC2-/- versus WT cells, suggesting that in the absence of HDAC2, increased CoREST complex occupancy of HDAC1 can stabilize this complex. In vivo administration of a CoREST inhibitor exacerbated renal injury in WT mice and eliminated the benefit of HDAC2 deletion. Gene expression analysis of endothelin showed decreased endothelin levels in HDAC2 deletion. These data demonstrate that contrasting effects of HDAC1 and 2 on CoREST complex stability within renal tubules can affect outcomes of renal IRI and implicate endothelin as a potential downstream mediator.
Collapse
Affiliation(s)
| | - Paul Hernandez
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Seth J Concors
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ciaran O'Brien
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhonglin Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Murken
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Krumeich
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tricia R Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yanfeng Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Guanghui Ge
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew H Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
71
|
Oksay SC, Dursun H, Neijmann ST, Hatipoglu S. Using urinary neutrophile gelatinase-associated lipocalin for prognosticate renal dysfunction in children with familial Mediterranean fever the study design: a pilot study. Adv Rheumatol 2021; 61:20. [PMID: 33795029 DOI: 10.1186/s42358-021-00178-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most important finding that affects the prognosis in Familial Mediterranean Fever is renal amyloidosis. The aim of the present study was to analyze neutrophil gelatinase-associated lipocalin levels in the urine, and to investigate whether it may be used as an early marker for renal involvement. METHODS Forty attack-free children followed by diagnosis of Familial Mediterranean Fever with age range of 5 and 18 years, and 38 healthy children with similar ages and genders were enrolled into the study. Hemogram, sedimentation, C-reactive protein, urine analysis, creatinine in the spot urine, microalbumin and urinary neutrophil gelatinase-associated lipocalin levels were analyzed and evaluated statistically in the patients and controls. RESULTS There was not any statistically significant difference between the patient and control groups for age, gender, height and body weight. Although there was not any clinical sign of attack in the patient group, sedimentation, C-reactive protein and fibrinogen levels were significantly higher than the control group (p = 0.002, p = 0.023, and p = 0.006, respectively). Similarly, urinary neutrophil gelatinase-associated lipocalin level and urinary creatinine ratio were significantly higher in the patient group (p = 0.0001, p = 0.011, respectively). We found a positive correlation between uNGAL level and uNGAL/uCr ratio and number of attacks per year in FMF patients (r = 0.743, p = 0.001 and r = 0.516, p = 0.001; respectively). CONCLUSIONS Detection of significantly higher levels of urinary neutrophil gelatinase-associated lipocalin level and urinary neutrophil gelatinase-associated lipocalin level to creatinine ratio were suggested as urinary neutrophil gelatinase-associated lipocalin level as a non-invasive marker for renal involvement better than microalbumin.
Collapse
Affiliation(s)
- Sinem Can Oksay
- Dr. Sadi Konuk Training and Research Hospital Department of Pediatrics, Health Science University, Istanbul, Turkey
| | - Hasan Dursun
- Dr. Sadi Konuk Training and Research Hospital Department of Pediatric Nephrology, Health Science University, Istanbul, Turkey. .,Okmeydani Training and Research Hospital Department of Pediatric Nephrology, Health Science University, Kaptan Paşa Mahallesi, Darülaceze Cad. No: 25 Okmeydani, 34384, Şişli/Istanbul, Turkey.
| | - Sebnem Tekin Neijmann
- Dr. Sadi Konuk Training and Research Hospital Department of Biochemistry, Health Science University, Istanbul, Turkey
| | - Sami Hatipoglu
- Dr. Sadi Konuk Training and Research Hospital Department of Pediatrics, Health Science University, Istanbul, Turkey
| |
Collapse
|
72
|
Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6639199. [PMID: 33708334 PMCID: PMC7932781 DOI: 10.1155/2021/6639199] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) released in cells are signaling molecules but can also modify signaling proteins. Red blood cells perform a major role in maintaining the balance of the redox in the blood. The main cytosolic protein of RBC is hemoglobin (Hb), which accounts for 95-97%. Most other proteins are involved in protecting the blood cell from oxidative stress. Hemoglobin is a major factor in initiating oxidative stress within the erythrocyte. RBCs can also be damaged by exogenous oxidants. Hb autoxidation leads to the generation of a superoxide radical, of which the catalyzed or spontaneous dismutation produces hydrogen peroxide. Both oxidants induce hemichrome formation, heme degradation, and release of free iron which is a catalyst for free radical reactions. To maintain the redox balance, appropriate antioxidants are present in the cytosol, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (PRDX2), as well as low molecular weight antioxidants: glutathione, ascorbic acid, lipoic acid, α-tocopherol, β-carotene, and others. Redox imbalance leads to oxidative stress and may be associated with overproduction of ROS and/or insufficient capacity of the antioxidant system. Oxidative stress performs a key role in CKD as evidenced by the high level of markers associated with oxidative damage to proteins, lipids, and DNA in vivo. In addition to the overproduction of ROS, a reduced antioxidant capacity is observed, associated with a decrease in the activity of SOD, GPx, PRDX2, and low molecular weight antioxidants. In addition, hemodialysis is accompanied by oxidative stress in which low-biocompatibility dialysis membranes activate phagocytic cells, especially neutrophils and monocytes, leading to a respiratory burst. This review shows the production of ROS under normal conditions and CKD and its impact on disease progression. Oxidative damage to red blood cells (RBCs) in CKD and their contribution to cardiovascular disease are also discussed.
Collapse
|
73
|
Che K, Han W, Zhang M, Niu H. Role of neutrophil gelatinase-associated lipocalin in renal cell carcinoma. Oncol Lett 2021; 21:148. [PMID: 33552266 PMCID: PMC7798090 DOI: 10.3892/ol.2020.12409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. It exists as a monomer of 25 kDa, a homodimer of 45 kDa or a heterodimer of 135 kDa (disulfide bound to latent matrix metalloproteinase-9). NGAL is considered the biochemical gold standard for the early diagnosis of acute kidney injury and has attracted much attention as a diagnostic biomarker. NGAL has controversial (i.e. both beneficial and detrimental) effects on cellular processes associated with tumor development, such as cell proliferation, survival, migration, invasion and drug resistance. Therefore, the present review aimed at clarifying the role of NGAL in renal cell carcinoma (RCC). Relevant studies of NGAL and RCC were searched in PubMed and relevant information about the structure, expression, function and mechanism of NGAL in RCC were summarized. Finally, the following conclusions could be drawn from the literature: i) NGAL can be detected in cancer tissues, serum and urine of patients with RCC; ii) NGAL is not a suitable diagnostic marker for early screening of RCC; iii) NGAL expression may be used to predict the prognosis of patients with RCC; and iv) Further research on NGAL may be helpful to decrease sunitinib resistance and find new treatment strategies for RCC.
Collapse
Affiliation(s)
- Kai Che
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenkai Han
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
74
|
|
75
|
Neutrophil Gelatinase-Associated Lipocalin (NGAL) Measured at Admission is Associated With Development of Late Cardiogenic Shock and Mortality in Patients With ST-Segment Elevation Myocardial Infarction. Shock 2021; 56:255-259. [PMID: 34276039 DOI: 10.1097/shk.0000000000001721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT In patients with ST-elevation myocardial infarction (STEMI) the immune system is activated with an inflammatory response to follow. In STEMI patients with a severe inflammatory response, risk of development of cardiogenic shock (CS) seems increased. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a glycoprotein released from mature neutrophils and plasma concentration may increase immediately after STEMI. We therefore aimed to assess whether admission NGAL plasma concentration in patients with STEMI was associated with CS development after leaving the catheterization laboratory (late CS) and 30-day all-cause mortality. PATIENTS AND METHODS From 1,892 consecutive patients with STEMI 1,626 (86%) had plasma NGAL concentration measured upon hospital admission before angiography throughout a 1-year period at two tertiary heart centers in Denmark. Patients were stratified according to NGAL quartiles (Q1-4). To assess late CS development, we adjusted for the Observatoire Régional Breton sur l'Infarctus risk score for late CS. For mortality assessment, we adjusted for gender, age, post-PCI culprit Thrombolysis in myocardial infarction flow, left ventricular ejection fraction (LVEF), kidney dysfunction, and being comatose after cardiac arrest. RESULTS Increasing NGAL concentration was associated with higher age, more comorbidities, and more critical patient conditions including lower blood pressure and LVEF. When adjusted for factors associated with poor outcome, NGAL remained independently associated with both late CS development (Q4 vs. Q1-3) (OR (95% CI) 3.64 (1.79-7.41) and 30-day mortality (HR (95% CI) 3.18 (1.73-5.84)). CONCLUSION Admission plasma concentration of NGAL in STEMI patients is independently associated with 30-day all-cause mortality and predictive of late CS development.
Collapse
|
76
|
Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol 2021; 109:35-47. [PMID: 33242368 PMCID: PMC7753679 DOI: 10.1002/jlb.4covr0920-552rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.
Collapse
Affiliation(s)
- Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Zhong Dong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ayesha Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yechiel Mor
- Department of Internal Medicine Wayne State University, Detroit, Michigan, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
77
|
Kielar M, Dumnicka P, Gala-Błądzińska A, Będkowska-Prokop A, Ignacak E, Maziarz B, Ceranowicz P, Kuśnierz-Cabala B. Urinary NGAL Measured after the First Year Post Kidney Transplantation Predicts Changes in Glomerular Filtration over One-Year Follow-Up. J Clin Med 2020; 10:E43. [PMID: 33375581 PMCID: PMC7795618 DOI: 10.3390/jcm10010043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023] Open
Abstract
Currently, serum creatinine and estimated glomerular filtration rate (eGFR) together with albuminuria or proteinuria are laboratory markers used in long-term monitoring of kidney transplant recipients. There is a need for more sensitive markers that could serve as early warning signs of graft dysfunction. Our aim was to assess the urinary concentrations of neutrophil gelatinase-associated lipocalin (NGAL) as a predictor of changes in kidney transplant function after the first year post-transplantation. We prospectively recruited 109 patients with functioning graft at least one year after the transplantation, with no acute conditions over the past three months, during their control visits in kidney transplant ambulatory. Urinary NGAL measured on recruitment was twice higher in patients with at least 10% decrease in eGFR over 1-year follow-up compared to those with stable or improving transplant function. Baseline NGAL significantly predicted the relative and absolute changes in eGFR and the mean eGFR during the follow-up independently of baseline eGFR and albuminuria. Moreover, baseline NGAL significantly predicted urinary tract infections during the follow-up, although the infections were not associated with decreasing eGFR. Additionally, we assessed urinary concentrations of matrix metalloproteinase 9-NGAL complex in a subgroup of 77 patients and found higher levels in patients who developed urinary tract infections during the follow-up but not in those with decreasing eGFR. High urinary NGAL in clinically stable kidney transplant recipients beyond the first year after transplantation may be interpreted as a warning and trigger the search for transient or chronic causes of graft dysfunction, or urinary tract infection.
Collapse
Affiliation(s)
- Małgorzata Kielar
- St. Louis Regional Children’s Hospital, Medical Diagnostic Laboratory with a Bacteriology Laboratory, Strzelecka 2 St., 31-503 Kraków, Poland;
| | - Paulina Dumnicka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medical Diagnostics, 30-688 Kraków, Poland;
| | - Agnieszka Gala-Błądzińska
- Medical College of Rzeszów University, Institute of Medical Sciences, Kopisto 2A Avn., 35-310 Rzeszów, Poland;
| | - Alina Będkowska-Prokop
- Jagiellonian University Medical College, Faculty of Medicine, Department of Nephrology, Jakubowskiego 2 St., 30-688 Kraków, Poland; (A.B.-P.); (E.I.)
| | - Ewa Ignacak
- Jagiellonian University Medical College, Faculty of Medicine, Department of Nephrology, Jakubowskiego 2 St., 30-688 Kraków, Poland; (A.B.-P.); (E.I.)
| | - Barbara Maziarz
- Jagiellonian University Medical College, Faculty of Medicine, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
| | - Piotr Ceranowicz
- Jagiellonian University Medical College, Faculty of Medicine, Department of Physiology, Grzegórzecka 16 St., 31-531 Kraków, Poland
| | - Beata Kuśnierz-Cabala
- Jagiellonian University Medical College, Faculty of Medicine, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
| |
Collapse
|
78
|
Lousa I, Reis F, Beirão I, Alves R, Belo L, Santos-Silva A. New Potential Biomarkers for Chronic Kidney Disease Management-A Review of the Literature. Int J Mol Sci 2020; 22:E43. [PMID: 33375198 PMCID: PMC7793089 DOI: 10.3390/ijms22010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and the mortality rate continues to be unacceptably high. The biomarkers currently used in clinical practice are considered relevant when there is already significant renal impairment compromising the early use of potentially successful therapeutic interventions. More sensitive and specific biomarkers to detect CKD earlier on and improve patients' prognoses are an important unmet medical need. The aim of this review is to summarize the recent literature on new promising early CKD biomarkers of renal function, tubular lesions, endothelial dysfunction and inflammation, and on the auspicious findings from metabolomic studies in this field. Most of the studied biomarkers require further validation in large studies and in a broad range of populations in order to be implemented into routine CKD management. A panel of biomarkers, including earlier biomarkers of renal damage, seems to be a reasonable approach to be applied in clinical practice to allow earlier diagnosis and better disease characterization based on the underlying etiologic process.
Collapse
Affiliation(s)
- Irina Lousa
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Idalina Beirão
- Universitary Hospital Centre of Porto (CHUP), 4099-001 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Rui Alves
- Nephrology Department, Coimbra University Hospital Center, 3004-561 Coimbra, Portugal;
- University Clinic of Nephrology, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| | - Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.L.); (L.B.)
| |
Collapse
|
79
|
Thiriet PE, Medagoda D, Porro G, Guiducci C. Rapid Multianalyte Microfluidic Homogeneous Immunoassay on Electrokinetically Driven Beads. BIOSENSORS 2020; 10:212. [PMID: 33371213 PMCID: PMC7766682 DOI: 10.3390/bios10120212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The simplicity of homogeneous immunoassays makes them suitable for diagnostics of acute conditions. Indeed, the absence of washing steps reduces the binding reaction duration and favors a rapid and compact device, a critical asset for patients experiencing life-threatening diseases. In order to maximize analytical performance, standard systems employed in clinical laboratories rely largely on the use of high surface-to-volume ratio suspended moieties, such as microbeads, which provide at the same time a fast and efficient collection of analytes from the sample and controlled aggregation of collected material for improved readout. Here, we introduce an integrated microfluidic system that can perform analyte detection on antibody-decorated beads and their accumulation in confined regions within 15 min. We employed the system to the concomitant analysis of clinical concentrations of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Cystatin C in serum, two acute kidney injury (AKI) biomarkers. To this end, high-aspect-ratio, three-dimensional electrodes were integrated within a microfluidic channel to impart a controlled trajectory to antibody-decorated microbeads through the application of dielectrophoretic (DEP) forces. Beads were efficiently retained against the fluid flow of reagents, granting an efficient on-chip analyte-to-bead binding. Electrokinetic forces specific to the beads' size were generated in the same channel, leading differently decorated beads to different readout regions of the chip. Therefore, this microfluidic multianalyte immunoassay was demonstrated as a powerful tool for the rapid detection of acute life-threatening conditions.
Collapse
Affiliation(s)
- Pierre-Emmanuel Thiriet
- Laboratory of Life Sciences Electronics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.M.); (G.P.); (C.G.)
| | | | | | | |
Collapse
|
80
|
Lim SL, Gandhi M, Woo KL, Chua HR, Lim YC, Sim DKL, Lee SSG, Teoh YL, Richards AM, Lam CSP. Nitrates in combination with hydralazine in cardiorenal syndrome: a randomized controlled proof-of-concept study. ESC Heart Fail 2020; 7:4267-4276. [PMID: 33150715 PMCID: PMC7754984 DOI: 10.1002/ehf2.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/09/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Cardiorenal syndrome (CRS) is a common problem of great morbidity and mortality. Hydralazine-isosorbide dinitrate (H-ISDN) may be used in renal failure and may improve exercise capacity in heart failure (HF). Our proof-of-concept study aimed to evaluate early evidence of efficacy, safety, and feasibility of H-ISDN compared with standard of care in CRS. METHODS AND RESULTS This multi-centre, single-blind, randomized trial in Singapore enrolled CRS patients, defined as chronic HF with concomitant renal failure [estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2 ]. The primary outcome was 6 min walk test (6MWT) distance measured at 6 months. Secondary outcomes included study feasibility; efficacy outcomes which included renal, cardiac, and endothelial functions, health-related quality of life using Short Form-36, clinical outcomes; and adverse events. Forty-four patients [71 ± 10 years; 75% male; median (inter-quartile range) N-terminal prohormone brain natriuretic peptide 1346 (481-2272) pg/mL] with CRS (left ventricular ejection fraction 42 ± 12% and eGFR 46 ± 15 ml/min/1.73 m2 ) were randomized into two equal groups. Of these, 39 (89%) had hypertension, 27 (61%) had diabetes mellitus, and 17 (39%) had atrial fibrillation. Six (27%) discontinued H-ISDN owing to intolerance and poor compliance. There was a trend towards improved 6MWT distance with H-ISDN compared with standard of care at 6 months (mean difference 27 m; 95% CI, -12 to 66), with little differences in secondary efficacy outcomes. Giddiness and hypotension occurred more frequently with H-ISDN, but HF hospitalizations and mortality were less. CONCLUSIONS Our pilot study does not support the addition of H-ISDN on top of standard medical therapy to improve exercise capacity in patients with CRS.
Collapse
Affiliation(s)
- Shir Lynn Lim
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - Mihir Gandhi
- Singapore Clinical Research Institute, Singapore.,Duke-NUS Medical School, Singapore.,Global Health Group, Center for Child Health Research, Tampere University, Tampere, Finland
| | - Kai Lee Woo
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - Horng Ruey Chua
- Division of Nephrology, National University Hospital, Singapore
| | - Yoke Ching Lim
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - David K L Sim
- Department of Cardiology, National Heart Center, Singapore
| | - Sheldon S G Lee
- Department of Cardiology, Changi General Hospital, Singapore
| | - Yee Leong Teoh
- Singapore Clinical Research Institute, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore.,Cardiovascular Research Institute, National University Heart Center, Singapore.,Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Carolyn S P Lam
- Duke-NUS Medical School, Singapore.,Department of Cardiology, National Heart Center, Singapore
| |
Collapse
|
81
|
Naunova-Timovska S, Cekovska S, Sahpazova E, Tasić V. NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN AS AN EARLY BIOMARKER OF ACUTE KIDNEY INJURY IN NEWBORNS. Acta Clin Croat 2020; 59:55-62. [PMID: 32724275 PMCID: PMC7382871 DOI: 10.20471/acc.2020.59.01.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to determine the incidence, risk factors and efficiency of the neutrophil gelatinase-associated lipocalin (NGAL) biomarker in early diagnosis of acute kidney injury (AKI) in newborns. The study was designed as a prospective, clinical, epidemiological investigation conducted in the period of three years, which included 50 newborns with AKI hospitalized in the Neonatal Intensive Care Unit, University Children’s Hospital in Skopje. The estimated prevalence of AKI was 6.4%, while the prevalence according to RIFLE classification was 8.7%. Perinatal asphyxia was a common predisposing factor associated to kidney injury. The mortality rate was 32% and was significantly higher in the group of newborns with congenital heart diseases. There was a significant difference between NGAL values and creatinine values on the day of admission. There was a significant difference in NGAL values between newborns with AKI and lethal outcome and newborns without lethal outcome (p<0.001). In conclusion, AKI is a life-threatening condition. It is an independent contributor to mortality. Urinary NGAL is an early predictive biomarker of AKI in critically ill newborns.
Collapse
Affiliation(s)
| | - Svetlana Cekovska
- 1University Children's Hospital, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia; 2Institute of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Emilija Sahpazova
- 1University Children's Hospital, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia; 2Institute of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Velibor Tasić
- 1University Children's Hospital, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia; 2Institute of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| |
Collapse
|
82
|
McLeod DJ, Sebastião YV, Ching CB, Greenberg JH, Furth SL, Becknell B. Longitudinal kidney injury biomarker trajectories in children with obstructive uropathy. Pediatr Nephrol 2020; 35:1907-1914. [PMID: 32444926 PMCID: PMC7502482 DOI: 10.1007/s00467-020-04602-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Congenital obstructive uropathy (OU) is a leading cause of pediatric kidney failure, representing a unique mechanism of injury, in part from renal tubular stretch and ischemia. Tubular injury biomarkers have potential to improve OU-specific risk stratification. METHODS Patients with OU were identified in the Chronic Kidney Disease in Children (CKiD) study. "Cases" were defined as individuals receiving any kidney replacement therapy (KRT), while "controls" were age- and time-on-study matched and KRT free at last study visit. Urine and plasma neutrophil gelatinase-associated lipocalin (NGAL), interleukin 18 (IL-18), and liver-type fatty acid-binding protein (L-FABP) levels were measured at enrollment and annually and compared between cases and controls. Urine values were normalized to urine creatinine. RESULTS In total, 22 cases and 22 controls were identified, with median (interquartile range) ages of 10.5 (9.0-13.0) and 15.9 (13.9-16.9) years at baseline and outcome, respectively. At enrollment there were no differences noted between cases and controls for any urine (u) or plasma (p) biomarker measured. However, the mean pNGAL and uL-FABP/creatinine increased throughout the study period in cases (15.38 ng/ml per year and 0.20 ng/ml per mg/dl per year, respectively, p = 0.01 for both) but remained stable in controls. This remained constant after controlling for baseline glomerular filtration rate (GFR). CONCLUSIONS In children with OU, pNGAL and uL-FABP levels increased over the 5 years preceding KRT; independent of baseline GFR. Future studies are necessary to identify optimal cutoff values and to determine if these markers outperform current clinical predictors.
Collapse
Affiliation(s)
- Daryl J McLeod
- Section of Urology, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Center for Surgical Outcomes Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Yuri V Sebastião
- Center for Surgical Outcomes Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christina B Ching
- Section of Urology, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Jason H Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Susan L Furth
- Department of Pediatrics, Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian Becknell
- Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, Section of Nephrology, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| |
Collapse
|
83
|
Jacobson MH, Wu Y, Liu M, Attina TM, Naidu M, Karthikraj R, Kannan K, Warady BA, Furth S, Vento S, Trachtman H, Trasande L. Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med 2020; 17:e1003384. [PMID: 33052911 PMCID: PMC7556524 DOI: 10.1371/journal.pmed.1003384] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exposure to environmental chemicals may be a modifiable risk factor for progression of chronic kidney disease (CKD). The purpose of this study was to examine the impact of serially assessed exposure to bisphenol A (BPA) and phthalates on measures of kidney function, tubular injury, and oxidative stress over time in a cohort of children with CKD. METHODS AND FINDINGS Samples were collected between 2005 and 2015 from 618 children and adolescents enrolled in the Chronic Kidney Disease in Children study, an observational cohort study of pediatric CKD patients from the US and Canada. Most study participants were male (63.8%) and white (58.3%), and participants had a median age of 11.0 years (interquartile range 7.6 to 14.6) at the baseline visit. In urine samples collected serially over an average of 3.0 years (standard deviation [SD] 1.6), concentrations of BPA, phthalic acid (PA), and phthalate metabolites were measured as well as biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane). Clinical renal function measures included estimated glomerular filtration rate (eGFR), proteinuria, and blood pressure. Linear mixed models were fit to estimate the associations between urinary concentrations of 6 chemical exposure measures (i.e., BPA, PA, and 4 phthalate metabolite groups) and clinical renal outcomes and urinary concentrations of KIM-1, NGAL, 8-OHdG, and F2-isoprostane controlling for sex, age, race/ethnicity, glomerular status, birth weight, premature birth, angiotensin-converting enzyme inhibitor use, angiotensin receptor blocker use, BMI z-score for age and sex, and urinary creatinine. Urinary concentrations of BPA, PA, and phthalate metabolites were positively associated with urinary KIM-1, NGAL, 8-OHdG, and F2-isoprostane levels over time. For example, a 1-SD increase in ∑di-n-octyl phthalate metabolites was associated with increases in NGAL (β = 0.13 [95% CI: 0.05, 0.21], p = 0.001), KIM-1 (β = 0.30 [95% CI: 0.21, 0.40], p < 0.001), 8-OHdG (β = 0.10 [95% CI: 0.06, 0.13], p < 0.001), and F2-isoprostane (β = 0.13 [95% CI: 0.01, 0.25], p = 0.04) over time. BPA and phthalate metabolites were not associated with eGFR, proteinuria, or blood pressure, but PA was associated with lower eGFR over time. For a 1-SD increase in ln-transformed PA, there was an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI: -0.75, -0.01; p = 0.04). Limitations of this study included utilization of spot urine samples for exposure assessment of non-persistent compounds and lack of specific information on potential sources of exposure. CONCLUSIONS Although BPA and phthalate metabolites were not associated with clinical renal endpoints such as eGFR or proteinuria, there was a consistent pattern of increased tubular injury and oxidative stress over time, which have been shown to affect renal function in the long term. This raises concerns about the potential for clinically significant changes in renal function in relation to exposure to common environmental toxicants at current levels.
Collapse
Affiliation(s)
- Melanie H. Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Yinxiang Wu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
| | - Mengling Liu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
| | - Teresa M. Attina
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Mrudula Naidu
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Bradley A. Warady
- Division of Nephrology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri, United States of America
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Suzanne Vento
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
- Wagner Graduate School of Public Service, New York University, New York, New York, United States of America
- School of Global Public Health, New York University, New York, New York, United States of America
| |
Collapse
|
84
|
Thisted L, Østergaard MV, Pedersen AA, Pedersen PJ, Lindsay RT, Murray AJ, Fink LN, Pedersen TX, Secher T, Johansen TT, Thrane ST, Skarsfeldt T, Jelsing J, Thomsen MB, Zois NE. Rat pancreatectomy combined with isoprenaline or uninephrectomy as models of diabetic cardiomyopathy or nephropathy. Sci Rep 2020; 10:16130. [PMID: 32999377 PMCID: PMC7527487 DOI: 10.1038/s41598-020-73046-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular and renal complications are the predominant causes of morbidity and mortality amongst patients with diabetes. Development of novel treatments have been hampered by the lack of available animal models recapitulating the human disease. We hypothesized that experimental diabetes in rats combined with a cardiac or renal stressor, would mimic diabetic cardiomyopathy and nephropathy, respectively. Diabetes was surgically induced in male Sprague Dawley rats by 90% pancreatectomy (Px). Isoprenaline (Iso, 1 mg/kg, sc., 10 days) was administered 5 weeks after Px with the aim of inducing cardiomyopathy, and cardiac function and remodeling was assessed by echocardiography 10 weeks after surgery. Left ventricular (LV) fibrosis was quantified by Picro Sirius Red and gene expression analysis. Nephropathy was induced by Px combined with uninephrectomy (Px-UNx). Kidney function was assessed by measurement of glomerular filtration rate (GFR) and urine albumin excretion, and kidney injury was evaluated by histopathology and gene expression analysis. Px resulted in stable hyperglycemia, hypoinsulinemia, decreased C-peptide, and increased glycated hemoglobin (HbA1c) compared with sham-operated controls. Moreover, Px increased heart and LV weights and dimensions and caused a shift from α-myosin heavy chain (MHC) to β-MHC gene expression. Isoprenaline treatment, but not Px, decreased ejection fraction and induced LV fibrosis. There was no apparent interaction between Px and Iso treatment. The superimposition of Px and UNx increased GFR, indicating hyperfiltration. Compared with sham-operated controls, Px-UNx induced albuminuria and increased urine markers of kidney injury, including neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin, concomitant with upregulated renal gene expression of NGAL and kidney injury molecule 1 (KIM-1). Whereas Px and isoprenaline separately produced clinical endpoints related to diabetic cardiomyopathy, the combination of the two did not accentuate disease development. Conversely, Px in combination with UNx resulted in several clinical hallmarks of diabetic nephropathy indicative of early disease development.
Collapse
Affiliation(s)
- Louise Thisted
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Philip J Pedersen
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
| | - Ross T Lindsay
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- CVRM, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lisbeth N Fink
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
| | - Tanja X Pedersen
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
- CVD Research, Novo Nordisk, Måløv, Denmark
| | - Thomas Secher
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
| | - Thea T Johansen
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jacob Jelsing
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nora E Zois
- In Vivo Pharmacology, Gubra Aps, Kongevej 11b, 2970, Hørsholm, Denmark.
| |
Collapse
|
85
|
Sharma I, Deng F, Kanwar YS. Modulation of Renal Injury by Variable Expression of Myo-Inositol Oxygenase (MIOX) via Perturbation in Metabolic Sensors. Biomedicines 2020; 8:E217. [PMID: 32708636 PMCID: PMC7400661 DOI: 10.3390/biomedicines8070217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/13/2023] Open
Abstract
Obesity is associated with perturbations in cellular energy homeostasis and consequential renal injury leading to chronic renal disease (CKD). Myo-inositol oxygenase (MIOX), a tubular enzyme, alters redox balance and subsequent tubular injury in the settings of obesity. Mechanism(s) for such adverse changes remain enigmatic. Conceivably, MIOX accentuates renal injury via reducing expression/activity of metabolic sensors, which perturb mitochondrial dynamics and, if sustained, would ultimately contribute towards CKD. In this brief communication, we utilized MIOX-TG (Transgenic) and MIOXKO mice, and subjected them to high fat diet (HFD) administration. In addition, ob/ob and ob/MIOXKO mice of comparable age were used. Mice fed with HFD had increased MIOX expression and remarkable derangements in tubular injury biomarkers. Decreased expression of p-AMPKα (phospho AMP-activated protein kinase) in the tubules was also observed, and it was accentuated in MIOX-TG mice. Interestingly, ob/ob mice also had decreased p-AMPKα expression, which was restored in ob/MIOXKO mice. Parallel changes were observed in Sirt1/Sirt3 (silent mating type information regulation 2 homolog), and expression of other metabolic sensors, i.e., PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and Yin Yang (YY-1). In vitro experiments with tubular cells subjected to palmitate-BSA and MIOX-siRNA had results in conformity with the in vivo observations. These findings link the biology of metabolic sensors to MIOX expression in impaired cellular energy homeostasis with exacerbation/amelioration of renal injury.
Collapse
Affiliation(s)
| | | | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (I.S.); (F.D.)
| |
Collapse
|
86
|
Gomes BC, Silva Júnior JM, Tuon FF. Evaluation of Urinary NGAL as a Diagnostic Tool for Acute Kidney Injury in Critically Ill Patients With Infection: An Original Study. Can J Kidney Health Dis 2020; 7:2054358120934215. [PMID: 32612844 PMCID: PMC7307396 DOI: 10.1177/2054358120934215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a common complication in critical care patients.
The presence of AKI is a marker for poor outcomes such as longer
hospitalization durations, more hospital readmissions, and especially,
higher mortality rates. Sepsis is one of the major causes of AKI within the
intensive care unit (ICU) population. Sepsis-related AKI occurs in
approximately 20% of patients, reaching more than 50% in patients with
septic shock. The diagnosis of AKI depends on urine output and/or serum
creatinine measurements. Unfortunately, serum creatinine is a late and
unreliable (insensitive and nonspecific) indicator of AKI. However,
biomarkers of renal damage have great potential in facilitating early
diagnosis of AKI. Several biomarkers, including urinary neutrophil
gelatinase-associated lipocalin (uNGAL), have been used in the early
detection of AKI. Objectives: The aim of this study was to evaluate uNGAL for the diagnosis and prognosis
of AKI in critical ill patients with infections. Design: Original study (Cohort Prospective Observational). Setting: Study in 2 ICUs of different Brazilian hospitals, in the city of Curitiba:
Hospital de Clínicas da Universidade Federal do Paraná and Hospital da
Polícia Militar do Paraná, from November 12, 2016 to May 15, 2018. Participants: Critically ill patients with infections, sepsis, or septic shock were
selected. The inclusion criteria were patients older than 18 years with
infection. They were followed up for 30 days in the analysis of outcomes. We
requested that consent forms be signed by all eligible patients or their
caregivers. Measurements: The urinary neutrophil gelatinase-associated lipocalin (uNGAL) levels of the
patients were measured on 4 consecutive days and was assayed using a
chemiluminescent microparticle immunoassay system. The screening time
occurred within 72 hours of admission to the ICU. The first urine sample was
collected within the first 24 hours of the screening hours. Mortality and
AKI were assessed during first 30 days. Methods: clinical and laboratory data, including daily uNGAL levels, were assessed.
The AKI stage using the KDIGO criteria was evaluated. Sensitivity,
specificity, and the area under the curve-receiver operating characteristic
(AUC-ROC) values were calculated to determine the optimal uNGAL level for
predicting AKI. Results: We had 38 patients who completed the study during the screening period. The
incidence of AKI was 76.3%. The hospitalization period was longer in the
group that developed AKI, with 21 days of median (interquartile range [IQR]:
13.5-25); non-AKI group had a median of 13 days (IQR 7-18;
P = .019). We found a direct relationship between uNGAL
levels and the progression to AKI. Increased values of the biomarker were
associated with the worsening of AKI (P < .05). The
cutoff levels of uNGAL that identified patients who would progress to AKI
were the following: (d1) >116 ng/mL, (d2) >100 ng/mL, and (d3) 284
ng/mL. The value of the fourth and last measurement was not predictive of
patients who would progress to AKI. The median urinary uNGAL was also
associated with mortality on Days 1, 3, and 4: d1, P =
.039; d3, P = .005; d4, P = .005. The
performance of uNGAL in detecting AKI patients (AUC-ROC = 0.881). There were
no risk factors other than AKI that could be correlated with increased uNGAL
levels on Day 1. Limitations: The study was carried out in 2 centers, having used only 1 biomarker, and our
small number of patients were limitations. Conclusion: the uNGAL had an association in its values with the diagnosis and prognosis
of patients with severe infections and AKI. We suggest that studies with a
greater number of patients could better establish the cutoff values of uNGAL
and/or serum NGAL in the identification of infected patients who are at a
high risk of developing AKI.
Collapse
Affiliation(s)
- Brenno Cardoso Gomes
- Departamento de Medicina Integrada, Setor de Ciências da Saúde, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
87
|
Abstract
Early detection of graft injury after kidney transplantation is key to maintaining long-term good graft function. Graft injury could be due to a multitude of factors including ischaemia reperfusion injury, cell or antibody-mediated rejection, progressive interstitial fibrosis and tubular atrophy, infections and toxicity from the immunosuppressive drugs themselves. The current gold standard for assessing renal graft dysfunction is renal biopsy. However, biopsy is usually late when triggered by a change in serum creatinine and of limited utility in diagnosis of early injury when histological changes are equivocal. Therefore, there is a need for timely, objective and non-invasive diagnostic techniques with good early predictive value to determine graft injury and provide precision in titrating immunosuppression. We review potential novel plasma and urine biomarkers that offer sensitive new strategies for early detection and provide major insights into mechanisms of graft injury. This is a rapidly expanding field, but it is likely that a combination of biomarkers will be required to provide adequate sensitivity and specificity for detecting graft injury.
Collapse
|
88
|
Gomelsky A, Abreo K, Khater N, Abreo A, Amin B, Craig MK, Prabhakar A, Cornett EM, Urman RD, Kaye AD. Perioperative acute kidney injury: Stratification and risk reduction strategies. Best Pract Res Clin Anaesthesiol 2020; 34:167-182. [PMID: 32711827 DOI: 10.1016/j.bpa.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
Perioperative acute kidney injury (AKI) is associated with increased morbidity and mortality. Patient comorbidities, the type of surgery, timing of surgery, and exposure to nephrotoxins are important contributors for developing acute kidney injury. Urgent or emergent surgery, cardiac, and organ transplantation procedures are associated with a higher risk of acute kidney injury. Nephrotoxic drugs, contrast dye, and diuretics can worsen preexisting kidney dysfunction or act as an additive and/or synergistic insult to perioperative injury. A history of preoperative chronic kidney disease is the main risk factor for developing AKI, conferring as much as a 10-fold risk. However, beyond the preoperative renal function, the development of AKI is a complex phenomenon that involves a combination of patient-related and surgery-related factors.
Collapse
Affiliation(s)
- Alexander Gomelsky
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Kenneth Abreo
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA; Department of Nephrology and Hypertension, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Nazih Khater
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Adrian Abreo
- Division of Nephrology, Clerkship Director, Internal Medicine Clerkship, Associate Program Director, Adrian AbreoA, 71103, USA.
| | - Bakhtiar Amin
- Department of Nephrology and Hypertension, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Madelyn K Craig
- Department of Anesthesiology, LSU Health Science Center New Orleans, 1542 Tulane Avenue, New Orleans, LA, 70112, USA.
| | - Amit Prabhakar
- Department of Anesthesiology, Division of Critical Care, Emory University School of Medicine, Atlanta, GA, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences; Provost, Chief Academic Officer, and Vice Chancellor of Academic Affairs, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
89
|
He Y, Deng Y, Zhuang K, Li S, Xi J, Chen J. Predictive value of cystatin C and neutrophil gelatinase-associated lipocalin in contrast-induced nephropathy: A meta-analysis. PLoS One 2020; 15:e0230934. [PMID: 32240220 PMCID: PMC7117687 DOI: 10.1371/journal.pone.0230934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background There are still limited studies comprehensively examining the diagnostic performance of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C in contrast-induced nephropathy (CIN). The study aimed to investigate and compare the predictive value of NGAL and cystatin C in the early diagnosis of CIN. Methods and materials We searched the PubMed, EMBASE and Cochrane Library databases until November 10, 2019. The methodological quality of the included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Bivariate modeling and hierarchical summary receiver operating characteristic (HSROC) modeling were performed to summarize and compare the diagnostic performance of blood/urine NGAL and serum cystatin C in CIN. Subgroup and meta-regression analyses were performed according to the study and patient characteristics. Results Thirty-seven studies from thirty-one original studies were included (blood NGAL, 1840 patients in 9 studies; urine NGAL, 1701 patients in 10 studies; serum cystatin C, 5509 patients in 18 studies). Overall, serum cystatin C performed better than serum/urine NGAL (pooled DOR: 43 (95%CI: 12–152); AUROC: 0.93; λ: 3.79); serum and urine NGAL had a similar diagnostic performance (pooled DOR: 25 (95%CI: 6–108)/22(95%CI: 8–64); AUROC: 0.90/0.89; λ: 3.20/3.08). Meta-regression analysis indicated that the sources of heterogeneity might be CIN definition, assays, and nationalities. Conclusion Both NGAL and cystatin C can serve as early diagnostic indicators of CIN, while cystatin C may perform better than NGAL.
Collapse
Affiliation(s)
- Yi He
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunzhen Deng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kaiting Zhuang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siyao Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Xi
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junxiang Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
90
|
Miller I, Schlosser S, Palazzolo L, Veronesi MC, Eberini I, Gianazza E. Some more about dogs: Proteomics of neglected biological fluids. J Proteomics 2020; 218:103724. [PMID: 32126321 DOI: 10.1016/j.jprot.2020.103724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023]
Abstract
We report in this manuscript what is known about the protein makeup of a selection of biological fluids in the domestic dog. The samples we review - amniotic and allantoic fluid, seminal fluid, saliva, bile, synovial fluid, tears - are still very poorly characterized in this species. For some of them we can present results from our own, mainly unpublished experiments. SIGNIFICANCE: The dog is one of the most widespread companion animals, and also of medical relevance as model species for some human diseases. Still, investigation of body fluids other than serum and urine is not so commonly undertaken, although - like in humans - also these sample types may have potential for diagnostic purposes. We compile published data about proteomes of fetal fluids, seminal plasma, saliva, bile, synovial fluid and tears, enriched by some yet unpublished data of our own (proteins of amniotic and allantoic fluid, tears). Closing gaps in our knowledge on dog proteins will further our understanding of (patho)physiological processes.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| | - Sarah Schlosser
- VetCore, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Maria Cristina Veronesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
91
|
Guzzi F, Knight SR, Ploeg RJ, Hunter JP. A systematic review to identify whether perfusate biomarkers produced during hypothermic machine perfusion can predict graft outcomes in kidney transplantation. Transpl Int 2020; 33:590-602. [PMID: 32031281 DOI: 10.1111/tri.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
There is good evidence to support the use of hypothermic machine perfusion (HMP) over static cold storage as the favoured preservation method for deceased donor kidneys. However, the utility of HMP as a tool to assess the viability of kidneys for transplant is unclear. There is a need to determine whether perfusate biomarkers produced during HMP can predict post-transplant outcomes and assess the suitability of organs for transplantation. Three different databases (MEDLINE, Embase, Transplant Library) were screened to 31 May 2019. Articles were included if a relationship was reported between one or more perfusate biomarkers and post-transplant outcomes. Studies were assessed and graded for methodological quality and strength of evidence. Glutathione S-transferase was the most promising biomarker for predicting delayed graft function, but its predictive ability was at best moderate. Analysis of primary nonfunction rates was challenging due to low occurrence rates and small sample sizes. Existing studies are limited in quality and have not yielded biomarkers for kidneys undergoing HMP that are able to predict post-transplant outcomes with sufficient accuracy to support routine clinical use. Further studies with larger samples and more robust methodology are needed. (PROSPERO registration: CRD42019121161).
Collapse
Affiliation(s)
- Francesco Guzzi
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK.,Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Simon R Knight
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK.,Oxford Biomedical Research Centre, Oxford, UK
| | - James P Hunter
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
92
|
Aragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MDT, Salas ADL, Tobón GJ. Urinary biomarkers in lupus nephritis. J Transl Autoimmun 2020; 3:100042. [PMID: 32743523 PMCID: PMC7388339 DOI: 10.1016/j.jtauto.2020.100042] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypical autoimmune disease that can affect any organ of the body. Multiple mechanisms may contribute to the pathophysiology of systemic lupus, including failure to remove apoptotic bodies, hyperactivity of self-reactive B and T lymphocytes, abnormal exposure to autoantigens, and increased levels of B-cell stimulatory cytokines. The involvement of the kidney, called lupus nephritis (LN), during the course of the disease affects between 30% and 60% of adult SLE patients, and up to 70% of children. LN is an immune-mediated glomerulonephritis that is a common and serious finding in patients with SLE. Nowadays, renal biopsy is considered the gold standard for classifying LN, besides its degree of activity or chronicity. Nevertheless, renal biopsy lacks the ability to predict which patients will respond to immunosuppressive therapy and is a costly and risky procedure that is not practical in the monitoring of LN because serial repetitions would be necessary. Consequently, many serum and urinary biomarkers have been studied in SLE patients for the complementary study of LN, existing conventional biomarkers like proteinuria, protein/creatinine ratio in spot urine, 24 h urine proteinuria, creatinine clearance, among others and non-conventional biomarkers, like Monocyte chemoattractant protein-1 (MCP-1), have been correlated with the histological findings of the different types of LN. In this article, we review the advances in lupus nephritis urinary biomarkers. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to follow response to therapy. In addition, some of these markers have been found to be involved in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Cristian C. Aragón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Raúl-Alejandro Tafúr
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Ana Suárez-Avellaneda
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - MD. Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Alejandra de las Salas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
- Universidad Icesi, Medical School, Cali, Colombia
| | - Gabriel J. Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
93
|
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, Pottier N, Glowacki F, Cauffiez C. Cadmium-Induced Renal Cell Toxicity Is Associated With MicroRNA Deregulation. Int J Toxicol 2020; 39:103-114. [DOI: 10.1177/1091581819899039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.
Collapse
Affiliation(s)
- J. Lemaire
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - C. Van der Hauwaert
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Département de la Recherche en Santé, CHU Lille, Lille, France
| | - G. Savary
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - E. Dewaeles
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - M. Perrais
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Université de Lille, Lille, France
| | - J. M. Lo Guidice
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - N. Pottier
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - F. Glowacki
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Néphrologie, CHU Lille, Lille, France
| | - C. Cauffiez
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| |
Collapse
|
94
|
Nkuipou-Kenfack E, Latosinska A, Yang WY, Fournier MC, Blet A, Mujaj B, Thijs L, Feliot E, Gayat E, Mischak H, Staessen JA, Mebazaa A, Zhang ZY. A novel urinary biomarker predicts 1-year mortality after discharge from intensive care. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:10. [PMID: 31918764 PMCID: PMC6953276 DOI: 10.1186/s13054-019-2686-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023]
Abstract
Rationale The urinary proteome reflects molecular drivers of disease. Objectives To construct a urinary proteomic biomarker predicting 1-year post-ICU mortality. Methods In 1243 patients, the urinary proteome was measured on ICU admission, using capillary electrophoresis coupled with mass spectrometry along with clinical variables, circulating biomarkers (BNP, hsTnT, active ADM, and NGAL), and urinary albumin. Methods included support vector modeling to construct the classifier, Cox regression, the integrated discrimination (IDI), and net reclassification (NRI) improvement, and area under the curve (AUC) to assess predictive accuracy, and Proteasix and protein-proteome interactome analyses. Measurements and main results In the discovery (deaths/survivors, 70/299) and test (175/699) datasets, the new classifier ACM128, mainly consisting of collagen fragments, yielding AUCs of 0.755 (95% CI, 0.708–0.798) and 0.688 (0.656–0.719), respectively. While accounting for study site and clinical risk factors, hazard ratios in 1243 patients were 2.41 (2.00–2.91) for ACM128 (+ 1 SD), 1.24 (1.16–1.32) for the Charlson Comorbidity Index (+ 1 point), and ≥ 1.19 (P ≤ 0.022) for other biomarkers (+ 1 SD). ACM128 improved (P ≤ 0.0001) IDI (≥ + 0.50), NRI (≥ + 53.7), and AUC (≥ + 0.037) over and beyond clinical risk indicators and other biomarkers. Interactome mapping, using parental proteins derived from sequenced peptides included in ACM128 and in silico predicted proteases, including/excluding urinary collagen fragments (63/35 peptides), revealed as top molecular pathways protein digestion and absorption, lysosomal activity, and apoptosis. Conclusions The urinary proteomic classifier ACM128 predicts the 1-year post-ICU mortality over and beyond clinical risk factors and other biomarkers and revealed molecular pathways potentially contributing to a fatal outcome.
Collapse
Affiliation(s)
| | | | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.,Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marie-Céline Fournier
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alice Blet
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France
| | - Blerim Mujaj
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium
| | - Elodie Feliot
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France.,INSERM UMR-S 942 - MASCOT, Paris, France
| | | | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Alexandre Mebazaa
- Department of Anesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,Université de Paris, Paris, France.,INSERM UMR-S 942 - MASCOT, Paris, France
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, 3000, Leuven, Belgium.
| | | |
Collapse
|
95
|
Trasande L, Aldana SI, Trachtman H, Kannan K, Morrison D, Christakis DA, Whitlock K, Messito MJ, Gross RS, Karthikraj R, Sathyanarayana S. Glyphosate exposures and kidney injury biomarkers in infants and young children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113334. [PMID: 31677874 PMCID: PMC7307380 DOI: 10.1016/j.envpol.2019.113334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 05/20/2023]
Abstract
The goal of this study was to assess biomarkers of exposure to glyphosate and assess potential associations with renal function in children. Glyphosate is used ubiquitously in agriculture worldwide. While previous studies have indicated that glyphosate may have nephrotoxic effects, few have examined potential effects on kidney function in children. We leveraged three cohorts across different phases of child development and measured urinary levels of glyphosate. We evaluated associations of glyphosate with three biomarkers of kidney injury: albuminuria (ACR), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury marker 1 (KIM-1). Multivariable regression analyses examined associations of glyphosate with kidney injury biomarkers controlling for covariates. We identified glyphosate in 11.1% of the total participants. The herbicide was detected more frequently in the neonate population (30%). Multivariable regression models failed to identify significant associations of log-transformed glyphosate with any of the kidney injury biomarkers, controlling for covariates age, sex, and maternal education. While we confirm detectability of glyphosate in children's urine at various ages and stages of life, there is no evidence in this study for renal injury in children exposed to low levels of glyphosate. Further studies of larger sample size are indicated to better understand putative deleterious effects of the herbicide after different levels of exposure.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| | - Sandra India Aldana
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Howard Trachtman
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA.
| | | | - Deborah Morrison
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | | | | | - Mary Jo Messito
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Rachel S Gross
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | | | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
96
|
Wyawahare M, Krishna Reddy SS, Priyamvada PS, Rajendiran S. Utility of Urinary Neutrophil gelatinase associated lipocalin (NGAL) in decompensated cirrhosis. Indian J Nephrol 2020; 30:391-397. [PMID: 33840958 PMCID: PMC8023034 DOI: 10.4103/ijn.ijn_254_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 11/10/2019] [Indexed: 01/23/2023] Open
Abstract
Background and Aims: Renal failure occurring in the setting of cirrhosis increases mortality by more than threefold. Serum creatinine, the conventional marker for renal dysfunction has inherent limitations in identifying and categorizing renal dysfunction in patients with chronic liver disease (CLD). Neutrophil gelatinase associated lipocalin (NGAL) is a novel biomarker which gets upregulated as early as 2-6 hours following the insult to renal tubules. In this study, we aim to check the utility of uNGAL to identify the different phenotypes of renal dysfunction in patients with CLD. We also intend to assess the utility of NGAL to predict 90-day transplant-free survival in patients with CLD. Methods: A total number of 120 adult patients, with cirrhosis of liver were recruited. Those with pre-existing renal parenchymal disease, receiving nephrotoxic medications, spontaneous bacterial peritonitis, septic shock, proteinuria, hematuria, urinary tract infection and anuria were excluded. Urine samples for NGAL was measured at admission and at 48 hours thereafter. Patients were followed up for 90 days post admission. Results: Among the study population, 16 patients (13.3%) had normal kidney function, 43 (35.8%) had prerenal azotemia and 54 (45%) had Hepatorenal Syndrome (HRS - AKI) and 7 (5.8%) had acute tubular necrosis (ATN). Urinary NGAL (uNGAL) levels were considerably lower in patients with normal kidney function and prerenal azotemia. An uNGAL level of 124 ng/ml on admission could distinguish severe forms of renal injury, with a sensitivity of 86% and specificity of 84%. The non survivors had higher uNGAL levels at admission [209.6 ng/ml (118.7-376.8) vs. 123 (33.6-344.3); P = 0.013].The receiver operated curves for uNGAL and serum creatinine at admission did not show any significant difference for predicting 90 day mortality (AUC for uNGAL: 0.632 vs 0.580 for serum creatinine; difference in AUC 0.053, P value 0.17). Conclusion: uNGAL levels are elevated in patients with HRS-AKI and ATN. A higher uNGAL level at admission was suggestive of severe renal dysfunction. An elevated uNGAL on admission is associated with inferior survival. However, uNGAL is not superior to serum creatinine in predicting 90-day mortality.
Collapse
|
97
|
Zhang L, Fu X, Gui T, Wang T, Wang Z, Kullak-Ublick GA, Gai Z. Effects of Farnesiferol B on Ischemia-Reperfusion-Induced Renal Damage, Inflammation, and NF-κB Signaling. Int J Mol Sci 2019; 20:ijms20246280. [PMID: 31842453 PMCID: PMC6940812 DOI: 10.3390/ijms20246280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Background: G-protein-coupled bile acid receptor (TGR5), a membrane bile acid receptor, regulates macrophage reactivity, and attenuates inflammation in different disease models. However, the regulatory effects of TGR5 in ischemia/reperfusion (I/R)-induced kidney injury and inflammation have not yet been extensively studied. Therefore, we hypothesize that Farnesiferol B, a natural TGR5 agonist, could alleviate renal I/R injury by reducing inflammation and macrophage migration through activating TGR5. Methods: Mice were treated with Farnesiferol B before I/R or sham procedures. Renal function, pathological analysis, and inflammatory mediators were examined. In vitro, the regulatory effects of Farnesiferol B on the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in macrophages were investigated. Results: After I/R, Farnesiferol B-treated mice displayed better renal function and less tubular damage. Farnesiferol B reduced renal oxidative stress and inflammation significantly. In vitro, Farnesiferol B treatment alleviated lipopolysaccharide (LPS)-induced macrophage migration and activation, as well as LPS-induced NF-κB activation through TGR5. Conclusions: Farnesiferol B could protect kidney function from I/R-induced damage by attenuating inflammation though activating TGR5 in macrophages. Farnesiferol B might be a potent TGR5 ligand for the treatment of I/R-induced renal inflammation.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Xianjun Fu
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianqi Wang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenguo Wang
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, 4056 Basel, Switzerland
- Correspondence: (G.A.K.-U.); (Z.G.); Tel.: +43-253-31-45
| | - Zhibo Gai
- College of Traditional Chinese Medicine; Shandong Co-innovation Center of TCM Formula; Institute for Literature and Culture of Chinese Medicine; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
- Correspondence: (G.A.K.-U.); (Z.G.); Tel.: +43-253-31-45
| |
Collapse
|
98
|
Jiang S, Quan DV, Sung JH, Lee MY, Ha H. Cigarette smoke inhalation aggravates diabetic kidney injury in rats. Toxicol Res (Camb) 2019; 8:964-971. [PMID: 32704346 DOI: 10.1039/c9tx00201d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Epidemiological studies have demonstrated that cigarette smoke or nicotine is a risk factor for the progression of chronic kidney injury. The present study analyzed the kidney toxicity of cigarette smoke in experimental rats with DKD. Experimental diabetes was induced in 7-week-old Sprague-Dawley rats by a single intraperitoneal injection of streptozotocin (60 mg kg-1). Four weeks after the induction of diabetes, rats were exposed to cigarette smoke (200 μg L-1), 4 h daily, and 5 days per week for 4 weeks. Cigarette smoke did not affect the levels of plasma glucose, hemoglobin A1c, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol or non-esterified fatty acids in both control and diabetic rats under the experimental conditions. Cigarette smoke, however, significantly increased diabetes-induced glomerular hypertrophy and urinary kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion, suggesting exacerbation of diabetic kidney injury. Cigarette smoke promoted macrophage infiltration and fibrosis in the diabetic kidney. As expected, cigarette smoke increased oxidative stress in both control and diabetic rats. These data demonstrated that four weeks of exposure to cigarette smoke aggravated the progression of DKD in rats.
Collapse
Affiliation(s)
- Songling Jiang
- Graduate School of Pharmaceutical Sciences , College of Pharmacy , Ewha Womans University , Seoul , Republic of Korea . ; ; Tel: +82-2-3277-4075
| | - Do Van Quan
- College of Pharmacy , Dongguk University , Goyang , Republic of Korea . ; ; Tel: +82-31-961-5222
| | - Jae Hyuck Sung
- Bio Technology Division , Korea Conformity Laboratories , Incheon , Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy , Dongguk University , Goyang , Republic of Korea . ; ; Tel: +82-31-961-5222
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences , College of Pharmacy , Ewha Womans University , Seoul , Republic of Korea . ; ; Tel: +82-2-3277-4075
| |
Collapse
|
99
|
Orejudo M, Rodrigues-Diez RR, Rodrigues-Diez R, Garcia-Redondo A, Santos-Sánchez L, Rández-Garbayo J, Cannata-Ortiz P, Ramos AM, Ortiz A, Selgas R, Mezzano S, Lavoz C, Ruiz-Ortega M. Interleukin 17A Participates in Renal Inflammation Associated to Experimental and Human Hypertension. Front Pharmacol 2019; 10:1015. [PMID: 31572188 PMCID: PMC6753390 DOI: 10.3389/fphar.2019.01015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertension is now considered as an inflammatory disease, and the kidney is a key end-organ target. Experimental and clinical studies suggest that interleukin 17A (IL-17A) is a promising therapeutic target in immune and chronic inflammatory diseases, including hypertension and kidney disease. Elevated circulating IL-17A levels have been observed in hypertensive patients. Our aim was to investigate whether chronically elevated circulating IL-17A levels could contribute to kidney damage, using a murine model of systemic IL-17A administration. Blood pressure increased after 14 days of IL-17A infusion in mice when compared with that in control mice, and this was associated to kidney infiltration by inflammatory cells, including CD3+ and CD4+ lymphocytes and neutrophils. Moreover, proinflammatory factors and inflammatory-related intracellular mechanisms were upregulated in kidneys from IL-17A-infused mice. In line with these findings, in the model of angiotensin II infusion in mice, IL-17A blockade, using an anti-IL17A neutralizing antibody, reduced kidney inflammatory cell infiltrates and chemokine overexpression. In kidney biopsies from patients with hypertensive nephrosclerosis, IL-17A positive cells, mainly Th17 and γδ T lymphocytes, were found. Overall, the results support a pathogenic role of IL-17A in hypertensive kidney disease-associated inflammation. Therapeutic approaches targeting this cytokine should be explored to prevent hypertension-induced kidney injury.
Collapse
Affiliation(s)
- Macarena Orejudo
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raquel Rodrigues-Diez
- Pharmacology Department, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Garcia-Redondo
- Pharmacology Department, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Santos-Sánchez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Rández-Garbayo
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Cannata-Ortiz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Selgas
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Laboratory of Nephrology, Fundación de Investigación Biomédica Hospital Universitario la Paz (FIBHULP- IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
100
|
Screening of Early Diagnostic Markers of Gentamicin-induced Acute Kidney Injury in Canines. J Vet Res 2019; 63:405-411. [PMID: 31572822 PMCID: PMC6749733 DOI: 10.2478/jvetres-2019-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction The value of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (Kim-1), and liver-type fatty acid binding protein (L-FABP) was assessed in early diagnosis of gentamicin-induced acute kidney injury (AKI) in dogs. Material and Methods Subcutaneous gentamicin injection in 16 healthy adult beagles made the AKI model. Blood was sampled every 6 h to detect NGAL, Kim-1, L-FABP, and serum creatinine (SCr) concentrations. Kidney tissue of two dogs was taken before the injection, as soon as SCr was elevated (78 μmol/L), and when it had risen to 1.5 times the baseline, and haematoxylin-eosin staining and transmission electron microscopy (TEM) were used to observe changes. Results NGAL, Kim-1, and SCr levels were significantly increased (P < 0.05) at 18, 30, and 78 h post injection, but L-FABP concentration was not associated with renal injury. At the earliest SCr elevation stage, findings were mild oedema, degeneration, and vacuolisation in renal tubular epithelial cells in pathology, and mild cytoplasmic and mitochondrial oedema in TEM. At this time point, NGAL and Kim-1 concentrations were significantly increased (P < 0.05), indicating that these two molecules biomark early kidney injury in dogs. Using receiver operating characteristic curve analysis, their warning levels were > 25.31 ng/mL and > 48.52 pg/mL. Conclusion Plasma NGAL and Kim-1 above warning levels are early indicators of gentamicin-induced AKI in dogs.
Collapse
|