51
|
Hasanaliyeva G, Chatzidimitrou E, Wang J, Baranski M, Volakakis N, Pakos P, Seal C, Rosa EAS, Markellou E, Iversen PO, Vigar V, Willson A, Barkla B, Leifert C, Rempelos L. Effect of Organic and Conventional Production Methods on Fruit Yield and Nutritional Quality Parameters in Three Traditional Cretan Grape Varieties: Results from a Farm Survey. Foods 2021; 10:476. [PMID: 33671741 PMCID: PMC7926479 DOI: 10.3390/foods10020476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
The antioxidants found in grapes and wine have been linked to health benefits in humans, but may be affected by agronomic parameters, grape type/variety, and processing. Here, we report results of a farm survey which investigated the effects of production system (organic vs. conventional) and grape variety on fruit yield, total antioxidant activity/capacity (TAA, assessed by the Trolox Equivalent Antioxidant Capacity (TEAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays), and total concentrations of total phenolics (TPC) and anthocyanins (TAC) in grapes of one red (Kotsifali) and two white (Villana and/or Vidiano) traditional Cretan grape varieties. Analysis of variance (ANOVA) results showed that grape variety choice had a more substantial effect on TPC, TAA, and TAC than primary production protocols, and significant interactions were identified between production system and grape variety choice for TAATEAC. Specifically, TAATEAC was significantly (57%) higher in organic than conventional Vidiano grapes, while there was no significant effect of production system on TAATEAC in Kotsifali and Villana grapes. As expected from previous studies, the TAC was substantially higher in red Kotsifali grapes. Redundancy analysis (RDA) identified grape variety as the only strong explanatory variable/driver for yield, TPC, TAA, and TAC of table grapes, and positive associations were detected between the variety Vidiano and both TPC and TAATEAC. All other explanatory variables included in the RDA (including supplementary irrigation, orchard orientation, production system, soil type, vineyard age, plant density, and fertiliser inputs) explained only a small proportion of the additional variation.
Collapse
Affiliation(s)
- Gultakin Hasanaliyeva
- Department of Sustainable Crop and Food Protection, Faculty of Agriculture, Food and Environmental Sciences, Universita Catollica del Sacro Cuore, I-29122 Piacenza, Italy
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eleni Chatzidimitrou
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Residues and Food Safety Unit, Regulated Products Assessment Department, French Agency for Food Environmental and Occupational Health and Safety, France (ANSES), 94701 Maisons-Alfort, France
| | - Juan Wang
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Marcin Baranski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Nikolaos Volakakis
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Geokomi plc, Agriculture Consultancy, P.O. Box 21, Sivas-Faistos, GR 70200 Crete, Greece
| | - Panagiotis Pakos
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Chris Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eduardo A S Rosa
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5001-801, Vila Real, Portugal
| | - Emilia Markellou
- Department of Phytopathology, Benaki Phytopathological Institute (BPI), 14561 Athens, Greece
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, Sognsvannsveien, 0372 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0372 Oslo, Norway
| | - Vanessa Vigar
- NatMed, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | - Adam Willson
- Southern Cross Plant Science, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | - Bronwyn Barkla
- Southern Cross Plant Science, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | - Carlo Leifert
- Department of Nutrition, IMB, University of Oslo, Sognsvannsveien, 0372 Oslo, Norway
- Southern Cross Plant Science, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
52
|
Fakayode OJ, Nkambule TTI. Chromametric and spectroscopic determinations of natural organic matter in water and caffeine/phosphoric acid-containing soft drink using grape (V. vinifera) extract. Food Chem 2021; 348:129146. [PMID: 33515945 DOI: 10.1016/j.foodchem.2021.129146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/06/2020] [Accepted: 01/17/2021] [Indexed: 11/28/2022]
Abstract
Natural anthocyanin dyes are safe for human and the environment due to their biocompatibility and rapid biodegradability. In this paper, an aqueous anthocyanin extract from grapes was used as a colouring reagent for the determination of humic acid (a cancer-promoting agent) in water and caffeine/phosphoric acid-containing caramelized soft drink. Three techniques, viz: chromametry, ultraviolet-visible spectrophotometry (UV-Vis) and Fourier transform infrared spectroscopy (FTIR) were employed for comparative quantifications. The results showed that the chromametry technique exhibited better sensing performance than the spectroscopic techniques in terms of the limit of detection (LOD) and % recovery. However, both chromametry and UV-Vis techniques agreed that the presence of HA could easily be detected in the soft drink at a spiked concentration of 6.4 ppm where less interference occurred.
Collapse
Affiliation(s)
- Olayemi Jola Fakayode
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), 60 Christiaan de Wet Road, Florida, Roodepoort 1709, South Africa.
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), 60 Christiaan de Wet Road, Florida, Roodepoort 1709, South Africa
| |
Collapse
|
53
|
Liao Y, Zhou X, Zeng L. How does tea ( Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 2021; 62:3751-3767. [PMID: 33401945 DOI: 10.1080/10408398.2020.1868970] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tea (Camellia sinensis) is both a plant and a foodstuff. Many bioactive compounds, which are present in the final tea product and related to its quality or functional properties, are produced during the tea manufacturing process. However, the characteristic secondary metabolites, which give tea its unique qualities and are beneficial to human health, are produced mainly in the leaves during the process of plant growth. Therefore, it is important to understand how tea leaves produce these specialized metabolites. In this review, we first compare the common metabolites and specialized metabolites in tea, coffee, cocoa, and grape and discuss the occurrence of characteristic secondary metabolites in tea. Progress in research into the formation of these characteristic secondary metabolites in tea is summarized, including establishing a biological database and genetic transformation system, and the biosynthesis of characteristic secondary metabolites. Finally, speculation on future research into the characteristic secondary metabolites of tea is provided from the viewpoints of the origin, resources, cultivation, and processing of tea. This review provides an important reference for future research on the specialized metabolites of tea in terms of its characteristics.
Collapse
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
54
|
Effects of Production Region, Production Systems and Grape Type/Variety on Nutritional Quality Parameters of Table Grapes; Results from a UK Retail Survey. Foods 2020; 9:foods9121874. [PMID: 33339243 PMCID: PMC7767105 DOI: 10.3390/foods9121874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022] Open
Abstract
Grapes contain high concentrations of secondary metabolites and antioxidants that have been linked to a reduction of several chronic diseases. Here, we report results of a UK retail survey, which investigated the effect of the production region (Mediterranean vs. South Africa), grape type (white vs. red vs. black) and variety, and production system (organic vs. conventional) on antioxidant activity and concentrations of phenolic compounds in table grapes. Black grapes had ~180% total antioxidant activity (TAA), ~60% higher total phenolic content (TPC) and ~40 times higher anthocyanin concentrations (TAC) than white grapes, while red grapes had intermediate levels of TAA, TPC and TAC. The effects of season and production system and differences between varieties of the same grape type were substantially smaller. Grapes imported from Mediterranean countries in summer had a 14% higher TPC and ~20% higher TAA than grapes imported from South Africa in winter, and organic grapes had a 16% higher TPC and 22% higher TAA, but ~30% lower TAC than conventional grapes. Significant differences in TPC, TAA and/or TAC between organic and conventional grapes could only be detected for specific grape types, varieties and/or sampling years.
Collapse
|
55
|
Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants (Basel) 2020; 9:E1123. [PMID: 33202871 PMCID: PMC7698232 DOI: 10.3390/antiox9111123] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.
Collapse
Affiliation(s)
- Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India;
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Shimla H.P. 171009, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| |
Collapse
|
56
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
57
|
Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. GENES AND NUTRITION 2020; 15:17. [PMID: 32967625 PMCID: PMC7509942 DOI: 10.1186/s12263-020-00675-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Grapes and berries are two types of widely consumed fruits characterized by a high content in different phytochemicals. However, their accurate dietary assessment is particularly arduous, because of the already wide recognized bias associated with self-reporting methods, combined with the large range of species and cultivars and the fact that these fruits are popularly consumed not only in fresh and frozen forms but also as processed and derived products, including dried and canned fruits, beverages, jams, and jellies. Reporting precise type and/or quantity of grape and berries in FFQ or diaries can obviously be affected by errors. Recently, biomarkers of food intake (BFIs) rose as a promising tool to provide accurate information indicating consumption of certain food items. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs have been developed within the Food Biomarker Alliance (FoodBAll) Project. This paper aims to evaluate the putative BIFs for blueberries, strawberries, raspberries, blackberries, cranberries, blackcurrant, and grapes. Candidate BFIs for grapes were resveratrol metabolites and tartaric acid. The metabolites considered as putative BFI for berries consumption were mostly anthocyanins derivatives together with several metabolites of ellagitannins and some aroma compounds. However, identification of BFIs for single berry types encountered more difficulties. In the absence of highly specific metabolites reported to date, we suggested some multi-metabolite panels that may be further investigated as putative biomarkers for some berry fruits.
Collapse
Affiliation(s)
- M Ulaszewska
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - N Vázquez-Manjarrez
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Slavador Zubiran, Mexico City, Mexico
| | - M T Soria-Florido
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trent, Trento, Italy
| | - C Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France
| |
Collapse
|
58
|
The effect of grape products containing polyphenols on C-reactive protein levels: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2020; 125:1230-1245. [DOI: 10.1017/s0007114520003591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
59
|
Tutino V, Gigante I, Milella RA, De Nunzio V, Flamini R, De Rosso M, Scavo MP, Depalo N, Fanizza E, Caruso MG, Notarnicola M. Flavonoid and Non-Flavonoid Compounds of Autumn Royal and Egnatia Grape Skin Extracts Affect Membrane PUFA's Profile and Cell Morphology in Human Colon Cancer Cell Lines. Molecules 2020; 25:E3352. [PMID: 32718061 PMCID: PMC7435874 DOI: 10.3390/molecules25153352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-γ were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-γ gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 70010 Turi (BA), Italy;
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Riccardo Flamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Mirko De Rosso
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari (BA), Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| |
Collapse
|
60
|
Lacerda D, Türck P, Campos-Carraro C, Hickmann A, Ortiz V, Bianchi S, Belló-Klein A, de Castro AL, Bassani VL, Araujo ASDR. Pterostilbene improves cardiac function in a rat model of right heart failure through modulation of calcium handling proteins and oxidative stress. Appl Physiol Nutr Metab 2020; 45:987-995. [PMID: 32191845 DOI: 10.1139/apnm-2019-0864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study explored the effect of pterostilbene (PTS) complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on right heart function, glutathione and glutaredoxin systems, and the expression of redox-sensitive proteins involved with regulation calcium levels in the experimental model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). After 7 days of PAH induction, rats received daily doses of the PTS:HPβCD complex (corresponding to 25, 50, or 100 mg·kg-1 of PTS) or vehicle (control group, CTR0) (an aqueous solution containing HPβCD; CTR0 and MCT0 (MCT group that did not receive PTS treatment)) via oral administration for 2 weeks. The results showed that the PTS:HPβCD complex increased the content of reduced glutathione and the activity of glutathione-S-transferase and glutaredoxin in the right ventricle (RV) of MCT-treated rats in a dose-dependent manner. Additionally, at higher doses, it also prevented the reduction of stroke volume and cardiac output, prevented myocardial performance index (MPI) increase, reduced lipoperoxidation, reduced total phospholamban, and increased the expression of sarcoplasmic reticulum calcium ATPase in the RV of MCT-treated rats. These results demonstrate that the PTS:HPβCD complex has a dose-dependent antioxidant mechanism that results in improved cardiac function in experimental right heart failure. Our results open a field of possibilities to PTS administration as new therapeutic approach to conventional therapy for right ventricular dysfunction. Novelty Pterostilbene complexed with hydroxypropyl-β-cyclodextrin could be a new therapeutic approach. Pterostilbene complexed with hydroxypropyl-β-cyclodextrin reestablishes redox homeostasis through glutathione metabolism modulation, leading to an improved MPI in pulmonary arterial hypertension-provoked right heart failure.
Collapse
Affiliation(s)
- Denise Lacerda
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Patrick Türck
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Cristina Campos-Carraro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Alexandre Hickmann
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Vanessa Ortiz
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Sara Bianchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Alexandre Luz de Castro
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| | - Valquiria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
61
|
Saeed M, Saleem U, Anwar F, Ahmad B, Anwar A. Inhibition of Valproic Acid-Induced Prenatal Developmental Abnormalities with Antioxidants in Rats. ACS OMEGA 2020; 5:4953-4961. [PMID: 32201781 PMCID: PMC7081441 DOI: 10.1021/acsomega.9b03792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 05/10/2023]
Abstract
Valproic acid (VP) is a very effective therapy for the management of generalized epilepsy. However, its use during pregnancy leads to increased risk of teratogenesis and cognitive malfunctioning in postnatal growing children. Antioxidants are used commercially as a palliative therapy. This study compares the different antioxidants effects on VP-induced teratogenicity. Pregnant female rats (n = 80) were divided into eight groups (n = 10) as follows: Group I, control group; Group II, disease group valproic acid (500 mg/kg); Groups III and IV, treated with 2000 and 8000 mg/kg vitamin C, respectively; Groups V and VI, treated with selenium 100 and 200 μg/kg dose, respectively; and Groups VII and VIII, administered grape seed extract 300 and 600 mg/kg, respectively. Groups III-VIII received valproic acid (500 mg/kg) along with their respective treatments. All treatments were given via an oral route. The fetuses were double stained, and levels of superoxide dismutase (SOD), catalase (CAT), nitrite, glutathione (GSH), and malondialdehyde (MDA) were estimated. Resorption rate was significantly reduced in Vit. C treated groups at both dose levels. Maternal death rate was decreased remarkably in all treatment groups. Vit. C at a high dose (8000 mg/kg) and grape seed at a high dose (600 mg/kg) significantly reduced the incidence of delayed cervical ossification. The values of MDA were significantly reduced in all groups except the Vit. C group (2000 mg/kg). However, no significant elevation was observed in the values of SOD, CAT, and GSH. The current study concluded that vitamin C at a high dose (8000 mg/kg) and grape seed extract at a high dose (600 mg/kg) had partially protected the fetuses exposed to VP.
Collapse
Affiliation(s)
- Mamoona Saeed
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, GC University
Faisalabad, Faisalabad 38000, Pakistan
- E-mail: . Phone: +92-333-4904928 (U.S.)
| | - Fareeha Anwar
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
- E-mail: . Phone: +92-333-8883251 (F.A.)
| | - Bashir Ahmad
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Asifa Anwar
- Department
of Pharmacy, IUB, Bahawalpur 63210, Pakistan
| |
Collapse
|
62
|
Pham DC, Shibu MA, Mahalakshmi B, Velmurugan BK. Effects of phytochemicals on cellular signaling: reviewing their recent usage approaches. Crit Rev Food Sci Nutr 2019; 60:3522-3546. [PMID: 31822111 DOI: 10.1080/10408398.2019.1699014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the previous studies in last three decades report evidence of interactions between the different phytochemicals and the proteins involved in signal transduction pathways using in silico, in vitro, ex vivo, and in vivo analyses. However, extrapolation of these findings for clinical purposes has not been that fruitful. The efficacy of the phytochemicals in vivo studies is limited by parameters such as solubility, metabolic degradation, excretion, etc. Various approaches have now been devised to circumvent these limitations. Recently, chemical modification of the phytochemicals are demonstrated to reduce some of the limitations and improve their efficacy. Similar to traditional medicines several combinatorial phytochemical formulations have shown to be more efficient. Further, phytochemicals have been reported to be even more efficient in the form of nanoparticles. However, systematic evaluation of their efficacy, mode of action in pathway modulation, usage and associated challenges is required to be done. The present review begins with basic understanding of how signaling cascades regulate cellular response and the consequences of their dysregulation further summarizing the developments and problems associated with the dietary phytochemicals and also discuss recent approaches in strengthening these compounds in pharmacological applications. Only context relevant studies have been reviewed. Considering the limitations and scope of the article, authors do not claim inclusion of all the early and recent studies.
Collapse
Affiliation(s)
- Dinh-Chuong Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - M A Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
63
|
Lapuente M, Estruch R, Shahbaz M, Casas R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients 2019; 11:E2381. [PMID: 31590420 PMCID: PMC6835769 DOI: 10.3390/nu11102381] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Noncommunicable diseases (NCDs) are considered to be the leading cause of death worldwide. Inadequate fruit and vegetable intake have been recognized as a risk factor for almost all NCDs (type 2 diabetes mellitus, cancer, and cardiovascular and neurodegenerative diseases). The main aim of this review is to examine the possible protective effect that fruit and vegetable consumption or their bioactive compounds may have on the development of NCDs such as atherosclerosis. The accumulated evidence on the protective effects of adequate consumption of fruits and vegetables in some cases, or the lack of evidence in others, are summarized in the present review. The main conclusion of this review is that well-designed, large-scale, long-term studies are needed to truly understand the role fruit and vegetable consumption or their bioactive compounds have in atherosclerosis.
Collapse
Affiliation(s)
- Maria Lapuente
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, Barcelona 08036, Spain.
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, Barcelona 08036, Spain.
- CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Mana Shahbaz
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, Barcelona 08036, Spain.
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, Barcelona 08036, Spain.
- CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
64
|
Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 2019; 76:29-46. [PMID: 29087531 DOI: 10.1093/nutrit/nux039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Berries are generally considered beneficial to health. This health-promoting potential has mainly been ascribed to berries' phytochemical and vitamin content, and little attention has been paid to the potential benefits of berries for the digestive tract, despite this being the first point of contact. In vivo studies that described the health effects of berries on individual parts of the digestive tract (ie, the mouth, esophagus, stomach, small and large intestine, microbiome, and immune system) were reviewed. Immune effects were included because a large part of the immune system is located in the intestine. Beneficial health effects were mainly observed for whole berry extracts, not individual berry components. These effects ranged from support of the immune system and beneficial microbiota to reduction in the number and size of premalignant and malignant lesions. These results demonstrate the potency of berries and suggest berries can serve as a strong adjuvant to established treatments or therapies for a variety of gastrointestinal and immune-related illnesses.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Muzeyyen Berkel Kasikci
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands.,Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa, Turkey
| | - Addie A van der Sluis
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| |
Collapse
|
65
|
Claudio SR, Pidone Ribeiro FA, De Lima EC, Santamarina AB, Pisani LP, Pereira CSD, Fujiyama Oshima CT, Ribeiro DA. The protective effect of grape skin or purple carrot extracts against cadmium intoxication in kidney of rats. ACTA ACUST UNITED AC 2019; 26:263-269. [PMID: 31924351 DOI: 10.1016/j.pathophys.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/15/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate the protective effect of grape skin or purple carrot extracts against cadmium-induced intoxication in rats' kidneys. For this purpose, 30 male Wistar rats were distributed into six groups (n = 5), as follows: control group; cadmium group and groups treated with grape skin at 175 or 350 mg / L doses; or purple carrot extract at 400 mg / L or 800 mg / L doses, by drinking water. In the group exposed to cadmium, histopathological analysis revealed severe tissue injury as a result of coagulation necrosis, congested vessels and inflammatory infiltrate. Animals treated with grape skin or purple carrot extracts improved the histopathological changes induced by cadmium. 8-OHdG immunoexpression and catalase gene expression decreased in rats treated with purple carrot or grape skin extracts. Grape skin extract was able to increase SOD-CuZn gene expression as well. Toll-like signaling pathway (TLR2, PIKK and TRAF6) and cytochrome c expressions were not altered after the treatment with grape skin or purple carrot extracts. Taken together, we conclude that grape skin and purple carrot extracts had a protective effect on the rats' kidneys after cadmium intoxication, by means of tissue regenerating tissue regeneration and antioxidant properties, grape skin extract being more effective for this purpose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, SP, Brazil.
| |
Collapse
|
66
|
A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for "Eating the Rainbow". J Nutr Metab 2019; 2019:2125070. [PMID: 33414957 PMCID: PMC7770496 DOI: 10.1155/2019/2125070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
Over the past decades, thousands of published studies have amassed supporting recommendations to consume fruits and vegetables for physiological and psychological health. Newer research has emerged to suggest that these plant-based foods contain a plethora of not only vitamins and minerals, but perhaps, most importantly, phytonutrients. These phytonutrients have known pleiotropic effects on cellular structure and function, ultimately resulting in the modulation of protein kinases and subsequent epigenetic modification in a manner that leads to improved outcomes. Even though eating fruits and vegetables is a well-known feature of a healthy dietary pattern, population intakes continue to be below federal recommendations. To encourage consumers to include fruits and vegetables into their diet, an “eat by color” approach is proposed in this review. Although each individual food may have numerous effects based on its constituents, the goal of this simplified approach was to identify general patterns of benefits based on the preponderance of scientific data and known mechanisms of food-based constituents. It is suggested that such a consumer-oriented categorization of these plant-based foods may lead to greater recognition of their importance in the daily diet throughout the lifespan. Other adjunctive strategies to heighten awareness of fruits and vegetables are discussed.
Collapse
|
67
|
Lima M, Paiva de Sousa C, Fernandez-Prada C, Harel J, Dubreuil J, de Souza E. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog 2019; 130:259-270. [DOI: 10.1016/j.micpath.2019.03.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/05/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
|
68
|
Meini MR, Cabezudo I, Boschetti CE, Romanini D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem 2019; 283:257-264. [PMID: 30722869 DOI: 10.1016/j.foodchem.2019.01.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 12/01/2022]
Abstract
Phenolic compounds are highly valuable products that remain trapped in grape pomace, an abundant winery by-product. Therefore, efficient extraction procedures of these compounds represent a route for grape pomace valorisation. Here we performed a screening of the factors affecting the aqueous enzymatic extraction of phenolic compounds from Syrah grape pomace, including the following independent variables: temperature, pH, pectinase, cellulase and tannase; and a subsequent optimization through response surface methodology. At the optimal region, the enzymatic treatment enhanced the extraction yield of phenolics by up to 66% and its antioxidant capacity by up to 80%, reducing the incubation time and enzyme doses in respect to previous studies. We found that tannase raises the antioxidant capacity of the extract by the liberation of gallic acid, while cellulose favours the liberation of p-coumaric acid and malvidin-3-O-glucoside. We also tested the procedure in different grape pomace varieties, verifying its wide applicability.
Collapse
Affiliation(s)
- María-Rocío Meini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| | - Ignacio Cabezudo
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| | - Carlos E Boschetti
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| | - Diana Romanini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina; Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina.
| |
Collapse
|
69
|
Lacerda DS, Bianchi SE, Pinós WL, Campos-Carraro C, Türck P, Hickmann AR, Pittol V, Teixeira RB, Belló-Klein A, Bassani VL, Araujo ASR. Effect of pterostilbene complexed with cyclodextrin on rat liver: potential reduction of oxidative damage and modulation redox-sensitive proteins. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2233-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
70
|
Jaacks LM, Sher S, Staercke CD, Porkert M, Alexander WR, Jones DP, Vaccarino V, Ziegler TR, Quyyumi AA. Pilot randomized controlled trial of a Mediterranean diet or diet supplemented with fish oil, walnuts, and grape juice in overweight or obese US adults. BMC Nutr 2018; 4:26. [PMID: 30271610 PMCID: PMC6159217 DOI: 10.1186/s40795-018-0234-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The 2015–2020 Dietary Guidelines for Americans recommend a Mediterranean-type diet as one of three healthful eating patterns. However, only one previous trial has evaluated the effects of a Mediterranean diet intervention in a US sample population. Methods To address this gap, we conducted a pilot, non-blinded, 8-week randomized controlled trial on the comparative efficacy of consumption of a Mediterranean diet or a diet supplemented with fish oil, walnuts, and grape juice versus controls. Participants (overweight or obese US adults; 73% female and mean age 51 years) were randomly assigned to one of three groups: (1) Mediterranean diet; (2) habitual high-fat American-type diet supplemented with fish oil, walnuts, and grape juice; or (3) habitual high-fat American-type diet (controls). Intent-to-treat analysis of within-subject differences (Student’s paired t-test or Wilcoxon sign ranks test) and between-subject differences (mixed-effects models with a group-by-time interaction term, adjusted for baseline health outcome) was conducted. Results Participants in the Mediterranean diet arm (n = 11) had significantly greater weight loss despite no significant change in total caloric intake, and lower plasma cystine, indicative of decreased oxidative stress, compared to controls (n = 9) at both 4 and 8 weeks. Compared to controls, they also had significantly lower total cholesterol and low-density lipoprotein cholesterol levels at 4 weeks. Participants in the supplement arm (n = 10) had significantly lower adiponectin levels compared to controls at 4 weeks. No significant improvements in endothelial function or inflammatory biomarkers were observed in either intervention group compared to controls. Conclusion These results suggest that adopting a dietary pattern reflecting a Mediterranean diet improves weight and cardio-metabolic health among overweight or obese US adults, and may be more beneficial than supplementing habitual American diets with fish oil, walnuts, and grape juice. Trial registration ClinicalTrials.gov NCT00166088. Registered 14 September 2005.
Collapse
Affiliation(s)
- Lindsay M Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Building 1, Room 1211, Boston, MA 02115, USA
| | - Salman Sher
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Christine De Staercke
- Hemostasis Laboratory Branch, Division of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Wayne R Alexander
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| |
Collapse
|
71
|
Bardagjy AS, Hu Q, Giebler KA, Ford A, Steinberg FM. Effects of grape consumption on biomarkers of inflammation, endothelial function, and PBMC gene expression in obese subjects. Arch Biochem Biophys 2018; 646:145-152. [PMID: 29649425 DOI: 10.1016/j.abb.2018.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
This study investigated effects of grape consumption on biomarkers of cardiovascular health in obese participants in both postprandial and chronic settings. Twenty obese adults participated in this randomized, placebo controlled, double-blinded crossover trial. Participants were randomized to consume 60 g freeze-dried polyphenol-rich whole grape powder (GP) or placebo (PBO) followed by high fat high carbohydrate (HFHC) meal challenge. Following acute challenge, participants consumed their respective treatment daily for 4 weeks to determine effects of chronic consumption. Consumption of GP with HFHC meal significantly increased nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression in peripheral blood mononuclear cells (PBMC) at 3 h (p < 0.05) and decreased plasma endothelin-1 (ET-1) concentration at 5 h (p < 0.05) after meal challenge compared with PBO. Following 4 weeks of daily GP consumption, soluble vascular cell adhesion molecule 1 (sVCAM-1) plasma concentration increased compared with PBO (p < 0.05), however baseline values differed between treatments. In conclusion, GP consumption resulted in decreased vasoconstrictor ET-1 concentration and increased gene expression related to oxidative stress defense following HFHC meal. Except for increase in sVCAM-1 concentration, 4 weeks of chronic GP consumption had little effect on cardiovascular biomarkers measured in this study. This trial was registered: clinicaltrials.gov NCT01674231.
Collapse
Affiliation(s)
- Allison S Bardagjy
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, CA 95616, United States
| | - Qian Hu
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, CA 95616, United States
| | - Kathryn A Giebler
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, CA 95616, United States
| | - Addison Ford
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, CA 95616, United States
| | - Francene M Steinberg
- Department of Nutrition and Graduate Group in Nutritional Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
72
|
Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
73
|
Golge O, Kabak B. Pesticide Residues in Table Grapes and Exposure Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1701-1713. [PMID: 29364655 DOI: 10.1021/acs.jafc.7b05707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This report describes levels of 172 pesticide residues in table grapes in Turkey. A total of 280 samples of table grapes were collected from supermarkets, bazaar, and greengrocer shops located in four provinces of Turkey from August to October 2016. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry. The limit of quantification ranged from 0.002 to 0.010 mg kg-1. The validation data revealed good recoveries and good repeatability and reproducibility and fulfilled the other requirements of the European SANTE/11945/2015 Guideline. One or more pesticide residues were detected in 59.6% of the table grapes. The residues above the EU maximum residue levels were 20.4% of the samples. The most prevalent pesticide residues were azoxystrobin, chlorpyrifos, boscalid, and cyprodinil. Left-censored results (40.4% of the results) were substituted by lower bound , middle bound, and upper bound values. In the worst-case scenario, the hazard index (HI) was 3.37% for adults and 9.42% for children. Chlorpyrifos was the major contributor (65%) to HI.
Collapse
Affiliation(s)
- Ozgur Golge
- Alanya Alaaddin Keykubat University, ALTSO Tourism College , Alanya, Antalya 07450, Turkey
| | - Bulent Kabak
- Hitit University , Faculty of Engineering, Department of Food Engineering, Corum 19030, Turkey
| |
Collapse
|
74
|
Solanki N, Salvi A, Patki G, Salim S. Modulating Oxidative Stress Relieves Stress-Induced Behavioral and Cognitive Impairments in Rats. Int J Neuropsychopharmacol 2017; 20:550-561. [PMID: 28339814 PMCID: PMC5492781 DOI: 10.1093/ijnp/pyx017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Persistent psychological stress often leads to anxiety disorders and depression. Benzodiazepines and selective serotonin reuptake inhibitors are popular treatment options but have limited efficacy, supporting the need for alternative treatment. Based on our recent preclinical work suggesting a causal link between neurobehavioral deficits and elevated oxidative stress, we hypothesized that interventions that mitigate oxidative stress can attenuate/overcome neurobehavioral deficits. Methods Here, we employed the rat social defeat model of psychological stress to determine whether increasing antioxidant levels using grape powder would prevent and/or reverse social defeat-induced behavioral and cognitive deficits. Furthermore, a hippocampal-derived HT22 cell culture model of oxidative stress was employed to identify the individual beneficial constituent(s) of grape powder and the underlying mechanism(s) of action. Results Grape powder treatment prevented and reversed social defeat-induced behavioral and cognitive deficits and also decreased social defeat-induced increase in plasma corticosterone and 8-isoprostane (systemic and oxidative stress markers, respectively). And grape powder treatment replenished social defeat-induced depleted pool of key antioxidant enzymes glyoxalase-1, glutathione reducatse-1, and superoxide dismutase. Grape powder constituents, quercetin and resveratrol, were most effective in preventing oxidative stress-induced decreased cellular antioxidant capacity. Grape powder protected oxidative stress-induced cell death by preventing calcium influx, mitochondrial dysfunction, and release of cytochrome c. Conclusions Grape powder treatment by increasing antioxidant pool and preventing cell damage and death prevented and reversed social defeat-induced behavioral and cognitive deficits in rats. Quercetin and resveratrol are the major contributors towards beneficial effects of grape powder.
Collapse
Affiliation(s)
- Naimesh Solanki
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Ankita Salvi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Gaurav Patki
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| |
Collapse
|
75
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
76
|
Li P, Shen Y, You M, Zhang Y, Yan J, Li D, Bai S. Effect of grape pomace on fermentation quality and aerobic stability of sweet sorghum silage. Anim Sci J 2017; 88:1523-1530. [PMID: 28485116 DOI: 10.1111/asj.12791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2017] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP-LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini-silos, silages were subject to a 7-day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP-LAB group, adding GP decreased (P < 0.05) concentrations of water-soluble carbohydrate (WSC) and butyric acid in silage. In the GP+LAB group, adding GP increased (P < 0.05) concentrations of lactic acid, WSC and crude protein, decreased (P < 0.05) final pH value, NH3 -N ratio and butyric acid concentration in silage. Polyphenol level was reduced (P < 0.05) after silage fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (P < 0.05), the levels of lactic acid, acetic acid and polyphenols (quercetin 3-O-glucoside and quercetin 3-O-glucuronid) decreased (P < 0.05) in silage. GP+LAB treated silage had a lag phase for aerobic spoilage. When the fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage.
Collapse
Affiliation(s)
- Ping Li
- Sichuan Academy of Grassland Science, Chengdu, China.,College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixin Shen
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Yu Zhang
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxue Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
77
|
Daily Intake of Grape Powder Prevents the Progression of Kidney Disease in Obese Type 2 Diabetic ZSF1 Rats. Nutrients 2017; 9:nu9040345. [PMID: 28362355 PMCID: PMC5409684 DOI: 10.3390/nu9040345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022] Open
Abstract
Individuals living with metabolic syndrome (MetS) such as diabetes and obesity are at high risk for developing chronic kidney disease (CKD). This study investigated the beneficial effect of whole grape powder (WGP) diet on MetS-associated CKD. Obese diabetic ZSF1 rats, a kidney disease model with MetS, were fed WGP (5%, w/w) diet for six months. Kidney disease was determined using blood and urine chemical analyses, and histology. When compared to Vehicle controls, WGP intake did not change the rat bodyweight, but lowered their kidney, liver and spleen weight, which were in parallel with the lower serum glucose and the higher albumin or albumin/globin ratio. More importantly, WGP intake improved the renal function as urination and proteinuria decreased, or it prevented kidney tissue damage in these diabetic rats. The renal protection of WGP diet was associated with up-regulation of antioxidants (Dhcr24, Gstk1, Prdx2, Sod2, Gpx1 and Gpx4) and downregulation of Txnip (for ROS production) in the kidneys. Furthermore, addition of grape extract reduced H2O2-induced cell death of cultured podocytes. In conclusion, daily intake of WGP reduces the progression of kidney disease in obese diabetic rats, suggesting a protective function of antioxidant-rich grape diet against CKD in the setting of MetS.
Collapse
|
78
|
Bishayee A, Haskell Y, Do C, Siveen KS, Mohandas N, Sethi G, Stoner GD. Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit Rev Food Sci Nutr 2017; 56:1753-75. [PMID: 25781639 DOI: 10.1080/10408398.2014.982243] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiological reports as well as experimental studies have demonstrated the significant health benefits provided by regular berry consumption. Berries possess both prophylactic and therapeutic potential against several chronic illnesses, such as cardiovascular, neurodegenerative, and neoplastic diseases. Berries owe their health benefits to phytoconstituents, such as polyphenolic anthocyanins, ellagic acid, and a diverse array of phytochemicals bestowed with potent antioxidant and anti-inflammatory effects as well as the ability to engage a multitude of signaling pathways. This review highlights the principal chemical constituents present in berries and their primary molecular targets. The article presents and critically analyzes the chemopreventive and therapeutic potential of berry extracts, fractions, and bioactive components on various cancers of the gastrointestinal tract (GIT), including esophageal, stomach, intestinal, and colorectal cancers as well as cancers of the upper aerodigestive tract, such as oral cancer. The current status of clinical studies evaluating berry products in several aforementioned cancers is presented. Various emerging issues including dose-ranging and dosage forms, the role of synergy and the usage of combination therapy as well as other relevant areas essential for the development of berry phytoconstituents as mainstream chemopreventive and therapeutic agents against aerodigestive and GIT cancers are critically discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- a Department of Pharmaceutical Sciences , College of Pharmacy, Larkin Health Sciences Institute , Miami , Florida USA
| | - Yennie Haskell
- b Department of Pharmaceutical Sciences , College of Pharmacy, Northeast Ohio Medical University , Rootstown , Ohio USA
| | - Chau Do
- b Department of Pharmaceutical Sciences , College of Pharmacy, Northeast Ohio Medical University , Rootstown , Ohio USA
| | - Kodappully Sivaraman Siveen
- c Department of Pharmacology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Nima Mohandas
- d School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Western Australia , Australia
| | - Gautam Sethi
- c Department of Pharmacology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,d School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Western Australia , Australia
| | - Gary D Stoner
- e Division of Hematology and Oncology , Department of Medicine, Medical College of Wisconsin , Milwaukee , Wisconsin USA
| |
Collapse
|
79
|
Del Pino-García R, Rivero-Pérez MD, González-SanJosé ML, Ortega-Heras M, García Lomillo J, Muñiz P. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:66-73. [PMID: 27957845 DOI: 10.1021/acs.jafc.6b04561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study evaluates the antiproliferative and antigenotoxic actions of powdered red wine pomace seasonings (Sk-S, seedless; W-S, whole; Sd-S, seeds). In vitro gastrointestinal digested and colonic fermented fractions of the seasonings were used as cell treatments. Phenolic acids from Sk-S showed the highest bioaccessibility in the small intestine, whereas polyphenols contained in Sd-S might be the most fermentable in the colon. Dietary fiber from Sk-S was the best substrate for short chain fatty acids production by gut microbiota. Colon cancerous (HT-29) cell viability was inhibited by 50% (IC50 values) at treatment concentrations ranging from 845 (Sk-S) to 1085 (Sd-S) μg/mL prior digestion, but all digested fractions exhibited similar antiproliferative activities (mean IC50 = 814 μg/mL). Oxidative DNA damage in cells was also attenuated by the treatments (200 μg/mL, 24 h preincubation), with all colonic fermented fractions displaying similar genoprotective action. These results suggest the potential of red wine pomace seasonings as chemopreventive agents in colorectal cancer.
Collapse
Affiliation(s)
- Raquel Del Pino-García
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - María D Rivero-Pérez
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - María L González-SanJosé
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Miriam Ortega-Heras
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Javier García Lomillo
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
80
|
Nguyen T, Kuchera M, Smoot K, Diako C, Vixie B, Ross CF. Consumer Acceptance of a Polyphenolic Coffee Beverage. J Food Sci 2016; 81:S2817-S2823. [DOI: 10.1111/1750-3841.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Thuy Nguyen
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| | - Meredith Kuchera
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| | - Katie Smoot
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| | - Charles Diako
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| | - Beata Vixie
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| | - Carolyn F. Ross
- School of Food Science; Washington State Univ; Pullman 99164-6376 Wash. U.S.A
| |
Collapse
|
81
|
Dudonné S, Dal-Pan A, Dubé P, Varin TV, Calon F, Desjardins Y. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces. Food Funct 2016; 7:3421-30. [PMID: 27443888 DOI: 10.1039/c6fo00902f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.
Collapse
Affiliation(s)
- Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec (QC) G1V0A6, Canada.
| | | | | | | | | | | |
Collapse
|
82
|
Boussenna A, Joubert-Zakeyh J, Fraisse D, Pereira B, Vasson MP, Texier O, Felgines C. Dietary Supplementation with a Low Dose of Polyphenol-Rich Grape Pomace Extract Prevents Dextran Sulfate Sodium-Induced Colitis in Rats. J Med Food 2016; 19:755-8. [PMID: 27355494 DOI: 10.1089/jmf.2015.0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence from several epidemiological and experimental studies points to a beneficial role of dietary polyphenols in inflammatory bowel disease. In this study, we investigate the protective effect of dietary supplementation with various amounts of a polyphenol-rich grape pomace extract (GPE) on the development of dextran sulfate sodium (DSS)-induced colitis in rats. Rats were fed 21 days on a semisynthetic diet enriched with GPE (0.1%, 0.5%, and 1%), and acute colitis was induced by DSS (40 g/L in the drinking water) administration during the last 7 days. The low GPE content in the diet (0.1%) attenuated clinical signs and colon shortening and limited DSS-induced histological lesions. GPE 0.1% also attenuated the DSS-induced increase in myeloperoxidase activity and improved superoxide dismutase activity. Higher amounts of GPE in the diet induced only weak and nonsignificant protective effects. These results suggest that consumption of a low amount of polyphenol-rich GPE helps protect against colitis development.
Collapse
Affiliation(s)
- Ahlem Boussenna
- 1 Clermont Université, Université d'Auvergne , UNH, ECREIN, Laboratoire de Pharmacognosie et Phytothérapie, Clermont-Ferrand, France .,2 3inature Biosphère , Parc Naturopôle, Saint-Bonnet-de-Rochefort, France
| | - Juliette Joubert-Zakeyh
- 3 CHU Clermont-Ferrand , Service d'Anatomie et de Cytologie Pathologiques, Clermont-Ferrand, France
| | - Didier Fraisse
- 1 Clermont Université, Université d'Auvergne , UNH, ECREIN, Laboratoire de Pharmacognosie et Phytothérapie, Clermont-Ferrand, France
| | - Bruno Pereira
- 4 CHU Clermont-Ferrand , Délégation Recherche Clinique & Innovation, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- 5 Clermont Université , Université d'Auvergne, UNH, ECREIN, Laboratoire de Biochimie, Biologie Moléculaire et Nutrition, Clermont-Ferrand, France
| | - Odile Texier
- 1 Clermont Université, Université d'Auvergne , UNH, ECREIN, Laboratoire de Pharmacognosie et Phytothérapie, Clermont-Ferrand, France
| | - Catherine Felgines
- 1 Clermont Université, Université d'Auvergne , UNH, ECREIN, Laboratoire de Pharmacognosie et Phytothérapie, Clermont-Ferrand, France
| |
Collapse
|
83
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
84
|
Rattanakon S, Ghan R, Gambetta GA, Deluc LG, Schlauch KA, Cramer GR. Abscisic acid transcriptomic signaling varies with grapevine organ. BMC PLANT BIOLOGY 2016; 16:72. [PMID: 27001301 PMCID: PMC4802729 DOI: 10.1186/s12870-016-0763-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Abscisic acid (ABA) regulates various developmental processes and stress responses over both short (i.e. hours or days) and longer (i.e. months or seasons) time frames. To elucidate the transcriptional regulation of early responses of grapevine (Vitis vinifera) responding to ABA, different organs of grape (berries, shoot tips, leaves, roots and cell cultures) were treated with 10 μM (S)-(+)-ABA for 2 h. NimbleGen whole genome microarrays of Vitis vinifera were used to determine the effects of ABA on organ-specific mRNA expression patterns. RESULTS Transcriptomic analysis revealed 839 genes whose transcript abundances varied significantly in a specific organ in response to ABA treatment. No single gene exhibited the same changes in transcript abundance across all organs in response to ABA. The biochemical pathways affected by ABA were identified using the Cytoscape program with the BiNGO plug-in software. The results indicated that these 839 genes were involved in several biological processes such as flavonoid metabolism, response to reactive oxygen species, response to light, and response to temperature stimulus. ABA affected ion and water transporters, particularly in the root. The protein amino acid phosphorylation process was significantly overrepresented in shoot tips and roots treated with ABA. ABA affected mRNA abundance of genes (CYP707As, UGTs, and PP2Cs) associated with ABA degradation, conjugation, and the ABA signaling pathway. ABA also significantly affected the expression of several transcription factors (e.g. AP2/ERF, MYC/MYB, and bZIP/AREB). The greatest number of significantly differentially expressed genes was observed in the roots followed by cell cultures, leaves, berries, and shoot tips, respectively. Each organ had a unique set of gene responses to ABA. CONCLUSIONS This study examined the short-term effects of ABA on different organs of grapevine. The responses of each organ were unique indicating that ABA signaling varies with the organ. Understanding the ABA responses in an organ-specific manner is crucial to fully understand hormone action and plant responses to water deficit.
Collapse
Affiliation(s)
- Supakan Rattanakon
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Gregory A. Gambetta
- />Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV), EGFV, UMR 1287, F-33140 Villenave d’Ornon, France
| | - Laurent G. Deluc
- />Department of Horticulture, Oregon State University, Corvallis, OR 97331 USA
| | - Karen A. Schlauch
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Grant R. Cramer
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
85
|
Khymenets O, Andres-Lacueva C, Urpi-Sarda M, Vazquez-Fresno R, Mart MM, Reglero G, Torres M, Llorach R. Metabolic fingerprint after acute and under sustained consumption of a functional beverage based on grape skin extract in healthy human subjects. Food Funct 2016; 6:1288-98. [PMID: 25761658 DOI: 10.1039/c4fo00684d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Grape-derived polyphenols are considered to be one of the most promising ingredients for functional foods due to their health-promoting activities. We applied a HPLC-MS-based untargeted metabolomic approach in order to evaluate the impact of a functional food based on grape skin polyphenols on the urinary metabolome of healthy subjects. Thirty-one volunteers participated in two dietary crossover randomized intervention studies: with a single-dose intake (187 mL) and with a 15-day sustained consumption (twice per day, 187 mL per day in total) of a functional beverage (FB). Postprandial (4-hour) and 24-hour urine samples collected after acute consumption and on the last day of sustained FB consumption, respectively, were analysed using an untargeted HPLC-qTOF-MS approach. Multivariate modelling with subsequent application of an S-plot revealed differential mass features related to acute and prolonged consumption of FB. More than half of the mass features were shared between the two types of samples, among which several phase II metabolites of grape-derived polyphenols were identified at confidence level II. Prolonged consumption of FB was specifically reflected in urine metabolome by the presence of first-stage microbial metabolites of flavanols: hydroxyvaleric acid and hydroxyvalerolactone derivatives. Overall, several epicatechin and phenolic acid metabolites both of tissular and microbiota origin were the most representative markers of FB consumption. To our knowledge, this is one of the first studies where an untargeted LC-MS metabolomic approach has been applied in nutrition research on a grape-derived FB.
Collapse
Affiliation(s)
- Olha Khymenets
- Biomarkers and Nutrimetabolomic Lab., Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Pharmacy School, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016; 21:169. [PMID: 26840292 PMCID: PMC6273426 DOI: 10.3390/molecules21020169] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| |
Collapse
|
87
|
Jang SE, Choi JR, Han MJ, Kim DH. The Preventive and Curative Effect of Cyanidin-3β-D-Glycoside and Its Metabolite Protocatechuic Acid Against TNBS-induced Colitis in Mice. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.4.282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Se-Eun Jang
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jong-Ryul Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
88
|
Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem 2015; 186:207-12. [DOI: 10.1016/j.foodchem.2014.07.057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/14/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023]
|
89
|
Velliquette RA, Grann K, Missler SR, Patterson J, Hu C, Gellenbeck KW, Scholten JD, Randolph RK. Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial. Nutr Metab (Lond) 2015; 12:27. [PMID: 26246845 PMCID: PMC4526202 DOI: 10.1186/s12986-015-0025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans. Methods Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of 14C labeled TG synthesis in cells incubated with 14C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity. Results Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model. Conclusion These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects. Trial registration This trial was registered with ClinicalTrials.gov NCT02333461 Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0025-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Kerry Grann
- Nutrition Product Development, Food, Beverages and Chewables, Amway R&D, Ada, MI 49355 USA
| | - Stephen R Missler
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Jennifer Patterson
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Chun Hu
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Kevin W Gellenbeck
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Jeffrey D Scholten
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - R Keith Randolph
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| |
Collapse
|
90
|
Colombo NBR, Rangel MP, Martins V, Hage M, Gelain DP, Barbeiro DF, Grisolia CK, Parra ER, Capelozzi VL. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis. ACTA ACUST UNITED AC 2015. [PMID: 26200231 PMCID: PMC4568814 DOI: 10.1590/1414-431x20154467] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The antioxidant effects of Caryocar brasiliense Camb, commonly known
as the pequi fruit, have not been evaluated to determine their protective effects
against oxidative damage in lung carcinogenesis. In the present study, we evaluated
the role of pequi fruit against urethane-induced DNA damage and oxidative stress in
forty 8-12 week old male BALB/C mice. An in vivo comet assay was
performed to assess DNA damage in lung tissues and changes in lipid peroxidation and
redox cycle antioxidants were monitored for oxidative stress. Prior supplementation
with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced
oxidative stress. A protective effect against DNA damage was associated with the
modulation of lipid peroxidation and low protein and gene expression of nitric oxide
synthase. These findings suggest that the intake of pequi fruit might protect against
in vivo genotoxicity and oxidative stress.
Collapse
Affiliation(s)
- N B R Colombo
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - M P Rangel
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - V Martins
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - M Hage
- Laboratório de Poluição Atmosférica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - D P Gelain
- Departamento de Stress Oxidativo, Universidade do Rio Grande do Sul, Rio Grande do Sul, RS, BR
| | - D F Barbeiro
- Departamento de Emergência Clínica, Universidade de São Paulo, São Paulo, SP, BR
| | - C K Grisolia
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF, BR
| | - E R Parra
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - V L Capelozzi
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| |
Collapse
|
91
|
Fruit intake and cardiovascular disease mortality in the UK Women’s Cohort Study. Eur J Epidemiol 2015; 30:1035-48. [DOI: 10.1007/s10654-015-0050-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/28/2015] [Indexed: 01/05/2023]
|
92
|
Mattarei A, Biasutto L, Romio M, Zoratti M, Paradisi C. Synthesis of resveratrol sulfates: turning a nightmare into a dream. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
93
|
|
94
|
Singha I, Das SK. Free Radical Scavenging Properties of Skin and Pulp Extracts of Different Grape Cultivars In Vitro and Attenuation of H2O2-Induced Oxidative Stress in Liver Tissue Ex Vivo. Indian J Clin Biochem 2014; 30:305-12. [PMID: 26089617 DOI: 10.1007/s12291-014-0442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6-310 mg gallic acid equivalent/g fresh weight (fw), and 46.6-733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44-58 %), hydrogen peroxide (15.3-18.6 %), and hydroxyl radicals (50-85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.
Collapse
Affiliation(s)
- Indrani Singha
- Department of Biochemistry, College of Medicine & JNM Hospital, WBUHS, Kalyani, Nadia, 741235 West Bengal India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine & JNM Hospital, WBUHS, Kalyani, Nadia, 741235 West Bengal India
| |
Collapse
|
95
|
Kim H, Bartley GE, Arvik T, Lipson R, Nah SY, Seo K, Yokoyama W. Dietary supplementation of chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1919-1925. [PMID: 24517872 DOI: 10.1021/jf404832s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mechanisms for the hypocholesterolemic and antiobesity effects of grape seed flours derived from white and red winemaking processing were investigated using male Golden Syrian hamsters fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Cabernet Sauvignon (CabSd), or Syrah (SyrSd) pomace as compared to a HF control diet for 3 weeks. Hamsters fed the ChrSd diet had significantly lowered plasma total-, VLDL-, and LDL-cholesterol concentrations compared to the CabSd, SyrSd, and control diets. The improved plasma cholesterol after ChrSd was correlated with the up-regulation of hepatic genes related to cholesterol (CYP51) and bile acid (CYP7A1) synthesis as well as LDL-cholesterol uptake (LDLR). A reduction of hepatic lipid content was associated with altered expression of the genes related to lipid metabolism. However, fecal total lipid content was not changed. Expression of ileal apical sodium bile acid transporter (ASBT) was not affected by ChrSd, indicating unchanged ileal bile acid reabsorption. The antiobesity effect of the ChrSd diet appears to be related to expression of adipogenesis- and inflammation-related genes in adipose tissue. These findings suggest that flavonoid-rich Chardonnay grape seed flour induced cholesterol-lowering, antiobesity, and anti-inflammatory health benefits and attenuation of hepatic steatosis via regulation of gene expression related to cholesterol, bile acid, and lipid metabolism in liver and adipose tissue.
Collapse
Affiliation(s)
- Hyunsook Kim
- Department of Nutrition, University of California, Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|