51
|
Honarmand Tamizkar K, Badrlou E, Aslani T, Brand S, Arsang-Jang S, Ghafouri-Fard S, Taheri M. Dysregulation of NF-κB-Associated LncRNAs in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:747785. [PMID: 34658787 PMCID: PMC8512169 DOI: 10.3389/fnmol.2021.747785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) is a long-standing neurodevelopmental condition with prominent effects on social behavior of affected children. This disorder has been linked with neuroinflammatory responses. NF-κB has been shown to affect these responses in the orbitofrontal cortex of patients with ASD, thus being implicated in the pathogenesis of ASD. We measured expression of some NF-κB-associated lncRNAs and mRNAs (DILC, ANRIL, PACER, CHAST, ADINR, DICER1-AS1, HNF1A-AS1, NKILA, ATG5 and CEBPA) in the peripheral blood of ASD kids vs. healthy children. Expression quantities of ADINR, ANRIL, DILC, NKILA and CHAST were meaningfully higher in ASD cases compared with healthy kids (Posterior Beta = 1.402, P value < 0.0001; Posterior Beta = 2.959, P value < 0.0001; Posterior Beta = 0.882, P value = 0.012; Posterior Beta = 1.461, P value < 0.0001; Posterior Beta = 0.541, P value = 0.043, respectively). The Bonferroni corrected P values for these lncRNAs remained significant except for CHAST and DILC. Expression levels of other genes were not considerably different between cases and controls. Expressions of ATG5, DICER-AS1 and DILC were correlated with age of ASD patients (P < 0.0001). Among ASD cases, the most robust correlation has been detected between ADINR and NKILA (r = 0.87, P < 0.0001). Expression of none of genes has been correlated with age of healthy children. Among this group of children, expression levels of ADINR and CHAST were robustly correlated (r = 0.83, P < 0.0001). ANRIL had the greatest AUC value (AUC = 0.857), thus the best diagnostic power among the assessed genes. NKILA ranked the second position in this regard (AUC = 0.757). Thus, NF-κB-associated lncRNAs might partake in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Termeh Aslani
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Research, Psychiatric Clinics, University of Basel, Basel, Switzerland.,Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Sleep Disorder Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Cancer Gene therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Peterson M, Prigge MBD, Bigler ED, Zielinski B, King JB, Lange N, Alexander A, Lainhart JE, Nielsen JA. Evidence for normal extra-axial cerebrospinal fluid volume in autistic males from middle childhood to adulthood. Neuroimage 2021; 240:118387. [PMID: 34260891 PMCID: PMC8485737 DOI: 10.1016/j.neuroimage.2021.118387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/03/2022] Open
Abstract
Autism spectrum disorder has long been associated with a variety of organizational and developmental abnormalities in the brain. An increase in extra-axial cerebrospinal fluid volume in autistic individuals between the ages of 6 months and 4 years has been reported in recent studies. Increased extra-axial cerebrospinal fluid volume was predictive of the diagnosis and severity of the autistic symptoms in all of them, irrespective of genetic risk for developing the disorder. In the present study, we explored the trajectory of extra-axial cerebrospinal fluid volume from childhood to adulthood in both autism and typical development. We hypothesized that an elevated extra-axial cerebrospinal fluid volume would be found in autism persisting throughout the age range studied. We tested the hypothesis by employing an accelerated, multi-cohort longitudinal data set of 189 individuals (97 autistic, 92 typically developing). Each individual had been scanned between 1 and 5 times, with scanning sessions separated by 2-3 years, for a total of 439 T1-weighted MRI scans. A linear mixed-effects model was used to compare developmental, age-related changes in extra-axial cerebrospinal fluid volume between groups. Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in this cohort of individuals 3 to 42 years of age. Our results suggest that extra-axial cerebrospinal fluid volume in autistic individuals is not increased compared with controls beyond four years of age.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States
| | - Molly B D Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States; Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States; Neuroscience Center, Brigham Young University, Provo, UT, 84604, United States; Department of Neurology, University of Utah, Salt Lake City, UT, 84108, United States; Department of Neurology, University of California-Davis, Davis, CA United States
| | - Brandon Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States; Department of Neurology, University of Utah, Salt Lake City, UT, 84108, United States; Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, United States
| | - Jace B King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, United States
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, United States; Neuroscience Center, Brigham Young University, Provo, UT, 84604, United States.
| |
Collapse
|
53
|
Ribeiro R, Nicoli JR, Santos G, Lima-Santos J. Impact of vitamin deficiency on microbiota composition and immunomodulation: relevance to autistic spectrum disorders. Nutr Neurosci 2021; 24:601-613. [PMID: 31506005 DOI: 10.1080/1028415x.2019.1660485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Inappropriate vitamin supply is a public health problem and is related to abnormalities in brain development, immune response and, more recently, in changes of gut microbial composition. It is known that low levels of vitamin in early life are linked to increased susceptibility to neurodevelopmental disorders, such as Autism Spectrum Disorders (ASD). Unfortunately, the possible peripheral influences of vitamin deficiency that leads to alterations in the gut microbiota-immune-brain axis, one important modulator of the ASD pathology, remain unclear. This narrative review discusses how the impact of vitamin deficiency results in changes in the immune regulation and in the gut microbiota composition, trying to understand how these changes may contribute for the development and severity of ASD. METHODS The papers were selected using Pubmed and other databases. This review discusses the following topics: (1) vitamin deficiency in alterations of central nervous system in autism, (2) the impact of low levels of vitamins in immunomodulation and how it can favor imbalance in gut microbiota composition and gastrointestinal (GI) disturbances, (3) gut microbiota imbalance/inflammation associated with the ASD pathophysiology, and (4) possible evidences of the role of vitamin deficiency in dysfunctional gut microbiota-immune-brain axis in ASD. RESULTS Studies indicate that hypovitaminosis A, B12, D, and K have been co-related with the ASD neuropathology. Furthermore, it was shown that low levels of these vitamins favor the Th1/Th17 environment in the gut, as well as the growth of enteropathogens linked to GI disorders. DISCUSSION GI disorders and alterations in the gut microbiota-immune-brain axis seems to be linked with ASD severity. Although unclear, hypovitaminosis appears to regulate peripherally the ASD pathophysiology by modulating the gut microbiota-immune-brain axis, however, more research is still necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Roberta Ribeiro
- Departament of Biologic Sciences, State University of Santa Cruz, Ilheus, Brazil
| | - Jacques Robert Nicoli
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gesivaldo Santos
- Departament of Biologic Sciences, State University of the Southwest of Bahia, Jequie, Brazil
| | - Jane Lima-Santos
- Departament of Biologic Sciences, State University of Santa Cruz, Ilheus, Brazil
| |
Collapse
|
54
|
Baj J, Flieger W, Flieger M, Forma A, Sitarz E, Skórzyńska-Dziduszko K, Grochowski C, Maciejewski R, Karakuła-Juchnowicz H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129:117-132. [PMID: 34339708 DOI: 10.1016/j.neubiorev.2021.07.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland.
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego Street 8b, 20-090, Lublin, Poland
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| | - Katarzyna Skórzyńska-Dziduszko
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwillowska Street 11, Lublin, 20-080, Poland
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland; Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| |
Collapse
|
55
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
56
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
57
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
58
|
Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E. Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res 2021; 137:194-201. [PMID: 33689997 DOI: 10.1016/j.jpsychires.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics. Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD. Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.
Collapse
Affiliation(s)
- V Nezgovorova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - C J Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - B P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Shanahan
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - G Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - K Hong
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - O Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY, USA
| | - E Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
59
|
Upadhyay J, Patra J, Tiwari N, Salankar N, Ansari MN, Ahmad W. Dysregulation of Multiple Signaling Neurodevelopmental Pathways during Embryogenesis: A Possible Cause of Autism Spectrum Disorder. Cells 2021; 10:958. [PMID: 33924211 PMCID: PMC8074600 DOI: 10.3390/cells10040958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the autistic brain and the involvement of genetic, non-genetic, and numerous signaling pathways in the etiology and pathophysiology of autism spectrum disorder (ASD) is complex, as is evident from various studies. Apart from multiple developmental disorders of the brain, autistic subjects show a few characteristics like impairment in social communications related to repetitive, restricted, or stereotypical behavior, which suggests alterations in neuronal circuits caused by defects in various signaling pathways during embryogenesis. Most of the research studies on ASD subjects and genetic models revealed the involvement of mutated genes with alterations of numerous signaling pathways like Wnt, hedgehog, and Retinoic Acid (RA). Despite significant improvement in understanding the pathogenesis and etiology of ASD, there is an increasing awareness related to it as well as a need for more in-depth research because no effective therapy has been developed to address ASD symptoms. Therefore, identifying better therapeutic interventions like "novel drugs for ASD" and biomarkers for early detection and disease condition determination are required. This review article investigated various etiological factors as well as the signaling mechanisms and their alterations to understand ASD pathophysiology. It summarizes the mechanism of signaling pathways, their significance, and implications for ASD.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Jeevan Patra
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Nidhi Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India;
| | - Nilima Salankar
- School of Computer Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India;
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
60
|
Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 2021; 16:e0246581. [PMID: 33626076 PMCID: PMC7904196 DOI: 10.1371/journal.pone.0246581] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. Given the lack of specific pharmacological therapy for ASD and the clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide range of putative biological markers for ASD is currently being investigated. Proteomic analyses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggesting that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76 boys with ASD and 78 typically developing (TD) boys, 18 months-8 years of age, were analyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was performed using SomaLogic’s SOMAScanTM assay 1.3K platform. A total of 1,125 proteins were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD (FDR < 0.05). Combining three different algorithms, we found a panel of 9 proteins that identified ASD with an area under the curve (AUC) = 0.8599±0.0640, with specificity and sensitivity of 0.8217±0.1178 and 0.835±0.1176, respectively. All 9 proteins were significantly different in ASD compared with TD boys, and were significantly correlated with ASD severity as measured by ADOS total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. Further verification of the protein biomarker panel with independent test sets is warranted.
Collapse
Affiliation(s)
- Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeremy A Mathews
- Departments of Mathematical Sciences and Biological Sciences, Bioinformatics & Computational Biology Program, University of Texas at Dallas, Dallas, TX, United States of America
| | - Morgan Devlin
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Claire Schutte
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
61
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
62
|
Malek M, Ashraf-Ganjouei A, Moradi K, Bagheri S, Mohammadi MR, Akhondzadeh S. Prednisolone as Adjunctive Treatment to Risperidone in Children With Regressive Type of Autism Spectrum Disorder: A Randomized, Placebo-Controlled Trial. Clin Neuropharmacol 2021; 43:39-45. [PMID: 32168067 DOI: 10.1097/wnf.0000000000000382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate efficacy and safety of prednisolone as an adjunctive treatment to risperidone, in children with regressive autism spectrum disorder (ASD). METHODS The current 12-week, randomized, single-blinded, placebo-controlled trial recruited 37 patients with regressive ASD. The participants were allocated to receive either 1 mg/kg per day prednisolone or matched placebo in addition to risperidone. The Aberrant Behavior Checklist-Community Edition (ABC-C) scale and Childhood Autism Rating Scale (CARS) were used to measure behavioral outcomes at weeks 0, 4, 8, and 12 of the study course. The primary outcome was the change in ABC-irritability subscale score, whereas the secondary outcomes were the change in scores of other ABC-C subscales, in CARS score, and in the level of inflammatory biomarkers. RESULTS Twenty-six patients completed the 12 weeks of study period. Repeated-measures analysis demonstrated significant effect for time-treatment interaction in the CARS (F (1, 2.23) = 13.22, P < 0.001), as well as 4 subscales of the ABC-C including: irritability (F (1, 2.12) = 3.84, P = 0.026), hyperactivity (F (1, 2.09) = 3.56, P = 0.039), lethargy (F (1, 2.18) = 31.50, P < 0.001), and stereotypy (F (1, 1.89) = 4.04, P = 0.026). However, no significant time-treatment interaction was identified for inappropriate speech subscale (F (1, 2.03) = 1.71, P = 0.191). In addition, inflammatory biomarkers were significantly decreased after 3 months of prednisolone add-on. No significant adverse event was detected during the trial. CONCLUSIONS Prednisolone, as an add-on to risperidone, could remarkably improve core features in children with regressive ASD.
Collapse
Affiliation(s)
- Malekfarhad Malek
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
63
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
64
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
65
|
Lee EC, Hu VW. Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions. Int J Mol Sci 2020; 21:E6877. [PMID: 32961747 PMCID: PMC7555936 DOI: 10.3390/ijms21186877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group. Moreover, relational gene networks constructed with the DAGs reveal signaling pathways associated with specific functions and comorbidities. In addition, a network comprised of DAGs shared among all ASD subgroups and the combined case group is enriched in genes involved in inflammatory responses, suggesting that neuroinflammation may be a common theme underlying core features of ASD. These findings demonstrate the value of phenotype definition in methylomic analyses of ASD and may aid in the development of subtype-directed diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA;
| |
Collapse
|
66
|
Matta SM, Moore Z, Walker FR, Hill-Yardin EL, Crack PJ. An altered glial phenotype in the NL3 R451C mouse model of autism. Sci Rep 2020; 10:14492. [PMID: 32879325 PMCID: PMC7468159 DOI: 10.1038/s41598-020-71171-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD; autism) is a neurodevelopmental disorder characterised by deficits in social communication, and restricted and/or repetitive behaviours. While the precise pathophysiologies are unclear, increasing evidence supports a role for dysregulated neuroinflammation in the brain with potential effects on synapse function. Here, we studied characteristics of microglia and astrocytes in the Neuroligin-3 (NL3R451C) mouse model of autism since these cell types are involved in regulating both immune and synapse function. We observed increased microglial density in the dentate gyrus (DG) of NL3R451C mice without morphological differences. In contrast, WT and NL3R451C mice had similar astrocyte density but astrocyte branch length, the number of branch points, as well as cell radius and area were reduced in the DG of NL3R451C mice. Because retraction of astrocytic processes has been linked to altered synaptic transmission and dendrite formation, we assessed for regional changes in pre- and postsynaptic protein expression in the cortex, striatum and cerebellum in NL3R451C mice. NL3R451C mice showed increased striatal postsynaptic density 95 (PSD-95) protein levels and decreased cortical expression of synaptosomal-associated protein 25 (SNAP-25). These changes could contribute to dysregulated neurotransmission and cognition deficits previously reported in these mice.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.,School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia
| | - Zachery Moore
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Locked Bag 1000, New Lambton, NSW, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia.,Department of Physiology, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.
| |
Collapse
|
67
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
68
|
Simhal AK, Carpenter KLH, Nadeem S, Kurtzberg J, Song A, Tannenbaum A, Sapiro G, Dawson G. Measuring robustness of brain networks in autism spectrum disorder with Ricci curvature. Sci Rep 2020; 10:10819. [PMID: 32616759 PMCID: PMC7331646 DOI: 10.1038/s41598-020-67474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/09/2020] [Indexed: 11/15/2022] Open
Abstract
Ollivier–Ricci curvature is a method for measuring the robustness of connections in a network. In this work, we use curvature to measure changes in robustness of brain networks in children with autism spectrum disorder (ASD). In an open label clinical trials, participants with ASD were administered a single infusion of autologous umbilical cord blood and, as part of their clinical outcome measures, were imaged with diffusion MRI before and after the infusion. By using Ricci curvature to measure changes in robustness, we quantified both local and global changes in the brain networks and their potential relationship with the infusion. Our results find changes in the curvature of the connections between regions associated with ASD that were not detected via traditional brain network analysis.
Collapse
Affiliation(s)
- Anish K Simhal
- Department of Electrical and Computer Engineering, Duke University, Durham, USA.
| | - Kimberly L H Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, USA
| | - Saad Nadeem
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University Medical Center, Durham, USA
| | - Allen Song
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Allen Tannenbaum
- Department of Computer Science, Stony Brook University, Stony Brook, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, USA
| | - Guillermo Sapiro
- Department of Electrical and Computer Engineering, Duke University, Durham, USA.,Department of Biomedical Engineering, Duke University, Durham, USA.,Department of Computer Sciences, Duke University, Durham, USA.,Department of Math, Duke University, Durham, USA
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, Duke University School of Medicine, Durham, USA.,Marcus Center for Cellular Cures, Duke University Medical Center, Durham, USA.,Duke Institute for Brain Sciences, Duke University, Durham, USA
| |
Collapse
|
69
|
Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol Neurobiol 2020; 57:3424-3438. [DOI: 10.1007/s12035-020-01976-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
70
|
Che X, Fang Y, You M, Xu Y, Wang Y. Exposure to nonylphenol in early life increases pro-inflammatory cytokines in the prefrontal cortex: Involvement of gut-brain communication. Chem Biol Interact 2020; 323:109076. [PMID: 32240654 DOI: 10.1016/j.cbi.2020.109076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
A growing body of evidence indicates that exposure to nonylphenol (NP), a typical persistent organic pollutant (POP), in early life results in the impairment of the central nervous system (CNS), but the underlying mechanism still remains to be elucidated. High levels of pro-inflammatory cytokines in the brain have been implicated in the CNS damages. The animal model of exposure to NP in early life was established by maternal gavage during the pregnancy and lactation in the present study. We found that exposure to NP in early life increased the levels of pro-inflammatory cytokines in the rat prefrontal cortex. Interestingly, the levels of pro-inflammatory cytokines in the intestine as well as in the serum were also increased by NP exposure. Furthermore, the increased permeability of intestinal barrier and blood-brain barrier (BBB), two critical barriers in the gut to brain communication, was observed in the rats exposed to NP in early lives. The decreased expression of zonula occludens-1 (ZO-1) and claudin-1 (CLDN-1), tight junction proteins (TJs) that responsible for maintaining the permeability of intestinal barrier and BBB, was found, which may underlie these increases in permeability. Taken together, these results suggested that the disturbed gut-brain communication may contribute to the increased levels of pro-inflammatory cytokines in the prefrontal cortex caused by NP exposure in early life.
Collapse
Affiliation(s)
- Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yawen Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
71
|
Liao X, Li Y. Nuclear Factor Kappa B in Autism Spectrum Disorder: A Systematic Review. Pharmacol Res 2020; 159:104918. [PMID: 32461184 DOI: 10.1016/j.phrs.2020.104918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is composed of a series of transcription factors, which are involved in the expression of a plethora of target genes, many of these genes contributing to the regulation of inflammatory responses. Consistent with its central role in inflammatory responses, existing studies of the neurobiological basis for ASD propose the involvement of NF-κB in the etiology of this disorder. OBJECTIVES The present review aimed to systematically characterize extant literatures regarding the role of NF-κB in the etiology of ASD through data derived from both human studies and animal models. METHODS A systematic electronic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible studies. Study inclusion and data extraction was agreed by two independent authors after reviewing the abstract and full text. RESULTS Among the 371 articles identified in the initial screening, 18 articles met the eligibility criteria for this review, including 14 human case-control studies compared the expression or activation of NF-κB between ASD cases and controls as well as 4 animal studies used mouse model of ASD to examine the level of NF-κB and further evaluate its changes after different drug treatments. These included 18 studies, although relatively small in quantity, appear to support the role of NF-κB in the etiology of ASD. CONCLUSIONS Evidence generated from both human studies and animal models supported the involvement of NF-κB in the neurobiological basis of ASD, despite some concern about whether it functions as a primary contributor causes ASD onset or rather an ancillary factor regulates ASD pathogenesis. The increased understanding of NF-κB in the neurobiological basis of ASD could aid the emergence of clinically relevant diagnostic biomarkers and novel therapeutic strategies acting on the underlying disease pathogenesis. These results suggested that potential methodological differences between studies need to be accounted for and keep open the discussion over the existence of aberrantly NF-κB signaling in ASD subjects.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
72
|
Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10050309. [PMID: 32443912 PMCID: PMC7287879 DOI: 10.3390/brainsci10050309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined, neurodevelopmental disorder that has been modeled as a brain-based disease. The behavioral and cognitive features of ASD are associated with pervasive atypicalities in the central nervous system (CNS). To date, the exact mechanisms underlying the pathophysiology of ASD still remain unknown and there is currently no cure or effective treatment for this disorder. Many publications implicated the association of ASD with inflammation, immune dysregulation, neurotransmission dysfunction, mitochondrial impairment and cell signaling dysregulation. This review attempts to highlight evidence of the major pathophysiology of ASD including abnormalities in the brain structure and function, neuroglial activation and neuroinflammation, glutamatergic neurotransmission, mitochondrial dysfunction and mechanistic target of rapamycin (mTOR) signaling pathway dysregulation. Molecular and cellular factors that contributed to the pathogenesis of ASD and how they may affect the development and function of CNS are compiled in this review. However, findings of published studies have been complicated by the fact that autism is a very heterogeneous disorder; hence, we addressed the limitations that led to discrepancies in the reported findings. This review emphasizes the need for future studies to control study variables such as sample size, gender, age range and intelligence quotient (IQ), all of which that could affect the study measurements. Neuroinflammation or immune dysregulation, microglial activation, genetically linked neurotransmission, mitochondrial dysfunctions and mTOR signaling pathway could be the primary targets for treating and preventing ASD. Further research is required to better understand the molecular causes and how they may contribute to the pathophysiology of ASD.
Collapse
|
73
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update. Cells 2020; 9:cells9040870. [PMID: 32252470 PMCID: PMC7226777 DOI: 10.3390/cells9040870] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers' uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
- Correspondence: (J.D.-S.); (L.V.)
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
| | - Leo Veenman
- Technion-Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
- Correspondence: (J.D.-S.); (L.V.)
| |
Collapse
|
74
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
75
|
Genetic Factors of Nitric Oxide's System in Psychoneurologic Disorders. Int J Mol Sci 2020; 21:ijms21051604. [PMID: 32111088 PMCID: PMC7084194 DOI: 10.3390/ijms21051604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
According to the recent data, nitric oxide (NO) is a chemical messenger that mediates functions such as vasodilation and neurotransmission, as well as displaying antimicrobial and antitumoral activities. NO has been implicated in the neurotoxicity associated with stroke and neurodegenerative diseases; neural regulation of smooth muscle, including peristalsis; and penile erections. We searched for full-text English publications from the past 15 years in Pubmed and SNPedia databases using keywords and combined word searches (nitric oxide, single nucleotide variants, single nucleotide polymorphisms, genes). In addition, earlier publications of historical interest were included in the review. In our review, we have summarized information regarding all NOS1, NOS2, NOS3, and NOS1AP single nucleotide variants (SNVs) involved in the development of mental disorders and neurological diseases/conditions. The results of the studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, and different social and geographical characteristics. However, the contribution of genetic and environmental factors has been understudied, which makes this issue increasingly important for researchers as the understanding of these mechanisms can support a search for new approaches to pathogenetic and disease-modifying treatment.
Collapse
|
76
|
Lobzhanidze G, Japaridze N, Lordkipanidze T, Rzayev F, MacFabe D, Zhvania M. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int J Dev Neurosci 2020; 80:139-156. [PMID: 31997401 DOI: 10.1002/jdn.10011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.
Collapse
Affiliation(s)
- Giorgi Lobzhanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Laboratory of Electron Microscopy, Research Center of Azerbaijan Medical University, Baku, Azerbaijan
| | - Derrick MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, ON, Canada.,Faculty of Medicine, Department of Microbiology, Center for Healthy Eating and Food Innovation, Maastricht University, Maastricht, the Netherlands
| | - Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
77
|
Freitas BC, Beltrão-Braga PCB, Marchetto MC. Modeling Inflammation on Neurodevelopmental Disorders Using Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:207-218. [PMID: 32578148 DOI: 10.1007/978-3-030-45493-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (ND) are characterized by an impairment of the nervous system during its development, with a wide variety of phenotypes based on genetic or environmental cues. There are currently several disorders grouped under ND including intellectual disabilities (ID), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorders (ASD). Although NDs can have multiple culprits with varied diagnostics, several NDs present an inflammatory component. Taking advantage of induced pluripotent stem cells (iPSC), several disorders were modeled in a dish complementing in vivo data from rodent models or clinical data. Monogenic syndromes displaying ND are more feasible to be modeled using iPSCs also due to the ability to recruit patients and clinical data available. Some of these genetic disorders are Fragile X Syndrome (FXS), Rett Syndrome (RTT), and Down Syndrome (DS). Environmental NDs can be caused by maternal immune activation (MIA), such as the infection with Zika virus during pregnancy known to cause neural damage to the fetus. Our goal in this chapter is to review the advances of using stem cell research in NDs, focusing on the role of neuroinflammation on ASD and environmental NDs studies.
Collapse
Affiliation(s)
- Beatriz C Freitas
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
78
|
DiStasio MM, Nagakura I, Nadler MJ, Anderson MP. T lymphocytes and cytotoxic astrocyte blebs correlate across autism brains. Ann Neurol 2019; 86:885-898. [PMID: 31591744 PMCID: PMC7210715 DOI: 10.1002/ana.25610] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) affects 1 in 59 children, yet except for rare genetic causes, the etiology in most ASD remains unknown. In the ASD brain, inflammatory cytokine and transcript profiling shows increased expression of genes encoding mediators of the innate immune response. We evaluated postmortem brain tissue for adaptive immune cells and immune cell-mediated cytotoxic damage that could drive this innate immune response in the ASD brain. METHODS Standard neuropathology diagnostic methods including histology and immunohistochemistry were extended with automated image segmentation to quantify identified pathologic features in the postmortem brains. RESULTS We report multifocal perivascular lymphocytic cuffs contain increased numbers of lymphocytes in ~65% of ASD compared to control brains in males and females, across all ages, in most brain regions, and in white and gray matter, and leptomeninges. CD3+ T lymphocytes predominate over CD20+ B lymphocytes and CD8+ over CD4+ T lymphocytes in ASD brains. Importantly, the perivascular cuff lymphocyte numbers correlate to the quantity of astrocyte-derived round membranous blebs. Membranous blebs form as a cytotoxic reaction to lymphocyte attack. Consistent with multifocal immune cell-mediated injury at perivascular cerebrospinal fluid (CSF)-brain barriers, a subset of white matter vessels have increased perivascular space (with jagged contours) and collagen in ASD compared to control brains. CSF-brain barrier pathology is also evident at cerebral cortex pial and ventricular ependymal surfaces in ASD. INTERPRETATION The findings suggest dysregulated cellular immunity damages astrocytes at foci along the CSF-brain barrier in ASD. ANN NEUROL 2019;86:885-898.
Collapse
Affiliation(s)
- Marcello M. DiStasio
- Departments of Neurology and Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Ikue Nagakura
- Departments of Neurology and Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Monica J. Nadler
- Departments of Neurology and Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Matthew P. Anderson
- Departments of Neurology and Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
79
|
Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, Jackson BP, Oberdorster G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol Pathol 2019; 47:976-992. [PMID: 31610749 DOI: 10.1177/0192623319878400] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological studies report associations between air pollution (AP) exposures and several neurodevelopmental disorders including autism, attention deficit disorder, and cognitive delays. Our studies in mice of postnatal (human third trimester brain equivalent) exposures to concentrated ambient ultrafine particles (CAPs) provide biological plausibility for these associations, producing numerous neuropathological and behavioral features of these disorders, including male-biased vulnerability. These findings raise questions about the specific components of AP that underlie its neurotoxicity, which our studies suggest could involve trace elements as candidate neurotoxicants. X-ray fluorescence analyses of CAP chamber filters confirm contamination of AP exposures by multiple elements, including iron (Fe) and sulfur (S). Correspondingly, laser ablation inductively coupled plasma mass spectrometry of brains of male mice indicates marked postexposure elevations of Fe and S and other elements. Elevations of brain Fe and S in particular are consistent with potential ferroptotic, oxidative stress, and altered antioxidant capacity-based mechanisms of CAPs-induced neurotoxicity, supported by observations of increased serum oxidized glutathione and increased neuronal cell death in nucleus accumbens with no corresponding significant increase in caspase-3, in male brains following postnatal CAP exposures. Understanding the role of trace element contaminants of particulate matter AP as a source of neurotoxicity is critical for public health protection.
Collapse
Affiliation(s)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Tim Anderson
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Gunter Oberdorster
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| |
Collapse
|
80
|
Jin Y, Choi J, Lee S, Kim JW, Hong Y. Pathogenetical and Neurophysiological Features of Patients with Autism Spectrum Disorder: Phenomena and Diagnoses. J Clin Med 2019; 8:E1588. [PMID: 31581672 PMCID: PMC6832208 DOI: 10.3390/jcm8101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is accompanied by social deficits, repetitive and restricted interests, and altered brain development. The majority of ASD patients suffer not only from ASD itself but also from its neuropsychiatric comorbidities. Alterations in brain structure, synaptic development, and misregulation of neuroinflammation are considered risk factors for ASD and neuropsychiatric comorbidities. Electroencephalography has been developed to quantitatively explore effects of these neuronal changes of the brain in ASD. The pineal neurohormone melatonin is able to contribute to neural development. Also, this hormone has an inflammation-regulatory role and acts as a circadian key regulator to normalize sleep. These functions of melatonin may play crucial roles in the alleviation of ASD and its neuropsychiatric comorbidities. In this context, this article focuses on the presumable role of melatonin and suggests that this hormone could be a therapeutic agent for ASD and its related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Seunghoon Lee
- Gimhae Industry Promotion & Biomedical Foundation, Gimhae 50969, Korea.
| | - Jong Won Kim
- Department of Healthcare Information Technology, College of Bio-Nano Information Technology, Inje University, Gimhae 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
81
|
Eissa N, Azimullah S, Jayaprakash P, Jayaraj RL, Reiner D, Ojha SK, Beiram R, Stark H, Łażewska D, Kieć-Kononowicz K, Sadek B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact 2019; 312:108775. [DOI: 10.1016/j.cbi.2019.108775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
|
82
|
Adams JW, Cugola FR, Muotri AR. Brain Organoids as Tools for Modeling Human Neurodevelopmental Disorders. Physiology (Bethesda) 2019; 34:365-375. [PMID: 31389776 PMCID: PMC6863377 DOI: 10.1152/physiol.00005.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Brain organoids recapitulate in vitro the specific stages of in vivo human brain development, thus offering an innovative tool by which to model human neurodevelopmental disease. We review here how brain organoids have been used to study neurodevelopmental disease and consider their potential for both technological advancement and therapeutic development.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
- Department of Neurosciences, School of Medicine, University of California San Diego, San Diego, California
| | - Fernanda R Cugola
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, San Diego, California
- Department of Cellular & Molecular Medicine, Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, La Jolla, California
| |
Collapse
|
83
|
Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakeh A, Rezaei N. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. J Psychiatr Res 2019; 115:90-102. [PMID: 31125917 DOI: 10.1016/j.jpsychires.2019.05.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) occur in 1.5% of the general population worldwide. Studies suggest that ASD might have more costs than diabetes and attention deficit and hyperactivity disorder by 2025. Dysregulation of the cytokine system is well-documented in ASD. We conducted a meta-analysis of studies providing data on circulating concentrations of pro-inflammatory cytokines in people with ASD compared with control subjects without ASD. METHODS We identified potentially eligible studies by systematically searching electronic databases from inception to February 2018. RESULTS Thirty-eight studies with total of 2487 participants (1393 patients with ASD and 1094 control subjects) were included in the meta-analysis; 13 for interferon (IFN)-γ, 17 for interleukin (IL)-1β, 22 for IL-6, 19 for tumor necrosis factor (TNF)-α, 4 for IL-1α, 6 for IL-2, 4 for IL-7, 8 for IL-8, 14 for IL-12, 3 for IL-15, 12 for IL-17, 3 for IL-18, 3 for IL-2 receptor, 3 for TNF-β, and 3 for IL-23. We found medium increases in levels of plasma IFN-γ (standardized mean difference, SMD = 0.53) and serum IL-1β (SMD = 0.56) and small increases in levels of blood IL-1β (SMD = 0.35), serum IL-6 (SMD = 0.30) and serum TNF-α (SMD = 0.31) for patients with ASD. Meta-regression analyses identified latitude as a negative moderator of the effect size (ES) of difference in mean levels of IFN-γ (R2 = 0.26) and TNF-α (R2 = 0.74). Also, difference in the mean age between patients and controls had a negative interaction with the ES of difference in mean levels of IL-1β. In contrast, there was a positive effect of the moderator of difference in the proportion of male subjects between patients and controls on the ES of difference in mean levels of IL-1β. We found no significant alterations in peripheral levels of other pro-inflammatory cytokines including IL-1α, IL-2, IL-2R, IL-3, IL-7, IL-8, IL-12, IL-12p40, IL-12p70, IL-15, IL-17, IL-18, IL-23, TBF-β, and TNFRI/II in patients with ASD. CONCLUSIONS This meta-analysis provides evidence for higher concentration of pro-inflammatory cytokines IFN-γ, IL-1β, IL-6, and TNF-α in autistic patents compared with control subjects. Also, meta-regression analyses point to the interaction of latitude, age, and gender with peripheral alterations of associated pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Amene Saghazadeh
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Bahar Ataeinia
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Keynejad
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhussein Abdolalizadeh
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Hirbod-Mobarakeh
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Molecular Immunology Research Center, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
84
|
Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav Immun 2019; 79:75-90. [PMID: 31029798 DOI: 10.1016/j.bbi.2019.04.037] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social communication and restricted or repetitive behaviours. The clinical presentation of ASD is highly variable and diagnosis is based on the presence of impaired social communication and repetitive and/or restricted behaviours. Although the precise pathophysiologies underlying ASD are unclear, growing evidence supports a role for dysregulated neuroinflammation. The potential involvement of microglia and astrocytes reactive to inflammatory stimuli in ASD has generated much interest due to their varied roles including in mounting an immune response and regulating synaptic function. Increased numbers of reactive microglial and astrocytes in both ASD postmortem tissue and animal models have been reported. Whether dysregulation of glial subtypes exacerbates alterations in neural connectivity in the brain of autistic patients is not well explored. A role for the gut-brain axis involving microbial-immune-neuronal cross talk is also a growing area of neuroinflammation research. Greater understanding of these interactions under patho/physiological conditions and the identification of consistent immune profile abnormalities can potentially lead to more reliable diagnostic measures and treatments in ASD.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
85
|
Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. Int J Mol Sci 2019; 20:ijms20092270. [PMID: 31071949 PMCID: PMC6539135 DOI: 10.3390/ijms20092270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Collapse
|
86
|
Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019; 67:2125-2141. [DOI: 10.1002/glia.23637] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life SciencesTel Aviv University Tel Aviv Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| |
Collapse
|
87
|
Vallée A, Vallée JN, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 2019; 24:643-652. [PMID: 30104725 DOI: 10.1038/s41380-018-0131-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Paris-Descartes University; Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital; AP-HP, Paris, France. .,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054, Amiens, France.,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100, Meaux, France
| |
Collapse
|
88
|
The mercapturomic profile of health and non-communicable diseases. High Throughput 2019; 8:ht8020010. [PMID: 31018482 PMCID: PMC6630208 DOI: 10.3390/ht8020010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
The mercapturate pathway is a unique metabolic circuitry that detoxifies electrophiles upon adducts formation with glutathione. Since its discovery over a century ago, most of the knowledge on the mercapturate pathway has been provided from biomonitoring studies on environmental exposure to toxicants. However, the mercapturate pathway-related metabolites that is formed in humans—the mercapturomic profile—in health and disease is yet to be established. In this paper, we put forward the hypothesis that these metabolites are key pathophysiologic factors behind the onset and development of non-communicable chronic inflammatory diseases. This review goes from the evidence in the formation of endogenous metabolites undergoing the mercapturate pathway to the methodologies for their assessment and their association with cancer and respiratory, neurologic and cardiometabolic diseases.
Collapse
|
89
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
90
|
Forés-Martos J, Catalá-López F, Sánchez-Valle J, Ibáñez K, Tejero H, Palma-Gudiel H, Climent J, Pancaldi V, Fañanás L, Arango C, Parellada M, Baudot A, Vogt D, Rubenstein JL, Valencia A, Tabarés-Seisdedos R. Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Mol Autism 2019; 10:17. [PMID: 31007884 PMCID: PMC6454734 DOI: 10.1186/s13229-019-0262-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported. Methods Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between them. Results Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD. Conclusions Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain, kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand, lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of specific biological processes underlie these associations which include several pathways previously implicated in both cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer. Electronic supplementary material The online version of this article (10.1186/s13229-019-0262-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaume Forés-Martos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Ferrán Catalá-López
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain.,4Department of Health Planning and Economics, National School of Public Health/IMIENS, Institute of Health Carlos III, Madrid, Spain
| | | | | | - Héctor Tejero
- 7Structural Biology Program, Spanish National Cancer Research Program (CNIO), Madrid, Spain
| | - Helena Palma-Gudiel
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Joan Climent
- 3INCLIVA Health Research Institute, Valencia, Spain.,9Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Ramon y Cajal s/n 46115 Alfara del Patriarca, Valencia, Spain
| | - Vera Pancaldi
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Lourdes Fañanás
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,8Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Celso Arango
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mara Parellada
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Anaïs Baudot
- 11Aix-Marseille Univ, Inserm, MMG, Marseille Medical Genetics, Marseille, France
| | - Daniel Vogt
- 12Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824 USA
| | - John L Rubenstein
- 13Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158 USA.,14Department of Psychiatry, University of California, San Francisco, CA 94158 USA
| | - Alfonso Valencia
- 5Barcelona Supercomputing Center (BSC), Barcelona, Spain.,15Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael Tabarés-Seisdedos
- 1Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,2Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Blasco-Ibañez 15, 46010 Valencia, Spain.,3INCLIVA Health Research Institute, Valencia, Spain
| |
Collapse
|
91
|
Kordulewska NK, Kostyra E, Chwała B, Moszyńska M, Cieślińska A, Fiedorowicz E, Jarmołowska B. A novel concept of immunological and allergy interactions in autism spectrum disorders: Molecular, anti-inflammatory effect of osthole. Int Immunopharmacol 2019; 72:1-11. [PMID: 30953868 DOI: 10.1016/j.intimp.2019.01.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by Diagnosis and Statistic Manual 5 (DSM-5) as persistent social interaction and communication deficient across multiple contexts. Various immunological findings have been reported in children with ASD, and co-existing allergic problems have been recorded in children diagnosed with ASD. Osthole, the effective component of Chinese traditional medicine, is reported to have anti-inflammatory effects. This study assessed the anti-inflammatory effect of osthole on the histamine-induced inflammatory responses in PBMC cells. METHODS Peripheral blood mononuclear cells (PBMC's) from children with: (1) ASD group with co-existing allergies/asthma (n = 29); (2) ASD group without allergy/asthma (n = 29); (3) Allergy group (n = 30) and from typically developing age-matched control subjects (n = 28) were stimulated with either histamine, FXF, osthole or mixture of this substances. mRNA COX-2 gene expression, COX-2 production and inhibitory effect of tested substances on COX-2 were assessed after stimulation. RESULTS Children with ASD may show either an innate proinflammatory response or increased activity of COX-2 which could display more impaired behavioral profile than children with non-inflamed. This study indicated that COX-2 may be involved in pathogenesis of ASD and/or allergy, and osthole could be used to decrease the effects of COX-2 in inflammation and ASD development. High incidence of allergy in ASD patients may indicate immune dysregulation that could be of relevance to the pathophysiology, symptomatology or neuroimmunology of ASD. CONCLUSIONS This study shows that fexofenadine (FXF - antihistamine drug) and osthole exhibit selective COX-2 enzyme inhibitory activity. The selective COX-2 activity of osthole may explain further the anti-inflammatory properties of osthole in relieving congestion in allergic rhinitis, and as distinctive effects between FXF and osthole were observed, individual antihistamines may have different modes of action via the COX enzyme system.
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Barbara Chwała
- Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Małgorzata Moszyńska
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|
92
|
Arroyo-López C. Helminth therapy for autism under gut-brain axis- hypothesis. Med Hypotheses 2019; 125:110-118. [PMID: 30902137 DOI: 10.1016/j.mehy.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Autism is a neurodevelopmental disease included within Autism Syndrome Disorder (ASD) spectrum. ASD has been linked to a series of genes that play a role in immune response function and patients with autism, commonly suffer from immune-related comorbidities. Despite the complex pathophysiology of autism, Gut-brain axis is gaining strength in the understanding of several neurological disorders. In addition, recent publications have shown the correlation between immune dysfunctions, gut microbiota and brain with the behavioral alterations and comorbid symptoms found in autism. Gut-brain axis acts as the "second brain", in a communication network established between neural, endocrine and the immunological systems. On the other hand, Hygiene Hypothesis suggests that the increase in the incidence of autoimmune diseases in the modern world can be attributed to the decrease of exposure to infectious agents, as parasitic nematodes. Helminths induce modulatory and protective effects against several inflammatory disorders, maintaining gastrointestinal homeostasis and modulating brain functions. Helminthic therapy has been previously performed in diseases such as ulcerative colitis, Crohn's disease, diabetes, multiple sclerosis, asthma, rheumatoid arthritis, and food allergies. Considering gut-brain axis, Hygiene Hypothesis, and the modulatory effects of helminths I hypothesized that a treatment with Trichuris suis soluble products represents a feasible holistic treatment for autism, and the key for the development of novel treatments. Preclinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Celia Arroyo-López
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, United States.
| |
Collapse
|
93
|
Carpenter KLH, Major S, Tallman C, Chen LW, Franz L, Sun J, Kurtzberg J, Song A, Dawson G. White Matter Tract Changes Associated with Clinical Improvement in an Open-Label Trial Assessing Autologous Umbilical Cord Blood for Treatment of Young Children with Autism. Stem Cells Transl Med 2019; 8:138-147. [PMID: 30620122 PMCID: PMC6344899 DOI: 10.1002/sctm.18-0251] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social communication deficits and the presence of restricted interests and repetitive behaviors. We have previously reported significant improvements in behavior, including increased social functioning, improved communication abilities, and decreased clinical symptoms in children with ASD, following treatment with a single infusion of autologous cord blood in a phase I open‐label trial. In the current study, we aimed to understand whether these improvements were associated with concurrent changes in brain structural connectivity. Twenty‐five 2‐ to 6‐year‐old children with ASD participated in this trial. Clinical outcome measures included the Vineland Adaptive Behavior Scales‐II Socialization Subscale, Expressive One‐Word Picture Vocabulary Test‐4, and the Clinical Global Impression‐Improvement Scale. Structural connectivity was measured at baseline and at 6 months in a subset of 19 children with 25‐direction diffusion tensor imaging and deterministic tractography. Behavioral improvements were associated with increased white matter connectivity in frontal, temporal, and subcortical regions (hippocampus and basal ganglia) that have been previously shown to show anatomical, connectivity, and functional abnormalities in ASD. The current results suggest that improvements in social communication skills and a reduction in symptoms in children with ASD following treatment with autologous cord blood infusion were associated with increased structural connectivity in brain networks supporting social, communication, and language abilities. stem cells translational medicine2019;8:138&10
Collapse
Affiliation(s)
- Kimberly L H Carpenter
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Samantha Major
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Catherine Tallman
- Brain Imaging and Analysis Center, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lyon W Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lauren Franz
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Jessica Sun
- Marcus Center for Cellular Cures, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allen Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Marcus Center for Cellular Cures, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
94
|
Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev Psychobiol 2018; 61:752-771. [PMID: 30523646 DOI: 10.1002/dev.21803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the etiological origins of Autism Spectrum Disorder (ASD) remain elusive. Recently, the mechanisms of ASD have encompassed emerging theories involving the gastrointestinal, immune, and nervous systems. While each of these perspectives presents its own set of supporting evidence, the field requires an integration of these modular concepts and an overarching view of how these subsystems intersect. In this systematic review, we have synthesized relevant evidences from the existing literature, evaluating them in an interdependent manner and in doing so, outlining their possible connections. Specifically, we first discussed gastrointestinal and immuno-inflammation pathways in-depth, exploring the relationships between microbial composition, bacterial metabolites, gut mucosa, and immune system constituents. Accounting for temporal differences in the mechanisms involved in neurodevelopment, prenatal and postnatal phases were further elucidated, where the former focused on maternal immune activation (MIA) and fetal development, while the latter addressed the role of immune dysregulation in contributing to atypical neurodevelopment. As autism remains, foremost, a neurodevelopmental disorder, this review presents an integration of disparate modules into a "Gut-Immune-Brain" paradigm. Existing gaps in the literature have been highlighted, and possible avenues for future research with an integrated physiological perspective underlying ASD have also been suggested.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Farouq Azizan
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| |
Collapse
|
95
|
Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Zhegalova IV, Grabeklis AR, Skalnaya MG, Tinkov AA. Trace element levels are associated with neuroinflammatory markers in children with autistic spectrum disorder. J Trace Elem Med Biol 2018; 50:622-628. [PMID: 29731309 DOI: 10.1016/j.jtemb.2018.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022]
Abstract
The objective of the present study was to estimate the association between brain inflammatory markers and serum trace element levels as assessed by inductively coupled plasma mass spectrometry at NexION 300D. Leukocyte elastase (LE), α1-proteinase inhibitor (α1-PI) activity, anti-nerve growth factor-antibodies (anti-NGF-Ab), and anti-myelin basic protein-antibodies (anti-MBP-Ab) levels were assessed as inflammatory markers. The obtained data demonstrate that the increase in LE and α1-PI activity is associated with higher serum Cr and Cu levels, respectively. The increase in Anti-NGF-Ab levels was associated with a nearly significant 16% increase in serum Mn levels. Autistic children with high MBP-Ab levels were characterized by 28% higher serum Mn and lower Mg concentration. The results of correlation analysis were generally in agreement with the outcome of group comparisons. Regression analysis demonstrated that serum Mg was significantly negatively associated with LE activity, whereas both serum Fe and V concentrations were characterized by a positive influence on the parameter. In turn, serum Cu was a significant predictor of α1-PI, as well as Cr levels. At the same time, the serum concentrations of Cd and Fe were found to be inversely associated with α1-PI levels. Serum Cd and Mn levels were significant positive predictors of anti-MBP-Ab levels, whereas Mg levels had a negative impact on anti-MBP-Ab values. Generally, the obtained data demonstrate the interrelationship between trace element homeostasis and neuroinflammation in autism. Hypothetically, modulation of trace element status may be used for reduction of neuroinflammatory response, although further studies are required to reveal the underlying mechanisms of the observed associations.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg, 460352, Russia
| | - Natalia V Simashkova
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | - Tatiana P Klyushnik
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Irina V Zhegalova
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; I.M. Sechenov First Moscow State Medical University, Malaya Trubetskaya St., 8, Moscow, 119992, Russia
| | - Andrei R Grabeklis
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
| | | | - Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia.
| |
Collapse
|
96
|
Nevison C, Blaxill M, Zahorodny W. California Autism Prevalence Trends from 1931 to 2014 and Comparison to National ASD Data from IDEA and ADDM. J Autism Dev Disord 2018; 48:4103-4117. [PMID: 29974300 PMCID: PMC6223814 DOI: 10.1007/s10803-018-3670-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time trends in U.S. autism prevalence from three ongoing datasets [Individuals with Disabilities Education Act, Autism and Developmental Disabilities Monitoring Network, and California Department of Developmental Services (CDDS)] are calculated using two different methods: (1) constant-age tracking of 8 year-olds and (2) age-resolved snapshots. The data are consistent across methods in showing a strong upward trend over time. The prevalence of autism in the CDDS dataset, the longest of the three data records, increased from 0.001% in the cohort born in 1931 to 1.2% among 5 year-olds born in 2012. This increase began around ~ 1940 at a rate that has gradually accelerated over time, including notable change points around birth years 1980, 1990 and, most recently, 2007.
Collapse
Affiliation(s)
- Cynthia Nevison
- Institute for Alpine and Arctic Research, University of Colorado, Campus Box 450, Boulder, CO, 80309-0450, USA.
| | | | | |
Collapse
|
97
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alshammari MA, Khan MR, Alsaad AM, Attia SM. S3I-201, a selective Stat3 inhibitor, restores neuroimmune function through upregulation of Treg signaling in autistic BTBR T+ Itpr3tf/J mice. Cell Signal 2018; 52:127-136. [DOI: 10.1016/j.cellsig.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
|
98
|
Ning J, Xu L, Shen CQ, Zhang YY, Zhao Q. Increased serum levels of macrophage migration inhibitory factor in autism spectrum disorders. Neurotoxicology 2018; 71:1-5. [PMID: 30503813 DOI: 10.1016/j.neuro.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) has been suggested as a pivotal regulator of innate immunity and inflammatory. The aim of this study was to measure serum circulating levels of MIF in relation to the degree of the severity of autism spectrum disorders (ASD). METHODS One hundred and two Chinese children with ASD and same their age-sex matched typical development children were included. Concentrations of MIF were tested by Quantikine Human MIF Immunoassay. Serum levels of homocysteine (HCY), C-reactive protein (CRP) and serum Interleukin 6 (IL-6) were also tested. The influence of serum levels of MIF on ASD risk and ASD severity were performed by binary logistic regression analysis. RESULTS The serum levels of MIF in the children with ASD (24.7 ± 08.9 ng/ml) were significantly higher than those of control subjects (18.3 ± 5.5 ng/ml) (t = 6.134, P < 0.001). Levels of MIF increased with increasing severity of ASD as defined by the CARS score (P < 0.001). In multivariate model, MIF was associated with an increased risk of ASD (OR 1.11, 95% CI: 1.05-1.17; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict ASD (P < 0.001). At admission, 68 children (66.7%) had a severe autism. In these children, the mean serum level of MIF was higher than in those children with mild to moderate autism (28.1 ± 8.5 ng/ml VS. 17.9 ± 4.7 ng/ml; t = 6.482, P < 0.001). In multivariate model, MIF was still associated with an increased risk of severe ASD (OR: 1.15, 95% CI: 1.04-1.19; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict severe ASD (P < 0.001). CONCLUSIONS These results identify high serum MIF levels are associated with severity of ASD. Further study is warranted on the precise involvement of MIF in ASD, and the mechanism by which MIF contributes to ASD pathogenesis.
Collapse
Affiliation(s)
- Jun Ning
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Li Xu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang-Qing Shen
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yu-Yan Zhang
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing Zhao
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
99
|
Bonnet-Brilhault F, Rajerison TA, Paillet C, Guimard-Brunault M, Saby A, Ponson L, Tripi G, Malvy J, Roux S. Autism is a prenatal disorder: Evidence from late gestation brain overgrowth. Autism Res 2018; 11:1635-1642. [PMID: 30485722 DOI: 10.1002/aur.2036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023]
Abstract
This retrospective study aimed to specify the critical period for atypical brain development in individuals with autism spectrum disorder (ASD) using prenatal and postnatal head growth parameters. The sample consisted of 80 Caucasian, unrelated, idiopathic patients with ASD born after 1995. Fetal ultrasound parameters (head circumference [HC], abdominal circumference, and femur length) were obtained during the second and third trimesters of gestation. HC at birth and postnatal parameters at 12 and 24 months of age were also collected. Head overgrowth, assessed by HC, was highlighted during the second (20-26 weeks of amenorrhea) and third (28-36 weeks of amenorrhea) trimesters. Normal growth of body fetal parameters indicated that head overgrowth was not because of overall body overgrowth. Moreover, postnatal results replicated previously and reported head overgrowth. A critical time window for atypical brain development in autism is hypothesized to begin from the 22nd week of amenorrhea. This period is critical for cortical lamination and glial activation. A pathophysiological cascade is suggested with interactions between candidate genes and environmental factors. Autism Research 2018, 11: 1635-1642. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: It is now widely acknowledged in the scientific community, that autism is a neurodevelopmental disorder. Recent evidence from animal and pathological studies has implicated the in utero period. However, the precise time of onset of abnormal brain development remains unknown. This retrospective study reports novel findings, identifying an atypical head growth trajectory in children with autism, during the in utero period (after the 22nd week of amenorrhea). In the same children, postnatal head overgrowth was also observed. Late gestation is identified as a critical period for atypical brain development underlying autism symptoms.
Collapse
Affiliation(s)
- Fréderique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Toky A Rajerison
- Centre Hospitalier Charles Perrens, Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Bordeaux, France
| | - Christian Paillet
- Unité de Médecine Fœtale, Centre Olympe de Gouge, CHRU de Tours, Tours, France
| | | | - Agathe Saby
- Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Laura Ponson
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Gabriele Tripi
- Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France.,Dipartement PROSAMI, Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - Joëlle Malvy
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Centre Universitaire de Pédopsychiatrie, CHRU de Tours, Tours, France
| | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
100
|
Abstract
Background Pioglitazone is a promising compound for treatment of core autism spectrum disorder (ASD) symptoms as it targets multiple relevant pathways, including immune system alterations. Objective This pilot study aimed to elucidate the maximum tolerated dose, safety, preliminary evidence of efficacy, and appropriate outcome measures in autistic children ages 5–12 years old. Methods We conducted a 16-week prospective cohort, single blind, single arm, 2-week placebo run-in, dose-finding study of pioglitazone. Twenty-five participants completed treatment. A modified dose finding method was used to determine safety and dose response among three dose levels: 0.25 mg/kg, 0.5 mg/kg, and 0.75 mg/kg once daily. Results Maximum tolerated dose: there were no serious adverse events (SAEs) and as such the maximum tolerated dose within the range tested was 0.75 mg/Kg once daily. Safety: overall, pioglitazone was well tolerated. Two participants discontinued intervention due to perceived non-efficacy and one due to the inability to tolerate interim blood work. Three participants experienced mild neutropenia. Early evidence of efficacy: statistically significant improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R). Forty-six percent of those enrolled were deemed to be global responders. Conclusions and relevance Pioglitazone is well-tolerated and shows a potential signal in measures of social withdrawal, repetitive, and externalizing behaviors. Randomized controlled trials using the confirmed dose are warranted. Trial registration ClinicalTrials.gov, NCT01205282. Registration date: September 20, 2010. Electronic supplementary material The online version of this article (10.1186/s13229-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
|