51
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
52
|
Chen H, Buziau AM, Rentería ME, Simons PIHG, Brouwers MCGJ. Fructose intake from sugar-sweetened beverages is associated with a greater risk of hyperandrogenism in women: UK Biobank cohort study. Eur J Endocrinol 2024; 190:104-112. [PMID: 38291515 DOI: 10.1093/ejendo/lvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To assess the association between fructose consumption and serum sex hormone-binding globulin (SHBG), (free) testosterone, and risk of hyperandrogenism in a population-based cohort. DESIGN An observational and genetic association study in participants of the UK Biobank (n = 136 384 and n = 383 392, respectively). METHODS We assessed the relationship of (1) the intake of different sources of fructose (ie, total, fruit, fruit juice, and sugar-sweetened beverages [SSBs]) and (2) rs2304681 (a missense variant in the gene encoding ketohexokinase, used as an instrument of impaired fructose metabolism), with SHBG, total and free testosterone levels, and risk of hyperandrogenism (free androgen index >4.5). RESULTS The intake of total fructose and fructose from fruit was associated with higher serum SHBG and lower free testosterone in men and women and lower risk of hyperandrogenism in women. In contrast, fructose intake from SSB (≥10 g/day) was associated with lower SHBG in men and women and with higher free testosterone levels and risk of hyperandrogenism in women (odds ratio [OR]: 1.018; 95% confidence interval [CI]: 1.010; 1.026). Carriers of the rs2304681 A allele were characterized by higher circulating SHBG (both men and women), lower serum free testosterone (women), and a lower risk of biochemical hyperandrogenism (OR: 0.997, 95% CI: 0.955; 0.999; women) and acne vulgaris (OR: 0.975, 95% CI: 0.952; 0.999; men and women combined). CONCLUSIONS The consumption of ≥10 g/day fructose from SSB, corresponding to ≥200 mL serving, is associated with a 2% higher risk of hyperandrogenism in women. These observational data are supported by our genetic data.
Collapse
Affiliation(s)
- Huadong Chen
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Amée M Buziau
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Pomme I H G Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Elkerliek Hospital, Helmond, The Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
53
|
Suo X, Baggio A, Pellegrini N, Vincenzetti S, Vittadini E. Effect of shape, gluten, and mastication effort on in vitro starch digestion and the predicted glycemic index of pasta. Food Funct 2024; 15:419-426. [PMID: 38099708 DOI: 10.1039/d3fo02666c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gluten-containing (GC) and gluten-free (GF) pasta consumption has been growing in recent years. The market offers a wide variety of pasta types, with differences in shape and formulation that influence the mastication process and, consequently, their nutritional behaviors (i.e. starch digestibility and glycemic response). This study investigated the effect of shape, gluten, and structural breakdown on in vitro starch digestibility and predicted the glycemic index (pGI) of GC and GF penne, spaghetti, and risoni. Pasta was cooked and minced to mimic short, intermediate, and long mastication efforts. Short mastication led to a higher number of big particles than intermediate and long mastications for all pasta samples, which was reflected in the different starch digestibility and pGI patterns. Multivariate analysis of variance showed that the three studied factors differently affected the in vitro starch digestion of pasta. Mastication effort, shape, and their interaction mainly affected the starch digestion rate and pGI. Gluten was the major factor in affecting the amount of digested starch. The results suggested that small shapes (i.e. risoni), the presence of gluten, and short mastication effort led to a lower pGI. The findings will be useful for the development of pasta products tailored to fulfill the needs of specific consumers following a rational food design approach.
Collapse
Affiliation(s)
- Xinying Suo
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, MC, Italy.
- School of Food and Bioengineering, Collaborative Innovation Centre of Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Anna Baggio
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, MC, Italy.
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
54
|
Sebek M, Menichetti G. Network Science and Machine Learning for Precision Nutrition. PRECISION NUTRITION 2024:367-402. [DOI: 10.1016/b978-0-443-15315-0.00012-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
55
|
Santos RA, Pessoa HR, Daleprane JB, de Faria Lopes GP, da Costa DCF. Comparative Anticancer Potential of Green Tea Extract and Epigallocatechin-3-gallate on Breast Cancer Spheroids. Foods 2023; 13:64. [PMID: 38201092 PMCID: PMC10778335 DOI: 10.3390/foods13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Despite advances in diagnosis and therapy, breast cancer remains the leading cause of death in many countries. Green tea (GT) has been proposed to play a crucial role in cancer chemoprevention. Although extensive research has been conducted on GT phytochemicals, most experimental studies concentrate mainly on commercial formulations or isolated catechins. This study presents a comparative investigation into the anticancer properties of green tea extract (GTE) and epigallocatechin-3-gallate (EGCG) in a three-dimensional (3D) MCF-7 breast cancer cell culture. MCF-7 spheroids were exposed to GTE or EGCG, and effects on 3D culture formation, growth, cell viability, and migration were examined. GTE inhibits cell migration and the formation of breast cancer spheroids more effectively than EGCG, while inducing more pronounced morphological changes in the spheroids' structure. These findings suggest that the food matrix improves GTE effects on breast cancer spheroids, supporting the hypothesis that a mixture of phytochemicals might enhance its anticancer potential.
Collapse
Affiliation(s)
- Ronimara A. Santos
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil;
| | - Giselle Pinto de Faria Lopes
- Almirante Paulo Moreira Institute of Sea Studies, Division of Natural Products, Department of Marine Biotechnology, Arraial do Cabo 28930-000, Brazil;
| | - Danielly C. Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| |
Collapse
|
56
|
Petersen T, Hirsch S. Comparing meat and meat alternatives: an analysis of nutrient quality in five European countries. Public Health Nutr 2023; 26:3349-3358. [PMID: 37800339 PMCID: PMC10755401 DOI: 10.1017/s1368980023001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To assess and compare the (macro-)nutritional composition of red meat (RM) and poultry meat (PM) products with the emerging category of meat substitutes. DESIGN We use information on nutritional values per 100 g to estimate the differences in the nutritional composition between RM, PM, vegan meat substitute (VMS) and non-vegan meat substitute (NVMS) and derive six unique meat product clusters to enhance the comparability. SETTING Meat markets from five major European countries: France, Germany, UK, Italy and Spain. PARTICIPANTS/DATA Product innovation data for 19 941 products from Mintel's Global New Product Database from 2010 to 2020. RESULTS Most of the innovations in the sample are RM products (55 %), followed by poultry (30 %), VMS (11 %) and NVMS (5 %). RM products exhibit a significantly higher energy content in kcal/100 g as well as fat, saturated fat, protein and salt all in g/100 g than the meatless alternatives, while the latter contain significantly more carbohydrates and fibre than either poultry or RM. However, results differ to a certain degree when products are grouped into more homogeneous clusters like sausages, cold cuts and burgers. This indicates that general conclusions regarding the health effects of substituting meat with plant-based alternatives should only be drawn in relation to comparable products. CONCLUSIONS Meat substitutes, both vegan and non-vegan, are rated as ultra-processed foods. However, compared with RM products, they and also poultry products both can provide a diet that contains fewer nutrients-to-limit, like salt and saturated fats.
Collapse
Affiliation(s)
- Thies Petersen
- Department of Management in Agribusiness (410C), Institute of Farm Management, University of Hohenheim, Stuttgart, Germany
- Professorship Agricultural and Food Economics, TUM School of Management, Technical University of Munich, Munich, Germany
| | - Stefan Hirsch
- Department of Management in Agribusiness (410C), Institute of Farm Management, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
57
|
Young HA, Geurts L, Scarmeas N, Benton D, Brennan L, Farrimond J, Kiliaan AJ, Pooler A, Trovò L, Sijben J, Vauzour D. Multi-nutrient interventions and cognitive ageing: are we barking up the right tree? Nutr Res Rev 2023; 36:471-483. [PMID: 36156184 DOI: 10.1017/s095442242200018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As we continue to elucidate the mechanisms underlying age-related brain diseases, the reductionist strategy in nutrition–brain function research has focused on establishing the impact of individual foods. However, the biological processes connecting diet and cognition are complex. Therefore, consideration of a combination of nutritional compounds may be most efficacious. One barrier to establishing the efficacy of multi-nutrient interventions is that the area lacks an established set of evidence-based guidelines for studying their effect on brain health. This review is an output of the International Life Sciences Institute (ILSI) Europe. A multi-disciplinary expert group was assembled with the aim of developing a set of considerations to guide research into the effects of multi-nutrient combinations on brain functions. Consensus recommendations converged on six key issues that should be considered to advance research in this area: (1) establish working mechanisms of the combination and contributions of each individual compound; (2) validate the relevance of the mechanisms for the targeted human condition; (3) include current nutrient status, intake or dietary pattern as inclusion/exclusion criteria in the study design; (4) select a participant population that is clinically and biologically appropriate for all nutritional components of the combination; (5) consider a range of cognitive outcomes; (6) consider the limits of reductionism and the ‘gold standard’ randomised controlled trial. These guiding principles will enhance our understanding of the interactive/complementary activities of dietary components, thereby strengthening the evidence base for recommendations aimed at delaying cognitive decline.
Collapse
Affiliation(s)
| | - Lucie Geurts
- International Life Sciences Institute Europe, Brussels, Belgium
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York, USA
| | - David Benton
- Department of Psychology, Swansea University, Wales, UK
| | - Lorraine Brennan
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD Institute of Food and Health, UCD School of Agriculture and Food Science, Dublin, Republic of Ireland
| | | | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Amy Pooler
- Formerly at Nestlé Institute of Health Sciences, Lausanne, Switzerland. Currently at Sangamo Therapeutics, Inc, San Francisco, USA
| | - Laura Trovò
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - John Sijben
- Danone Nutricia Research, Utrecht, The Netherlands
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
58
|
Dassoff E, Shireen A, Wright A. Lipid emulsion structure, digestion behavior, physiology, and health: a scoping review and future directions. Crit Rev Food Sci Nutr 2023; 65:320-352. [PMID: 37947287 DOI: 10.1080/10408398.2023.2273448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Research investigating the effects of the food matrix on health is needed to untangle many unresolved questions in nutritional science. Emulsion structure plays a fundamental role in this inquiry; however, the effects of oil-in-water emulsion structure on broad metabolic, physiological, and health-related outcomes have not been comprehensively reviewed. This systematic scoping review targets this gap and examines methodological considerations for the field of relating food structure and health. MEDLINE, Web of Science, and CAB Direct were searched from inception to December 2022, returning 3106 articles, 52 of which were eligible for inclusion. Many investigated emulsion lipid droplet size and/or gastric colloidal stability and their relation to postprandial weight-loss-related outcomes. The present review also identifies numerous novel relationships between emulsion structures and health-related outcomes. "Omics" endpoints present an exciting avenue for more comprehensive analysis in this area, yet interpretation remains difficult. Identifying valid surrogate biomarkers for long-term outcomes and disease risk will be a turning point for food structure research, leading to breakthroughs in the pace and utility of research that generates advancements in health. The review's findings and recommendations aim to support new hypotheses, future trial design, and evidence-based emulsion design for improved health and well-being.
Collapse
Affiliation(s)
- Erik Dassoff
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Arshia Shireen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanda Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
59
|
Silva LF, Sunakozawa TN, Monteiro DA, Casella T, Conti AC, Todorov SD, Barretto Penna AL. Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin. Metabolites 2023; 13:1134. [PMID: 37999230 PMCID: PMC10673126 DOI: 10.3390/metabo13111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.
Collapse
Affiliation(s)
- Luana Faria Silva
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tássila Nakata Sunakozawa
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Diego Alves Monteiro
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tiago Casella
- Department of Dermatological, Infectious and Parasitic Diseases, FAMERP—São José do Rio Preto Medical School, São José do Rio Preto 15090-000, SP, Brazil;
| | - Ana Carolina Conti
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, USP—São Paulo University, São Paulo 05508-000, SP, Brazil;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Ana Lúcia Barretto Penna
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| |
Collapse
|
60
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
61
|
Bellows AC, Raj S, Pitstick E, Potteiger MR, Diemont SAW. Foraging Wild Edibles: Dietary Diversity in Expanded Food Systems. Nutrients 2023; 15:4630. [PMID: 37960283 PMCID: PMC10647252 DOI: 10.3390/nu15214630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Human food foraging in community forests offers extensive and expandable sources of food and high-quality nutrition that support chronic disease prevention and management and are underrepresented in US diets. Despite severe gaps in non-commercial "wild food" data, research in Syracuse, NY, identified substantial amounts of five key antioxidant phytochemicals in locally available, forageable foods with the potential to augment local dietary diversity and quality. Findings endorse the need for micro- and macro-nutrient research on an expanded range of forageable foods, community nutrition education on those foods, an expanded study on antioxidant phytochemical function, and the inclusion of forageables in the food system definition.
Collapse
Affiliation(s)
- Anne C. Bellows
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Sudha Raj
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Ellen Pitstick
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY 13244, USA; (S.R.); (E.P.)
| | - Matthew R. Potteiger
- Department of Landscape Architecture, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA;
| | - Stewart A. W. Diemont
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA;
| |
Collapse
|
62
|
Bello-Perez LA, Flores-Silva PC. Interaction between starch and dietary compounds: New findings and perspectives to produce functional foods. Food Res Int 2023; 172:113182. [PMID: 37689934 DOI: 10.1016/j.foodres.2023.113182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 09/11/2023]
Abstract
Due to the increased prevalence of overweight, obesity, diabetes, colon cancer, cardiovascular diseases, and metabolic syndrome, dietary approaches to reduce starch digestion and regulate glucose homeostasis have gained attention. Starch is a polysaccharide in most daily food consumed as bakery products, snacks, breakfast cereals, and pasta, which are often vilified. However, it is also present in beans, lentils, and oatmeal, which are considered healthy food products. The difference relays on the food matrix and the thermal process that can produce interactions between starch and dietary compounds (protein, lipid, non-starch polysaccharide, and bioactive compounds) or among starch chains (retrogradation). Such interactions produce structural changes so the digestive enzymes cannot hydrolyze them; additionally, the physical barrier of some macromolecules (proteins, hydrocolloids) restricts starch gelatinization and accessibility of the digestive enzymes to hydrolyze the starch. The interactions mentioned above and the use of some macromolecules as physical barriers could be explored as a pathway to develop functional foods. This review analyzes the interactions between starch and dietary compounds influenced by the processing of some food matrices to better understand their potential for developing functional foods.
Collapse
Affiliation(s)
- Luis A Bello-Perez
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Yautepec, Morelos, Mexico.
| | | |
Collapse
|
63
|
Wu H, Chen B, Wu Y, Gao J, Li X, Tong P, Wu Y, Meng X, Chen H. New Perspectives on Food Matrix Modulation of Food Allergies: Immunomodulation and Component Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13181-13196. [PMID: 37646334 DOI: 10.1021/acs.jafc.3c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Food allergy is a multifactorial interplay process influenced not only by the structure and function of the allergen itself but also by other components of the food matrix. For food, before it is thoroughly digested and absorbed, numerous factors make the food matrix constantly change. This will also lead to changes in the chemistry, biochemical composition, and structure of the various components in the matrix, resulting in multifaceted effects on food allergies. In this review, we reveal the relationship between the food matrix and food allergies and outline the immune role of the components in the food matrix, while highlighting the ways and pathways in which the components in the food matrix interact and their impact on food allergies. The in-depth study of the food matrix will essentially explore the mechanism of food allergies and bring about new ideas and breakthroughs for the prevention and treatment of food allergies.
Collapse
Affiliation(s)
- Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, People's Republic of China
| |
Collapse
|
64
|
Hall KD. From dearth to excess: the rise of obesity in an ultra-processed food system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220214. [PMID: 37482782 PMCID: PMC10363698 DOI: 10.1098/rstb.2022.0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
More people now have obesity than suffer from starvation thanks to our modern food system. Agriculture was transformed over the 20th century by a variety of technological advancements that relied heavily on fossil fuels. In the United States, government policies and economic incentives led to surplus production of cheap inputs to processed food industries that produced a wide variety of heavily marketed, convenient, rewarding, timesaving, and relatively inexpensive ultra-processed foods. The energy available in the food supply increased by much more than the population needs, albeit with large inequities in nutrition security. While most of the rise in per capita food availability during the late 20th and early 21st centuries in the United States resulted in increased food waste, a variety of mechanisms have been proposed by which changes in the increasingly ultra-processed food environment resulted in excess energy intake disproportionately in people genetically susceptible to obesity. As populations continue to grow, substantial investments in coordinated nutrition and agricultural research are needed to transform our current food system to one that relies less on fossil fuels, preserves biodiversity, ensures environmental health, and provides equitable access to affordable, safe and nutritious food that reduces the prevalence of chronic diet-related diseases like obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Kevin D. Hall
- Integrative Physiology Section Chief, Laboratory of Biological Modeling, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 12A South Drive, Room 4007, Bethesda, MD 20892-4007, USA
| |
Collapse
|
65
|
Flint M, Bowles S, Lynn A, Paxman JR. Novel plant-based meat alternatives: future opportunities and health considerations. Proc Nutr Soc 2023; 82:370-385. [PMID: 36603854 DOI: 10.1017/s0029665123000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Present food systems threaten population and environmental health. Evidence suggests reduced meat and increased plant-based food consumption would align with climate change and health promotion priorities. Accelerating this transition requires greater understanding of determinants of plant-based food choice. A thriving plant-based food industry has emerged to meet consumer demand and support dietary shift towards plant-based eating. 'Traditional' plant-based diets are low-energy density, nutrient dense, low in saturated fat and purportedly associated with health benefits. However, fast-paced contemporary lifestyles continue to fuel growing demand for meat-mimicking plant-based convenience foods which are typically ultra-processed. Processing can improve product safety and palatability and enable fortification and enrichment. However, deleterious health consequences have been associated with ultra-processing, though there is a paucity of equivocal evidence regarding the health value of novel plant-based meat alternatives (PBMAs) and their capacity to replicate the nutritional profile of meat-equivalents. Thus, despite the health halo often associated with plant-based eating, there is a strong rationale to improve consumer literacy of PBMAs. Understanding the impact of extensive processing on health effects may help to justify the use of innovative methods designed to maintain health benefits associated with particular foods and ingredients. Furthering knowledge regarding the nutritional value of novel PBMAs will increase consumer awareness and thus support informed choice. Finally, knowledge of factors influencing engagement of target consumer subgroups with such products may facilitate production of desirable, healthier PBMAs. Such evidence-based food manufacturing practice has the potential to positively influence future individual and planetary health.
Collapse
Affiliation(s)
- Megan Flint
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Simon Bowles
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Anthony Lynn
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Jenny R Paxman
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
66
|
Bjøntegaard MM, Molin M, Kolby M, Torheim LE. Purchase of ultra-processed foods in Norway: a repeated cross-sectional analysis of food sales in 2013 and 2019. Public Health Nutr 2023; 26:1743-1753. [PMID: 37339927 PMCID: PMC10478042 DOI: 10.1017/s1368980023001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE A dietary pattern dominated by ultra-processed foods has been associated with non-communicable diseases in several studies. A previous study from 2013 found a high share of ultra-processed foods in Norwegian food sales. This study aimed to investigate the current share of ultra-processed foods in Norway and the development in expenditure on ultra-processed foods from 2013. DESIGN A repeated cross-sectional analysis of scanner data from the Consumer Price Index from September 2013 and 2019 and an investigation of the processing degree according to the NOVA classification system. SETTING Food sales in Norway. PARTICIPANTS Norwegian grocery stores (n 180, for both time periods). RESULTS The share of expenditure in 2019 was highest for ultra-processed foods (46·5 %) and minimally or unprocessed foods (36·3 %), followed by processed foods (8·5 %) and processed culinary ingredients (1·3 %). An increasing degree of processing was found for several of the food groups between 2013 and 2019; however, most effect sizes were weak. In 2019, soft drinks became the most frequently purchased food item, surpassing milk and cheese, with the highest expenditure in Norwegian grocery stores. Increases in expenditure on ultra-processed foods were mainly due to increased expenditures on soft drinks, sweets and potato products. CONCLUSIONS A high share of expenditure on ultra-processed food was found in Norway, which may imply a high consumption of these foods. The change in expenditure of NOVA groups between 2013 and 2019 was small. Carbonated and non-carbonated soft drinks were the most frequently purchased products in Norwegian grocery stores and contributed to most of the expenditures.
Collapse
Affiliation(s)
- Marie Michaelsen Bjøntegaard
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4 St. Olavs Plass, N-0130 Oslo, Norway
- Department of Nutrition, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Marianne Molin
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4 St. Olavs Plass, N-0130 Oslo, Norway
- Department of Health Sciences, Oslo New University College, NO-0456 Oslo, Norway
| | - Marit Kolby
- Department of Health Sciences, Oslo New University College, NO-0456 Oslo, Norway
| | - Liv Elin Torheim
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4 St. Olavs Plass, N-0130 Oslo, Norway
| |
Collapse
|
67
|
Huang Z, de Vries S, Fogliano V, Wells JM, van der Wielen N, Capuano E. Effect of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor agonists in growing pigs. Food Chem 2023; 416:135804. [PMID: 36893645 DOI: 10.1016/j.foodchem.2023.135804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Effects of whole foods on the microbial production of tryptophan-derived aryl hydrocarbon receptor (AhR) ligands in the intestine were investigated in a pig model. Ileal digesta and faeces of pigs after feeding of eighteen different foods were analyzed. Indole, indole-3-propionic acid, indole-3-acetic acid, indole-3-lactic acid, kynurenine, tryptamine, and indole-3-aldehyde were identified in ileal digesta, which were also identified in faeces but at higher concentrations except indole-3-lactic acid, together with skatole, oxindole, serotonin, and indoleacrylic acid. The panel of tryptophan catabolites in ileal digesta and faeces varied across different foods. Eggs induced the highest overall concentration of catabolites in ileal digesta dominated by indole. Amaranth induced the highest overall concentration of catabolites in faeces dominated by skatole. Using a reporter cell line, we observed many faecal samples but not ileal samples retained AhR activity. Collectively, these findings contribute to food selection targeting AhR ligands production from dietary tryptophan in the intestine.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Sonja de Vries
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
68
|
Valmorbida JL, Baratto PS, Leffa PS, Sangalli CN, Silva JA, Vitolo MR. Consumption of ultraprocessed food is associated with higher blood pressure among 6-year-old children from southern Brazil. Nutr Res 2023; 116:60-68. [PMID: 37354762 DOI: 10.1016/j.nutres.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Ultraprocessed foods (UPF) consumption plays a critical role in the development of chronic diseases, but evidence of their effect on children's health is limited. We hypothesized that the consumption of UPF can influence blood pressure levels in 6-year-old children. This study is a secondary analysis of a randomized field trial in Brazil that is registered at clinicaltrial.gov (NCT00635453). Dietary intake was obtained using 2 multiple-pass 24-hour recalls when 305 children were 3 and 6 years old. We classified foods according to the NOVA system and determined the percentage of total energy intake derived from ultraprocessed foods. We collected anthropometric measures from and evaluated systolic and diastolic blood pressures of 6-year-old children. Linear regression analysis was used to assess the association between UPF consumption and blood pressure levels. UPF represented 40.3% (interquartile range, 34.1-48.5) of the total energy intake at 3 years and 45.2% (interquartile range, 41.5-53.2) at 6 years. The adjusted linear regression analyses showed that systolic blood pressure was associated with UPF consumption at 6 years (P = .05), birth weight (P = .02), waist circumference (P < .01), and physical activity (P = .04), whereas diastolic blood pressure was associated with UPF consumption at 3 and 6 years (P = .01 and P < .01, respectively), birth weight (P = .05), and waist circumference (P < .01). Our data suggest that UPF consumption played a role in increasing 6-year-old children's blood pressure. These results reinforce the importance of effective strategies to prevent the excessive consumption of UPF in childhood.
Collapse
Affiliation(s)
- Julia L Valmorbida
- Graduate Program in Pediatrics, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil; Nutrition Research Group (NUPEN), Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil.
| | - Paola S Baratto
- Graduate Program in Pediatrics, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil; Nutrition Research Group (NUPEN), Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| | - Paula S Leffa
- Nutrition Research Group (NUPEN), Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| | - Caroline N Sangalli
- Nutrition Research Group (NUPEN), Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| | - Janilson A Silva
- Nutrition Department, University Center of João Pessoa, João Pessoa/PB, 58053-000, Brazil
| | - Marcia R Vitolo
- Graduate Program in Pediatrics, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil; Nutrition Research Group (NUPEN), Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, 90050-170, Brazil
| |
Collapse
|
69
|
Kaur M, Barringer S. Effect of Yogurt and Its Components on the Deodorization of Raw and Fried Garlic Volatiles. Molecules 2023; 28:5714. [PMID: 37570683 PMCID: PMC10420880 DOI: 10.3390/molecules28155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Garlic contains sulfur volatiles that cause a bad odor after consumption. The objective of this study was to understand how yogurt and its components cause deodorization. Raw and fried garlic samples were mixed with various treatments and measurements of volatiles were conducted using a selected-ion flow-tube mass spectrometer. Frying garlic significantly reduced almost all sulfur volatile compounds. Raw garlic was deodorized more than fried garlic by all of the treatments. Fat, protein and water significantly reduced the concentration of sulfur-based volatiles in garlic. At the same concentration, either fat or protein produced higher deodorization, depending on the hydrophobicity of the volatile. Whey protein, casein and their complex all caused deodorization. Increasing the pH to 7 or heating changed the structure of the proteins and decreased the deodorization of the volatiles, showing the importance of proteins for deodorization. As the quantity of fat increased, the deodorization of the volatiles also increased. Foods with higher fat or protein content can be formulated to offer a potential solution to reduce the unpleasant odor associated with garlic consumption.
Collapse
Affiliation(s)
| | - Sheryl Barringer
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
70
|
McClements IF, McClements DJ. Designing healthier plant-based foods: Fortification, digestion, and bioavailability. Food Res Int 2023; 169:112853. [PMID: 37254427 DOI: 10.1016/j.foodres.2023.112853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Many consumers are incorporating more plant-based foods into their diets as a result of concerns about the environmental, ethical, and health impacts of animal sourced foods like meat, seafood, egg, and dairy products. Foods derived from animals negatively impact the environment by increasing greenhouse gas emissions, land use, water use, pollution, deforestation, and biodiversity loss. The livestock industry confines and slaughters billions of livestock animals each year. There are concerns about the negative impacts of some animal sourced foods, such as red meat and processed meat, on human health. The livestock industry is a major user of antibiotics, which is leading to a rise in the resistance of several pathogenic microorganisms to antibiotics. It is often assumed that a plant-based diet is healthier than one containing more animal sourced foods, but this is not necessarily the case. Eating more fresh fruits, vegetables, nuts, and whole grain cereals has been linked to improved health outcomes but it is unclear whether next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs are healthier than the products they are designed to replace. Many of these new products are highly processed foods that contain high levels of saturated fat, sugar, starch, and salt, and low levels of micronutrients, nutraceuticals, and dietary fibers. Moreover, they are often rapidly digested in the gastrointestinal tract because processing disrupts plant tissues and releases the macronutrients. Consequently, it is important to formulate plant-based foods to reduce the levels of nutrients linked to adverse health effects and increase the levels linked to beneficial health effects. Moreover, it is important to design the food matrix so that the macronutrients are not digested and absorbed too quickly, but the micronutrients are highly bioavailable. In this article, we discuss how next-generation plant-based foods can be made healthier by controlling their nutrient profile, digestibility, and bioavailability.
Collapse
|
71
|
Protein gel with designed network and texture regulated via building blocks to study dysphagia diet classifications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
72
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
73
|
Güler N, Sensoy I. The effect of psyllium fiber on the in vitro starch digestion of steamed and roasted wheat based dough. Food Res Int 2023; 168:112797. [PMID: 37120181 DOI: 10.1016/j.foodres.2023.112797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
This study aimed to determine how the addition of psyllium fiber to steamed and roasted wheat-based flat dough pieces affected the in vitro starch digestibility. Wheat flour was replaced with 10% psyllium fiber in the preparation of fiber-enriched dough samples. Two distinct methods of heating were utilised: steaming (100 °C, 2 min & 10 min) and roasting (100 °C, 2 min & 250 °C, 2 min). Rapidly digestible starch (RDS) fractions reduced significantly in both steamed and roasted samples, whereas slowly digestible starch (SDS) fractions increased significantly only in samples roasted at 100 °C and steamed for 2 min. The roasted samples had a lower RDS fraction than the steamed samples only when fiber was added. This study demonstrated the effect of processing method, duration, temperature, formed structure, matrix and the addition of psyllium fiber on in vitro starch digestion by altering starch gelatinization, gluten network, and consequently enzyme access to substrates.
Collapse
Affiliation(s)
- Nilay Güler
- Department of Food Engineering, Middle East Technical University, Universiteler Mahallesi, Cankaya 06800 Ankara, Turkey
| | - Ilkay Sensoy
- Department of Food Engineering, Middle East Technical University, Universiteler Mahallesi, Cankaya 06800 Ankara, Turkey.
| |
Collapse
|
74
|
Onyeaka H, Nwaiwu O, Obileke K, Miri T, Al‐Sharify ZT. Global nutritional challenges of reformulated food: A review. Food Sci Nutr 2023; 11:2483-2499. [PMID: 37324840 PMCID: PMC10261815 DOI: 10.1002/fsn3.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Food reformulation, the process of redesigning processed food products to make them healthier, is considered a crucial step in the fight against noncommunicable diseases. The reasons for reformulating food vary, with a common focus on reducing the levels of harmful substances, such as fats, sugars, and salts. Although this topic is broad, this review aims to shed light on the current challenges faced in the reformulation of food and to explore different approaches that can be taken to overcome these challenges. The review highlights the perception of consumer risk, the reasons for reformulating food, and the challenges involved. The review also emphasizes the importance of fortifying artisanal food processing and modifying microbial fermentation in order to meet the nutrient requirements of people in developing countries. The literature suggests that while the traditional reductionist approach remains relevant and yields quicker results, the food matrix approach, which involves engineering food microstructure, is a more complex process that may take longer to implement in developing economies. The findings of the review indicate that food reformulation policies are more likely to succeed if the private sector collaborates with or responds to the government regulatory process, and further research is conducted to establish newly developed reformulation concepts from different countries. In conclusion, food reformulation holds great promise in reducing the burden of noncommunicable diseases and improving the health of people around the world.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Ogueri Nwaiwu
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - KeChrist Obileke
- Faculty of Science and AgricultureUniversity of Fort HareAliceSouth Africa
| | - Taghi Miri
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Zainab T. Al‐Sharify
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
- Department of Environmental Engineering, College of EngineeringUniversity of Al‐MustansiriyaBaghdadIraq
| |
Collapse
|
75
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
76
|
Panda C, Komarnytsky S, Fleming MN, Marsh C, Barron K, Le Brun-Blashka S, Metzger B. Guided Metabolic Detoxification Program Supports Phase II Detoxification Enzymes and Antioxidant Balance in Healthy Participants. Nutrients 2023; 15:2209. [PMID: 37432335 DOI: 10.3390/nu15092209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Adequate antioxidant supply is essential for maintaining metabolic homeostasis and reducing oxidative stress during detoxification. The emerging evidence suggests that certain classes of phytonutrients can help support the detoxification process by stimulating the liver to produce detoxification enzymes or acting as antioxidants that neutralize the harmful effects of free radicals. This study was designed to examine the effects of a guided 28-day metabolic detoxification program in healthy adults. The participants were randomly assigned to consume a whole food, multi-ingredient supplement (n = 14, education and intervention) or control (n = 18, education and healthy meal) daily for the duration of the trial. The whole food supplement contained 37 g/serving of a proprietary, multicomponent nutritional blend in the form of a rehydratable shake. Program readiness was ensured at baseline using a validated self-perceived wellness score and a blood metabolic panel, indicating stable emotional and physical well-being in both groups. No significant changes or adverse effects were found on physical or emotional health, cellular glutathione (GSH) and the GSH:GSSG ratio, porphyrin, and hepatic detoxification biomarkers in urine. The intervention was positively associated with a 23% increase in superoxide dismutase (p = 0.06) and a 13% increase in glutathione S-transferase (p = 0.003) activities in the blood. This resulted in a 40% increase in the total cellular antioxidant capacity (p = 0.001) and a 13% decrease in reactive oxygen species (p = 0.002) in isolated PBMCs from participants in the detoxification group. Our findings indicate that consuming a whole food nutritional intervention as a part of the guided detoxification program supported phase II detoxification, in part, by promoting enhanced free radical scavenging and maintaining redox homeostasis under the body's natural glutathione recycling capacity.
Collapse
Affiliation(s)
- Chinmayee Panda
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Michelle Norton Fleming
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Carissa Marsh
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Keri Barron
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Sara Le Brun-Blashka
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Brandon Metzger
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| |
Collapse
|
77
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
78
|
Prokopidis K, Mazidi M, Sankaranarayanan R, Tajik B, McArdle A, Isanejad M. Effects of whey and soy protein supplementation on inflammatory cytokines in older adults: a systematic review and meta-analysis. Br J Nutr 2023; 129:759-770. [PMID: 35706399 PMCID: PMC9975787 DOI: 10.1017/s0007114522001787] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Low-grade inflammation is a mediator of muscle proteostasis. This study aimed to investigate the effects of isolated whey and soy proteins on inflammatory markers. METHODS We conducted a systematic literature search of randomised controlled trials (RCT) through MEDLINE, Web of Science, Scopus and Cochrane Library databases from inception until September 2021. To determine the effectiveness of isolated proteins on circulating levels of C-reactive protein (CRP), IL-6 and TNF-α, a meta-analysis using a random-effects model was used to calculate the pooled effects (CRD42021252603). RESULTS Thirty-one RCT met the inclusion criteria and were included in the systematic review and meta-analysis. A significant reduction of circulating IL-6 levels following whey protein [Mean Difference (MD): -0·79, 95 % CI: -1·15, -0·42, I2 = 96 %] and TNF-α levels following soy protein supplementation (MD: -0·16, 95 % CI: -0·26, -0·05, I2 = 68 %) was observed. The addition of soy isoflavones exerted a further decline in circulating TNF-α levels (MD: -0·20, 95 % CI: -0·31, -0·08, I2 = 34 %). According to subgroup analysis, whey protein led to a statistically significant decrease in circulating IL-6 levels in individuals with sarcopenia and pre-frailty (MD: -0·98, 95 % CI: -1·56, -0·39, I2 = 0 %). These findings may be dependent on participant characteristics and treatment duration. CONCLUSIONS These data support that whey and soy protein supplementation elicit anti-inflammatory effects by reducing circulating IL-6 and TNF-α levels, respectively. This effect may be enhanced by soy isoflavones and may be more prominent in individuals with sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Mohsen Mazidi
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Rajiv Sankaranarayanan
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Behnam Tajik
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Anne McArdle
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Corresponding author: Masoud Isanejad, email
| |
Collapse
|
79
|
Lambert K, Gardos R, Coolican H, Pickel L, Sung HK, Wang AYM, Ong AC. Diet and Polycystic Kidney Disease: Nutrients, Foods, Dietary Patterns, and Implications for Practice. Semin Nephrol 2023; 43:151405. [PMID: 37542985 DOI: 10.1016/j.semnephrol.2023.151405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Polycystic kidney disease (PKD) is a chronic, progressive hereditary condition characterized by abnormal development and growth of cysts in the kidneys and other organs. There is increasing interest in exploring whether dietary modifications may prevent or slow the disease course in people with PKD. Although vasopressin-receptor agonists have emerged as a novel drug treatment in advancing care for people with PKD, several recent landmark trials and clinical discoveries also have provided new insights into potential dietary-related therapeutic strategies. In this review, we summarize the current evidence pertaining to nutrients, foods, dietary patterns, cyst growth, and progression of PKD. We also describe existing evidence-based dietary care for people with PKD and outline the potential implications for advancing evidence-based dietary interventions. Semin Nephrol 43:x-xx © 2023 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Kelly Lambert
- Nutrition and Dietetics, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, New South Wales, Australia.
| | | | | | - Lauren Pickel
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela Yee-Moon Wang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, China
| | - Albert Cm Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
80
|
Beal T, Ortenzi F, Fanzo J. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. Lancet Planet Health 2023; 7:e233-e237. [PMID: 36889864 DOI: 10.1016/s2542-5196(23)00006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 05/26/2023]
Abstract
Unhealthy diets are a major contributor to the global burden of disease, and food systems cause substantial environmental destruction. To lay out how to achieve healthy diets for all, within planetary boundaries, the landmark EAT-Lancet Commission proposed the planetary health diet, which includes a range of possible intakes by food group and substantially restricts the intake of highly processed foods and animal source foods globally. However, concerns have been raised about the extent to which the diet provides adequate essential micronutrients, particularly those generally found in higher quantities and in more bioavailable forms in animal source foods. To address these concerns, we matched each food group point estimate within the respective range with globally representative food composition data. We then compared the resulting dietary nutrient intakes with globally harmonised recommended nutrient intakes for adults and women of reproductive age for six micronutrients that are globally scarce. To fill the dietary gaps that were estimated for vitamin B12, calcium, iron, and zinc, we suggest modifications to the original planetary health diet to achieve micronutrient adequacy (without fortification or supplementation) for adults, which included increasing the proportion of animal source foods and reducing foods high in phytate.
Collapse
Affiliation(s)
- Ty Beal
- Global Alliance for Improved Nutrition, Washington, DC, USA.
| | | | - Jessica Fanzo
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
81
|
Schmidt LC, Ozturk OK, Young J, Bugusu B, Li M, Claddis D, Mohamedshah Z, Ferruzzi M, Hamaker BR. Formation of cereal protein disulfide-linked stable matrices by apigeninidin, a 3-deoxyanthocyanidin. Food Chem 2023; 404:134611. [DOI: 10.1016/j.foodchem.2022.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
82
|
Ortenzi F, Kolby M, Lawrence M, Leroy F, Nordhagen S, Phillips SM, van Vliet S, Beal T. Limitations of the Food Compass Nutrient Profiling System. J Nutr 2023; 153:610-614. [PMID: 36787879 DOI: 10.1016/j.tjnut.2023.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Nutrient Profiling Systems provide frameworks to assess the healthfulness of foods based on food composition and are intended as inputs into strategies to improve diets. Many Nutrient Profiling Systems are founded on a reductionist assumption that the healthfulness of foods is determined by the sum of their individual nutrients, with no consideration for the extent and purpose of processing and its health implications. A novel Nutrient Profiling System called Food Compass attempted to address existing gaps and provide a more holistic assessment of the healthfulness of foods. We propose that the chosen algorithm is not well justified and produces results that fail to discriminate for common shortfall nutrients, exaggerate the risks associated with animal-source foods, and underestimate the risks associated with ultraprocessed foods. We caution against the use of Food Compass in its current form to inform consumer choices, policies, programs, industry reformulations, and investment decisions.
Collapse
Affiliation(s)
| | - Marit Kolby
- Bjørknes University College, Department of Health Sciences, Oslo, Norway
| | - Mark Lawrence
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - Frédéric Leroy
- Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stephan van Vliet
- Center for Human Nutrition Studies, Utah State University, Logan, UT, United States
| | - Ty Beal
- Global Alliance for Improved Nutrition, Washington, DC, United States; Institute for Social, Behavioral and Economic Research, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
83
|
Ou SJL, Fu AS, Liu MH. Impact of Starch-Rich Food Matrices on Black Rice Anthocyanin Accessibility and Carbohydrate Digestibility. Foods 2023; 12:foods12040880. [PMID: 36832955 PMCID: PMC9957438 DOI: 10.3390/foods12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Anthocyanins reduce starch digestibility via carbohydrase-inhibitory pathways, but food matrix effects during digestion may also influence its enzymatic function. Understanding anthocyanin-food matrix interactions is significant as the efficiency of carbohydrase inhibition relies on anthocyanin accessibility during digestion. Therefore, we aimed to evaluate the influence of food matrices on black rice anthocyanin accessibility in relation to starch digestibility in common settings of anthocyanin consumption-its co-ingestion with food, and consumption of fortified food. Our findings indicate that black rice anthocyanin extracts (BRAE) had reduced intestinal digestibility of bread to a larger extent for the co-digestion of BRAE with bread (39.3%) (4CO), than BRAE-fortified bread (25.9%) (4FO). Overall anthocyanin accessibility was about 5% greater from the co-digestion with bread than fortified bread across all digestion phases. Differences in anthocyanin accessibility were also noted with changes to gastrointestinal pH and food matrix compositions-with up to 10.1% (oral to gastric) and 73.4% (gastric to intestinal) reductions in accessibility with pH changes, and 3.4% greater accessibility in protein matrices than starch matrices. Our findings demonstrate that the modulation of starch digestibility by anthocyanin is a combined result of its accessibility, food matrix composition, and gastrointestinal conditions.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Amanda Simin Fu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Correspondence: ; Tel.: +65-6516-3523
| |
Collapse
|
84
|
Yammine SG, Huybrechts I, Biessy C, Dossus L, Panico S, Sánchez MJ, Benetou V, Turzanski-Fortner R, Katzke V, Idahl A, Skeie G, Olsen KS, Tjønneland A, Halkjaer J, Colorado-Yohar S, Heath AK, Sonestedt E, Sartor H, Schulze MB, Palli D, Crous-Bou M, Dorronsoro A, Overvad K, Gurrea AB, Severi G, Vermeulen RCH, Sandanger TM, Travis RC, Key T, Amiano P, Van Guelpen B, Johansson M, Sund M, Tumino R, Wareham N, Sacerdote C, Krogh V, Brennan P, Riboli E, Weiderpass E, Gunter MJ, Chajès V. Dietary fatty acids and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition. BMC Cancer 2023; 23:159. [PMID: 36797668 PMCID: PMC9936701 DOI: 10.1186/s12885-023-10611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Diet may impact important risk factors for endometrial cancer such as obesity and inflammation. However, evidence on the role of specific dietary factors is limited. We investigated associations between dietary fatty acids and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS This analysis includes 1,886 incident endometrial cancer cases and 297,432 non-cases. All participants were followed up for a mean of 8.8 years. Multivariable Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) of endometrial cancer across quintiles of individual fatty acids estimated from various food sources quantified through food frequency questionnaires in the entire EPIC cohort. The false discovery rate (q-values) was computed to control for multiple comparisons. RESULTS Consumption of n-6 γ-linolenic acid was inversely associated with endometrial cancer risk (HR comparing 5th with 1st quintileQ5-Q1=0.77, 95% CI = 0.64; 0.92, ptrend=0.01, q-value = 0.15). This association was mainly driven by γ-linolenic acid derived from plant sources (HRper unit increment=0.94, 95%CI= (0.90;0.98), p = 0.01) but not from animal sources (HRper unit increment= 1.00, 95%CI = (0.92; 1.07), p = 0.92). In addition, an inverse association was found between consumption of n-3 α-linolenic acid from vegetable sources and endometrial cancer risk (HRper unit increment= 0.93, 95%CI = (0.87; 0.99), p = 0.04). No significant association was found between any other fatty acids (individual or grouped) and endometrial cancer risk. CONCLUSION Our results suggest that higher consumption of γ-linolenic acid and α-linoleic acid from plant sources may be associated with lower risk of endometrial cancer.
Collapse
Affiliation(s)
- S G Yammine
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS) , Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - I Huybrechts
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - C Biessy
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - L Dossus
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - S Panico
- Dipartimento di medicina clinica e chirurgia, Federico II University, Naples, Italy
| | - M J Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - V Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Grèce
| | | | - V Katzke
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - G Skeie
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, N - 9037, Tromsø, Norway
| | - K Standahl Olsen
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, N - 9037, Tromsø, Norway
| | - A Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Halkjaer
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - S Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - A K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - E Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - H Sartor
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - M B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - D Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - M Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 02115, Boston, MA, USA
| | - A Dorronsoro
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - K Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - A Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - G Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Université Paris-Saclay, Villejuif, France
- Human Genetics Foundation, Turin, Italy
| | - R C H Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T M Sandanger
- Faculty of Health Sciences, Department of Community Medicine, UiT The Arctic University of Norway, N - 9037, Tromsø, Norway
| | - R C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - T Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - P Amiano
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - B Van Guelpen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - M Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - M Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - R Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - N Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, England, U.K
| | - C Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - V Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di, Milano, Italy
| | - P Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - E Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - E Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - M J Gunter
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - V Chajès
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
85
|
Sevillano Pires V, Zuklic J, Hryshko J, Hansen P, Boyer M, Wan J, Jackson LS, Sandhu AK, Redan BW. Market Basket Survey of the Micronutrients Vitamin A, Vitamin D, Calcium, and Potassium in Eight Types of Commercial Plant-Based Milk Alternatives from United States Markets. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:100-112. [PMID: 36712962 PMCID: PMC9881837 DOI: 10.1021/acsfoodscitech.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We performed a market basket survey of plant-based milk alternatives (PBMAs) from the US market for vitamin A, vitamin D, calcium, and potassium to identify the amount and variability of these micronutrients across various PBMAs. The PBMA types included in this analysis were almond, cashew, coconut, hemp, oat, pea, rice, and soy (n=90 total product units). Analyses for vitamin A (as retinyl palmitate), vitamin D2/D3, and minerals were performed using high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, and inductively coupled plasma-mass spectrometry, respectively. A majority of PBMA types had significant differences (P<0.05) in the amounts of target micronutrients across brands. The coefficient of variation (%CV) for micronutrient concentrations within one lot of a single brand ranged from 4.1-42.2% for vitamin A, 1.5-44.1% for vitamin D, 1.7%-37.6% for calcium, and 0.7%-39.0% for potassium. The variability of these micronutrients should be taken into account when considering the nutritional value of PBMAs.
Collapse
Affiliation(s)
- Violeta Sevillano Pires
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL, 60501 USA
| | - Joseph Zuklic
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL, 60501 USA
| | - Jeanmaire Hryshko
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Nutrition and Food Labeling, 5001 Campus Drive, College Park, MD 20740 USA
| | - Patricia Hansen
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Nutrition and Food Labeling, 5001 Campus Drive, College Park, MD 20740 USA
| | - Marc Boyer
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Analytics and Outreach, 5001 Campus Drive, College Park, MD 20740 USA
| | - Jason Wan
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL, 60501 USA
| | - Lauren S. Jackson
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology, 6502 South Archer Road, Bedford Park, IL 60501, USA
| | - Amandeep K. Sandhu
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL, 60501 USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology, 6502 South Archer Road, Bedford Park, IL 60501, USA
| |
Collapse
|
86
|
Shkembi B, Huppertz T. Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects. Foods 2023; 12:foods12030453. [PMID: 36765982 PMCID: PMC9914410 DOI: 10.3390/foods12030453] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The consumption of food items containing digestible carbohydrates in food products leads to postprandial increases in blood glucose levels and glycemic responses. The extent to which these occur depends on many factors, including concentration and type of carbohydrate, but also other physicochemical properties of the food matrix, which determine the rate of uptake of monosaccharides into the bloodstream, including product structure and factors affecting gastric emptying. For milk, control of postprandial glycemic responses appears to be multifaceted, including a controlled rate of gastric emptying, a rate of glucose and galactose uptake into the bloodstream controlled by enzymatic hydrolysis, as well as stimulated insulin secretion to enhance uptake of blood glucose from the bloodstream. Altogether, this allows milk to deliver comparatively high levels of carbohydrate with limited glycemic responses. For plant-based drinks positioned as milk alternatives, however, compositional differences (including carbohydrate type and concentration) as well as matrix factors limiting control over gastric emptying and insulin secretion can, in some cases, lead to much stronger glycemic responses, which are undesirable in relation to non-communicable diseases, such as type-2 diabetes. This review discusses glycemic responses to milk and plant-based drinks from this perspective, focusing on mechanistic insights and food matrix effects.
Collapse
Affiliation(s)
- Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands
- FrieslandCampina, 3800LE Amersfoort, The Netherlands
- Correspondence:
| |
Collapse
|
87
|
Pujol A, Sanchis P, Grases F, Masmiquel L. Phytate Intake, Health and Disease: "Let Thy Food Be Thy Medicine and Medicine Be Thy Food". Antioxidants (Basel) 2023; 12:antiox12010146. [PMID: 36671007 PMCID: PMC9855079 DOI: 10.3390/antiox12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Phytate (myo-inositol hexakisphosphate or InsP6) is the main phosphorus reservoir that is present in almost all wholegrains, legumes, and oilseeds. It is a major component of the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets. Phytate is recognized as a nutraceutical and is classified by the Food and Drug Administration (FDA) as Generally Recognized As Safe (GRAS). Phytate has been shown to be effective in treating or preventing certain diseases. Phytate has been shown to inhibit calcium salt crystallization and, therefore, to reduce vascular calcifications, calcium renal calculi and soft tissue calcifications. Moreover, the adsorption of phytate to the crystal faces can inhibit hydroxyapatite dissolution and bone resorption, thereby playing a role in the treatment/prevention of bone mass loss. Phytate has a potent antioxidation and anti-inflammatory action. It is capable of inhibiting lipid peroxidation through iron chelation, reducing iron-related free radical generation. As this has the effect of mitigating neuronal damage and loss, phytate shows promise in the treatment/prevention of neurodegenerative disease. It is reported that phytate improves lipid and carbohydrate metabolism, increases adiponectin, decreases leptin and reduces protein glycation, which is linked with macrovascular and microvascular diabetes complications. In this review, we summarize the benefits of phytate intake as seen in in vitro, animal model, epidemiological and clinical trials, and we also identify questions to answer in the future.
Collapse
Affiliation(s)
- Antelm Pujol
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma de Mallorca, Spain
- Correspondence: (A.P.); (L.M.)
| | - Pilar Sanchis
- Laboratory of Renal Lithiasis Research, Deptartment of Chemistry, University of Balearic Islands, Health Research Institute of Balearic Islands, (IdISBa), 07122 Palma de Mallorca, Spain
| | - Felix Grases
- Laboratory of Renal Lithiasis Research, Deptartment of Chemistry, University of Balearic Islands, Health Research Institute of Balearic Islands, (IdISBa), 07122 Palma de Mallorca, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07198 Palma de Mallorca, Spain
- Correspondence: (A.P.); (L.M.)
| |
Collapse
|
88
|
Martínez-Antequera FP, López-Ruiz R, Martos-Sitcha JA, Mancera JM, Moyano FJ. Assessing differences in the bioaccessibility of phenolics present in two wine by-products using an in-vitro model of fish digestion. Front Vet Sci 2023; 10:1151045. [PMID: 37205229 PMCID: PMC10186350 DOI: 10.3389/fvets.2023.1151045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Increasing attention is currently being paid to the protective role of polyphenols in health and oxidative status in fish. For this reason, the potential use of different natural sources of such compounds, like wine by products, is under study. One key step required to gain a better understanding on the biological roles of polyphenols for a given species is to assess the different factors affecting their digestive bioaccessibility, and a great number of such studies is based in the use of in vitro digestion models. In the present study the potential digestive bioavailability of the phenolic compounds present in wine bagasse and lees was evaluated for two fish species showing great differences in their digestive phisyiology: the omnivorous gilthead sea bream (Sparus aurata) and the herbivorous flathead grey mullet (Mugil cephalus). The study was developed using in vitro models adapted to simulate their digestion and a factorial experimental design that simultaneously evaluated the effects of the ingredient used as source of polyphenols, presence or absence of feed matrix, fish species and digestion time. The release of the phenolic compounds was evaluated using ultra-high performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry (HRMS) detection. Both the presence of feed matrix and the type of wine by-product showed a significant effect on the digestive release of both total and specific types of polyphenols while fish species showed to be significant only for some specific compounds, like eriodyctiol or syringic acid. The time of digestion was not identified as a statistically significant factor in the release of phenolic compounds due to the great variability in the patterns observed that were classified as early, sustained and late. The observed great variations in the patterns of release of different types of phenolic compounds with time suggest an important effect of gut transit rates on the net bioavailability of a given phenolic compound in the live fish. The present study is, to our knowledge, the first one on which an in vitro approach was applied to assess to what extent the possible complexation of wine polyphenols present in wine by-products with either digestive enzymes or components of the feed matrix could limit their bioaccessibility if included in diets of two different fish species.
Collapse
Affiliation(s)
- Francisca P. Martínez-Antequera
- Departamento de Biología y Geología, Facultad de Ciencias Experimentales, Universidad de Almería, Almería, Spain
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Cádiz, Spain
- *Correspondence: Francisca P. Martínez-Antequera,
| | - Rosalía López-Ruiz
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, ceiA3, University of Almeria, Almeria, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología y Geología, Facultad de Ciencias Experimentales, Universidad de Almería, Almería, Spain
| | - Juan Miguel Mancera
- Departamento de Biología y Geología, Facultad de Ciencias Experimentales, Universidad de Almería, Almería, Spain
| | - Francisco Javier Moyano
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Cádiz, Spain
| |
Collapse
|
89
|
Garcia C, Anto L, Blesso CN. Effects of Milk Polar Lipids on DSS-Induced Colitis Severity Are Dependent on Dietary Fat Content. Nutrients 2022; 14:nu14235145. [PMID: 36501176 PMCID: PMC9738862 DOI: 10.3390/nu14235145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
In the United States, over three million adults suffer from inflammatory bowel disease (IBD). The gut microbiome, host immune response, and nutrient-microbial interactions are known to play a role in IBD. The relationship between dairy and IBD is controversial; thus, the objectives of this study were to identify how milk polar lipids (MPLs) and anhydrous milk fat affect colitis disease activity, the colonic transcriptome, and the gut microbiome in a mouse model of chemical-induced colitis. Male and female C57BL/6J mice (n = 120) were randomized into either a low (5% w/w) milk fat or a high (21% w/w) milk fat diet supplemented with either 0%, 1%, or 2% w/w of MPLs for three weeks (n = 10/group/sex). Afterwards, colitis was induced using 1% dextran sodium sulfate in drinking water for five days (colitis induction) and then switched to regular water for five days (colitis recovery). Mice fed added MPLs were protected against colitis when fed a high-fat diet, while added MPLs during low-fat diet attenuated disease activity during the colitis induction period yet promoted colitis and inflammation in male mice during the recovery period. Dietary fat content can alter colitis and influence the anti-inflammatory effect of milk polar lipids.
Collapse
|
90
|
Yaregal Z, Baye K, Solomon WK. The influence of dough kneading time and flour particle size distribution on white bread structure, glycemic response and aspects of appetite. Clin Nutr ESPEN 2022; 52:68-77. [PMID: 36513488 DOI: 10.1016/j.clnesp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS White bread is widely consumed in many countries despite being a high-glycemic index (GI) food. It has been shown that the "food matrix effect" may help with diabetes and obesity management through lowering GI and appetite. This study aimed at investigating the effects of dough kneading time and flour particle size on white bread structure, glycemic response, and aspects of appetite. METHODS A two-phase randomized cross-over design was used in 10 healthy subjects over the course of 2 h. In phase 1, Texture Profile Analysis (TPA) attributes, Scanning Electron Microscope (SEM) image, glycemic response, and appetite aspects of white bread made with a 15-min dough kneading time (K15) were compared with white bread made with a 10-min dough kneading time (K10). In phase 2, TPA, SEM image, glycemic response, and satiety score of white bread made with coarse flour (CF) were compared to white bread made with fine flour (FF). RESULT With increasing hardness (force required to compress a food between the molars to a given deformation), total blood glucose IAUC in K15 (IAUC = 119 ± 12; GI = 66) was significantly (p < 0.05) lower than in K10 (IAUC = 154 ± 10; GI = 81). No marked difference was observed between K15 and K10 on aspects of appetite except for hunger. There was no significant (p > 0.05) difference in glycemic response between CF (IAUC = 126 ± 18; GI = 64) and FF (IAUC = 147 ± 12; GI = 81). Similarly, no discernible difference in satiety between CF and FF. CONCLUSION Changes in processing conditions can improve blood glucose response relalated to white bread consumption.
Collapse
Affiliation(s)
- Zemenu Yaregal
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Kaleab Baye
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - W K Solomon
- Department of Food and Nutrition Sciences, Faculty of Consumer Sciences, University of Eswatini, Eswatini.
| |
Collapse
|
91
|
Givens DI. Saturated fats, dairy foods and cardiovascular health: No longer a curious paradox? NUTR BULL 2022; 47:407-422. [PMID: 36285545 PMCID: PMC10091990 DOI: 10.1111/nbu.12585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023]
Abstract
Cardiovascular diseases (CVDs) are a major cause of death and morbidity in many parts of the world, and many dietary guidelines limit the intake of saturated fatty acids (SFA) as they are regarded as an important risk factor for CVDs due to their association with increased blood cholesterol. Dairy foods are often a major contributor to dietary intake of SFA, and since many dietary guidelines contain restrictions on SFA intake, this can lead to a moderation of dairy food intake despite meta-analyses generally showing dairy to have a neutral or negative association with CVDs. Many prospective studies and randomised controlled trials do not support a simple positive association between SFA intake and the risk of atherosclerotic CVD and its components although some early studies had a number of methodological weakness. Studies that included blood cholesterol data do broadly support the positive relationship between SFA and blood low-density lipoprotein cholesterol (LDL-C) but without increased CVD risk resulting, despite LDL being a causal factor in atherosclerotic CVD. These data suggest that LDL-C alone is not a consistently good predictor or cause of CVD risk, perhaps particularly in relation to dairy food consumption although some non-dairy food studies have also shown LDL-C reduction was not reflected in reduced CVD risk. This narrative review examines some reasons for these findings. Overall, restrictions on dairy food intake do not seem warranted, although there remains a need to further understand the association of different dairy food types with chronic diseases, perhaps particularly for type 2 diabetes.
Collapse
Affiliation(s)
- David Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| |
Collapse
|
92
|
Patience N, Sheehan A, Cummings C, Patti ME. Medical Nutrition Therapy and Other Approaches to Management of Post-bariatric Hypoglycemia: A Team-Based Approach. Curr Obes Rep 2022; 11:277-286. [PMID: 36074258 DOI: 10.1007/s13679-022-00482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This manuscript provides a review of post-bariatric hypoglycemia (PBH) with a special focus on the role of the registered dietitian-nutritionist (RDN) and medical nutrition therapy (MNT) recommendations as foundational for management. RECENT FINDINGS As the number of bariatric surgeries rises yearly, with 256,000 performed in 2019, PBH is an increasingly encountered late complication. Following Roux-en-Y (RYGB) or vertical sleeve gastrectomy (VSG), about 1/3 of patients report symptoms suggestive of at least mild postprandial hypoglycemia, with severe and/or medically confirmed hypoglycemia in 1-10%. Anatomical alterations, changes in GLP1 and other intestinally derived hormones, excessive insulin response, reduced insulin clearance, impaired counterregulatory hormone response to hypoglycemia, and other factors contribute to PBH. MNT is the cornerstone of multidisciplinary treatment, with utilization of personal continuous glucose monitoring to improve safety when possible. While many individuals require pharmacotherapy, there are no currently approved medications for PBH. Increasing awareness and identification of individuals at risk for or with PBH is critical given the potential impact on safety, nutrition, and quality of life. A team-based approach involving the individual, the RDN, and other clinicians is essential in providing ongoing assessment and individualization of MNT in the long-term management of PBH.
Collapse
Affiliation(s)
- Nicole Patience
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA.
| | - Amanda Sheehan
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | | | - Mary Elizabeth Patti
- Clinic Division, Joslin Diabetes Center, Inc, One Joslin Place, Boston, MA, 02215, USA.
- Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
93
|
Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol 2022; 19:753-767. [PMID: 35906289 DOI: 10.1038/s41575-022-00658-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis, phenotypically comprising a spectrum of inflammatory bowel diseases (IBDs), spread globally during the westernization of lifestyle and dietary habits over the past few decades. Here, we review experimental and clinical evidence for the metabolic nature of gut inflammation in IBD and delineate distinct parallels to the inflammatory state in metabolic diseases. Experimental evidence indicates that excessive intake of specific macronutrients in a Western diet fuels an inflammatory response in the gut by exploiting sensors of innate immunity and perturbation of gut microbial metabolism. Genetic IBD risk partly affects metabolism and stress signalling of innate immunity, and immunometabolism controls susceptibility to gut inflammation. Epidemiological and clinical studies indicate that specific nutrients in the Western diet pose a risk for the development of IBD and a poor disease course. Translational studies in IBD indicate perturbation of energy metabolism in immune cells and perturbation of gut microbial metabolism, which can be shaped by diet. In turn, dietary restriction by exclusive enteral nutrition induces remission in patients with IBD. Collectively, these studies support a metabolic underpinning of gut inflammation in IBD as described for metabolic inflammation in obesity and related disorders.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
94
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
95
|
Thorsen M, Skeaff S, Goodman-Smith F, Thong B, Bremer P, Mirosa M. Upcycled foods: A nudge toward nutrition. Front Nutr 2022; 9:1071829. [DOI: 10.3389/fnut.2022.1071829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
One of the aims of the United Nations Sustainable Development Goals (SDG) is to end hunger and ensure access by all people to safe, nutritious, and sufficient food all year round. An obvious synergy exists between the second SDG “Zero Hunger” and SDG target 12.3 which focuses on halving food waste and reducing food losses. In addition to helping improve global food security, reducing food waste provides financial and environmental benefits. Upcycling food is a technical solution for food waste reduction that retains the nutritional and financial value of food by-products. However, many of the upcycled foods produced are discretionary foods such as biscuits, crackers, and other snack food that are not part of a healthy dietary pattern, and should only be eaten sometimes in small amounts. Given the importance of ensuring a sustainable healthy diet, this paper discusses opportunities for upcycled food manufacturers to produce more nutritious products.
Collapse
|
96
|
Murillo S, Mallol A, Adot A, Juárez F, Coll A, Gastaldo I, Roura E. Culinary strategies to manage glycemic response in people with type 2 diabetes: A narrative review. Front Nutr 2022; 9:1025993. [PMID: 36438742 PMCID: PMC9684673 DOI: 10.3389/fnut.2022.1025993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Diet plays a critical role in the management of many chronic diseases. It is well known that individuals with type 2 diabetes (T2D) need to pay close attention to foods rich in carbohydrates to better manage their blood sugar. Usually, individuals are told to increase their dietary fiber intake which is associated with better glycemic control and limit their overall carbohydrate consumption. However, there are many other cooking strategies available to reduce the glycemic response to meals rich in carbohydrates and with a high glycemic index, such as adding fats, proteins, or vinegar, modifying the cooking or preparation processes, and even the selection and storage of foods consumed. The aim of the present narrative review is to summarize some of these existing strategies applied to the cooking process and their ability to modulate glycemic response to meals in individuals with T2D.
Collapse
Affiliation(s)
- Serafin Murillo
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
- Endocrinology and Nutrition Department, Universitat de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Ariadna Mallol
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
| | - Alba Adot
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
| | - Fabiola Juárez
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
| | - Alba Coll
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
| | - Isabella Gastaldo
- Endocrinology and Nutrition Department, Universitat de Barcelona, Barcelona, Spain
| | - Elena Roura
- Health and Food Habits Department, Fundació Alicia, Sant Fruitós de Bages, Spain
| |
Collapse
|
97
|
Klurfeld DM. The whole food beef matrix is more than the sum of its parts. Crit Rev Food Sci Nutr 2022; 64:4523-4531. [PMID: 36343282 DOI: 10.1080/10408398.2022.2142931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Foods are not simply a delivery vehicle for nutrients; they consist of a matrix in which nutrients and non-nutrient compounds are presented that induce physiologic effects different from isolated nutrients. Dietary guidance is often based on effects of single nutrients that are considered unhealthy, such as saturated fat in beef. The purpose of this paper is to propose a working definition of the whole food beef matrix whose consumption has health effects distinct from those of isolated nutrients. The beef matrix can be defined as: the collective nutritive and non-nutritive components of the beef food structure and their unique chemical and physical interactions that may be important for human health which are distinguishable from those of the single components in isolation. Background information supporting this approach is summarized on multiple components provided by beef, temporal changes in beef consumption, dietary guidance that restricts beef, and how the background diet determines healthfulness rather than a single food. Examples of research are provided on other whole foods that differ from their constitutive nutrients and lay the groundwork for studies of beef as part of a healthy dietary pattern.
Collapse
Affiliation(s)
- David M Klurfeld
- Department of Applied Health Sciences, Indiana University School of Public Health, Bloomington, Indiana
| |
Collapse
|
98
|
Zagórska J, Czernicka-Boś L, Kukula-Koch W, Szalak R, Koch W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome-A Review. Foods 2022; 11:3484. [PMID: 36360097 PMCID: PMC9656818 DOI: 10.3390/foods11213484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
Ginger (Zingiber officinale Rosc.) is both a commonly used spice, and an ingredient of various dietary supplements and medications. Its diverse applications result from the range of health benefits that this plant brings thanks to the presence of active compounds (secondary metabolites) in the matrix. Even if several studies underline a stronger pharmacological activity of fresh ginger rhizomes, the unprocessed plant is relatively rarely used. Ginger rhizomes are subjected to thermal processing, such as boiling, blanching, steam drying and others, at different temperature and time settings. Additionally, freeze-drying of the rhizomes is used as the first step in the preparation of raw material. It was proved that the composition of secondary metabolites of the Zingiber officinale rhizome changes upon the influence of temperature. Therefore, the aim of the review was to put together scientific results on the impact of traditional and unconventional methods of heat treatment on ginger rhizomes and to show the compositional differences that they induce in the plant matrix. Variations in the content and the transformation of some compounds into other metabolites will be also discussed, with particular attention paid to two major groups of secondary metabolites present in the plant, namely, phenolics and terpenes.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Lidia Czernicka-Boś
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
99
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
100
|
Chen A, Tapia H, Goddard JM, Gibney PA. Trehalose and its applications in the food industry. Compr Rev Food Sci Food Saf 2022; 21:5004-5037. [PMID: 36201393 DOI: 10.1111/1541-4337.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Trehalose is a nonreducing disaccharide composed of two glucose molecules linked by α, α-1,1-glycosidic bond. It is present in a wide variety of organisms, including bacteria, fungi, insects, plants, and invertebrate animals. Trehalose has distinct physical and chemical properties that have been investigated for their biological importance in a range of prokaryotic and eukaryotic species. Emerging research on trehalose has identified untapped opportunities for its application in the food, medical, pharmaceutical, and cosmetics industries. This review summarizes the chemical and biological properties of trehalose, its occurrence and metabolism in living organisms, its protective role in molecule stabilization, and natural and commercial production methods. Utilization of trehalose in the food industry, in particular how it stabilizes protein, fat, carbohydrate, and volatile compounds, is also discussed in depth. Challenges and opportunities of its application in specific applications (e.g., diagnostics, bioprocessing, ingredient technology) are described. We conclude with a discussion on the potential of leveraging the unique molecular properties of trehalose in molecular stabilization for improving the safety, quality, and sustainability of our food systems.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hugo Tapia
- Biology Program, California State University - Channel Islands, Camarillo, California, USA
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|