51
|
Chang MY, Huang CC, Du YC, Chen HS. Choice Experiment Assessment of Consumer Preferences for Yogurt Products Attributes: Evidence from Taiwan. Nutrients 2022; 14:nu14173523. [PMID: 36079781 PMCID: PMC9460311 DOI: 10.3390/nu14173523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies on consumer yogurt preferences have mainly focused on added sugar, nutrient content, and health claims, leaving several knowledge gaps that should be filled through in-depth research. In this study, a more complete multi-attribute preference model was developed using the number of probiotic types, type of milk source, presence of edible gels (GEL), and usage of health food labels as the main yogurt attributes. A choice experiment (CE) was then conducted to investigate the relationship between multiple attribute preferences and willingness-to-pay (WTP). A total of 435 valid questionnaires were collected by the convenience sampling method. The results show that (1) respondents highly value the health food label (HEA), followed by the number of probiotic types (PRO); (2) the highest WTP in the conditional logit (CL) model was New Taiwan Dollar (NTD) (USD 10.5 for HEA, and the lowest was NTD 1.0 for 100% milk powder (MLK2); (3) in the random-parameter logit (RPL) model, the highest WTP was NTD 14.6 for HEA, and the lowest was NTD 2.8 for GEL; (4) the most preferred attribute combination of yogurt was “8 or more probiotic types”, “a blend of raw milk and milk powder”, “the absence of edible gels”, “the presence of a health food label”, and “a price premium of NTD 6–10”; (5) married respondents with children were more willing to pay extra for yogurt products with a higher number of probiotic types and a health food label. The results may help the food industry understand and pay attention to consumer needs, which will, in turn, provide a reference for future product development and marketing strategies.
Collapse
Affiliation(s)
- Min-Yen Chang
- Department of Accounting, Jiaxing University, Jiaxing 314001, China
| | - Chien-Cheng Huang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Ying-Chi Du
- Division of Forest Protection, Taiwan Forestry Research Institute, 53 Nan-Hai Road, Taipei 10066, Taiwan
| | - Han-Shen Chen
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Medical Management, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-4-2473-0022 (ext. 12225)
| |
Collapse
|
52
|
Sousa RJM, Baptista JAB, Silva CCG. Consumption of fermented dairy products is associated with lower anxiety levels in Azorean university students. Front Nutr 2022; 9:930949. [PMID: 36061890 PMCID: PMC9434012 DOI: 10.3389/fnut.2022.930949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
A growing number of studies have found that the gut microbiota is involved in a variety of psychological processes and neuropsychiatric disorders, which include mood and anxiety disorders. Consumption of dairy products may contain bioactive compounds and probiotic bacteria with various therapeutic benefits. The aim of the study was to investigate possible associations between the frequency of consumption of different types of dairy products and the state of anxiety in university students. The subjects were 311 Azorean university students, 231 women and 80 men, with an average age of 20.5 years. Subjects completed a quantitative questionnaire on the frequency of dairy product consumption and a short version of the Spielberger State-Trait Anxiety Inventory (STAI) test. Among dairy products, semi-skimmed milk was the most commonly consumed, followed by cheese (ripened), drinking yogurt, skim milk, and set yogurt, while fresh cheese, whole milk, and dairy ice cream were the least common. Discriminant analysis showed that consumption of fermented products (yogurt and cheese) was significantly higher (P < 0.05) in the group with low anxiety level (score <40 in STAI test) than in the group with higher anxiety level (score ≥ 40). In this analysis, 62.4% of the initially grouped cases were correctly classified according to the frequency of fermented products consumption. No correlations were found between anxiety and unfermented dairy products. The results indicate that the consumption of fermented dairy products has a positive effect on reducing anxiety in young Azorean university students.
Collapse
Affiliation(s)
| | | | - Célia C. G. Silva
- IITAA-Institute of Agricultural and Environmental Research and Technology, University of the Azores, Angra do Heroísmo, Portugal
| |
Collapse
|
53
|
Miao W, Li N, Wu JL. Food polysaccharides utilization via in vitro fermentation: microbiota, structure, and function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
55
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
56
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
57
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
58
|
Oral short-chain fatty acids administration regulates innate anxiety in adult microbiome-depleted mice. Neuropharmacology 2022; 214:109140. [DOI: 10.1016/j.neuropharm.2022.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
|
59
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
60
|
Wei Y, Peng S, Lian C, Kang Q, Chen J. Anorexia nervosa and gut microbiome: implications for weight change and novel treatments. Expert Rev Gastroenterol Hepatol 2022; 16:321-332. [PMID: 35303781 DOI: 10.1080/17474124.2022.2056017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Host-microbiota interactions may be involved in many physical and psychological functions ranging from the digestion of food, maintenance of immune homeostasis, to the regulation of mood and cognition. Microbiome dysbiosis has been consistently described in many diseases. The pathogenesis and weight regulation mechanism in anorexia nervosa (AN) also seem to be implicated in the dynamic bidirectional adjustment of the microbiota-gut-brain axis. This review aims at elucidating this relationship. AREA COVERED This review starts with a description of pathogenic gut-brain pathways. Next, we focus on the latest research on the associations between gut microbiota and weight change in the condition of AN. The strategies to alter the intestinal microbiome for the treatment of this disorder are discussed, including dietary, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. EXPERT OPINION Gut microbiome is inextricably linked to AN. It may regulate weight gain in the process of refeeding via the microbiota-gut-brain axis, while the specific mechanism has yet to be clearly established. In the future, a better understanding of gut microbiome could have implications for developing microbiome-based prevention, diagnostics and therapies.
Collapse
Affiliation(s)
- Yaohui Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Lian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Kang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
61
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
62
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
63
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
64
|
Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res Int 2022; 152:110892. [DOI: 10.1016/j.foodres.2021.110892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
|
65
|
Dawson SL, Finlay-Jones A, Ball L, Rocks T, Jacka F. Supporting Maternal and Child Mental Health Through Dietary Changes Focused on the Gut Microbiota. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20220126-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
66
|
Witkamp RF. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu Rev Food Sci Technol 2022; 13:315-336. [PMID: 35041794 DOI: 10.1146/annurev-food-052720-092845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional foods and diets can provide health benefits beyond their nutrient composition because of the presence of bioactive compounds. In various traditional healthcare systems, diet-based approaches have always played an important role, which has often survived until today. Therefore, investigating traditional foods aimed at health promotion could render not only novel bioactive substances but also mechanistic insights. However, compared to pharmacologically focused research on natural products, investigating such nutrition-based interventions is even more complicated owing to interacting compounds, less potent and relatively subtle effects, the food matrix, and variations in composition and intake. At the same time, technical advances in 'omics' technologies, cheminformatics, and big data analysis create new opportunities, further strengthened by increasing insights into the biology of health and homeostatic resilience. These are to be combined with state-of-the-art ethnobotanical research, which is key to obtaining reliable and reproducible data. Unfortunately, socioeconomic developments and climate change threaten traditional use and knowledge as well as biodiversity. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
67
|
Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare (Basel) 2022; 10:healthcare10020186. [PMID: 35206801 PMCID: PMC8872051 DOI: 10.3390/healthcare10020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Factors influencing brain function and cognitive performance can be critical to athletic performance of esports athletes. This review aims to discuss the potential beneficial effects of micronutrients, i.e., vitamins, minerals and biologically active substances on cognitive functions of e-athletes. Minerals (iodine, zinc, iron, magnesium) and vitamins (B vitamins, vitamins E, D, and C) are significant factors that positively influence cognitive functions. Prevention of deficiencies of the listed ingredients and regular examinations can support cognitive processes. The beneficial effects of caffeine, creatine, and probiotics have been documented so far. There are many plant products, herbal extracts, or phytonutrients that have been shown to affect precognitive activity, but more research is needed. Beetroot juice and nootropics can also be essential nutrients for cognitive performance. For the sake of players’ eyesight, it would be useful to use lutein, which, in addition to improving vision and protecting against eye diseases, can also affect cognitive functions. In supporting the physical and mental abilities of e-athletes the base is a well-balanced diet with adequate hydration. There is a lack of sufficient evidence that has investigated the relationship between dietary effects and improved performance in esports. Therefore, there is a need for randomized controlled trials involving esports players.
Collapse
|
68
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022; 12:metabo12010050. [PMID: 35050172 PMCID: PMC8778125 DOI: 10.3390/metabo12010050] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as "holobiont". Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood-brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Paula Valls
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
| | - Fernando Mora
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (F.M.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (P.V.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
69
|
Knorr D, Augustin MA. Food systems at a watershed: Unlocking the benefits of technology and ecosystem symbioses. Crit Rev Food Sci Nutr 2022; 63:5680-5697. [PMID: 34989303 DOI: 10.1080/10408398.2021.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current food systems require change to improve sustainability resilience. Humans need food and food requires natural resources which have been consistently reduced, destroyed, or eliminated during human development, and excessive during the last 50-70 years. Though essential, there has been less of a focus on the inter-relations and inter-dependences of our food supply with and on the world's eco-system and organisms. Integrating evidence for the importance of plants, the microbiota in plants, animals and humans and their reciprocal effects of their interactions on food systems is essential for creating more inclusive strategies for future food systems. This review examines the role of plants, microorganisms, plant-microbial, animal-microbial, and human-microbial interactions, their co-evolution on the food supply and human and eco-systems well-being. It also recognizes the contribution of indigenous knowledge for lasting protection of the land, managing resources and biodiversity and the usefulness of food processing for producing safe, tasty, and nutritious food sustainably. We demonstrate that new targets and priorities for harnessing science and technology for improving food and nutritional security and avoiding environmental degradation and biodiversity loss are urgently needed. For improved long-term sustainability, the benefits of technology and ecosystem interactions must be unlocked.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
70
|
McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, Simpson CA, Green J, Marx W, Hair C, Guest G, Mohebbi M, Berk M, Stupart D, Watters D, Jacka FN. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 2022; 27:1920-1935. [PMID: 35194166 PMCID: PMC9126816 DOI: 10.1038/s41380-022-01456-3] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emerging understanding of gut microbiota as 'metabolic machinery' influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to 'healthy' controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.
Collapse
Affiliation(s)
- A. J. McGuinness
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - J. A. Davis
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - S. L. Dawson
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - A. Loughman
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - F. Collier
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - M. O’Hely
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - C. A. Simpson
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - J. Green
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPcr), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Parkville, VIC Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, VIC Australia
| | - W. Marx
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - C. Hair
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.414257.10000 0004 0540 0062Department of Gastroenterology, Barwon Health, Geelong, VIC Australia
| | - G. Guest
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - M. Mohebbi
- grid.1021.20000 0001 0526 7079Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC Australia
| | - M. Berk
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.1008.90000 0001 2179 088XOrygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - D. Stupart
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - D. Watters
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - F. N. Jacka
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XCentre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Sydney, NSW Australia ,grid.1011.10000 0004 0474 1797College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| |
Collapse
|
71
|
Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, Gao R, Wang J, Zhang N, Jiang L. Links Between Gut Dysbiosis and Neurotransmitter Disturbance in Chronic Restraint Stress-Induced Depressive Behaviours: the Role of Inflammation. Inflammation 2021; 44:2448-2462. [PMID: 34657991 DOI: 10.1007/s10753-021-01514-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.
Collapse
Affiliation(s)
- Hai-Long Yang
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meng-Meng Li
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215008, China
| | - Man-Fei Zhou
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huai-Sha Xu
- Department of Psychiatry, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fei Huan
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China
| | - Rong Gao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Nanjing Brain Hospital, 210029, Nanjing, China.
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
72
|
Di Pierro F. A Possible Perspective about the Compositional Models, Evolution, and Clinical Meaning of Human Enterotypes. Microorganisms 2021; 9:microorganisms9112341. [PMID: 34835466 PMCID: PMC8618122 DOI: 10.3390/microorganisms9112341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/19/2023] Open
Abstract
Among the various parameters obtainable through the analysis of the human gut microbiota, the enterotype is one of the first classifications of the bacterial consortia, which tried to obtain, at the same time, as much information as possible to be applied in clinical medicine. Although some authors observed the existence not of clusters, but only of a real continuous gradient, enterotypes are commonly described according to various models. The first model predicted either clustering into enterotypes 1 and 2 based on two specific dominances, Bacteroides and Prevotella, respectively, with the Ruminococcus dominance blurred within the Bacteroides dominance, or it predicted a threedominant condition, in which the Ruminococcus driver constituted enterotype 3, separated from enterotype 1. A second model envisaged three possible ways to cluster gut microbiota, respectively centred on two, three, and four dominances. In the first case, enterotypes 1 and 2 coincided with the two original enterotypes, with the dominance of Bacteroides and Prevotella, respectively. In the second case, the existence of enterotype 3 was evident and whose dominance was not centred on Ruminococcus but extended more towards the entire Firmicutes phylum. In the third case, the presence of the phylum Firmicutes was split into two different enterotypes generating the clusters defined and named as Mixtures 1 and 2. Subsequently, the analysis of the water content (hydration) in the stool allowed the splitting of the Bacteroides enterotype into two sub-enterotype, respectively known as B1 and B2. All these models have allowed us to highlight some correlations between a specific enterotype, or cluster, and some characteristics, such as the greater predisposition of the respective hosts towards certain pathologies. These observations, coupled with the attempt to derive the different microbiota on an evolutionary basis, can help to shed new light on this topic and demonstrate the possible utility that the different ways of clustering the gut microbiota can have in a clinical application perspective and in preventive medicine.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Digestive Endoscopy & Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy;
- UNICAM, Camerino University, 62032 Camerino, Italy
- Scientific Department, Velleja Research, 20124 Milan, Italy
| |
Collapse
|
73
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav Immun 2021; 97:119-134. [PMID: 34252569 DOI: 10.1016/j.bbi.2021.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.
Collapse
|
75
|
Abdallah MS, Mustafa M, Nallappan MA, Choi S, Paik JH, Rusea G. Determination of Phenolics and Flavonoids of Some Useful Medicinal Plants and Bioassay-Guided Fractionation Substances of Sclerocarya birrea (A. Rich) Hochst Stem (Bark) Extract and Their Efficacy Against Salmonella typhi. Front Chem 2021; 9:670530. [PMID: 34386478 PMCID: PMC8353516 DOI: 10.3389/fchem.2021.670530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Gallic acid and catechin are the most abundant phenolic and flavonoid contents found in all plant extracts. The contents and the bioassay-guided fractionating substances of the Sclerocarya birrea (A. Rich) Hochst (Anacardiaceae) fraction played vital roles. The goals of the study were to determine the contents of some useful medicinal plants and the bioassay-guided fractionation substances of S. birrea fraction compounds capable of acting against Salmonella isolate using LC-MS/LC-HRMS (Dionex ultimate 3000 RS UPLC with Thermo Scientific Q Exactive Orbitrap Hybrid Tandem Mass Spectrometer). The Folin-Ciocalteu reagent procedure and flavonoid content determination were conducted spectrophotometrically. Bioassay-guided fractionation, chronological partitioning, and screening of the antibacterial action against Salmonella typhi were performed. The ethyl acetate fraction extracts of S. birrea stem (bark) extract were analyzed using LC-MS/LC-HRMS. The gallic acid content increased tremendously in Vachellia nilotica (L.) P.J.H. Hurter and Mabb (Fabaceae) pod extracts with curve fitting (R 2 = 0.9958). Catechin content increase was significantly increased in S. birrea stem (bark) extracts followed by that of V. nilotica pod extracts with curve fitting (R 2 = 0.9993); they were all significantly different in the Guiera senegalensis J.F. Gmel. and the Leptadenia lanceolata (Poir.) Goyder leaves extracts at p value <0.0001. Subsequently, 10 mg/ml of S. birrea stem (bark) ethyl acetate fraction extract was the MIC, where no MBC was recorded and susceptible to the positive control with the highest inhibition zone, followed by the ethyl acetate fraction extract at 10 mg/ml (9.7 ± 0.0) at Turkey's p < 0.0001. Vidarabine is one of the novel compounds, specifically having antimicrobial actions, found in the S. birrea stem (bark). Reasonable amounts of phenolic and flavonoid contents determined the actions of the individual plant extract.
Collapse
Affiliation(s)
- Muhammad Salihu Abdallah
- Department of Biology, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Yobe State University, Damaturu, Nigeria
| | | | | | - Sangho Choi
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jin-Hyub Paik
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Go Rusea
- Department of Biology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
76
|
Pammi N, Bhukya KK, Lunavath RK, Bhukya B. Bioprospecting of Palmyra Palm ( Borassus flabellifer) Nectar: Unveiling the Probiotic and Therapeutic Potential of the Traditional Rural Drink. Front Microbiol 2021; 12:683996. [PMID: 34262545 PMCID: PMC8274697 DOI: 10.3389/fmicb.2021.683996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 01/27/2023] Open
Abstract
The present study investigates the therapeutic and probiotic attributes of traditional Toddy Palm Nectar (TPN). Glucose was found to be the highest with 4.37 mg/ml and arabinose was the least with 2.85 mg/ml. The average ethanol concentration of fresh TPN was found to be 0.3 mg/ml. The nutritional profile of TPN revealed 18 volatile fatty acids, the major one being hexadecenoic acid (M/Z 74). Amino acid profiling showed 26 amino acids, with OH-lysine-2 the highest (12.86%). About 120 morphologically distinct lactic acid bacteria (LAB) were isolated from 26 TPN samples, based on differential growth and in vitro probiotic characteristics. After 16S rRNA sequencing, four indigenous LAB strains were identified as Lactobacillus plantarum group OUBN1, Enterococcus faecium OUBN3, Pediococcus acidilactici OUBN4, and Pediococcus pentosaceous OUBN5 and their sequences were deposited to NCBI. Microbiological safety evaluation studies showed the absence of hemolytic, gelatinolytic and proteolytic activity. The bacterial isolate OUBN3 showed a maximum survival rate of 6.91 ± 0.04 log cfu/ml at acidic pH 2.5 and isolate OUBN5 showed 6.94 ± 0.02 log cfu/ml at pH 3.0. Similarly, the isolate OUBN5 showed 7.92 ± 0.03 log cfu/ml to 0.3% ox-bile after 4 h and 8.94 ± 0.03 log cfu/ml to simulated gastric juice after 3 h of treatments. OUBN1 expressed the highest autoaggregation (81.76 ± 1.25%), cell surface hydrophobicity (79.71 ± 3.42%), and displayed the maximum coaggregation with E. coli MTCC452 (76.96%), K. pneumoniae MTCC109 (75.62%), and S. aureus MTCC902 (70.69%). All strains showed significant antibiotic and antimicrobial activity. Isolate OUBN1 displayed hydroxyl radical scavenging activity (68.71 ± 1.0%) with an IC50 value of 75.62 μg/ml and the highest anti-cancer activity (percentage inhibition of 88.55) against HT-29 cells. Based on the characteristics observed, L. plantarum group OUBN1 and P. pentosaceous OUBN5 were found to be potential isolates to employ as probiotic microbiota in food and forage preparations. These findings reinforce the fact that LAB isolated from TPN could be exploited as an alternative means toward potential therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
77
|
Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production. Molecules 2021; 26:molecules26082260. [PMID: 33919686 PMCID: PMC8069901 DOI: 10.3390/molecules26082260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cereal crops, such as oats and barley, possess a number of valuable properties that meet the requirements for functional diet components. This review summarized the available information about bioactive compounds of oat and barley grain. The results of studying the structure and physicochemical properties of the cell wall polysaccharides of barley and oat are presented. The main components of the flavonoids formation pathway are shown and data, concerning anthocyanins biosynthesis in various barley tissues, are discussed. Moreover, we analyzed the available information about structural and regulatory genes of anthocyanin biosynthesis in Hordeum vulgare L. genome, including β-glucan biosynthesis genes in Avena sativa L species. However, there is not enough knowledge about the genes responsible for biosynthesis of β-glucans and corresponding enzymes and plant polyphenols. The review also covers contemporary studies about collections of oat and barley genetic resources held by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR). This review intended to provide information on the processes of biosynthesis of biologically active compounds in cereals that will promote further researches devoted to transcription factors controlling expression of structural genes and their role in other physiological processes in higher plants. Found achievements will allow breeders to create new highly productive varieties with the desirable properties.
Collapse
|
78
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
79
|
Amadieu C, Leclercq S, Coste V, Thijssen V, Neyrinck AM, Bindels LB, Cani PD, Piessevaux H, Stärkel P, de Timary P, Delzenne NM. Dietary fiber deficiency as a component of malnutrition associated with psychological alterations in alcohol use disorder. Clin Nutr 2021; 40:2673-2682. [PMID: 33933733 DOI: 10.1016/j.clnu.2021.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Chronic alcohol consumption can cause malnutrition that may contribute to alcohol-induced organ injury and psychological disorders. We evaluated the link between nutrient intake, especially dietary fibers (DF) and different parameters reflecting mental health and well being, namely anxiety, depression, alcohol craving, sociability, fatigue and intestinal comfort in alcohol use disorder (AUD) patients. METHODS Cross-sectional data from 50 AUD patients, hospitalized for a 3-week detoxification program were used. Three 24-h recalls allowed to calculate dietary habits and nutrient intakes, that was also assessed in healthy subjects (HS). Diet quality was measured using the NOVA score. Psychological factors and intestinal discomfort were evaluated using validated self-administered questionnaires. RESULTS Energy intake (excluding alcoholic beverage), total fat, monounsaturated and polyunsaturated fatty acids, protein and DF intakes were lower in AUD subjects compared to HS. Ninety percent of patients had a DF intake below the recommendation. AUD patients consumed more than twice as much ultra-processed food than HS. Fructan intake was negatively associated with anxiety (p = 0.04) adjusted for main confounders. Total DF, insoluble, soluble DF and galacto-oligosaccharide intakes were associated with higher sociability score. Soluble DF intake was associated with better satisfaction of bowel function (p = 0.02) and a lower intestinal discomfort (p = 0.04). CONCLUSIONS This study reveals that insufficient DF intake is part of AUD-related malnutrition syndrome, and is associated with higher anxiety, lower sociability score and intestinal discomfort. Our results suggest that an adequate intake of DF might be beneficial for recovery from AUD. TRIAL REGISTRATION NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.
Collapse
Affiliation(s)
- Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Valentin Coste
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Victoria Thijssen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium; WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Brussels, Belgium
| | - Hubert Piessevaux
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université catholique de Louvain, UCLouvain, Belgium; Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Peter Stärkel
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université catholique de Louvain, UCLouvain, Belgium; Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Brussels, Belgium; Department of Adult Psychiatry, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium.
| |
Collapse
|
80
|
Martins LB, Braga Tibães JR, Sanches M, Jacka F, Berk M, Teixeira AL. Nutrition-based interventions for mood disorders. Expert Rev Neurother 2021; 21:303-315. [PMID: 33487078 DOI: 10.1080/14737175.2021.1881482] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: 'Nutritional Psychiatry' is an emerging area of research that has great potential as an adjunctive tool for the prevention and treatment of diverse neuropsychiatric disorders. Several nutrition-related aspects, such as obesity, dietary patterns, gut microbiome composition and gut permeability, bioactive food compounds, and nutrients can influence pathways implicated in the pathophysiology of mood disorders.Areas covered: Here, the authors review the current evidence on nutrition-mood interaction and nutrition-based treatments for the two main mood disorders, i.e., major depressive disorder and bipolar disorder.Expert opinion: Consistent evidence from observational studies has pointed out the association between a 'healthy' diet, generally characterized by a higher intake of fruits, vegetables, legumes, nuts, whole grains, and good quality sources of protein (i.e. fish and/or seafood), and decreased risk of mood disorders and the parallel association between a 'Western' diet pattern and increased risk. However, only a few clinical trials have evaluated the effect of nutritional interventions on the treatment of these conditions. The bidirectional interaction between the brain and the gut, named 'brain-gut-microbiome axis' or 'gut-brain axis', plays a key role in the link between nutrition and mood disorders. Therefore, nutrition-based strategies for gut microbiota modulation are promising fields in mood disorders.
Collapse
Affiliation(s)
- Lais B Martins
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, United States.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jenneffer Rayane Braga Tibães
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Agricultural, Food and Nutritional Science, Division of Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, United States
| | - Felice Jacka
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia.,College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Black Dog Institute, Randwick, New South Wales, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Antônio L Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas, United States.,Instituto de Ensino e Pesquisa, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
81
|
Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones (Athens) 2021; 20:1-12. [PMID: 32827123 DOI: 10.1007/s42000-020-00236-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The aim of this article is to summarize the pathways connecting the gut and the brain and to highlight their role in the development of depression as well as their potential use as therapeutic targets. A literature search was conducted in PubMed using relevant keywords and their combinations up to the end of March 2020. Previously seen as a disease pertaining solely to the central nervous system, depression is now perceived as a multifactorial condition that extends beyond neurotransmitter depletion. Central to our understanding of the disease is our current knowledge of the communication between the gut and the brain, which is bidirectional and involves neural, endocrine, and immune pathways. This communication is facilitated via stress-mediated activation of the HPA axis, which stimulates the immune system and causes a decrease in microbial diversity, also known as dysbiosis. This change in the intestinal flora leads, in turn, to bacterial production of various substances which stimulate both the enteric nervous system and the vagal afferents and contribute to additional activation of the HPA axis. Concomitantly, these substances are associated with an increase in intestinal permeability, namely, the leaky gut phenomenon. The bidirectional link between the gut and the brain is of great importance for a more inclusive approach to the management of depression. It can thus be deployed for the development of novel therapeutic strategies against depression, offering promising alternatives to limited efficacy antidepressants, while combination therapy also remains a potential treatment option.
Collapse
Affiliation(s)
| | | | - Konstantinos I Tsamis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- School of Medicine, University of Ioannina, Ioannina, Greece
| | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus.
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
82
|
Stefanaki C, Mastorakos G, Chrousos GP. Gut Microbiome and Mental Stress-Related Disorders: The Interplay of Classic and Microbial Endocrinology. THE MICROBIOMES OF HUMANS, ANIMALS, PLANTS, AND THE ENVIRONMENT 2021:229-242. [DOI: 10.1007/978-3-030-59642-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
83
|
Marx W, Lane M, Hockey M, Aslam H, Berk M, Walder K, Borsini A, Firth J, Pariante CM, Berding K, Cryan JF, Clarke G, Craig JM, Su KP, Mischoulon D, Gomez-Pinilla F, Foster JA, Cani PD, Thuret S, Staudacher HM, Sánchez-Villegas A, Arshad H, Akbaraly T, O'Neil A, Segasby T, Jacka FN. Diet and depression: exploring the biological mechanisms of action. Mol Psychiatry 2021; 26:134-150. [PMID: 33144709 DOI: 10.1038/s41380-020-00925-x] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
The field of nutritional psychiatry has generated observational and efficacy data supporting a role for healthy dietary patterns in depression onset and symptom management. To guide future clinical trials and targeted dietary therapies, this review provides an overview of what is currently known regarding underlying mechanisms of action by which diet may influence mental and brain health. The mechanisms of action associating diet with health outcomes are complex, multifaceted, interacting, and not restricted to any one biological pathway. Numerous pathways were identified through which diet could plausibly affect mental health. These include modulation of pathways involved in inflammation, oxidative stress, epigenetics, mitochondrial dysfunction, the gut microbiota, tryptophan-kynurenine metabolism, the HPA axis, neurogenesis and BDNF, epigenetics, and obesity. However, the nascent nature of the nutritional psychiatry field to date means that the existing literature identified in this review is largely comprised of preclinical animal studies. To fully identify and elucidate complex mechanisms of action, intervention studies that assess markers related to these pathways within clinically diagnosed human populations are needed.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia.
| | - Melissa Lane
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Meghan Hockey
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Hajara Aslam
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Metabolic Research Unit, Geelong, VIC, Australia
| | - Alessandra Borsini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph Firth
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Jeffrey M Craig
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, VIC, Australia
| | - Kuan-Pin Su
- Departments of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - David Mischoulon
- Department of Psychiatry, Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Sandrine Thuret
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Heidi M Staudacher
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Almudena Sánchez-Villegas
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
- Biomedical Research Center Network on Obesity and Nutrition (CIBERobn) Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Husnain Arshad
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
| | - Tasnime Akbaraly
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Adrienne O'Neil
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Toby Segasby
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Felice N Jacka
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| |
Collapse
|
84
|
Zhan Y, Ma H, Feng Y, Wang Y, Wu S, Cai S, Shi Y, Chen Y, Ma L, Jiang Y. Dietary patterns in relation to gestational depression and sleep disturbance in Chinese pregnant women. J Obstet Gynaecol Res 2020; 46:2618-2628. [PMID: 33021001 DOI: 10.1111/jog.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 01/26/2023]
Abstract
AIM To investigate the association of dietary patterns with gestational depression and sleep disturbance. METHODS Women in early pregnancy were recruited from the Chinese Pregnant Women Cohort Study (CPWCS) through July 25th, 2017 to November 26th, 2018, and eventually 7615 participants were included in this study. The qualitative food frequency questionnaire (Q-FFQ), Edinburgh Postnatal Depression Scale (EPDS), and the Pittsburgh Sleep Quality Index (PSQI) were used to assess dietary, depression and sleep quality during pregnancy, respectively. Dietary patterns were derived by factor analysis. Logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (95% CI) of each outcome according to quartiles of each dietary pattern. RESULTS Five dietary patterns were identified. Participants with the highest quartile in plant-based pattern had a significantly lower likelihood of mental problems (OR: 95% CI for depression: 0.66, 0.55-0.79; sleep disturbance: 0.80, 0.68-0.93); Similar results were observed in vitamin-rich pattern (OR: 95% CI for depression: 0.46, 0.38-0.55; sleep disturbance: 0.76, 0.65-0.89); However, contrary results were found in high-fat pattern (OR: 95% CI for depression: 2.15, 1.25-1.85; sleep disturbance: 1.43, 1.22-1.67); In animal protein-rich pattern, participants with the highest quartile had a decreased likelihood of depression (OR: 0.80, 95% CI: 0.67-0.96). As for bean products pattern, participants with the highest quartile had an increased risk of depression (OR: 1.28, 95% CI:1.06-1.53). Interactions of dietary patterns and lifestyles on mental disorders were observed. CONCLUSION Dietary patterns were associated with gestational depression and sleep disturbance. Relevant departments and maternal and child health personnel should conduct health education for pregnant women and guide them to eat properly.
Collapse
Affiliation(s)
- Yongle Zhan
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haihui Ma
- Tongzhou Maternal and Child Health Hostipal of Beijing, Beijing, China
| | - Yahui Feng
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yawen Wang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sansan Wu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuya Cai
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Shi
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunli Chen
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
85
|
Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr Opin Biotechnol 2020; 70:36-41. [PMID: 33232845 DOI: 10.1016/j.copbio.2020.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Omics tools offer the opportunity to characterize and trace traditional and industrial fermented foods. Bioinformatics, through machine learning, and other advanced statistical approaches, are able to disentangle fermentation processes and to predict the evolution and metabolic outcomes of a food microbial ecosystem. By assembling microbial artificial consortia, the biotechnological advances will also be able to enhance the nutritional value and organoleptics characteristics of fermented food, preserving, at the same time, the potential of autochthonous microbial consortia and metabolic pathways, which are difficult to reproduce. Preserving the traditional methods contributes to protecting the hidden value of local biodiversity, and exploits its potential in industrial processes with the final aim of guaranteeing food security and safety, even in developing countries.
Collapse
|
86
|
Processing, Characteristics and Composition of Umqombothi (a South African Traditional Beer). Processes (Basel) 2020. [DOI: 10.3390/pr8111451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traditional beers, such as palm wine, kombucha and others, are notable beverages consumed all over the globe. Such beverages historically contribute to food security on a global scale. Umqombothi is a South African traditional beer nutritionally packed with minerals, amino acids, B-group vitamins and much-needed calories. As a result, the production and consumption of this traditional beverage has been an integral part of South African’s social, economic and cultural prosperity. Unfortunately, difficulties in bioprocessing operations have limited its availability to household and small-scale production. It is at these micro-production scales that poor hygiene practices and the use of hazardous additives and contaminated raw materials continue to increase, posing serious health risks to the unassuming consumer. This study provides an overview of the processing steps and underlying techniques involved in the production of umqombothi, while highlighting the challenges as well as future developments needed to further improve its quality and global competitiveness with other alcoholic products.
Collapse
|
87
|
Aslam H, Marx W, Rocks T, Loughman A, Chandrasekaran V, Ruusunen A, Dawson SL, West M, Mullarkey E, Pasco JA, Jacka FN. The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes 2020; 12:1799533. [PMID: 32835617 PMCID: PMC7524346 DOI: 10.1080/19490976.2020.1799533] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of dairy and dairy-derived products on the human gut microbiota remains understudied. A systematic literature search was conducted using Medline, CINAHL, Embase, Scopus, and PubMed databases with the aim of collating evidence on the intakes of all types of dairy and their effects on the gut microbiota in adults. Risk of bias was assessed using the Cochrane risk-of-bias tool.The search resulted in 6,592 studies, of which eight randomized controlled trials (RCTs) met pre-determined eligibility criteria for inclusion, consisting of a total of 468 participants. Seven studies assessed the effect of type of dairy (milk, yogurt, and kefir) and dairy derivatives (whey and casein) on the gut microbiota, and one study assessed the effect of the quantity of dairy (high dairy vs low dairy). Three studies showed that dairy types consumed (milk, yogurt, and kefir) increased the abundance of beneficial genera Lactobacillus and Bifidobacterium. One study showed that yogurt reduced the abundance of Bacteroides fragilis, a pathogenic strain. Whey and casein isolates and the quantity of dairy consumed did not prompt changes to the gut microbiota composition. All but one study reported no changes to bacterial diversity in response to dairy interventions and one study reported reduction in bacterial diversity in response to milk intake.In conclusion, the results of this review suggest that dairy products such as milk, yogurt, and kefir may modulate the gut microbiota composition in favor to the host. However, the broader health implications of these findings remain unclear and warrant further studies.
Collapse
Affiliation(s)
- Hajara Aslam
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia,CONTACT Hajara Aslam IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria3220, Australia
| | - Wolfgang Marx
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Tetyana Rocks
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Amy Loughman
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Vinoomika Chandrasekaran
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Anu Ruusunen
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Samantha L. Dawson
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia,Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - Madeline West
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Eva Mullarkey
- Psychology Department, Wellesley College, Wellesley, MA, USA
| | - Julie A. Pasco
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia,Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia,Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia,Barwon Health, Geelong, Victoria, Australia
| | - Felice N. Jacka
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia,Department of Psychiatry, University of Melbourne, Victoria, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Victoria, Australia
| |
Collapse
|
88
|
De Filippis F, Pasolli E, Ercolini D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol Rev 2020; 44:454-489. [PMID: 32556166 PMCID: PMC7391071 DOI: 10.1093/femsre/fuaa015] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 80055, Portici (NA)Italy
- Task Force on Microbiome Studies, Corso Umberto I, 40, 80100, Napoli, Italy
| |
Collapse
|
89
|
Hockey M, McGuinness AJ, Marx W, Rocks T, Jacka FN, Ruusunen A. Is dairy consumption associated with depressive symptoms or disorders in adults? A systematic review of observational studies. Crit Rev Food Sci Nutr 2019; 60:3653-3668. [PMID: 31868529 DOI: 10.1080/10408398.2019.1703641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diet quality is associated with depression risk, however the possible role of dairy products in depression risk is unclear. A number of epidemiological studies have examined associations between dairy consumption and depressive symptoms, but results have been inconsistent. Therefore, this systematic review aimed to examine whether an association exists between dairy consumption and depressive symptoms or disorders in adults. Anxiety symptoms were also explored as a secondary outcome. CINAHL, Cochrane, MEDLINE complete, EMBASE, Scopus and PsycINFO databases were searched from database inception to December 2018. Studies were included if they used a case-control, cross-sectional, or cohort study design, and included community dwelling or institutionalized adults (≥18 years). Seven prospective and six cross-sectional studies (N = 58,203 participants) reported on the association between dairy consumption and depressive symptoms or disorders. Findings were mixed, with one study reporting a positive association; five studies reporting no association; and seven studies reporting mixed associations depending on dairy type, gender or population group. We found conflicting and inconsistent associations in studies that were generally of fair quality. Future longitudinal and intervention studies that employ more rigorous dietary assessment methods are warranted.
Collapse
Affiliation(s)
- Meghan Hockey
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
| | - Amelia J McGuinness
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia.,Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Tetyana Rocks
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
| | - Felice N Jacka
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia.,Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia.,Black Dog Institute, Sydney, Australia
| | - Anu Ruusunen
- Food & Mood Centre, iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia.,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
90
|
Adan RAH, van der Beek EM, Buitelaar JK, Cryan JF, Hebebrand J, Higgs S, Schellekens H, Dickson SL. Nutritional psychiatry: Towards improving mental health by what you eat. Eur Neuropsychopharmacol 2019; 29:1321-1332. [PMID: 31735529 DOI: 10.1016/j.euroneuro.2019.10.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
Abstract
Does it matter what we eat for our mental health? Accumulating data suggests that this may indeed be the case and that diet and nutrition are not only critical for human physiology and body composition, but also have significant effects on mood and mental wellbeing. While the determining factors of mental health are complex, increasing evidence indicates a strong association between a poor diet and the exacerbation of mood disorders, including anxiety and depression, as well as other neuropsychiatric conditions. There are common beliefs about the health effects of certain foods that are not supported by solid evidence and the scientific evidence demonstrating the unequivocal link between nutrition and mental health is only beginning to emerge. Current epidemiological data on nutrition and mental health do not provide information about causality or underlying mechanisms. Future studies should focus on elucidating mechanism. Randomized controlled trials should be of high quality, adequately powered and geared towards the advancement of knowledge from population-based observations towards personalized nutrition. Here, we provide an overview of the emerging field of nutritional psychiatry, exploring the scientific evidence exemplifying the importance of a well-balanced diet for mental health. We conclude that an experimental medicine approach and a mechanistic understanding is required to provide solid evidence on which future policies on diet and nutrition for mental health can be based.
Collapse
Affiliation(s)
- Roger A H Adan
- Department of Translational Neurosciences, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-405 30 Gothenburg, Sweden.
| | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, the Netherlands; Department of Pediatrics, University Medical Centre Groningen, Groningen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry, Nijmegen, the Netherlands
| | - John F Cryan
- Department of Anatomy & Neuroscience and APC Microbiome Ireland, University College Cork, Ireland
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Suzanne Higgs
- Suzanne Higgs School of Psychology, University of Birmingham, Birmingham, UK
| | - Harriet Schellekens
- Department of Anatomy & Neuroscience and APC Microbiome Ireland, University College Cork, Ireland
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
91
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2620] [Impact Index Per Article: 436.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
92
|
Long-Smith C, O'Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2019; 60:477-502. [PMID: 31506009 DOI: 10.1146/annurev-pharmtox-010919-023628] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The traditional fields of pharmacology and toxicology are beginning to consider the substantial impact our gut microbiota has on host physiology. The microbiota-gut-brain axis is emerging as a particular area of interest and a potential new therapeutic target for effective treatment of central nervous system disorders, in addition to being a potential cause of drug side effects. Microbiota-gut-brain axis signaling can occur via several pathways, including via the immune system, recruitment of host neurochemical signaling, direct enteric nervous system routes and the vagus nerve, and the production of bacterial metabolites. Altered gut microbial profiles have been described in several psychiatric and neurological disorders. Psychobiotics, live biotherapeutics or substances whose beneficial effects on the brain are bacterially mediated, are currently being investigated as direct and/or adjunctive therapies for psychiatric and neurodevelopmental disorders and possibly for neurodegenerative disease, and they may emerge as new therapeutic options in the clinical management of brain disorders.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
93
|
Pino A, Russo N, Van Hoorde K, De Angelis M, Sferrazzo G, Randazzo CL, Caggia C. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms 2019; 7:E254. [PMID: 31408976 PMCID: PMC6723934 DOI: 10.3390/microorganisms7080254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023] Open
Abstract
Piacentinu Ennese is a protected designation of origin (PDO) cheese produced in the surrounding area of Enna (Sicily, Italy), using raw ewe's milk without the addition of any starter cultures. In the present study, the Lactobacillus population of Piacentinu Ennese PDO cheese was in vitro screened in order to select promising probiotic strains to be further used in humans. One hundred and sixty-nine lactic acid bacteria (LAB) were isolated from 90 days ripened cheeses and identified by Rep-PCR genomic fingerprinting, using the (GTG)5-primer, and by MALDI-TOF MS. One hundred and thirteen (113) isolates belonging to QPS-list species were characterized for both safety and functional properties. All tested isolates were considered safe because none showed either gelatinase, DNase, mucinase, or hemolytic activity. Tolerance to lysozyme, bile salts, and acidic conditions, along with ability to survive under simulated gastrointestinal digestion, were observed. In addition, based on antimicrobial activity against pathogens, cell surface characteristics, Caco-2 adhesion abilities, and anti-inflammatory potential, it was possible to confirm the strain-dependent functional aptitude, suggesting that Piacentinu Ennese PDO cheese may be considered a precious source of probiotic candidates.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Koenraad Van Hoorde
- Department of Biotechnology, Laboratory of Brewing Science and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy.
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
94
|
Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019; 11:E1189. [PMID: 31137859 PMCID: PMC6567126 DOI: 10.3390/nu11051189] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have long been produced according to knowledge passed down from generation to generation and with no understanding of the potential role of the microorganism(s) involved in the process. However, the scientific and technological revolution in Western countries made fermentation turn from a household to a controlled process suitable for industrial scale production systems intended for the mass marketplace. The aim of this paper is to provide an up-to-date review of the latest studies which investigated the health-promoting components forming upon fermentation of the main food matrices, in order to contribute to understanding their important role in healthy diets and relevance in national dietary recommendations worldwide. Formation of antioxidant, bioactive, anti-hypertensive, anti-diabetic, and FODMAP-reducing components in fermented foods are mainly presented and discussed. Fermentation was found to increase antioxidant activity of milks, cereals, fruit and vegetables, meat and fish. Anti-hypertensive peptides are detected in fermented milk and cereals. Changes in vitamin content are mainly observed in fermented milk and fruits. Fermented milk and fruit juice were found to have probiotic activity. Other effects such as anti-diabetic properties, FODMAP reduction, and changes in fatty acid profile are peculiar of specific food categories.
Collapse
Affiliation(s)
- Francesca Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| |
Collapse
|
95
|
Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, Stenvinkel P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019; 11:496. [PMID: 30818761 PMCID: PMC6471287 DOI: 10.3390/nu11030496] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota imbalance is common in patients with chronic kidney disease (CKD) and associates with factors such as increased circulating levels of gut-derived uremic toxins, inflammation, and oxidative stress, which are linked to cardiovascular disease and increased morbimortality. Different nutritional strategies have been proposed to modulate gut microbiota, and could potentially be used to reduce dysbiosis in CKD. Nutrients like proteins, fibers, probiotics, and synbiotics are important determinants of the composition of gut microbiota and specific bioactive compounds such as polyphenols present in nuts, berries. and fruits, and curcumin, may also play a key role in this regard. However, so far, there are few studies on dietary components influencing the gut microbiota in CKD, and it is therefore not possible to conclude which nutrients should be prioritized in the diet of patients with CKD. In this review, we discuss some nutrients, diet patterns and bioactive compounds that may be involved in the modulation of gut microbiota in CKD and provide the background and rationale for studies exploring whether nutritional interventions with these dietary components could be used to alleviate the gut dysbiosis in patients with CKD.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Natália Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Livia Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Marta Esgalhado
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Ludmila Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|