51
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
52
|
Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V, Harish. Biosynthesis and extraction of high-value carotenoid from algae. FRONT BIOSCI-LANDMRK 2021; 26:171-190. [PMID: 34162044 DOI: 10.52586/4932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022]
Abstract
Algae possess a considerable potential as bio-refinery for the scale-up production of high-value natural compounds like-carotenoids. Carotenoids are accessory pigments in the light-harvesting apparatus and also act as antioxidants and photo-protectors in green cells. They play important roles for humans, like-precursors of vitamin A, reduce the risk of some cancers, helps in the prevention of age-related diseases, cardiovascular diseases, improve skin health, and stimulates immunity. To date, about 850 types of natural carotenoid compounds have been reported and they have approximated 1.8 billion US$ of global market value. In comparison to land plants, there are few reports on biosynthetic pathways and molecular level regulation of algal carotenogenesis. Recent advances of algal genome sequencing, data created by high-throughput technologies and transcriptome studies, enables a better understanding of the origin and evolution of de novo carotenoid biosynthesis pathways in algae. Here in this review, we focused on, the biochemical and molecular mechanism of carotenoid biosynthesis in algae. Additionally, structural features of different carotenoids are elaborated from a chemistry point of view. Furthermore, current understandings of the techniques designed for pigment extraction from algae are reviewed. In the last section, applications of different carotenoids are elucidated and the growth potential of the global market value of carotenoids are also discussed.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Kunal Seth
- Department of Botany, Government Science College, Pardi, 396125 Valsad, Gujarat, India
| | - Kirti Maheshwari
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Prabhat Kumar Baroliya
- Department of Chemistry, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour Central University, 470003 Sagar, MP, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, 470003 Sagar, MP, India
| | - Harish
- Department of Botany, Mohanlal Sukhadia University, 313 001 Udaipur, Rajasthan, India
| |
Collapse
|
53
|
Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms 2021; 9:microorganisms9051068. [PMID: 34063406 PMCID: PMC8156089 DOI: 10.3390/microorganisms9051068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Research on enhancing lutein content in microalgae has made significant progress in recent years. However, strategies are needed to address the possible limitations of microalgae as practical lutein producers. The capacity of lutein sequestration may determine the upper limit of cellular lutein content. The preliminary estimation presented in this work suggests that the lutein sequestration capacity of the light-harvesting complex (LHC) of microalgae is most likely below 2% on the basis of dry cell weight (DCW). Due to its nature as a structural pigment, higher lutein content might interfere with the LHC in fulfilling photosynthetic functions. Storing lutein in a lipophilic environment is a mechanism for achieving high lutein content but several critical barriers must be overcome such as lutein degradation and access to lipid droplet to be stored through esterification. Understanding the mechanisms underlying lipid droplet biogenesis in chloroplasts, as well as carotenoid trafficking through chloroplast membranes and carotenoid esterification, may provide insight for new approaches to achieve high lutein contents in algae. In the meantime, building the machinery for esterification and sequestration of lutein and other hydroxyl-carotenoids in model microorganisms, such as yeast, with synthetic biology technology provides a promising option.
Collapse
|
54
|
Lin P, McClintic SM, Nadeem U, Skondra D. A Review of the Role of the Intestinal Microbiota in Age-Related Macular Degeneration. J Clin Med 2021; 10:2072. [PMID: 34065988 PMCID: PMC8151249 DOI: 10.3390/jcm10102072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.
Collapse
Affiliation(s)
- Phoebe Lin
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
55
|
Huang D, Liu W, Li A, Hu Z, Wang J, Wang C. Cloning and identification of a novel β-carotene hydroxylase gene from Haematococcus pluvialis and its function in Escherichia coli. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
56
|
Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 2021; 41:513-534. [PMID: 33541157 DOI: 10.1080/07388551.2021.1873242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are important precursors of a wide range of apocarotenoids with their functions including: hormones, pigments, retinoids, volatiles, and signals, which can be used in the food, flavors, fragrances, cosmetics, and pharmaceutical industries. This article focuses on the formation of these multifaceted apocarotenoids and their diverse biological roles in all living systems. Carotenoid degradation pathways include: enzymatic oxidation by specific carotenoid cleavage oxygenases (CCOs) or nonspecific enzymes such as lipoxygenases and peroxidases and non-enzymatic oxidation by reactive oxygen species. Recent advances in the regulation of carotenoid cleavage genes and the biotechnological production of multiple apocarotenoids are also covered. It is suggested that different developmental stages and environmental stresses can influence both the expression of carotenoid cleavage genes and the formation of apocarotenoids at multiple levels of regulation including: transcriptional, transcription factors, posttranscriptional, posttranslational, and epigenetic modification. Regarding the biotechnological production of apocarotenoids especially: crocins, retinoids, and ionones, enzymatic biocatalysis and metabolically engineered microorganisms have been a promising alternative route. New substrates, carotenoid cleavage enzymes, biosynthetic pathways for apocarotenoids, and new biological functions of apocarotenoids will be discussed with the improvement of our understanding of apocarotenoid biology, biochemistry, function, and formation from different organisms.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
57
|
Foong LC, Loh CWL, Ng HS, Lan JCW. Recent development in the production strategies of microbial carotenoids. World J Microbiol Biotechnol 2021; 37:12. [DOI: 10.1007/s11274-020-02967-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
|
58
|
Tao LJ, Seo DE, Jackson B, Ivanova NB, Santori FR. Nuclear Hormone Receptors and Their Ligands: Metabolites in Control of Transcription. Cells 2020; 9:cells9122606. [PMID: 33291787 PMCID: PMC7762034 DOI: 10.3390/cells9122606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Nuclear hormone receptors are a family of transcription factors regulated by small molecules derived from the endogenous metabolism or diet. There are forty-eight nuclear hormone receptors in the human genome, twenty of which are still orphans. In this review, we make a brief historical journey from the first observations by Berthold in 1849 to the era of orphan receptors that began with the sequencing of the Caenorhabditis elegans genome in 1998. We discuss the evolution of nuclear hormone receptors and the putative ancestral ligands as well as how the ligand universe has expanded over time. This leads us to define four classes of metabolites-fatty acids, terpenoids, porphyrins and amino acid derivatives-that generate all known ligands for nuclear hormone receptors. We conclude by discussing the ongoing efforts to identify new classes of ligands for orphan receptors.
Collapse
Affiliation(s)
- Lian Jing Tao
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Jackson
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
59
|
Fournié M, Truan G. Multiplicity of carotene patterns derives from competition between phytoene desaturase diversification and biological environments. Sci Rep 2020; 10:21106. [PMID: 33273560 PMCID: PMC7713294 DOI: 10.1038/s41598-020-77876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many different carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from different clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of five purified enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classification but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps.
Collapse
Affiliation(s)
- Mathieu Fournié
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Adisseo France S.A.S., 10 place du Général de Gaulle, 92160, Anthony, France.,Groupe Avril, 11 Rue de Monceau, 75378, Paris, Cedex 08, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
60
|
Carotenoids as a Protection Mechanism against Oxidative Stress in Haloferax mediterranei. Antioxidants (Basel) 2020; 9:antiox9111060. [PMID: 33137984 PMCID: PMC7694103 DOI: 10.3390/antiox9111060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Haloarchaea are extremophilic microorganisms that in their natural ecosystem encounter several sources of oxidative stress. They have developed different strategies to cope with these harsh environmental conditions, among which bacterioruberin production is a very notable strategy. Bacterioruberin (BR) is a C50 carotenoid synthesized in response to different types of stress. Previous works demonstrated that it shows interesting antioxidant properties with potential applications in biotechnology. In this study, Haloferax mediterranei strain R-4 was exposed to different concentrations of the oxidant compound H2O2 to evaluate the effect on carotenoid production focusing the attention on the synthesis of bacterioruberin. Hfx. mediterranei was able to grow in the presence of H2O2 from 1 mM to 25 mM. Cells produced between 16% and 78% (w/v) more carotenoids under the induced oxidative stress compared to control cultures. HPLC-MS analysis detected BR as the major identified carotenoid and confirmed the gradual increase of BR content as higher concentrations of hydrogen peroxide were added to the medium. These results shed some light on the biological role of bacterioruberin in haloarchaea, provide interesting information about the increase of the cellular pigmentation under oxidative stress conditions and will allow the optimization of the production of this pigment at large scale using these microbes as biofactories.
Collapse
|
61
|
Efremov GI, Slugina MA, Shchennikova AV, Kochieva EZ. Differential Regulation of Phytoene Synthase PSY1 During Fruit Carotenogenesis in Cultivated and Wild Tomato Species ( Solanum section Lycopersicon). PLANTS 2020; 9:plants9091169. [PMID: 32916928 PMCID: PMC7569967 DOI: 10.3390/plants9091169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
In plants, carotenoids define fruit pigmentation and are involved in the processes of photo-oxidative stress defense and phytohormone production; a key enzyme responsible for carotene synthesis in fruit is phytoene synthase 1 (PSY1). Tomatoes (Solanum section Lycopersicon) comprise cultivated (Solanum lycopersicum) as well as wild species with different fruit color and are a good model to study carotenogenesis in fleshy fruit. In this study, we identified homologous PSY1 genes in five Solanum section Lycopersicon species, including domesticated red-fruited S. lycopersicum and wild yellow-fruited S. cheesmaniae and green-fruited S. chilense, S. habrochaites and S. pennellii. PSY1 homologs had a highly conserved structure, including key motifs in the active and catalytic sites, suggesting that PSY1 enzymatic function is similar in green-fruited wild tomato species and preserved in red-fruited S. lycopersicum. PSY1 mRNA expression directly correlated with carotenoid content in ripe fruit of the analyzed tomato species, indicating differential transcriptional regulation. Analysis of the PSY1 promoter and 5′-UTR sequence revealed over 30 regulatory elements involved in response to light, abiotic stresses, plant hormones, and parasites, suggesting that the regulation of PSY1 expression may affect the processes of fruit senescence, seed maturation and dormancy, and pathogen resistance. The revealed differences between green-fruited and red-fruited Solanum species in the structure of the PSY1 promoter/5′-UTR, such as the acquisition of ethylene-responsive element by S. lycopersicum, could reflect the effects of domestication on the transcriptional mechanisms regulating PSY1 expression, including induction of carotenogenesis during fruit ripening, which would contribute to red coloration in mature fruit.
Collapse
|
62
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
63
|
Azizan A, Maulidiani M, R. R, Shaari K, Ismail IS, Nagao N, Abas F. Mass Spectrometry-Based Metabolomics Combined with Quantitative Analysis of the Microalgal Diatom ( Chaetoceros calcitrans). Mar Drugs 2020; 18:md18080403. [PMID: 32751412 PMCID: PMC7459737 DOI: 10.3390/md18080403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Although many metabolomics studies of higher land plant species have been conducted, similar studies of lower nonland plant species, which include microalgae, are still developing. The present study represents an attempt to characterize the metabolic profile of a microalgal diatom Chaetoceros calcitrans, by applying high-resolution mass spectrometry detection, via Q-ExactiveTM Plus Orbitrap mass spectrometry. The results showed that 54 metabolites of various classes were tentatively identified. Experimentally, the chloroform and acetone extracts were clearly distinguished from other solvent extracts in chemometric regression analysis using PLS, showing the differences in the C. calcitrans metabolome between the groups. In addition, specific metabolites were evaluated, which supported the finding of antioxidant and anti-inflammatory activities. This study also provides data on the quantitative analysis of four carotenoids based on the identification results. Therefore, these findings could serve as a reliable tool for identifying and quantifying the metabolome that could reflect the metabolic activities of C. calcitrans.
Collapse
Affiliation(s)
- Awanis Azizan
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
| | - M. Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Rudiyanto R.
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norio Nagao
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698343
| |
Collapse
|
64
|
Liang MH, Xie H, Chen HH, Liang ZC, Jiang JG. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga Dunaliella bardawil Rich in Lutein. ACS Synth Biol 2020; 9:1246-1253. [PMID: 32408742 DOI: 10.1021/acssynbio.0c00070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The salt-tolerant unicellular alga Dunaliella bardawil FACHB-847 can accumulate large amounts of lutein, but the underlying cause of massive accumulation of lutein is still unknown. In this study, genes encoding two types of carotene hydroxylases, i.e., β-carotene hydroxylase (DbBCH) and cytochrome P450 carotenoid hydroxylase (DbCYP97s; DbCYP97A, DbCYP97B, and DbCYP97C), were cloned from D. bardawil. Their substrate specificities and enzyme activities were tested through functional complementation assays in Escherichia coli. It was showed that DbBCH could catalyze the hydroxylation of the β-rings of both β- and α-carotene, and displayed a low level of ε-hydroxylase. Unlike CYP97A from higher plants, DbCYP97A could not hydroxylate β-carotene. DbCYP97A and DbCYP97C showed high hydroxylase activity toward the β-ring and ε-ring of α-carotene, respectively. DbCYP97B displayed minor activity toward the β-ring of α-carotene. The high accumulation of lutein in D. bardawil may be due to the multiple pathways for lutein biosynthesis generated from α-carotene with zeinoxanthin or α-cryptoxanthin as intermediates by DbBCH and DbCYP97s. Taken together, this study provides insights for understanding the underlying reason for high production of lutein in the halophilic green alga D. bardawil FACHB-847.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi-Cong Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
65
|
Maroneze MM, Caballero-Guerrero B, Zepka LQ, Jacob-Lopes E, Pérez-Gálvez A, Roca M. Accomplished High-Resolution Metabolomic and Molecular Studies Identify New Carotenoid Biosynthetic Reactions in Cyanobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6212-6220. [PMID: 32400160 DOI: 10.1021/acs.jafc.0c01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cyanobacteria and microalgae are characterized by a rich and varied profile of chlorophyll (8-20 mg/g) and carotenoid (>2.2 mg/g) pigments, being noteworthy material for natural pigment production in the food industry. We propose a systematic workflow that uses high-performance liquid chromatography (HPLC) coupled with high-resolution tandem mass spectrometry in a broadband collision-induced dissociation mode (bbCID) acquisition mode to simultaneously obtain MS and MSn spectra. Metabolomic studies showed for the first time the presence of carotenoids with 5,6-epoxy-groups (5,6-epoxy- and 5,8-furanoid β-cryptoxanthin), carotenoids from the α-branch (5,8-furanoid-2'-3'-didehydro α-cryptoxanthin), and 2'-dehydrodeoxomyxol in cyanobacteria. To support the new findings, an in silico search retrieved the putative sequences of carotenogenic enzymes involved in the corresponding biosynthetic pathways (ZEP, NSY, CrtL-b and CrtR) in the analyzed cyanobacteria species. Consequently, high-throughput metabolomics studies assisted by molecular analysis offer a powerful tool for providing insights into the characterization of bioactive compounds and their metabolism in cyanobacteria and microalgae.
Collapse
Affiliation(s)
- Mariana Manzoni Maroneze
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Belén Caballero-Guerrero
- Microbiology Service, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, 41013 Sevilla, Spain
| |
Collapse
|
66
|
Neri-Numa IA, Arruda HS, Geraldi MV, Maróstica Júnior MR, Pastore GM. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
Liang MH, Wu FC, Liang ZC, Chen HH, Jiang JG. Induction of carotenoid cleavage by salt stress and the effect of their products on cell growth and pigment accumulation in Dunaliella sp. FACHB-847. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
68
|
Abstract
Carotenoids are isoprenoid compounds synthesized de novo in all photosynthetic organisms as well as in some nonphotosynthetic bacteria and fungi. In plants, carotenoids are essential for light harvesting and photoprotection. They contribute to the vivid color found in many plant organs. The cleavage of carotenoids produces small molecules (apocarotenoids) that serve as aroma compounds, as well as phytohormones and signals to affect plant growth and development. Since carotenoids provide valuable nutrition and health benefits for humans, understanding of carotenoid biosynthesis, catabolism and storage is important for biofortification of crops with improved nutritional quality. This chapter primarily introduces our current knowledge about carotenoid biosynthesis and degradation pathways as well as carotenoid storage in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Yaakov Tadmor
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
69
|
Sun T, Li L. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110331. [PMID: 31779888 DOI: 10.1016/j.plantsci.2019.110331] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Carotenoids are essential pigments to plants and important natural products to humans. Carotenoids as both primary and specialized metabolites fulfill multifaceted functions in plants. As such, carotenoid accumulation (a net process of biosynthesis, degradation and sequestration) is subjected to complicated regulation throughout plant life cycle in response to developmental and environmental signals. Investigation of transcriptional regulation of carotenoid metabolic genes remains the focus in understanding the regulatory control of carotenoid accumulation. While discovery of bona fide carotenoid metabolic regulators is still challenging, the recent progress of identification of various transcription factors and regulators helps us to construct hierarchical regulatory network of carotenoid accumulation. The elucidation of carotenoid regulatory mechanisms at protein level and in chromoplast provides some insights into post-translational regulation of carotenogenic enzymes and carotenoid sequestration in plastid sink. This review briefly describes the pathways and main flux-controlling steps for carotenoid accumulation in plants. It highlights our recent understanding of the regulatory mechanisms underlying carotenoid accumulation at both transcriptional and post-translational levels. It also discusses the opportunities to expand toolbox for further shedding light upon the intrinsic regulation of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
70
|
Daruwalla A, Kiser PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158590. [PMID: 31874225 DOI: 10.1016/j.bbalip.2019.158590] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, United States of America.
| |
Collapse
|
71
|
Hong M, Chi ZH, Wang YQ, Tang YM, Deng QX, He MY, Wang RK, He YZ. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene ( CYC- B) Is Implicated in Carotenoid Accumulation and Coloration in the Loquat. Biomolecules 2019; 9:E874. [PMID: 31847172 PMCID: PMC6995616 DOI: 10.3390/biom9120874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023] Open
Abstract
Carotenoids are the principal pigments in the loquat. Although the metabolic pathway of plant carotenoids has been extensively investigated, few studies have been explored the regulatory mechanisms of loquat carotenoids because knowledge of the loquat genome is incomplete. The chromoplast-specific lycopene β-cyclase gene (CYC-B) could catalyze cyclization of lycopene to β-carotene. In this study, the differential accumulation patterns of loquat with different colors were analyzed and virus-induced gene silencing (VIGS) was utilized in order to verify CYC-B gene function. Using a cloning strategy of homologous genes, a CYC-B gene orthologue was successfully identified from the loquat. At a later stage of maturation, CYC-B gene expression and carotenoids concentrations in the 'Dawuxing' variety were higher than in 'Chuannong 1-5-9', possibly leading to the difference in pulp coloration of loquat. Interference of CYC-B gene expression in the loquat demonstrated clear visual changes. The green color in negative control fruits became yellow, while TRV2-CYC-B silenced fruits remained green. CYC-B gene expression and total carotenoid content in the pulp decreased by 32.5% and 44.1%, respectively. Furthermore, multiple key genes in the carotenoid metabolic pathway synergistically responded to downregulation of CYC-B gene expression. In summary, we provide direct evidences that CYC-B gene is involved in carotenoid accumulation and coloration in the loquat.
Collapse
Affiliation(s)
- Min Hong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Zhuo-Heng Chi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yong-Qing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yue-Ming Tang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qun-Xian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Ming-Yang He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Ri-Kui Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Yi-Zhong He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| |
Collapse
|
72
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
73
|
Abstract
Microalgae are unicellular organisms that act as the crucial primary producers all over the world, typically found in marine and freshwater environments. Most of them can live photo-autotrophically, reproduce rapidly, and accumulate biomass in a short period efficiently. To adapt to the uninterrupted change of the environment, they evolve and differentiate continuously. As a result, some of them evolve special abilities such as toleration of extreme environment, generation of sophisticated structure to adapt to the environment, and avoid predators. Microalgae are believed to be promising bioreactors because of their high lipid and pigment contents. Genetic engineering technologies have given revolutions in the microalgal industry, which decoded the secrets of microalgal genes, express recombinant genes in microalgal genomes, and largely soar the accumulation of interested components in transgenic microalgae. However, owing to several obstructions, the industry of transgenic microalgae is still immature. Here, we provide an overview to emphasize the advantage and imperfection of the existing transgenic microalgal bioreactors.
Collapse
Affiliation(s)
- Zhi-Cong Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
74
|
Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H. De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
75
|
Saini RK, Keum YS. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biotechnol 2019; 46:657-674. [PMID: 30415292 DOI: 10.1007/s10295-018-2104-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Carotenoids are a diverse group of isoprenoid pigments that play crucial roles in plants, animals, and microorganisms, including body pigmentation, bio-communication, precursors for vitamin A, and potent antioxidant activities. With their potent antioxidant activities, carotenoids are emerging as molecules of vital importance in protecting against chronic degenerative disease, such as aging, cancer, cataract, cardiovascular, and neurodegenerative diseases. Due to countless functions in the cellular system, carotenoids are extensively used in dietary supplements, food colorants, aquaculture and poultry feed, nutraceuticals, and cosmetics. Moreover, the emerging demand for carotenoids in these vast areas has triggered their industrial-scale production. Currently, 80%-90% of carotenoids are produced synthetically by chemical synthesis. However, the demand for naturally produced carotenoids is increasing due to the health concern of synthetic counterparts. This article presents a review of the industrial production of carotenoids utilizing a number of diverse microbes, including microalgae, bacteria, and fungi, some of which have been genetically engineered to improve production titers.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul, 143-701, Republic of Korea.
- Institute of Natural Science and Agriculture, Konkuk University, Seoul, 143-701, Republic of Korea.
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
76
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
77
|
Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol 2018; 103:1095-1114. [PMID: 30560452 DOI: 10.1007/s00253-018-9557-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of "microbial" carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Valéria Carvalho Santos-Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
78
|
Liang MH, Wang L, Wang Q, Zhu J, Jiang JG. High-value bioproducts from microalgae: Strategies and progress. Crit Rev Food Sci Nutr 2018; 59:2423-2441. [PMID: 29676930 DOI: 10.1080/10408398.2018.1455030] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microalgae have been considered as alternative sustainable resources for high-value bioproducts such as lipids (especially triacylglycerides [TAGs]), polyunsaturated fatty acids (PUFAs), and carotenoids, due to their relatively high photosynthetic efficiency, no arable land requirement, and ease of scale-up. It is of great significance to exploit microalgae for the production of high-value bioproducts. How to improve the content or productivity of specific bioproducts has become one of the most urgent challenges. In this review, we will describe high-value bioproducts from microalgae and their biosynthetic pathways (mainly for lipids, PUFAs, and carotenoids). Recent progress and strategies for the enhanced production of bioproducts from microalgae are also described in detail, and these strategies take advantages of optimized cultivation conditions with abiotic stress, chemical stress (addition of metabolic precursors, phytohormones, chemical inhibitors, and chemicals inducing oxidative stress response), and molecular approaches such as metabolic engineering, transcriptional engineering, and gene disruption strategies (mainly RNAi, antisense RNA, miRNA-based knockdown, and CRISPR/Cas9).
Collapse
Affiliation(s)
- Ming-Hua Liang
- a College of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Ling Wang
- b School of Biotechnology, Jiangsu University of Science and Technology , Zhenjiang , China
| | - Qiming Wang
- c College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , China
| | - Jianhua Zhu
- b School of Biotechnology, Jiangsu University of Science and Technology , Zhenjiang , China.,c College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , China.,d Department of Plant Science and Landscape Architecture, University of Maryland , College Park , Maryland , USA
| | - Jian-Guo Jiang
- a College of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
79
|
Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525. [PMID: 29323202 PMCID: PMC5765111 DOI: 10.1038/s41598-017-17392-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Vartul Sangal
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Martha E Trujillo
- Departamento de Microbiologia y Genetica, Lab 214, Universidad de Salamanca, Salamanca, Spain
| | | | - Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun, Turkey
| | - Darren Lee Smith
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kristi E Kim
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | - Paul Peluso
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | | |
Collapse
|