51
|
Topcuoglu E, Yilmaz‐Ersan L. Effect of fortification with almond milk on quality characteristics of probiotic yoghurt. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esra Topcuoglu
- Institute of Natural Sciences, Department of Food Engineering Bursa Uludag University Bursa Turkey
| | - Lutfiye Yilmaz‐Ersan
- Faculty of Agriculture, Department of Food Engineering Bursa Uludag University Bursa Turkey
| |
Collapse
|
52
|
Hou L, Rashid M, Chhabra M, Chandrasekhar B, Amirthalingam P, Ray S, Li Z. The effect of Bertholletia excelsa on body weight, cholestrol, and c-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 57:102636. [PMID: 33271300 DOI: 10.1016/j.ctim.2020.102636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND & OBJECTIVE(S) Bertholletia excelsa is a rich herbal source of anti-oxidants and phenols. The goal of this study is to evaluation the effect of bertholletia excelsa nut on body weight, C-reactive protein (CRP) and lipid profile. METHODS A literature search was conducted in PubMed, Scopus and Web of sciences databases by two reviewers up to October 2019. Random effect model used to combine results. RESULTS Six studies included in analysis with 71 participants. The population was public population. Pooled results showed Bertholletia excelsa have reduction effect on triglyceride weighted mean difference (WMD: -8.23 mg/dl, 95 % CI -15.09, -1.38, I² = 0%), Cholesterol (WMD: -14.31 mg/dl, 95 % CI -23.38, -5.24, I² = 47 %), Low-density lipoprotein (LDL) (WMD: -9.27 mg/dl, 95 % CI -13.48, -5.06, I² = 0%). CONCLUSION This study provided an evidence that Bertholletia excelsa nuts have reduction effect on triglyceride, cholesterol, and LDL levels.
Collapse
Affiliation(s)
- Lili Hou
- Department of Clinical Nutrition, Taizhou People's Hospital, Taizhou, Jiangsu, 225300, China
| | - Muhammed Rashid
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagar, 571448, Karnataka, India
| | - Manik Chhabra
- Department of Pharmacy Practice, Indo-Soviet Friendship College of Pharmacy, Moga, 142001, Punjab, India
| | - Boya Chandrasekhar
- Creative Educational Society's College of Pharmacy, Andra Pradesh, India
| | | | - Sujoy Ray
- Department of Psychiatry, St. John's Medical College and Hospital, Bangalore, India
| | - Zhenzuo Li
- Department of Endocrinology, The Fourth people's Hospital of Jinan City, No.50 Normal Road, Tianqiao District, Jinan, Shandong Province, 250031, China.
| |
Collapse
|
53
|
Aditya A, Peng M, Young A, Biswas D. Antagonistic Mechanism of Metabolites Produced by Lactobacillus casei on Lysis of Enterohemorrhagic Escherichia coli. Front Microbiol 2020; 11:574422. [PMID: 33329433 PMCID: PMC7719638 DOI: 10.3389/fmicb.2020.574422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Enhancing extracellular metabolic byproducts of probiotics is one of the promising strategies to improve overall host health as well as to control enteric infections caused by various foodborne pathogens. However, the underlying mechanism of action of those metabolites and their effective concentrations are yet to be established. In this study, we determined the antibacterial potential of the metabolites in the cell-free culture supernatant (CFCS) collected from wild-type Lactobacillus casei (LCwt) and genetically modified LC to overexpress linoleate isomerase (LCCLA). We also evaluated the mechanism of action of CFCSs collected from the culture of LCwt in the presence or absence of 0.5% peanut flour (CFCSwt and CFCSwt+PF, respectively) and LCCLA alone (CFCSCLA) against enterohemorrhagic Escherichia coli (EHEC). The metabolites present in CFCSwt+PF and CFCSCLA eliminated EHEC within 24 and 48 h, respectively. Whereas CFCSwt failed to eliminate EHEC but reduced their growth by 6.7 logs (p < 0.05) as compared to the control. Significant downregulation of the expression of cell division gene, ftsZ, supported the observed degree of bactericidal and bacteriostatic properties of the collected CFCSs. Upregulation of EHEC genes related to maintaining cell membrane integrity, DNA damage repair, and molecular chaperons indicated an intensive stress condition imposed by the total metabolites present in CFCSs on EHEC growth and cellular structures. A range of deviated morphological features provoked by the metabolites indicated a membrane-targeted action, in general, to compromise the membrane permeability of EHEC. The information obtained from this study may contribute to a more efficient prevention of EHEC related infections.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Alana Young
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, College Park, MD, United States.,Biological Sciences Program, University of Maryland, College Park, College Park, MD, United States.,Centre for Food Safety and Security Systems, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
54
|
Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
55
|
Yanni AE, Mitropoulou G, Prapa I, Agrogiannis G, Kostomitsopoulos N, Bezirtzoglou E, Kourkoutas Y, Karathanos VT. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts ( Pistacia vera L.). Metabol Open 2020; 7:100040. [PMID: 32812934 PMCID: PMC7424811 DOI: 10.1016/j.metop.2020.100040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota holds a key-role in numerous biological functions and has emerged as a driving force for the development of diabetes. Diet contributes to gut microbiota diversity and functionality providing a tool for the prevention and management of the disease. The study aimed to investigate the effect of a dietary intervention with pistachio nuts, a rich source of monounsaturated fatty acids, dietary fibers and phytochemicals on gut microbiota composition in the rat model of Type 1 Diabetes. METHODS Male Wistar rats were randomly assigned into four groups: healthy animals which received control diet (CD) or pistachio diet (PD), and diabetic animals which received control diet (DCD) or pistachio diet (DPD) for 4 weeks. Plasma biochemical parameters were determined and histological examination of liver and pancreas was performed at the end of the dietary intervention. Adherent intestinal microbiota populations in jejunum, ileum, caecum and colon were analyzed. Fecal microbiota populations at the beginning and the end of the study were determined by microbiological analysis and 16S rRNA sequencing. RESULTS Diabetic animals of both groups exhibited high plasma glucose and low insulin concentrations, as well as characteristic pancreatic lesions. Pistachio supplementation significantly increased lactobacilli and bifidobacteria populations in jejunum, ileum and caecum (p < 0.05) and normalized microbial flora in all examined intestinal regions of diabetic animals. After 4 weeks of supplementation, populations of bifidobacteria and lactobacilli were increased in feces of both healthy and diabetic animals, while enterococci levels were decreased (p < 0.05). Next Generation Sequencing of fecal samples revealed increased and decreased counts of Firmicutes and Bacteroidetes, respectively, in healthy animals that received the pistachio diet. Actinobacteria OTUs were higher in diabetic animals and increased over time in the pistachio treated groups, along with increased abundance of Bifidobacterium. Lactobacillus, Turicibacter and Romboutsia populations were elevated in healthy animals administered the pistachio nuts. Of note, relative abundance of Bacteroides was higher in healthy than in diabetic rats (p < 0.05). CONCLUSION Dietary pistachio restored normal flora and enhanced the presence of beneficial microbes in the rat model of streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR, 68100, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
56
|
Bimro ET, Hovav R, Nyska A, Glazer TA, Madar Z. High oleic peanuts improve parameters leading to fatty liver development and change the microbiota in mice intestine. Food Nutr Res 2020; 64:4278. [PMID: 33033472 PMCID: PMC7520627 DOI: 10.29219/fnr.v64.4278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Oleic-acid consumption can possibly prevent or delay metabolic diseases. In Israel, a Virginia-type peanut cultivar with a high content of oleic acid has been developed. Objective This study examined the effect of consuming high oleic peanuts (D7) on the development of fatty liver compared to the standard HN strain. Design The two peanut cultivars were added to normal diet (ND) and high-fat (HF) mouse diet. Male C57BL/6 mice were fed for 8 and 10 weeks on a 4% D7, 4% HN, or control diet. At the end of the experiments, blood and tissues were collected. Triglyceride, lipid levels, histology, and protein expression were examined. The diets’ effects on intestinal microbiota were also evaluated. Results Both D7 and HFD7 led to a reduction in plasma triglycerides. Lipids, triglycerides, and free fatty acids in the liver were low in diets containing D7. Additionally, CD36 expression decreased in the D7 group. Consumption of D7 led to higher Prevotella levels, and consumption of ND that contained HN or D7 led to a lower Firmicutes/Bacteroidetes ratio. Conclusion These findings suggest that consumption of peanuts high in oleic acid (D7) may have the potential to delay primary fatty liver symptoms.
Collapse
Affiliation(s)
- Elise Taieb Bimro
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ran Hovav
- Department of Field Crops and Vegetables Research, Plant Sciences Institute, Agricultural Research Organization, Bet-Dagan, Israel
| | - Abraham Nyska
- Toxicologic Pathology, Timrat and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Assa Glazer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zecharia Madar
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
57
|
Yue B, Yu ZL, Lv C, Geng XL, Wang ZT, Dou W. Regulation of the intestinal microbiota: An emerging therapeutic strategy for inflammatory bowel disease. World J Gastroenterol 2020; 26:4378-4393. [PMID: 32874052 PMCID: PMC7438192 DOI: 10.3748/wjg.v26.i30.4378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development of metagenomics, metabolomics, and metatranscriptomics provides novel insights into the intestinal microbiota factors linked to inflammatory bowel disease (IBD). Multiple microorganisms play a role in intestinal health; these include bacteria, fungi, and viruses that exist in a dynamic balance to maintain mucosal homeostasis. Perturbations in the intestinal microbiota disrupt mucosal homeostasis and are closely related to IBD in humans and colitis in mice. Therefore, preventing or correcting the imbalance of microbiota may serve as a novel prevention or treatment strategy for IBD. We review the most recent evidence for direct or indirect interventions targeting intestinal microbiota for treatment of IBD in order to overcome the current limitations of IBD therapies and shed light on personalized treatment options.
Collapse
Affiliation(s)
- Bei Yue
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Lun Yu
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Lv
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Long Geng
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Dou
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
58
|
Creedon AC, Hung ES, Berry SE, Whelan K. Nuts and their Effect on Gut Microbiota, Gut Function and Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2020; 12:nu12082347. [PMID: 32781516 PMCID: PMC7468923 DOI: 10.3390/nu12082347] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuts contain fibre, unsaturated fatty acids and polyphenols that may impact the composition of the gut microbiota and overall gut health. This study aimed to assess the impact of nuts on gut microbiota, gut function and gut symptoms via a systematic review and meta-analysis of randomised controlled trials (RCTs) in healthy adults. Eligible RCTs were identified by systematic searches of five electronic databases, hand searching of conference abstracts, clinical trials databases, back-searching reference lists and contact with key stakeholders. Eligible studies were RCTs administering tree nuts or peanuts in comparison to control, measuring any outcome related to faecal microbiota, function or symptoms. Two reviewers independently screened papers, performed data extraction and risk of bias assessment. Outcome data were synthesised as weighted mean difference (WMD) or standardised mean difference (SMD) using a random effects model. This review was registered on PROSPERO (CRD42019138169). Eight studies reporting nine RCTs were included, investigating almonds (n = 5), walnuts (n = 3) and pistachios (n = 1). Nut consumption significantly increased Clostridium (SMD: 0.40; 95% CI, 0.10, 0.71; p = 0.01), Dialister (SMD: 0.44; 95% CI, 0.13, 0.75; p = 0.005), Lachnospira (SMD: 0.33; 95% CI, 0.02, 0.64; p = 0.03) and Roseburia (SMD: 0.36; 95% CI, 0.10, 0.62; p = 0.006), and significantly decreased Parabacteroides (SMD: −0.31; 95% CI, −0.62, −0.00; p = 0.05). There was no effect of nuts on bacterial phyla, diversity or stool output. Further parallel design RCTs, powered to detect changes in faecal microbiota and incorporating functional and clinical outcomes, are needed.
Collapse
|
59
|
|
60
|
The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. Br J Nutr 2020; 125:508-520. [PMID: 32713355 DOI: 10.1017/s0007114520002925] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence linking the gut microbiota to various aspects of human health. Nuts are a food rich in prebiotic fibre and polyphenols, food components which have been shown to have beneficial effects on the gut microbiota. This systematic review aimed to synthesise the evidence regarding the effect of nut consumption on the human gut microbiota. A systematic search of the databases MEDLINE, PubMed, Cochrane CENTRAL and CINAHL was performed until 28 November 2019. Eligible studies were those that investigated the effects of nut consumption in humans (aged over 3 years old), utilising next-generation sequencing technology. Primary outcome measures were between-group differences in α- and β-diversity metrics and gut microbial composition. A total of eight studies were included in the review. Included studies assessed the effects of either almonds, walnuts, hazelnuts or pistachios on the gut microbiota. Overall, nut consumption had a modest impact on gut microbiota diversity, with two studies reporting a significant shift in α-diversity and four reporting a significant shift in β-diversity. Walnuts, in particular, appeared to more frequently explain shifts in β-diversity, which may be a result of their unique nutritional composition. Some shifts in bacterial composition (including an increase in genera capable of producing SCFA: Clostridium, Roseburia, Lachnospira and Dialister) were reported following the consumption of nuts. Nut intake may yield a modulatory effect on the gut microbiota; however, results were inconsistent across studies, which may be explained by variations in trial design, methodological limitations and inter-individual microbiota.
Collapse
|
61
|
Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:237-263. [PMID: 32475524 DOI: 10.1016/bs.pmbts.2020.04.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although there is associative evidence linking fecal microbiome profile to health and disease, many studies have not considered the confounding effects of dietary intake. Consuming food provides fermentable substrate which sustains the microbial ecosystem that resides with most abundance in the colon. Western, Mediterranean and vegetarian dietary patterns have a role in modulating the gut microbiota, as do trending restrictive diets such the paleolithic and ketogenic. Altering the amount or ratio of carbohydrate, protein and fat, particularly at the extremes of intake, impacts the microbiome. Diets high in fermentable carbohydrates support the relative abundance of Bifidobacterium, Prevotella, Ruminococcus, Dorea and Roseburia, among others, capable of degrading polysaccharides, oligosaccharides and sugars. Conversely, very high fat diets increase bile-resistant organisms such as Bilophila and Bacteroides. Food form, whole foods vs. ultra-processed, alters the provision of macronutrient substrate to the colon due to differing digestibility, and thereby may impact the microbiota and its metabolic activity. In addition, phytochemicals in plant-based foods have specific and possibly prebiotic effects on the microbiome. Further, food ingredients such as certain low-calorie sweeteners enhance Bifidobacterium spp. The weight of evidence to date suggests a high level of interindividual variability in the human microbiome vs. clearly defined, dietary-induced profiles. Healthful dietary patterns, emphasizing plant foods high in microbial-available carbohydrate, support favorable microbiome profiles active in saccharolytic fermentation. Future research into diet and microbiome should consider the balance of gut microbial-generated metabolites, an important link between microbiome profile and human health.
Collapse
Affiliation(s)
- Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States.
| | - Daniela Rivero Mendoza
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jason M Lambert
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
62
|
Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients 2020; 12:E1096. [PMID: 32326604 PMCID: PMC7230850 DOI: 10.3390/nu12041096] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota (GM) is defined as the community of microorganisms (bacteria, archaea, fungi, viruses) colonizing the gastrointestinal tract. GM regulates various metabolic pathways in the host, including those involved in energy homeostasis, glucose and lipid metabolism, and bile acid metabolism. The relationship between alterations in intestinal microbiota and diseases associated with civilization is well documented. GM dysbiosis is involved in the pathogenesis of diverse diseases, such as metabolic syndrome, cardiovascular diseases, celiac disease, inflammatory bowel disease, and neurological disorders. Multiple factors modulate the composition of the microbiota and how it physically functions, but one of the major factors triggering GM establishment is diet. In this paper, we reviewed the current knowledge about the relationship between nutrition, gut microbiota, and host metabolic status. We described how macronutrients (proteins, carbohydrates, fat) and different dietary patterns (e.g., Western-style diet, vegetarian diet, Mediterranean diet) interact with the composition and activity of GM, and how gut bacterial dysbiosis has an influence on metabolic disorders, such as obesity, type 2 diabetes, and hyperlipidemia.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-569 Poznań, Poland; (M.S.); (P.B.)
| | | | | |
Collapse
|
63
|
Liu X, Guasch‐Ferré M, Drouin‐Chartier J, Tobias DK, Bhupathiraju SN, Rexrode KM, Willett WC, Sun Q, Li Y. Changes in Nut Consumption and Subsequent Cardiovascular Disease Risk Among US Men and Women: 3 Large Prospective Cohort Studies. J Am Heart Assoc 2020; 9:e013877. [PMID: 32233756 PMCID: PMC7428648 DOI: 10.1161/jaha.119.013877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Background We aim to evaluate the association of within-individual changes in consumption of total and specific types of nuts and the subsequent risk of incident cardiovascular disease (CVD) in US men and women. Methods and Results We included 34 103 men from the HPFS (Health Professionals Follow-Up Study) (1986-2012), 77 815 women from the NHS (Nurses' Health Study) (1986-2012), and 80 737 women from the NHS II (1991-2013). We assessed nut consumption every 4 years using validated food frequency questionnaires. We used multivariable Cox proportional hazards regression models to examine the association between 4-year changes in nut consumption and risk of confirmed CVD end points in the subsequent 4 years. Per 0.5 serving/day increase in total nut consumption was associated with lower risk of CVD (relative risk [RR], 0.92; 95% CI, 0.86-0.98), coronary heart disease (RR, 0.94; 95% CI, 0.89-0.99), and stroke (RR, 0.89; 95% CI, 0.83-0.95). Compared with individuals who remained nonconsumers in a 4-year interval, those who had higher consumption of total nuts (≥0.5 servings/day) had a lower risk of CVD (RR, 0.75; 95% CI, 0.67-0.84), coronary heart disease (RR, 0.80; 95% CI, 0.69-0.93), and stroke (RR, 0.68; 95% CI, 0.57-0.82) in next 4 years. Individuals who decreased nut consumption by ≥0.50 servings/day had a higher risk of developing CVD (RR, 1.14; 95% CI, 0.99-1.32), coronary heart disease (RR, 1.06; 95% CI, 0.88-1.28), and stroke (RR, 1.28; 95% CI, 1.02-1.60) when compared with those who maintained their nut consumption. Conclusions Increasing total consumption of nuts and intake of individual types of nuts (eg, walnuts, other tree nuts, and peanuts) was associated with a subsequent lower risk of CVD. These data support the role of nut intake in the primary prevention of CVD. Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00005152 and NCT00005182.
Collapse
Affiliation(s)
- Xiaoran Liu
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
| | - Marta Guasch‐Ferré
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | | | - Deirdre K. Tobias
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
- Division of Preventive MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Shilpa N. Bhupathiraju
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Kathryn M. Rexrode
- Division of Preventive MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Walter C. Willett
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Qi Sun
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineDepartment of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Yanping Li
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
| |
Collapse
|
64
|
de Azeredo HMC, Otoni CG, de Assis OBG, Forato LA, Bernardes-Filho R. In a nutshell: prospects and challenges on coatings for edible kernels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2321-2326. [PMID: 31821568 DOI: 10.1002/jsfa.10190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Edible kernels have been popular food items since ancient times. Although in-shell nuts are naturally protected and relatively shelf stable, convenience demands require their commercialization in shelled form. However, whereas shelled kernels are more convenient, they are more exposed to oxygen, and thus more susceptible to oxidative rancidity and loss of crunchiness, which negatively affect the product acceptability. In this review, we discuss the role of edible coatings in extending stability of edible kernels, which is an opportunity to be better explored by the industry. The discussion also includes the role of antioxidants in the context of active coatings. Finally, future prospects and research challenges are addressed. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Henriette Monteiro Cordeiro de Azeredo
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindústria Tropical, R Dra Sara Mesquita, Fortaleza, Brazil
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Instrumentação, São Carlos, Brazil
| | - Caio Gomide Otoni
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Instrumentação, São Carlos, Brazil
| | | | | | | |
Collapse
|
65
|
Jia L, Cao M, Chen H, Zhang M, Dong X, Ren Z, Sun J, Pan LL. Butyrate Ameliorates Antibiotic-Driven Type 1 Diabetes in the Female Offspring of Nonobese Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3112-3120. [PMID: 32046486 DOI: 10.1021/acs.jafc.9b07701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maternal gut dysbiosis affects the development of the offspring immune system. Our previous study has indicated that microbial metabolite butyrate directly shapes pancreatic immune tolerance and dampens type 1 diabetes (T1D) progression. Therefore, maternal butyrate intervention may protect their offspring from maternal gut dysbiosis-accelerated T1D. To test this, pregnant nonobese diabetic (NOD) mice were treated with vancomycin in drinking water with or without a butyrate-supplemented diet during gestation and nursing (oral vancomycin is used to induce maternal gut dysbiosis). Three weeks after delivery, T1D-associated innate and adaptive immune cells were detected to investigate the effects of butyrate on the vancomycin-exacerbated pancreatic immune disorder in dams and pups. The results showed that butyrate inhibited maternal vancomycin-exacerbated secretion of proinflammation cytokines (interferon γ and interleukin-1β) and maternal vancomycin-exacerbated recruitment of interferon γ+ T cells (cytotoxic T lymphocytes 1 cells and T helper type 1 cells) in the pancreas of the female offspring, thus dampening T1D development. The protection may be due to butyrate inhibiting the activation of pancreatic dendritic cells (DCs). Our data thus demonstrate that maternal gut dysbiosis can exacerbate pancreatic-directed autoimmunity in the female offspring through T cell- and DC-associated mechanisms that are inhibited by butyrate.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Minkai Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, P. R. China
| | - Hao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
66
|
Lambert K, Bird L, Borst AC, Fuller A, Wang Y, Rogers GB, Stanford J, Sanderson-Smith ML, Williams JG, McWhinney BC, Neale EP, Probst Y, Lonergan M. Safety and Efficacy of Using Nuts to Improve Bowel Health in Hemodialysis Patients. J Ren Nutr 2020; 30:462-469. [PMID: 32001127 DOI: 10.1053/j.jrn.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Constipation is common in patients with end-stage kidney disease. Nondrug strategies to manage constipation are challenging because of dietary potassium, phosphate, and fluid restrictions. Nuts are a high-fiber food but are excluded from the diet because of the high potassium and phosphate content. The aim of this study was to examine the safety and efficacy of using nuts to improve constipation in adults undertaking hemodialysis (HD). DESIGN AND METHODS Adult patients undertaking HD were recruited to this nonrandomized, 10-week repeated measures, within-subject, pragmatic clinical trial, conducted in two HD units. The intervention consisted of consumption of 40g of raw almonds daily for four weeks, followed by a two-week washout and four-week control period. The primary safety outcome measures were change in predialysis serum potassium and phosphate levels. The primary efficacy outcome was reduction in constipation, measured using the Bristol Stool Form Scale and Palliative Care Outcome Scale (POS-S) renal symptom score. Secondary outcomes included quality of life, selected uremic toxins, cognition, gut microbiota profile, and symptom burden. RESULTS Twenty patients completed the trial (median age: 67 [interquartile range: 57.5-77.8] years, 51% male). After controlling for dialysis adequacy, anuria, dietary intake, bicarbonate, and parathyroid hormone, there were no statistically significant changes in serum potassium (P = 0.21) or phosphate (P = 0.16) associated with daily consumption of almonds. However, statistically significant improvements in constipation were seen at weeks 2, 3, 4, and 10. There were statistically significant improvements in quality of life (P = 0.030), overall symptom burden (P = 0.002), vomiting (P = 0.020), itching (P = 0.006), and skin changes (P = 0.002). CONCLUSION Daily consumption of almonds for four weeks was safe, effective, and well tolerated. Improvements in quality of life and symptom burden warrant further research to elucidate potential mechanisms. The findings support the potential reinclusion of foods such as nuts into the diet of patients who underwent HD.
Collapse
Affiliation(s)
- Kelly Lambert
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia.
| | - Luke Bird
- Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Addison C Borst
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Fuller
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yanan Wang
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jordan Stanford
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jonathan G Williams
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia
| | - Elizabeth P Neale
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Yasmine Probst
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Maureen Lonergan
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| |
Collapse
|
67
|
Adipokines and Adipose Tissue-Related Metabolites, Nuts and Cardiovascular Disease. Metabolites 2020; 10:metabo10010032. [PMID: 31940832 PMCID: PMC7022531 DOI: 10.3390/metabo10010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex structure responsible for fat storage and releasing polypeptides (adipokines) and metabolites, with systemic actions including body weight balance, appetite regulation, glucose homeostasis, and blood pressure control. Signals sent from different tissues are generated and integrated in adipose tissue; thus, there is a close connection between this endocrine organ and different organs and systems such as the gut and the cardiovascular system. It is known that functional foods, especially different nuts, may be related to a net of molecular mechanisms contributing to cardiometabolic health. Despite being energy-dense foods, nut consumption has been associated with no weight gain, weight loss, and lower risk of becoming overweight or obese. Several studies have reported beneficial effects after nut consumption on glucose control, appetite suppression, metabolites related to adipose tissue and gut microbiota, and on adipokines due to their fatty acid profile, vegetable proteins, l-arginine, dietary fibers, vitamins, minerals, and phytosterols. The aim of this review is to briefly describe possible mechanisms implicated in weight homeostasis related to different nuts, as well as studies that have evaluated the effects of nut consumption on adipokines and metabolites related to adipose tissue and gut microbiota in animal models, healthy individuals, and primary and secondary cardiovascular prevention.
Collapse
|
68
|
Nut consumption and the impact on gut microbiome and gut function in healthy people: a systematic review of randomised controlled trials. Proc Nutr Soc 2020. [DOI: 10.1017/s0029665119001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
69
|
García-Mantrana I, Calatayud M, Romo-Vaquero M, Espín JC, Selma MV, Collado MC. Urolithin Metabotypes Can Determine the Modulation of Gut Microbiota in Healthy Individuals by Tracking Walnuts Consumption over Three Days. Nutrients 2019; 11:E2483. [PMID: 31623169 PMCID: PMC6835957 DOI: 10.3390/nu11102483] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Walnuts are rich in polyphenols ellagitannins, modulate gut microbiota (GM), and exert health benefits after long-term consumption. The metabolism of ellagitannins to urolithins via GM depends on urolithin metabotypes (UM-A, -B, or -0), which have been reported to predict host responsiveness to a polyphenol-rich intervention. This study aims to assess whether UMs were associated with differential GM modulation after short-term walnut consumption. In this study, 27 healthy individuals consumed 33 g of peeled raw walnuts over three days. GM profiling was determined using 16S rRNA illumina sequencing and specific real-time quantitative polymerase chain reactions (qPCRs), as well as microbial activity using short-chain fatty acids analysis in stool samples. UMs stratification of volunteers was assessed using ultra performance liquid chromatography-electro spray ionization-quadrupole time of flight-mass spectrometry (UPLC-ESI-QTOF-MS) analysis of urolithins in urine samples. The gut microbiota associated with UM-B was more sensitive to the walnut intervention. Blautia, Bifidobacterium, and members of the Coriobacteriaceae family, including Gordonibacter, increased exclusively in UM-B subjects, while some members of the Lachnospiraceae family decreased in UM-A individuals. Coprococcus and Collinsella increased in both UMs and higher acetate and propionate production resulted after walnuts intake. Our results show that walnuts consumption after only three days modulates GM in a urolithin metabotype-depending manner and increases the production of short-chain fatty acids (SCFA).
Collapse
Affiliation(s)
- Izaskun García-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain.
| | - Marta Calatayud
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Gent, Belgium.
| | - María Romo-Vaquero
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain.
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain.
| |
Collapse
|
70
|
Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Front Nutr 2019; 6:157. [PMID: 31681786 PMCID: PMC6797948 DOI: 10.3389/fnut.2019.00157] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Diet is advocated as a key factor influencing gut microbiota. Several studies have focused on the effect of different carbohydrates, mainly fiber, on gut microbiota. However, what remains to be elucidated is the impact of a key component of diet that is widely debated upon: dietary fats. This review highlights the importance of understanding the source, quality, and type of fats that could differentially modify the intestinal microbiome. Fats from plant-based sources such as nuts, or vegetable oils have shown positive alterations in gut microbiota biodiversity both in in vivo and in vitro studies. Nuts and other plant-based fat sources, dietary patterns (e.g., Mediterranean diet) rich in polyunsaturated and monounsaturated fats and, in some cases, polyphenols, and other phytochemicals, have been associated with increased bacterial diversity, as well beneficial butyrate-producing bacteria imparting a positive metabolic influence. It is with this interest, this narrative review brings together evidences on different plant-based fat sources, dietary patterns rich in vegetable fats, and associated changes in gut microbiota.
Collapse
Affiliation(s)
- Jananee Muralidharan
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Serena Galiè
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Monica Bulló
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Consorcio CIBER, M.P., Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
71
|
Zhang S, Fu J, Zhang Q, Liu L, Meng G, Yao Z, Wu H, Bao X, Gu Y, Lu M, Sun S, Wang X, Zhou M, Jia Q, Song K, Xiang H, Wu Y, Niu K. Association between nut consumption and non-alcoholic fatty liver disease in adults. Liver Int 2019; 39:1732-1741. [PMID: 31162803 DOI: 10.1111/liv.14164] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Increased nut consumption has been associated with reduced inflammation, insulin resistance, and oxidative stress. Although these factors are closely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), few studies have focused on the association between nut consumption and NAFLD in the general population. We aimed to investigate the association of nut consumption and NAFLD in an adult population. METHODS A total of 23 915 participants from Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) Cohort Study were included in this study. Information on dietary intake was collected using a validated food frequency questionnaire. Abdominal ultrasonography was done to diagnose NAFLD. Multivariable logistic regression was used to assess the association of nut consumption with NAFLD. RESULTS After adjusting for sociodemographic, medical, dietary, and lifestyle variables, the odds ratios (95% confidence interval) for NAFLD across categories of nut consumption were 1.00 (reference) for <1 time/week, 0.91 (0.82, 1.02) for 1 time/week, 0.88 (0.76, 1.02) for 2-3 times/week, and 0.80 (0.69, 0.92) for ≥4 times/week (P for trend < 0.01). These associations were attenuated but remained significant after further adjustment for blood lipids, glucose, and inflammation markers. CONCLUSIONS Higher nut consumption was significantly associated with lower prevalence of NAFLD. Further prospective studies and randomized trials are required to ascertain the causal association between nut consumption and NAFLD.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingzhu Fu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Min Lu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiling Xiang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
72
|
De la Rosa LA, Álvarez-Parrilla E, García-Fajardo JA. Identificación de compuestos fenólicos en extractos de almendra (Prunus dulcis) y nuez pecana (Carya illinoinensis) mediante cromatografía líquida acoplada a espectrometría de masas en tándem (HPLC-MS/MS). TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La almendra y nuez pecana son alimentos funcionales, cuyo consumo habitual puede prevenir el desarrollo de numerosas enfermedades crónico-degenerativas. Los compuestos fenólicos (CF) son algunos de los que poseen mayor actividad biológica en estos frutos secos, pero su identificación y caracterización siempre representa un reto analítico. El objetivo del presente trabajo fue caracterizar el perfil de los CF, mediante HPLC acoplado a espectrometría de masas en tándem (MS/MS) de dos tipos de extractos de nuez pecana y almendra, un extracto etanólico y uno acetónico. Se identificaron, mediante HPLC acoplado a espectrometría de masas de alta resolución (Q-TOF), 29 compuestos en almendra (22 estuvieron en el extracto acetónico y 24 en el etanólico) y 43 en nuez pecana (39 en el acetónico y 37 en el etanólico). La identidad de 6 compuestos de la almendra y 20 de nuez pecana se confirmó mediante el análisis de sus patrones de fragmentación en el modo MS/MS del equipo. El perfil de los CF fue claramente diferente entre almendra y nuez, pero muy parecido entre ambos tipos de solventes empleados (acetona y etanol), para un mismo fruto seco. En la almendra predominó la presencia de flavonoles y flavanonas, mientras que en nuez pecana predominaron taninos hidrolizables (sobre todo elagitaninos y derivados simples del ácido elágico) y condensados (hasta tetrámeros). En este estudio se describe por primera vez la identificación de tres elagitaninos en nuez pecana.
Collapse
|
73
|
Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, Stenvinkel P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019; 11:496. [PMID: 30818761 PMCID: PMC6471287 DOI: 10.3390/nu11030496] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota imbalance is common in patients with chronic kidney disease (CKD) and associates with factors such as increased circulating levels of gut-derived uremic toxins, inflammation, and oxidative stress, which are linked to cardiovascular disease and increased morbimortality. Different nutritional strategies have been proposed to modulate gut microbiota, and could potentially be used to reduce dysbiosis in CKD. Nutrients like proteins, fibers, probiotics, and synbiotics are important determinants of the composition of gut microbiota and specific bioactive compounds such as polyphenols present in nuts, berries. and fruits, and curcumin, may also play a key role in this regard. However, so far, there are few studies on dietary components influencing the gut microbiota in CKD, and it is therefore not possible to conclude which nutrients should be prioritized in the diet of patients with CKD. In this review, we discuss some nutrients, diet patterns and bioactive compounds that may be involved in the modulation of gut microbiota in CKD and provide the background and rationale for studies exploring whether nutritional interventions with these dietary components could be used to alleviate the gut dysbiosis in patients with CKD.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Natália Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Livia Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Marta Esgalhado
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Ludmila Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
74
|
Potential Prebiotic Properties of Nuts and Edible Seeds and Their Relationship to Obesity. Nutrients 2018; 10:nu10111645. [PMID: 30400274 PMCID: PMC6266159 DOI: 10.3390/nu10111645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a global epidemic chronic condition and is progressing at a rapid rate. This review focuses on the potential prebiotic properties of nuts and edible seeds and the plausible mechanisms that their consumption may help the prevention and the management of overweight and obesity. The literature review was performed by searching papers about the topic in MEDLINE and SCOPUS databases. The healthy attributes of nuts and edible seeds, especially dietary fibers and polyphenols contents, indicate that their mechanism of weight gain prevention may occur through interaction with the gut microbiota, by means of prebiotic effects. Among the etiological factors associated with obesity, the gut microbiota seems to play a significant role. Dysbiosis causes an imbalance in energy homeostasis that contributes to obesity. Three mechanisms are proposed in this review to explain the potential role of nut and edible seed consumption on intestinal homeostasis and body weight control: maintenance of the enteric barrier integrity, improvement of anti-inflammatory status and enhancement of butyrate synthesis. Further high-quality clinical trials should explore the interaction between oilseed consumption, microbiota, and body adiposity control, particularly investigating the microbiota metabolites and their relation to the prevention and management of obesity.
Collapse
|
75
|
Tan SY, Tey SL, Brown R. Can Nuts Mitigate Malnutrition in Older Adults? A Conceptual Framework. Nutrients 2018; 10:E1448. [PMID: 30301198 PMCID: PMC6213172 DOI: 10.3390/nu10101448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
The proportion of adults aged over 60 years in the world is expected to reach 20% by the year 2050. Ageing is associated with several physiological changes that increase the risk of malnutrition among this population. Malnutrition is characterized by deficiencies or insufficiencies of macro- and micronutrients. Malnutrition has detrimental effects on the health, wellbeing, and quality of life in older adults. Nuts are rich in energy, unsaturated fats, and protein, as well as other nutrients that provide a range of health benefits. While the effects of nuts on overnutrition have been studied extensively, very few studies have been specifically designed to understand the role of nuts in mitigating undernutrition in the elderly. Therefore, this review explores the potential role of nuts in improving the nutritional status of older adults who are at risk of undernutrition. Several properties of whole nuts, some of which appear important for addressing overnutrition, (e.g., hardness, lower-than-expected nutrient availability, satiety-enhancing effects) may limit their effectiveness as a food to combat undernutrition. However, we propose that modifications such as transforming the physical form of nuts, addressing the timing of nut ingestion, and introducing variety may overcome these barriers. This review also discusses the feasibility of using nuts to prevent and reverse undernutrition among older adults. We conclude with a recommendation to conduct clinical studies in the future to test this conceptual framework.
Collapse
Affiliation(s)
- Sze-Yen Tan
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia.
| | - Siew Ling Tey
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Rachel Brown
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
76
|
Rocchetti G, Bhumireddy SR, Giuberti G, Mandal R, Lucini L, Wishart DS. Edible nuts deliver polyphenols and their transformation products to the large intestine: An in vitro fermentation model combining targeted/untargeted metabolomics. Food Res Int 2018; 116:786-794. [PMID: 30717008 DOI: 10.1016/j.foodres.2018.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 01/22/2023]
Abstract
The fate of polyphenols from edible tree nuts was investigated using a simulated in vitro intestinal fermentation system. The digested food matrix was fermented for 48 h and the changes in the phenolic profiles were evaluated by both untargeted UHPLC-QTOF and targeted UHPLC-Orbitrap mass spectrometry. The untargeted metabolomics approach allowed us to monitor the comprehensive changes in phenolic profiles from 0 up to 48 h of in vitro fermentation. Multivariate statistics (i.e., orthogonal projection to latent structures discriminant analysis) applied to this untargeted data allowed us to identify the most discriminating phenolic metabolites and to further understand the colonic transformation pathways involved. In particular, 13 putatively identified compounds derived from flavonoids, lignans and phenolic acids were found to have the highest discrimination potential. Six phenolic metabolites were then quantified by means of targeted metabolomics (using a UHPLC-Orbitrap). These metabolites included 3,4-dihydroxyphenylacetic acid, 4-hydroxybenzoic acid, hippuric acid, caffeic acid, protocatechuic acid and protocatechuic aldehyde. Using the targeted data, a clear matrix effect was observed over time, with an increase of some phenolic metabolites moving from 8 to 48 h of in vitro fermentation. Based on these data, catabolic pathways for colonic microbial degradation of flavonoids, hydroxycinnamic acids, tyrosols and lignans are proposed. Our findings show that edible tree nuts deliver polyphenols to the colon, where several microbial transformations occur that lead to smaller phenolic metabolites being observed. Furthermore, we found that the combined use of targeted and untargeted metabolomics can be particularly effective for investigating the fate of polyphenols in the large intestine.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW We review recent epidemiological and clinical studies investigating the consumption of tree nuts and peanuts and cardiovascular disease (CVD) mortality as well as CVD risk factors. RECENT FINDINGS A greater consumption of tree nuts and peanuts is associated with a reduced risk of CVD mortality, as well as lower CVD events. Furthermore, risk factors associated with the development of CVD such as dyslipidemia, impaired vascular function, and hypertension are improved with regular tree nut and peanut consumption through a range of mechanism associated with their nutrient-rich profiles. There is weak inconsistent evidence for an effect of nut consumption on inflammation. There is emerging evidence that consuming tree nuts reduces the incidence of non-alcoholic fatty liver disease (NAFLD) and promotes diversity of gut microbiota, which in turn may improve CVD outcomes. Evidence for CVD prevention is strong for some varieties of tree nuts, particularly walnuts, and length of supplementation and dose are important factors for consideration with recommendations.
Collapse
Affiliation(s)
- A M Coates
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, City East Campu, North Terrace, GPO Box 2471, Adelaide, South Australia, 5001, Australia.
| | - A M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, City East Campu, North Terrace, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - S Y Tan
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
78
|
Li H, Li X, Yuan S, Jin Y, Lu J. Nut consumption and risk of metabolic syndrome and overweight/obesity: a meta-analysis of prospective cohort studies and randomized trials. Nutr Metab (Lond) 2018; 15:46. [PMID: 29977320 PMCID: PMC6013998 DOI: 10.1186/s12986-018-0282-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Nut consumption has been shown to reduce the risk of cardiovascular disease. However, its role in the prevention of metabolic disorders, such as metabolic syndrome (Mets) and overweight/obesity, remains controversial. We therefore conducted a meta-analysis to determine the association of nut consumption with Mets and overweight/obesity. Methods Eligible studies were identified by searching the PubMed and Embase databases and by reviewing the references of relevant literatures. We used random effect models to pool the studies-specific risk ratio (RR) and weighted mean difference (WMD). Results This meta-analysis included six prospective cohort studies with 420,890 subjects and 62 randomized feeding trials with 7184 participants. Among the cohort studies, the summary RR for every 1-serving/week increase in nut intake was 0.96 (95% confidence interval [CI]: 0.92 to 0.99; n = 3) for Mets, 0.97 (95% CI: 0.95 to 0.98; n = 2) for overweight/obesity, and 0.95 (95% CI: 0.89 to 1.02; n = 2) for obesity. Pooling of randomized trials indicated that nut consumption was related to a significant reduction in body weight (WMD: - 0.22 Kg, 95% CI: -0.40 to - 0.04), body mass index (WMD: - 0.16 Kg/m2, 95% CI: -0.31 to - 0.01), and waist circumference (WMD: - 0.51 cm, 95% CI: -0.95 to - 0.07). These findings remained stable in the sensitivity analysis, and no publication bias was detected. Conclusion Nut consumption may be beneficial in the prevention of Mets and overweight/obesity. Additional prospective studies are needed to enhance these findings and to explore the metabolic benefits for specific subclasses of nut.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071 China
| | - Xia Li
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071 China
| | - Sheng Yuan
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071 China
| | - Yalei Jin
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071 China
| | - Jinping Lu
- Department of Geratology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
79
|
Affiliation(s)
- Heather Zwickey
- 1 Helfgott Research Institute, National University of Natural Medicine , Portland, OR.,2 Department of Nutrition and Integrative Health, Maryland University of Integrative Health , Laurel, MD
| | - Liz Lipski
- 2 Department of Nutrition and Integrative Health, Maryland University of Integrative Health , Laurel, MD
| |
Collapse
|
80
|
Thilakarathna WPDW, Langille MGI, Rupasinghe HPV. Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randomized, Controlled Trial. Nutrients 2018; 10:nu10020244. [PMID: 29470389 PMCID: PMC5852820 DOI: 10.3390/nu10020244] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Regular walnut consumption is associated with better health. We have previously shown that eight weeks of walnut consumption (43 g/day) significantly improves lipids in healthy subjects. In the same study, gut microbiome was evaluated. We included 194 healthy subjects (134 females, 63 ± 7 years, BMI 25.1 ± 4.0 kg/m2) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (eight weeks each); 96 subjects first followed a walnut-enriched diet (43 g/day) and then switched to a nut-free diet, while 98 subjects followed the diets in reverse order. While consuming the walnut-enriched diet, subjects were advised to either reduce fat or carbohydrates or both to account for the additional calories. Fecal samples were collected from 135 subjects at the end of the walnut-diet and the control-diet period for microbiome analyses. The 16S rRNA gene sequencing data was clustered with a 97% similarity into Operational Taxonomic Units (OTUs). UniFrac distances were used to determine diversity between groups. Differential abundance was evaluated using the Kruskal–Wallis rank sum test. All analyses were performed using Rhea. Generalized UniFrac distance shows that walnut consumption significantly affects microbiome composition and diversity. Multidimensional scaling (metric and non-metric) indicates dissimilarities of approximately 5% between walnut and control (p = 0.02). The abundance of Ruminococcaceae and Bifidobacteria increased significantly (p < 0.02) while Clostridium sp. cluster XIVa species (Blautia; Anaerostipes) decreased significantly (p < 0.05) during walnut consumption. The effect of walnut consumption on the microbiome only marginally depended on whether subjects replaced fat, carbohydrates or both while on walnuts. Daily intake of 43 g walnuts over eight weeks significantly affects the gut microbiome by enhancing probiotic- and butyric acid-producing species in healthy individuals. Further evaluation is required to establish whether these changes are preserved during longer walnut consumption and how these are linked to the observed changes in lipid metabolism.
Collapse
|
82
|
Kuo SM. Does Modification of the Large Intestinal Microbiome Contribute to the Anti-Inflammatory Activity of Fermentable Fiber? Curr Dev Nutr 2018; 2:nzx004. [PMID: 30377676 PMCID: PMC6201682 DOI: 10.3945/cdn.117.001180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Fiber is an inadequately understood and insufficiently consumed nutrient. This review examines the possible causal relation between fiber-induced microbiome changes and the anti-inflammatory activity of fiber. To demonstrate the dominant role of fermentable plant fiber in shaping the intestinal microbiome, animal and human fiber-feeding studies are reviewed. Using culture-, PCR-, and sequencing-based microbial analyses, a higher prevalence of Bifidobacterium and Lactobacillus genera was observed from the feeding of different types of fermentable fiber. This finding was reported in studies performed on several host species including human. Health conditions and medications that are linked to intestinal microbial alterations likely also change the nutrient environment of the large intestine. The unique gene clusters of Bifidobacterium and Lactobacillus that enable the catabolism of plant glycans and the ability of Bifidobacterium and Lactobacillus to reduce the colonization of proteobacteria probably contribute to their prevalence in a fiber-rich intestinal environment. The fiber-induced microbiome changes could contribute to the anti-inflammatory activity of fiber. Although most studies did not measure fecal microbial density or total daily fecal microbial output (colon microbial load), limited evidence suggests that the increase in intestinal commensal microbial load plays an important role in the anti-inflammatory activity of fiber. Various probiotic supplements, including Bifidobacterium and Lactobacillus, showed anti-inflammatory activity only in the presence of fiber, which promoted microbial growth as indicated by increasing plasma short-chain fatty acids. Probiotics alone or pure fiber administered under sterile conditions showed no anti-inflammatory activity. The potential mechanisms that could mediate the anti-inflammatory effect of common microbial metabolites are reviewed, but more in vivo trials are needed. Future studies including simultaneous microbial composition and load measurements are also important.
Collapse
Affiliation(s)
- Shiu-Ming Kuo
- Department of Exercise and Nutrition Sciences, University at Buffalo, SUNY, Buffalo, NY
| |
Collapse
|
83
|
Guasch-Ferré M, Liu X, Malik VS, Sun Q, Willett WC, Manson JE, Rexrode KM, Li Y, Hu FB, Bhupathiraju SN. Nut Consumption and Risk of Cardiovascular Disease. J Am Coll Cardiol 2017; 70:2519-2532. [PMID: 29145952 PMCID: PMC5762129 DOI: 10.1016/j.jacc.2017.09.035] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The associations between specific types of nuts, specifically peanuts and walnuts, and cardiovascular disease remain unclear. OBJECTIVES The authors sought to analyze the associations between the intake of total and specific types of nuts and cardiovascular disease, coronary heart disease, and stroke risk. METHODS The authors included 76,364 women from the Nurses' Health Study (1980 to 2012), 92,946 women from the Nurses' Health Study II (1991 to 2013), and 41,526 men from the Health Professionals Follow-Up Study (1986 to 2012) who were free of cancer, heart disease, and stroke at baseline. Nut consumption was assessed using food frequency questionnaires at baseline and was updated every 4 years. RESULTS During 5,063,439 person-years of follow-up, the authors documented 14,136 incident cardiovascular disease cases, including 8,390 coronary heart disease cases and 5,910 stroke cases. Total nut consumption was inversely associated with total cardiovascular disease and coronary heart disease after adjustment for cardiovascular risk factors. The pooled multivariable hazard ratios for cardiovascular disease and coronary heart disease among participants who consumed 1 serving of nuts (28 g) 5 or more times per week, compared with the reference category (never or almost never), were 0.86 (95% confidence interval: 0.79 to 0.93; p for trend = 0.0002) and 0.80 (95% confidence interval: 0.72 to 0.89; p for trend <0.001), respectively. Consumption of peanuts and tree nuts (2 or more times/week) and walnuts (1 or more times/week) was associated with a 13% to 19% lower risk of total cardiovascular disease and 15% to 23% lower risk of coronary heart disease. CONCLUSIONS In 3 large prospective cohort studies, higher consumption of total and specific types of nuts was inversely associated with total cardiovascular disease and coronary heart disease.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts.
| | - Xiaoran Liu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Vasanti S Malik
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qi Sun
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - JoAnn E Manson
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn M Rexrode
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yanping Li
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
84
|
Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SMF. Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Res Int 2017; 100:9-18. [PMID: 28888463 DOI: 10.1016/j.foodres.2017.08.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022]
Abstract
Brazil nuts are among the richest selenium food sources, and studies have considered this Amazonian nut as an alternative for selenium supplementation. Besides selenium, Brazil nuts present relevant content of other micronutrients such as magnesium, copper, and zinc. The nutritional composition of nuts, also characterized by adequate fatty acid profile and high content of protein and bioactive compounds, has many health benefits. In the present review, we examine the nutritional composition of Brazil nuts, comparing it with other nuts, and describe the relevance of possible contaminants and metal toxicants observed in this nut for human health. Furthermore, we report different trials available in the literature, which demonstrate positive outcomes such as modulation of the lipid serum profile, enhancement of the antioxidant system and improvement of anti-inflammatory response. These effects have been assessed under different conditions, such as cognitive impairment, dyslipidemia, cancer, and renal failure.
Collapse
Affiliation(s)
- Bárbara R Cardoso
- Nutrition and Minerals Laboratory, Dept. of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Dept. of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Dept. of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Dept. of Food and Experimental Nutrition, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
85
|
Prebiotics: A Novel Approach to Treat Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2017; 2017:6238106. [PMID: 28573132 PMCID: PMC5442341 DOI: 10.1155/2017/6238106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the fatal malignancies and is considered as the third leading cause of death. Mutations, genetic modifications, dietary aflatoxins, or impairments in the regulation of oncogenic pathways may bring about liver cancer. An effective barrier against hepatotoxins is offered by gut-liver axis as a change in gut permeability and expanded translocation of lipopolysaccharides triggers the activation of Toll-like receptors which stimulate the process of hepatocarcinogenesis. Prebiotics, nondigestible oligosaccharides, have a pivotal role to play when it comes to inducing an antitumor effect. A healthy gut flora balance is imperative to downregulation of inflammatory cytokines and reducing lipopolysaccharides induced endotoxemia, thus inducing the antitumor effect.
Collapse
|