51
|
Du J, Yu L, Yang X, Shao F, Xia J, Jin W, Zhang Y, Lei G, Wang Y, Li Y, Zhang J. Regulation of NCOA4-mediated iron recycling ameliorates paraquat-induced lung injury by inhibiting ferroptosis. Cell Commun Signal 2024; 22:146. [PMID: 38388414 PMCID: PMC10885609 DOI: 10.1186/s12964-024-01520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Collapse
Affiliation(s)
- Jing Du
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangchun Shao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, Taizhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
52
|
Qin L, Huang J, Feng Y, Zhao B, Guo L, Xie J. Spatiotemporal Visualization of Paraquat Distribution, Toxicokinetics, and Its Detoxification in Zebrafish Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. Chem Res Toxicol 2024; 37:385-394. [PMID: 38206817 DOI: 10.1021/acs.chemrestox.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Paraquat is a highly toxic quaternary ammonium herbicide. It can damage the functions of multiple organs and cause irreversible pulmonary fibrosis in the human body. However, the toxicological mechanism of paraquat is not yet fully understood, and due to the lack of specific antidotes, the clinical treatment of paraquat intoxication is still a great medical challenge. In-depth research on its toxicity mechanism, toxicokinetics, and effective antidotes is urgently demanded. A new molecular imaging technique, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), can simultaneously achieve quantitative and spatial analysis and offer an alternative, distinct, and useful technique for paraquat intoxication and consequent detoxication. Here, we visualized the spatial-temporal distribution and conducted toxicokinetic research on paraquat in zebrafish by using stable isotope-labeled internal-standard-aided MALDI-MSI for the first time. The results indicated that paraquat had a fast absorption rate and was widely distributed in different organs, such as the brain, gills, kidneys, and liver in zebrafish. Its half-life was long, and the elimination rate was slow. Paraquat reached its peak at 30 min and was mainly distributed in kidneys and intestines and then showed a tendency of declining first but mildly rising later at 6 h, accompanied by a wide distribution in kidneys and intestines again. It suggested that entero-systemic recirculation might lead to the observed secondary peaks, and perhaps it extended the residence time of paraquat in the body. In addition, we validated the potential detoxification effect of sodium salicylate as a potential antidote for paraquat from both the dimensions of distribution and quantification. In conclusion, MALDI-MSI conveniently provided the distinct and quantitative spatial-temporal distribution information on paraquat in the whole body of zebrafish; it will promote the understanding of its toxicokinetic characteristics and provide more valuable information for clinical treatment.
Collapse
Affiliation(s)
- Luyuan Qin
- Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jiadong Huang
- Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing 100850, China
- School of Investigation, People's Public Security University of China, Beijing 102206, China
| | - Yuanzhou Feng
- Beijing Institute of Toxicology and Pharmacology, Beijing 100850, China
| | - Baoquan Zhao
- Beijing Institute of Toxicology and Pharmacology, Beijing 100850, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
53
|
Ijaz MU, Alvi K, Hamza A, Anwar H, Al-Ghanim KA, Riaz MN. Curative effects of tectochrysin on paraquat-instigated testicular toxicity in rats: A biochemical and histopathological based study. Heliyon 2024; 10:e25337. [PMID: 38356568 PMCID: PMC10865255 DOI: 10.1016/j.heliyon.2024.e25337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Background Paraquat (PQ) is a herbicide that is used globally in the agriculture sector to eradicate unwanted weeds, however it also induces significant damages in various organs of the body such as testes. Tectochrysin (TEC) is an important flavonoid that shows versatile therapeutic potentials. Currently, there is no established antidote to cure PQ-induced testicular toxicity. Objective The present study was conducted to evaluate the ameliorative effects of TEC against PQ prompted testicular damage. Methods Sprague-Dawley rats (n = 48) were used to conduct the trial. Rats were allocated in to 4 groups i.e., Control, PQ administrated group (5 mgkg-1), PQ + TEC co-administrated group (5 mgkg-1 + 2.5 mgkg-1) and TEC only administrated group (2.5 mgkg-1). The trial was conducted for 8 weeks. The activity of anti-oxidants and the levels of MDA and ROS were determined by spectrophotometric method. Steroidogenic enzymes as well as apoptotic markers expressions were evaluated by qRT-PCR. The level of hormones and inflammatory indices was quantified by enzyme-linked immunosorbent assay. Results PQ exposure markedly (P < 0.05) disturbed the biochemical, spermatogenic and histological profile in the rats. Nevertheless, TEC treatment considerably (P < 0.05) increased CAT, GPx GSR and SOD activity, besides decreasing MDA and ROS contents. TEC administration also increased sperm viability, count and motility. 17β-HSD, 3β-HSD, StAR and Bcl-2 expressions were also increased following TEC administration. The supplementation of TEC substantially (P < 0.05) decreased Bax, Caspase-3 expression and the levels of inflammatory markers i.e., interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity. Additionally, the levels of plasma testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were increased following TEC supplementation. Furthermore, TEC supplementation considerably decreased sperm structural abnormalities and histomorphological damages of the testes. The mitigative role of TEC might be due to its anti-inflammatory, anti-apoptotic, androgenic and anti-oxidant potentials. Conclusion Taken together, it is concluded that TEC can be used as a potential candidate to treat testicular toxicity.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaynat Alvi
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University of Faisalabad, Faisalabad, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
54
|
Paul KC, Cockburn M, Gong Y, Bronstein J, Ritz B. Agricultural paraquat dichloride use and Parkinson's disease in California's Central Valley. Int J Epidemiol 2024; 53:dyae004. [PMID: 38309714 PMCID: PMC11491592 DOI: 10.1093/ije/dyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/13/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Paraquat dichloride is currently among the most widely used commercial herbicides in the USA. In the present study, we provide epidemiological assessment of ambient paraquat exposure and Parkinson's disease (PD) risk in a population-based study of PD in agricultural regions of Central California. METHODS Based on 829 PD patients and 824 community controls, we assessed associations between ambient paraquat dichloride exposure and PD. We estimated residential and workplace proximity to commercial agricultural applications in three California counties since 1974 using the CA pesticide use reporting (PUR) data and land use maps. We evaluated any, duration and average intensity [pounds (0.45 kilograms) per acre per year] of exposure for paraquat in four time windows. RESULTS Ambient paraquat exposure assessed at both residence and workplace was associated with PD, based on several different exposure measures. The PD patients both lived and worked near agricultural facilities applying greater amounts of the herbicide than community controls. For workplace proximity to commercial applications since 1974, working near paraquat applications every year in the window [odds ratio (OR) = 2.15, 95% confidence interval (CI) = 1.46, 3.19] and a higher average intensity of exposure [per 10 pounds (4.54 kilograms), OR = 2.08, 95% CI = 1.31, 3.38] were both associated with an increased odds of PD. Similar associations were observed for residential proximity (duration: OR = 1.91, 95% CI = 1.30, 2.83; average intensity: OR = 1.72, 95% CI = 0.99, 3.04). Risk estimates were comparable for men and women, and the strongest odds were observed for those diagnosed at ≤60 years of age. CONCLUSION This study provides further indication that paraquat dichloride exposure increases the risk of Parkinson's disease.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yufan Gong
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
55
|
Hernandez-Baixauli J, Chomiciute G, Tracey H, Mora I, Cortés-Espinar AJ, Ávila-Román J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Alcaide-Hidalgo JM, Baselga-Escudero L, del Bas JM, Mulero M. Exploring Metabolic and Gut Microbiome Responses to Paraquat Administration in Male Wistar Rats: Implications for Oxidative Stress. Antioxidants (Basel) 2024; 13:67. [PMID: 38247491 PMCID: PMC10812659 DOI: 10.3390/antiox13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Harry Tracey
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
- School of Science, RMIT University, Bundoora, VIC 3000, Australia
| | - Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain;
| | - Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (G.C.); (H.T.); (J.M.A.-H.); (L.B.-E.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, 43204 Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| |
Collapse
|
56
|
Li L, Han X, Zhang Z, Han T, Wu P, Xu Y, Zhang L, Liu Z, Xi Z, Li H, Yu X, He P, Zhang M. Construction of prognosis prediction model and visualization system of acute paraquat poisoning based on improved machine learning model. Digit Health 2024; 10:20552076241287891. [PMID: 39398894 PMCID: PMC11467983 DOI: 10.1177/20552076241287891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Objective This study aims to develop a prognosis prediction model and visualization system for acute paraquat poisoning based on an improved machine learning model. Methods 101 patients with acute paraquat poisoning admitted to 6 hospitals from March 2020 to March 2022 were selected for this study. After expiry of the treatment period (one year of follow-up for survivors and up to the time of death for deceased patients) and they were categorized into the survival group (n = 37) and death group (n = 64). The biochemical indexes of the patients were analyzed, and a prognosis prediction model was constructed using HHO-XGBoost, an improved machine-learning algorithm. Multivariate logistic analysis was used to verify the value of the self-screening features in the model. Results Seven features were selected in the HHO-XGBoost model, including oral dose, serum creatinine, alanine aminotransferase (ALT), white blood cell (WBC) count, neutrophil count, urea nitrogen level, and thrombin time. Univariate analysis showed statistically significant differences between these features' survival and death groups (P < 0.05). Multivariate logistic analysis identified four features significantly associated with prognosis- serum creatinine level, oral dose, ALT level, and WBC count - indicating their critical significance in predicting outcomes. Conclusion The HHO-XGBoost model based on machine learning is precious in constructing a prognosis prediction model and visualization system for acute paraquat poisoning, which can help clinical prognosis prediction of patients with paraquat poisoning.
Collapse
Affiliation(s)
- Long Li
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Xinxuan Han
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Zhigang Zhang
- Department of Emergency Medicine, Mingshan District People's Hospital of Ya 'an, Ya'an, China
| | - Tingyong Han
- Emergency Department, Ya'an Polytechnic College Aûliated Hospital, Ya'an, China
| | - Peng Wu
- Department of Emergency Medicine, Yucheng District People's Hospital of Ya'an, Ya'an, China
| | - Yisha Xu
- Emergency Department, Ya'an People's Hospital, Ya'an, China
| | - Liangjie Zhang
- Emergency Department, Ya'an Traditional Chinese Medicine Hospital, Ya'an, China
| | - Zhenyi Liu
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Zhenzhong Xi
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Haoran Li
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Xiangjiang Yu
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Pan He
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| | - Ming Zhang
- Emergency Department, The 945th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Ya'an, China
| |
Collapse
|
57
|
Selvam S, Simha A, Nawaz RS, Sarmin A, Gangadharappa RC, Pannu AK. Occult paraquat poisoning causing pneumomediastinum and organizing pneumonia. Trop Doct 2024; 54:66-68. [PMID: 37674474 DOI: 10.1177/00494755231200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Pneumomediastinum is not an uncommon manifestation of lung toxicity in acute paraquat ingestion. The condition is almost invariably seen with other lung parenchymal abnormalities such as consolidations, ground-glass opacities and interlobular septal thickening. The diagnosis may be challenging in cases with no history of toxin exposure, presentation with a subacute illness and/or absence of typical local or systemic features of paraquat toxicity.
Collapse
Affiliation(s)
- Suresh Selvam
- Senior Resident, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amar Simha
- Senior Resident, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rana Sadaqat Nawaz
- MD Resident, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aziza Sarmin
- MD Resident, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Ashok Kumar Pannu
- Associate Professor, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
58
|
Meamar R, Haddad S, Nasiri R, Borojeni GS, Kolahdoozan M, Eizadi-Mood N, Pourisfahani SA, Mahvari R, Rezaei A, Fesharaki M. Ferulic acid grafted into β-cyclodextrin nanosponges ameliorates Paraquat-induced human MRC-5 fibroblast injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:44-60. [PMID: 37615264 DOI: 10.1002/tox.23941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Paraquat (PQ) is a commercially important and effective herbicide in the world. Nevertheless, it has higher toxicity causing acute organ damage and different complications, mainly in the lungs and kidneys. Ferulic acid (FA), 4-hydroxy-3-methoxycinnamic acid imposes multiple pharmacological impacts. No protective effect of FA on PQ poisoning-caused human embryonic lung fibroblast damage has not been reported. Despite their many beneficial effects, FA is characterized by poor water solubility, low bioavailability, and phytochemical instability. To solve the problem, β-cyclodextrin nanosponge (β-CD NSs) was utilized to increase the solubility of FA so that it was grafted into β-CD NSs to establish β-CD@FA NSs. The purpose of this work was to examine for the first time the protective effect of β-CD@FA NS on MRC-5 human lung cells damages induced by PQ poisoning. MTS assay was performed to investigate the viability of MRC-5 cells at different concentrations of FA/β-CD@FA NSs when cells were co-cultured with 0.2 μg/mL PQ. The flow cytometry study was carried out to determine apoptosis. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were detected using appropriate biochemistry kits. Compared with the PQ group, the cell activity, CAT, and SOD levels were significantly increased in the FA and chiefly in β-CD@FA NSs intervention groups, whereas apoptosis and MDA levels were markedly decreased. The inflammatory factors tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 22 (IL-22) were detected. The results demonstrate that β-CD@FA NSs can inhibit PQ-induced cell damage by enhancing antioxidant stress capacity and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shadi Haddad
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rozita Nasiri
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Gelare Sadeghi Borojeni
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Isfahan, Iran
- Department of Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Tehran, Iran
| | - Majid Kolahdoozan
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Razieh Mahvari
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrafarin Fesharaki
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
59
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
60
|
Dong J, Han A, Zhao Y, Li H, Yang Y, Yuan B, Wang Y, Liu R, Yin X, Du X. Smart, degradable, and eco-friendly carboxymethyl cellulose-Ca II hydrogel-like networks gated MIL-101(Fe III) nanoherbicides for paraquat delivery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166424. [PMID: 37634715 DOI: 10.1016/j.scitotenv.2023.166424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Nanopesticides have been selected as one of the top 10 chemical innovations for enhancing the efficacy and safety of agrochemicals. Herein, smart, degradable, and eco-friendly metal-organic framework MIL-101(FeIII) nanoherbicides coated with carboxymethyl cellulose-CaII (CMC-CaII) cross-linking hydrogel-like networks are synthesized via a simple strategy. The coating of the CMC-CaII hydrogel-like gatekeepers is oriented by the coordination unsaturated FeIII clusters on the surfaces of the MIL-101(FeIII) nanocarriers to form a dense film network to prevent paraquat (PQ) leakage. Based on the stimuli factors (acid/basic pH, GSH, phosphates, and EDTA) of physiological and natural environments of target plants, the nanoherbicides are combined with five stimuli-responsive properties to attain the various controlled release of packaged PQ by the disassembly of the gatekeepers and/or the degradation of the MOF skeleton structure. More importantly, based on the stimuli-responsive controlled release mechanisms, the eco-friendly nanocarriers are ultimately degraded against bioaccumulation in plants or soil. The coating of natural CMC could promote the spreading of PQ owing to improvement of wettability for aqueous droplets of nanoherbicides on hydrophobic foliage. The PQ trapped in nanocarriers can effectively prevent PQ degradation, which showed that cumulative degradation rate is ca. 2.6 times lower than that of technical PQ under UV irradiation. The prepared nanoherbicides loaded with PQ show good control efficacy against weeds by controlling the release of PQ; good safety on seed germination (germination rate 97.32-99.67 %), seedling emergence (emergence rate 95.53-99.67 %), and are beneficial for the growth of wheat seedling (increase rate of plant height 1.89-6.97 % and 0.54-5.67 % after 7 and 15 days of seedling emergence, respectively) in the greenhouse; good biosafety for honeybees (Apis mellifera L.), which shows that lethal rates were 2.04 and 2.55 times lower than technical PQ for incubation 24 and 48 h, respectively. The nanoherbicides have potential applications in the field for PQ green agriculture.
Collapse
Affiliation(s)
- Jiangtao Dong
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China.
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yanli Zhao
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Haoming Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yue Yang
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Bowen Yuan
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yishan Wang
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Runqiang Liu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China.
| | - Xinming Yin
- College of Agronomy Post-Doctoral Research Station, Henan Agricultural University, Zhengzhou 450002, Henan Province, People's Republic of China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
61
|
Shi M, Zeng M, Jian T, Yu G, Genjiafu A, Zhang X, Guo L, Shang R, Zhou Z, Zhang T, Jian X, Kan B. A mass event of paraquat poisoning via inhalation. Front Public Health 2023; 11:1309708. [PMID: 38145083 PMCID: PMC10740189 DOI: 10.3389/fpubh.2023.1309708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Objective In January 2023, a rare event of collective inhalation paraquat poisoning occurred in Shandong, China. To analyze the clinical characteristics of an event of respiratory tract paraquat poisoning through inhalation. Methods Clinical data from eight patients with paraquat inhalation poisoning were retrospectively analyzed. Results The patients were mainly exposed to paraquat via the respiratory tract. The main clinical manifestations were ocular and respiratory irritation. Lung computed tomography (CT) showed that all eight patients had varying degrees of lung injury, mainly manifesting as exudative lesions. Laboratory tests revealed arterial blood gas hypoxemia, abnormal white blood cell count, and increased neutrophil ratio. Sufficient glucocorticoid impact therapy was effective, and all eight patients survived. Conclusion Eight patients experienced chest tightness, shortness of breath, and varying degrees of lung injury due to inhalation of paraquat through the respiratory tract. The early use of glucocorticoids and other comprehensive treatment measures, active prevention and treatment of lung infections, and protection of organ function have beneficial effects in such cases.
Collapse
Affiliation(s)
- Mengdi Shi
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Mei Zeng
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Tianzi Jian
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangcai Yu
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Aerbusili Genjiafu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Xiangxing Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Lanlan Guo
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ruikai Shang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zhiqiang Zhou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Tongyue Zhang
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Xiangdong Jian
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Baotian Kan
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gerontology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
62
|
Peng H, Zhao D, Tang W, Peng A. Dienediamine: A safe surrogate for the herbicide paraquat. MOLECULAR PLANT 2023; 16:1962-1975. [PMID: 37924209 DOI: 10.1016/j.molp.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Paraquat (PQ) has been used as an herbicide worldwide because of its potent activity against weeds. However, it is highly toxic to humans. The very high fatality of PQ poisoning is due to its inherent toxicity and the lack of any effective treatment. Consequently, developing a non-toxic herbicide with comparable efficacy to PQ will contribute to global food security and help prevent PQ-related fatalities. Herein, we report a new herbicide called dienediamine, which was discovered from how to intervene the redox cycle of PQ, an inherent toxicity nature. Dienediamine, the "reduced" form of PQ with no function as an electron transfer agent, was shown to be non-toxic through comprehensive in vivo and in vitro experiments at molar concentrations equivalent to PQ's absolute lethal dose. Remarkably, dienediamine can undergo conversion to PQ under natural sunlight and ambient air conditions, exhibiting herbicidal activities that are comparable to those of PQ. The conversion of dienediamine to PQ, which is toxic to chloroplasts, is the key mechanism underlying its potent herbicidal activity. Our study discovers that dienediamine is a safe and superior alternative to PQ, possessing significant potential for application in sustainable agriculture globally.
Collapse
Affiliation(s)
- Henian Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Dake Zhao
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China
| | - Wenjun Tang
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| | - Ai Peng
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China.
| |
Collapse
|
63
|
Ballesteros DA, Santiago DR, Barrera ME, Mantilla AC. Hemoadsorption and continuous venovenous hemodiafiltration in the management of paraquat poisoning during pregnancy: A case report. Toxicol Rep 2023; 11:449-451. [PMID: 38021470 PMCID: PMC10665814 DOI: 10.1016/j.toxrep.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
We describe the case of a mother in the second trimester of pregnancy with severe paraquat poisoning who ended her pregnancy at term and a healthy newborn. Management was initiated after 34 h of paraquat administration with the HA-230 hemoadsorption cartridge, followed by continuous venovenous hemodiafiltration for 120 h, in addition to cyclophosphamide and methylprednisolone. There was no evidence of adverse effects associated with treatment or extracorporeal therapy, and maternal and fetal well-being was maintained during the 26 days of hospitalization and at the end of pregnancy. This case treated with hemoadsorption and hemodiafiltration for paraquat poisoning during pregnancy is one of the few procedures reported in the literature and can be used as a guide for the management of subsequent cases.
Collapse
Affiliation(s)
- David A. Ballesteros
- Nephrology Department, San José University Hospital, Popayán, Cauca, Colombia
- Department of Internal Medicine, University of Cauca, Popayán, Cauca, Colombia
| | - Daniel R. Santiago
- Nephrology Department, San José University Hospital, Popayán, Cauca, Colombia
| | - Maria E. Barrera
- Department of Internal Medicine, University of Cauca, Popayán, Cauca, Colombia
| | - Andrea C. Mantilla
- Nephrology Department, San José University Hospital, Popayán, Cauca, Colombia
- Department of Internal Medicine, University of Cauca, Popayán, Cauca, Colombia
| |
Collapse
|
64
|
Asaduzzaman M, Roy S, Das Pew N, Roy AD, Kibria S, Roy RK, Alam MJ, Chakraborty SR. Paraquat induced acute kidney and lung injury with a dramatic response to methylprednisolone: A case report. Toxicol Rep 2023; 11:350-354. [PMID: 37868809 PMCID: PMC10585619 DOI: 10.1016/j.toxrep.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Background Paraquat poisoning is one of the leading causes of fatal poisoning in many parts of the world, especially in agricultural countries. Its high toxicity even in small amounts causes rapid damage to multiple organs, especially the kidneys, lungs, and liver, mainly through free radical-mediated injury. As no specific antidote is yet available, early diagnosis and the importance of supportive therapy are critical parts of management. Some evidence suggests a survival benefit from using immunosuppressive drugs. Case report This case presentation concerns a 15-year-old boy from a village with a history of herbicide poisoning, later confirmed to be paraquat. Despite supportive therapy her condition continued to deteriorate with features of kidney and lung damage. The patient was then treated with methylprednisolone 500 mg daily for 5 days, along with other supportive care, and has made a remarkable recovery. Conclusions High efficacy as an herbicide, availability and low cost make paraquat an easy-to-encounter poison for suicidal or accidental use. Its high fatality calls for urgent and effective strategies to save lives. Methylprednisolone may play a role in its treatment.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Medicine, Sylhet MAG Osmani Medical College Hospital, Sylhet 3100, Bangladesh
| | - Soumitra Roy
- Department of Medicine, Sylhet MAG Osmani Medical College, Sylhet 3100, Bangladesh
| | - Nibedita Das Pew
- Department of Pathology, Sylhet MAG Osmani Medical College, Sylhet 3100, Bangladesh
| | - Anindya Deb Roy
- Department of Medicine, Sylhet MAG Osmani Medical College Hospital, Sylhet 3100, Bangladesh
| | - Shahrin Kibria
- Department of Medicine, Sylhet MAG Osmani Medical College Hospital, Sylhet 3100, Bangladesh
| | - Ranjon Kumer Roy
- Department of Medicine, Sylhet MAG Osmani Medical College, Sylhet 3100, Bangladesh
| | - M.M. Jahangir Alam
- Department of Medicine, Sylhet MAG Osmani Medical College, Sylhet 3100, Bangladesh
| | | |
Collapse
|
65
|
Liu J, Lv S, Ma W, Yang D, Zhang X. Effect of WISP1 on paraquat-induced EMT. Toxicol In Vitro 2023; 93:105693. [PMID: 37689312 DOI: 10.1016/j.tiv.2023.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Paraquat (PQ) can induce pulmonary fibrosis (PF) by modulating epithelial-mesenchymal transition (EMT) of alveolar epithelial cells, but the molecular mechanism is unknown. In this paper, the role of Wnt-inducible signaling protein-1 (WISP1) in PQ-induced EMT was inspected. METHODS The morphology, apoptosis, and mortality of A549 cells were observed through a microscope. The mRNA and protein levels of WISP1, E-cadherin, and Vimentin were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. RESULTS With the increase of PQ concentration, the morphology of A549 cells was apparently changed, cell apoptosis and mortality were enhanced. Besides, the E-cadherin abundance was reduced (p < 0.01), however, WISP1 and Vimentin contents were boosted after PQ treatment (p < 0.01). With the increase of PQ treatment time, the epithelial index of cells first increased and then decreased. The expression of WISP1 gene increased significantly with the increase of PQ treatment time (p < 0.01). Silence of WISP1 abolished the effect of PQ treatment on E-cadherin and Vimentin levels (p < 0.01). Downregulation of WISP1 curbed morphology change and PQ-induced EMT in A549 cells. CONCLUSION Knockdown of WISP1 inhibited PQ-induced EMT in A549 cells. This conclusion might provide a new therapeutic target for PQ poisoning treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Shengnan Lv
- Department of Out-patient, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Wanling Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Dong Yang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Xuchang Zhang
- Department of Geriatrics Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China.
| |
Collapse
|
66
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
67
|
Chen HR, Zhang S, Chen T, Yang WG, Su ML, Fu GY, Yi WJ, Yuan R, Xu SC, Liang WB. Ultrasensitive quantitation of Paraquat based on a small molecule-induced dual-cycle amplification strategy. Biosens Bioelectron 2023; 240:115640. [PMID: 37651947 DOI: 10.1016/j.bios.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Paraquat (PQ) is a typical biotoxic small molecule. Knowledge of how to directly introduce it into cyclic amplification rather than transform it into a secondary target is lacking in current analytical methods. Considering the urgent need for trace pesticide residue detection and the inherent defects of small molecule analysis, a CRISPR/Cas12a-driven small molecule-induced dual-cycle strategy was developed based on the immune competition method. The key to signal amplification is the mutual activation and acceleration between Cycle 1 triggered by the small molecule and Cycle 2 driven by CRISPR/Cas12a. Impressively, small molecules have been successfully incorporated into the dual-cycle strategy, which achieves a low detection limit (3.1 pg/mL) and a wide linear range (from 10 pg/mL to 50 μg/mL). Moreover, the designed biosensor was successfully employed to evaluate the PQ residual level in real samples and showed effective implementation for the bioanalysis of small molecule targets and pesticide residue-related food safety.
Collapse
Affiliation(s)
- Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shun Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China; Zybio Inc., Chongqing, 400039, PR China
| | - Tao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guan-Yan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China
| | | | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shang-Cheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
68
|
Donaher SE, Van den Hurk P. Ecotoxicology of the herbicide paraquat: effects on wildlife and knowledge gaps. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1187-1199. [PMID: 37973658 DOI: 10.1007/s10646-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Paraquat (PQ) is an organic herbicide introduced to the commercial market in 1962 and since linked to a variety of human health effects, including lung fibrosis, liver tumors, and Parkinson's disease. Although PQ is banned in the European Union, it is still frequently used in agricultural areas of the United States and Asia. The general mechanism of PQ's toxicity is the disruption of the redox cycle in cells. This mini-review summarizes our current understanding of PQ toxicity in non-target plants and animals. Among vertebrates, PQ sensitivity tends follow the pattern of fish > amphibians > mammals > birds. Aquatic plants are particularly vulnerable to PQ, with EC50 values ranging from ~28-280 μg/L. A number of convenient but non-specific biomarkers have been identified for non-target species, including the activities of antioxidant enzymes such as superoxide dismutase and catalase, histological changes in the gill structures of fish, and the upregulation of genes associated with the cytochrome p450 monooxygenase system. Significant literature gaps include a lack of data for environmentally realistic conditions (i.e., chronic, low concentration, multi-stressor), toxicity in reptiles, and population- and ecosystem-level effects. Although PQ is a useful herbicide, considering the many human and ecological health impacts, it may be time for regulators and the agricultural industry to reconsider its use.
Collapse
Affiliation(s)
- Sarah E Donaher
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, USA.
| | | |
Collapse
|
69
|
Hu L, Lan Q, Tang C, Yang J, Zhu X, Lin F, Yu Z, Wang X, Wen C, Zhang X, Lu Z. Abnormalities of serum lipid metabolism in patients with acute paraquat poisoning caused by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115543. [PMID: 37827095 DOI: 10.1016/j.ecoenv.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
As the mechanism of paraquat (PQ) poisoning is still not fully elucidated, and no specific treatment has been developed in medical practice, the management of PQ poisoning continues to present a medical challenge. In this study, the objective was to investigate the early metabolic changes in serum metabolism and identify the key metabolic pathways involved in patients with PQ poisoning. Quantitative analysis was conducted to determine the relevant metabolites. Additionally, experiments were carried out in both plasma and cell to elucidate the mechanisms underlying metabolic disorder and cell death in PQ poisoning. The study found that polyunsaturated fatty acids (PUFAs) and their metabolites, such as arachidonic acid (AA) and hydroxy eicosatetraenoic acids (HETEs), were significantly increased by non-enzymatic oxidative reaction. Reactive oxygen species (ROS) production increased rapidly at 2 h after PQ poisoning, followed by an increase in PUFAs at 12 h, and intracellular glutathione, cysteine (Cys), and Fe2+ at 24 h. However, at 36 h later, intracellular glutathione and Cys decreased, HETEs increased, and the expression of SLC7A11 and glutathione peroxidase 4 (GPX4) decreased. Ultrastructural examination revealed the absence of mitochondrial cristae. Deferoxamine was found to alleviate lipid oxidation, and increase the viability of PQ toxic cells in the low dose. In conclusion, unsaturated fatty acids metabolism was the key metabolic pathways in PQ poisoning. PQ caused cell death through the induction of ferroptosis. Inhibition of ferroptosis could be a novel strategy for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qin Lan
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; West China Hospital, Sichuan University
| | - Congrong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xingjie Zhu
- Department of Theater, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feiyan Lin
- Clinical research center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Wen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuhua Zhang
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
70
|
Wang D, Deng B, Cheng L, Li J, Guo X, Zhang J, Zhang X, Su P, Li G, Miao X, Yang W, Xie J, Wang R. The novel peptide DR4penA attenuates the bleomycin- and paraquat-induced pulmonary fibrosis by suppressing the TGF-β/Smad signaling pathway. FASEB J 2023; 37:e23225. [PMID: 37855708 DOI: 10.1096/fj.202301363r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Pulmonary fibrosis (PF), which is caused by continuous alveolar epithelial cell injury and abnormal repair, is referred to as a difficult disease of the lung system by the World Health Organization due to its rapid progression, poor prognosis, and high mortality rate. However, there is still a lack of ideal therapeutic strategies. The peptide DR8 (DHNNPQIR-NH2 ), which is derived from rapeseed, exerted antifibrotic activity in the lung, liver, and kidney in our previous studies. By studying the structure-activity relationship and rational design, we introduced an unnatural hydrophobic amino acid (α-(4-pentenyl)-Ala) into DR8 and screened the novel peptide DR4penA (DHNα-(4-pentenyl)-APQIR-NH2 ), which had higher anti-PF activity, higher antioxidant activity and a longer half-life than DR8. Notably, DR4penA attenuated bleomycin- and paraquat-induced PF, and the anti-PF activity of DR4penA was equivalent to that of pirfenidone. Additionally, DR4penA suppressed the TGF-β/Smad pathway in TGF-β1-induced A549 cells and paraquat-induced rats. This study demonstrates that the novel peptide DR4penA is a potential candidate compound for PF therapy, and its antifibrotic activity in different preclinical models of PF provides a theoretical basis for further study.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lu Cheng
- School of Biomedical Engineering, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jieru Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ping Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
71
|
Tajai P, Kornjirakasemsan A. Predicting mortality in paraquat poisoning through clinical findings, with a focus on pulmonary and cardiovascular system disorders. J Pharm Policy Pract 2023; 16:123. [PMID: 37864257 PMCID: PMC10588157 DOI: 10.1186/s40545-023-00635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Paraquat, one of the most widely used herbicides, poses a significant risk of mortality through self-poisoning and subsequent multiple organ failure. The primary objective aimed to identify the factors associated with death in patients poisoned by paraquat. METHODS A cross-sectional retrospective review was conducted at a tertiary referral hospital over five years. Eligible patients presented with acute paraquat toxicity between 1 January 2016 and 31 December 2020. Medical records of 148 patients were reviewed. RESULTS The in-hospital fatality rate was found to be 21.8%. Multivariate analysis revealed that the amount of paraquat ingested and clinical presentations, particularly pulmonary and cardiovascular system disorders, were significantly associated with mortality. CONCLUSION Our study highlights that the amount of paraquat ingested, along with the presence of pulmonary and cardiovascular system disorders, can serve as prognostic indicators for mortality rates in cases of paraquat poisoning. These findings have important implications for physicians in predicting the prognosis and mortality of paraquat poisoning patients.
Collapse
Affiliation(s)
- Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | |
Collapse
|
72
|
Noorlander A, Wesseling S, Rietjens IMCM, van Ravenzwaay B. Predicting acute paraquat toxicity using physiologically based kinetic modelling incorporating in vitro active renal excretion via the OCT2 transporter. Toxicol Lett 2023; 388:30-39. [PMID: 37806368 DOI: 10.1016/j.toxlet.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Including active renal excretion in physiologically based kinetic (PBK) models can improve their use in quantitative in vitro- in vivo extrapolation (QIVIVE) as a new approach methodology (NAM) for predicting the acute toxicity of organic cation transporter 2 (OCT2) substrates like paraquat (PQ). To realise this NAM, kinetic parameters Vmax and Km for in vitro OCT2 transport of PQ were obtained from the literature. Appropriate scaling factors were applied to translate the in vitro Vmax to an in vivo Vmax. in vitro cytotoxicity data were defined in the rat RLE-6TN and L2 cell lines and the human A549 cell line. The developed PQ PBK model was used to apply reverse dosimetry for QIVIVE translating the in vitro cytotoxicity concentration-response curves to predicted in vivo toxicity dose-response curves after which the lower and upper bound benchmark dose (BMD) for 50% lethality (BMDL50 and BMDU50) were derived by applying BMD analysis. Comparing the predictions to the in vivo reported LD50 values resulted in a conservative prediction for rat and a comparable prediction for human showing proof of principle on the inclusion of active renal excretion and prediction of PQ acute toxicity for the developed NAM.
Collapse
Affiliation(s)
- Annelies Noorlander
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
73
|
Cai Q, Shen Q, Zhu W, Zhang S, Ke J, Lu Z. Paraquat-induced ferroptosis suppression via NRF2 expression regulation. Toxicol In Vitro 2023; 92:105655. [PMID: 37507096 DOI: 10.1016/j.tiv.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Paraquat (PQ) is an environmentally friendly and efficient herbicide, but PQ misuse or intentional self-use can cause death through multiple organ damage and can cause acute lung injury. Existing clinical treatments alleviate symptoms but do not significantly improve the mortality rate. Ferroptosis is a type of necrosis that presents in a manner very similar to the cell damage induced by high doses of PQ, but the role of ferroptosis in paraquat-induced lung injury remains unclear. In this study, we aimed to explore the role of ferroptosis in PQ-induced A549 cell injury and identify the potential mechanisms and critical sites of protection against PQ-induced A549 injury by ferroptosis inhibitors. We found that the ferroptosis inhibitors Ferr-1 and Lip-1 inhibit ferroptosis by attenuating oxidative stress through the upregulation of NRF2 gene expression. The protective role of the ferroptosis inhibitor Dfo was most evident in paraquat-induced cell injury. Dfo inhibited ferroptosis by iron chelation and promoted NRF2 protein level reduction. NRF2 attenuated PQ-induced ferroptosis in A549 cells, mainly through the upregulation of SLC40A1 to encourage the movement of iron to the extracellular side to alleviate iron overload, and the upregulation of SLC7A11 to promote the expression of GPX4 to inhibit lipid peroxidation.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Qunhe Shen
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Weimin Zhu
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Sheng Zhang
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Jingjing Ke
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical, the key specialty of traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan period (Emergency Department), Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
74
|
Lim JY, Templeton SP. Regulation of lung inflammation by adiponectin. Front Immunol 2023; 14:1244586. [PMID: 37724101 PMCID: PMC10505393 DOI: 10.3389/fimmu.2023.1244586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Adiponectin is an insulin sensitizing hormone that also plays a role in the regulation of inflammation. Although adiponectin can exert pro-inflammatory effects, more studies have reported anti-inflammatory effects, even in non-adipose tissues such as the lung. Obesity is considered an inflammatory disease, is a risk factor for lung diseases, and is associated with decreased levels of plasma adiponectin. The results of recent studies have suggested that adiponectin exerts anti-inflammatory activity in chronic obstructive pulmonary disease, asthma and invasive fungal infection. The signaling receptors of adiponectin, AdipoR1 and AdipoR2, are expressed by epithelial cells, endothelial cells, and immune cells in the lung. In this mini-review, we discuss the anti-inflammatory mechanisms of adiponectin in lung cells and tissues.
Collapse
Affiliation(s)
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| |
Collapse
|
75
|
Song CY, Liu ZF, Wang P, Su XH, Lu YQ. Assessment of pulmonary fibrosis induced by paraquat using Al 18F-NODA-FAPI-04 PET/CT. Intern Emerg Med 2023; 18:1673-1679. [PMID: 37284931 DOI: 10.1007/s11739-023-03327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
The lack of a highly sensitive method to evaluate paraquat (PQ)-induced pulmonary fibrosis and predict disease progression remains an unresolved clinic issue. Fibroblast activation protein (FAP) may play an important role in the pathogenesis of PQ-induced pulmonary fibrosis. We aimed to evaluate the role of FAP in the PQ-induced pulmonary fibrosis and the utility of fibroblast activation protein inhibitor (FAPI) for positron emission tomography (PET) imaging in PQ-induced pulmonary fibrosis. In our study, two cases of PQ poisoning were presented and FAPI PET/CT was performed as a novel imaging technique. The uptake of FAPI increased in both cases of PQ poisoning. Animal experiments were then performed to validate the findings in the patients. Physiological FAPI lung uptake was higher in mice of the PQ group than in the control group. The results of histological analysis and Western blot were consistent with the findings of PET/CT imaging. The pulmonary fibrosis animal model was developed by intragastric gavage of PQ. PET/CT imaging was performed after injection of FAPI. Lung tissues of mice were collected for fibrosis assessment after imaging. Immunohistochemistry for FAP, histology and Western blot for collagen were performed to further validate the imaging findings. In conclusion, FAPI was involved in the pathogenesis of fibrosis induced by PQ, and PET/CT with FAPI could detect lung fibrogenesis, making it a promising tool to assess early disease activity and predict disease progression.
Collapse
Affiliation(s)
- Cong-Ying Song
- Department of Emergency Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Zhen-Feng Liu
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, China
| | - Xin-Hui Su
- Department of Nuclear Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
76
|
Jindakaraked M, Khan E, Kajitvichyanukul P. Biodegradation Capabilities of Paraquat-Degrading Bacteria Immobilized on Nanoceramics. TOXICS 2023; 11:638. [PMID: 37505603 PMCID: PMC10386355 DOI: 10.3390/toxics11070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
The biodegradation of paraquat was investigated using immobilized microbial cells on nanoceramics fabricated from nanoscale kaolinite. Pseudomonas putida and Bacillus subtilis, which degrade paraquat, were immobilized separately on nanoceramics (respectively called ICnc-P and ICnc-B). The attachment of bacteria to nanoceramics resulted from electrostatic force interactions, hydrogen bonding, and covalent bonding (between the cells and the support materials). The initial 10 mg L-1 concentration of paraquat in water was removed by the adsorption process using nanoceramics at 68% and ceramics at 52%, respectively. The immobilized cells on the nanoceramics were able to remove approximately 92% of the paraquat within 10 h, whereas the free cells could only remove 4%. When the paraquat was removed, the cell-immobilized nanoceramics exhibited a significant decrease in dissolved organic nitrogen (DON). ICnc-B was responsible for 34% of DON biodegradation, while ICnc-P was responsible for 22%. Ammonia was identified as the end product of ammonification resulting from paraquat mineralization.
Collapse
Affiliation(s)
- Manee Jindakaraked
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 52000, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 52000, Thailand
| |
Collapse
|
77
|
Li C, Cai H, Meng F, Meng F, Tang Z, Tang Y, Chen Y, Cui Y, Li Y. Case report: Lung transplantation for treatment of paraquat intoxication: timing of transplantation. Front Pharmacol 2023; 14:1205689. [PMID: 37529697 PMCID: PMC10387547 DOI: 10.3389/fphar.2023.1205689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Objective: To analyze the optimal timing of lung transplantation and summarize postoperative complications and their management after paraquat poisoning. Methods: Here, we present the clinical course of a 17-year-old boy with paraquat poisoning, in whom bilateral lung transplantation (LT) was performed. We reviewed the eight previously published articles relevant to LT after paraquat poisoning to summarize the therapeutic strategy. Results: A 17-year-old boy was admitted to the hospital after ingestion of 30-50 mL 25% paraquat. Mechanical ventilation was initiated on the 25th day after intoxication. Venovenous extracorporeal membrane oxygenation was initiated on the 26th day. Sequential bilateral LT was performed on the 27th day. Several complex postoperative complications occurred and the patient was discharged on the 50th day postoperatively. Eight case reports were included in the literature review, including 11 patients with paraquat poisoning undergoing LT. Three patients died due to paraquat poisoning leading to fibrosis in the transplanted lungs or postoperative complications. Eight patients survived during follow-up. Conclusion: LT after herbicide poisoning should be planned when hepatorenal function starts to recover, and waiting for complete recovery is unnecessary. Prevention of infection before surgery is important to reduce the incidence of postoperative infection. Complex perioperative complications caused by the herbicide itself or the late timing of transplantation can be successfully managed by a multidisciplinary team.
Collapse
Affiliation(s)
- Congcong Li
- Department of Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fanyu Meng
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Fanjie Meng
- Department of Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ze Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Tang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Chen
- Department of Critical Medicine, The First Hospital of Jilin University, Changchun, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
78
|
Wu Y, Sun H, Qin L, Zhang X, Zhou H, Wang Y, Wang L, Li M, Liu J, Zhang J. Human amnion-derived mesenchymal stem cells attenuate acute lung injury in two different acute lung injury mice models. Front Pharmacol 2023; 14:1149659. [PMID: 37388446 PMCID: PMC10304826 DOI: 10.3389/fphar.2023.1149659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Acute lung injury (ALI) is one of the most common clinical emergencies with limited effective pharmaceutical treatment in the clinic, especially when it progresses to acute respiratory distress syndrome (ARDS). Currently, mesenchymal stem cells (MSCs) exhibit specific superiority for ALI/ARDS treatment. However, stem cells from different sources may result in controversial effects on similar disease conditions. This study aimed to determine the effects of human amnion-derived mesenchymal stem cells (hAMSCs) on two different ALI mice model. The administered hAMSCs effectively accumulated in the lung tissues in all hAMSC-treated groups. Compared with the model and 1% human serum albumin (HSA) groups, high-dose hAMSCs (1.0 × 106 cells) group significantly alleviated alveolar-capillary permeability, oxidative stress, inflammatory factors level and histopathological damage. In addition, the NF-κB signaling pathway is one of the key pathways activated during lipopolysaccharide (LPS) or paraquat (PQ)-induced lung injury. Our results indicated that hAMSCs (1.0 × 106 cells) obviously inhibited the expression of p-IKKα/β, p-IκBα, and p-p65 in the lung tissue (p < 0.05). The high-dose (HD) hAMSC treatment exerted beneficial therapeutic effects on ALI mice models without detectable adverse reactions. The therapeutic effect of hAMSCs might involve NF-κB signaling pathway inhibition. hAMSC treatment is a potential candidate therapy for ALI.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaomin Zhang
- Department of Emergency, Jiangnan University Medical Center, Wuxi, China
| | - Hao Zhou
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lumin Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Li
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
79
|
Kaur H, Chandran VP, Rashid M, Kunhikatta V, Poojari PG, Bakkannavar SM, Balakrishnan JM, Thunga G. The significance of APACHE II as a predictor of mortality in paraquat poisoning: A systematic review and meta-analysis. J Forensic Leg Med 2023; 97:102548. [PMID: 37327568 DOI: 10.1016/j.jflm.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system is utilised as a prognostic method in paraquat poisoning; however, current evidence shows ambiguity. Although some studies have shown APACHE II to be a superior tool, others have reported it inferior to other prognostic markers, such as lactate, severity index of paraquat poisoning and urine paraquat concentration. Hence, to address this ambiguity, we conducted a systematic review and meta-analysis to analyse prognostic accuracy of APACHE II score in predicting mortality in paraquat poisoning. We included twenty studies with 2524 paraquat poisoned patients in the systematic review, after a comprehensive literature search in databases PubMed, Embase, Web of Science, Scopus and Cochrane Library, from which 16 studies were included in the meta-analysis. The survivors of paraquat poisoning were found to have significantly lower APACHE II scores (Mean Difference (MD): -5.76; 95% CI: -7.93 to -3.60 p < 0.0001; n = 16 studies) compared to non-survivors. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) for APACHE II score <9 was found to be 74%, 68%, 2.58, 0.38 and 7.10, respectively (n = 5 studies). The area under the curve (AUC) of the bivariate summary receiver operating characteristic (SROC) curve was found to be 0.80. The pooled sensitivity, specificity, PLR, NLR and DOR for APACHE II score ≥9 was found to be 73%, 86%, 4.69, 0.33 and 16.42, respectively (n = 9 studies). The AUC of the SROC curve was found to be 0.89. Pairwise AUC comparison of APACHE II with other prognostic markers showed serum presepsin to have a significantly better discriminatory ability than APACHE II. Through the findings of this study, we conclude that APACHE II was found to be a good indicator of death in paraquat poisoning patients. However, higher APACHE II scores (≥9) depicted greater specificity in predicting mortality in paraquat poisoning. Thus, APACHE II can be used as a practical tool in the hand of physicians to prognose patients with paraquat poisoning to aid clinical decisions.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Viji Pulikkel Chandran
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Muhammed Rashid
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Pooja Gopal Poojari
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Shankar M Bakkannavar
- Department of Forensic Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Jayaraj Mymbilly Balakrishnan
- Department of Emergency Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
80
|
Cui A, Li S, Li Y, Yang D, Huang J, Wang X, Song N, Chen F, Chen S, Xiang M. Nitric oxide-mediated the therapeutic properties of induced pluripotent stem cell for paraquat-induced acute lung injury. Front Immunol 2023; 14:1136290. [PMID: 37275899 PMCID: PMC10232993 DOI: 10.3389/fimmu.2023.1136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The mortality rate associated with acute lung injury (ALI) and its severe form, acute respiratory distress syndrome, is high. Induced pluripotent stem cell (iPSC) therapy is a potential treatment method for ALI, but its therapeutic efficacy is limited in injured lungs. Nitric oxide (NO) has various physiological actions. The current study investigated the effect of iPSCs pretreated with NO donors in paraquat (PQ)-induced ALI mouse model. Male C57BL/6 mice were intraperitoneally injected with PQ, followed by infusion of phosphate-buffered saline, iPSCs, L-arginine pretreated iPSCs, or Nitro-L-arginine methylester (L-NAME) pretreated iPSCs through the tail veins. Histopathological changes, pulmonary microvascular permeability, and inflammatory cytokine levels were analyzed after 3 or 28 d. The effects on iPSC proliferation, migration, and adhesion were evaluated in vitro. More L-arginine-pretreated iPSCs were selectively trafficked into the injured pulmonary tissue of mice with LPS-induced ALI, drastically diminishing the histopathologic changes and inflammatory cytokine levels (IL-1β and IL-6). There was also markedly improved pulmonary microvascular permeability and pulmonary function. The NO inhibitor abolished the protective effects of iPSCs. In addition, the ability of L-arginine to promote the proliferation and migration of iPSCs was decreased by L-NAME pretreatment, suggesting that NO might mediate the therapeutic benefits of iPSC. The improvement of the iPSC physiological changes by the endogenous gaseous molecule NO reduces lung injury severity. L-Arginine represents a pharmacologically important strategy for enhancing the therapeutic potential of iPSCs.
Collapse
Affiliation(s)
- Anfeng Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Pathology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shirui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yijun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiongwei Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Health Management Center Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuemeng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nana Song
- Fudan Zhang Jiang Institute, Shanghai, China
| | - Fuchen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Fudan Zhang Jiang Institute, Shanghai, China
| |
Collapse
|
81
|
Okagu IU, Okeke ES, Ezeorba WCF, Ndefo JC, Ezeorba TPC. Overhauling the ecotoxicological impact of synthetic pesticides using plants' natural products: a focus on Zanthoxylum metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67997-68021. [PMID: 37148518 DOI: 10.1007/s11356-023-27258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The reduction in agricultural production due to the negative impact of insects and weeds, as well as the health and economic burden associated with vector-borne diseases, has promoted the wide use of chemicals that control these "enemies." However, the use of these synthetic chemicals has been recognized to elicit negative impacts on the environment as well as the health and wellbeing of man. In this study, we presented an overview of recent updates on the environmental and health impacts of synthetic pesticides against agro-pest and disease vectors while exhaustive reviewing the potentials of natural plant products from Zanthoxylum species (Rutaceae) as sustainable alternatives. This study is expected to spur further research on exploiting these plants and their chemicals as safe and effective pesticide entities to minimize the impact of their chemical and synthetic counterparts on health and the environment.
Collapse
Affiliation(s)
- Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
82
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|
83
|
Wang J, Weng Y, Li Y, Zhang Y, Zhou J, Tang J, Lin X, Guo Z, Zheng F, Yu G, Shao W, Hu H, Cai P, Wu S, Li H. The interplay between lncRNA NR_030777 and SF3B3 in neuronal damage caused by paraquat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114804. [PMID: 36948007 DOI: 10.1016/j.ecoenv.2023.114804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) has been widely acknowledged as an environmental risk factor for Parkinson's disease (PD). However, the interaction between splicing factor and long non-coding RNA (lncRNA) in the process of PQ-induced PD has rarely been studied. Based on previous research, this study focused on splicing factor 3 subunit 3 (SF3B3) and lncRNA NR_030777. After changing the target gene expression level by lentiviral transfection technology, the related gene expression was detected by western blot and qRT-PCR. The expression of SF3B3 protein was reduced in Neuro-2a cells after PQ exposure, and the reactive oxygen species (ROS) scavenger N-acetylcysteine prevented this decline. Knockdown of SF3B3 reduced the PQ-triggered NR_030777 expression increase, and overexpression of NR_030777 reduced the transcriptional and translational level of Sf3b3. Then, knockdown of SF3B3 exacerbated the PQ-induced decrease in cell viability and aggravated the reduction of tyrosine hydroxylase (TH) protein expression. Overexpressing SF3B3 reversed the reduction of TH expression caused by PQ. Moreover, after intervention with the autophagy inhibitor Bafilomycin A1, LC3B-II protein expression was further increased in Neuro-2a cells with the knockdown of SF3B3, indicating that autophagy was enhanced. In conclusion, PQ modulated the interplay between NR_030777 and SF3B3 through ROS production, thereby impairing autophagic flux and causing neuronal damage.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yali Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
84
|
Song CY, Feng MX, Li L, Wang P, Lu X, Lu YQ. Tripterygium wilfordii Hook.f. ameliorates paraquat-induced lung injury by reducing oxidative stress and ferroptosis via Nrf2/HO-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114575. [PMID: 36706526 DOI: 10.1016/j.ecoenv.2023.114575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.
Collapse
Affiliation(s)
- Cong-Ying Song
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Meng-Xiao Feng
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Li Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Ping Wang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Xuan Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China.
| |
Collapse
|
85
|
Wang H, Hou E, Xu N, Nie P, Chang L, Wu J, Zhang X. Graphene electrochemical transistors decorated by Ag nanoparticles exhibiting high sensitivity for the detection of paraquat over a wide concentration range. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:959-968. [PMID: 36723188 DOI: 10.1039/d2ay01728h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) is a nonselective contact herbicide used in agriculture for the control of broad leaf weeds, which would cause irreversible damage to human organs even at very low concentrations. Therefore, the trace residue detection of PQ in the environment is of vital importance. Here, a novel graphene electrochemical transistor (GECT) for PQ detection is reported for the first time. The key to the device design is the application of a layer of Ag nanoparticle (Ag NP) modified monolayer graphene as the channel layer. Due to the good electrochemical activity of Ag NPs for PQ detection, the device exhibits excellent sensitivity for PQ with the detection limit of 0.068 nM and a wide linear range from 0.1 nM to 5 mM. The GECT sensor also reveals good selectivity toward several common interferents and exhibits satisfactory recoveries for PQ detection when using Chinese cabbage as a simulant to deduce the real detection situation. The GECT sensor not only provides an efficient method for the detection of PQ residues, but also provides an effective grafting platform for the construction of novel high-sensitivity electrochemical sensors.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Enhui Hou
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Xuelin Zhang
- MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
86
|
HPLC-MS/MS determination and the postmortem distribution or postmortem redistribution of paraquat and its metabolites in four fatal intoxication cases. Forensic Sci Int 2023; 345:111606. [PMID: 36857988 DOI: 10.1016/j.forsciint.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
HPLC-MS/MS analysis and postmortem distribution or postmortem redistribution of paraquat and its two metabolites in poisoning death cases were reported. Paraquat, monoquat, and paraquat monopyridone were extracted from the sample with acetonitrile or methanol, respectively, detected by ZORBAX HILIC Plus (4.6 × 100 mm, 3.5 μm) chromatographic column, with 0.1 % formic acid aqueous solution - 0.1 % formic acid acetonitrile solution (v/v) as mobile phase. Paraquat, monoquat, and paraquat monopyridone had a good linear relationship within the range of 10-1000, 1-400, and 1-1000 ng/mL (or g), the correlation coefficient (r) were all ≥ 0.9996. Their detection limits were lower than 1 ng/mL (or g). The detection accuracy was 91.25∼113.44 %. The intra-day and inter-day precision were 1.51-3.99 % and 1.92-4.93 %, respectively. This method was used to detect and analyze four rare paraquat poisoning cases. The distribution of paraquat, monoquat, and paraquat monopyridone is uneven, which is relatively high in the heart, blood, lung, and kidney. Heart blood/Peripheral blood ratio of paraquat, monoquat, paraquat monopyridone concentration in two poisoned cases were 1.4, 2.0, 1.5 and 1.9, 1.3, 1.2, which showed a location dependent postmortem redistribution. This is the first time that HPLC-MS/MS and the postmortem distribution or postmortem redistribution of paraquat metabolites in poisoned death cases have been reported. This research provides scientific basis for forensic identification of paraquat poisoning cases and extraction of biological specimen.
Collapse
|
87
|
Bai J, Guo D, Li J, Wang H, Wang C, Liu Z, Guo X, Wang Y, Xu B. The role of AccCDK20 and AccCDKN1 from Apis cerana cerana in development and response to pesticide and heavy metal toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105333. [PMID: 36740341 DOI: 10.1016/j.pestbp.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Apis cerana cerana is a native bee species in China and plays a key role in agricultural production and ecological balance. However, the growth and development of Apis cerana cerana has not been smooth, and pesticide and heavy metal stress are key factors that have forced a dramatic decline in population size. This study was performed with the objective of investigating the role of AccCDK20 and AccCDKN1 in honey bee resistance to pesticide and heavy metal stress. RT-qPCR analysis revealed that AccCDK20 transcript levels were highest in brown-eyed pupae and AccCDKN1 transcript levels were highest in 1-day-old worker bees. In different tissues and body parts of adult bees, AccCDK20 transcript levels were highest in the head, and AccCDKN1 transcript levels were highest in the thorax. It was further observed that environmental stress can affect the transcript levels of the AccCDK20 and AccCDKN1 genes. Silencing of the AccCDK20 and AccCDKN1 genes resulted in altered activities of antioxidant-related genes and antioxidant-related enzymes. AccCDK20 and AccCDKN1 transcript levels were upregulated under glyphosate stress, and silencing of the genes resulted in reduced resistance to glyphosate and greatly increased mortality in Apis cerana cerana. In addition, gene function was verified by in vitro repression assays. Overexpression of the AccCDK20 and AccCDKN1 proteins in E. coli cells increased the resistance to ROS damage induced by CHP. In conclusion, AccCDK20 and AccCDKN1 play an indispensable role in honey bee resistance to pesticide and heavy metal stress.
Collapse
Affiliation(s)
- Jinhao Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
88
|
Febriana SA, Khalidah M, Huda FN, Sutarni S, Mahayana I, Indrastuti N, Setyopranoto I, Waskito F, Prawiroranu S, Dwianingsih EK, Malueka RG. Prevalence of pesticide related occupational diseases among Indonesian vegetable farmers - A collaborative work. Toxicol Rep 2023; 10:571-579. [PMID: 37213813 PMCID: PMC10192388 DOI: 10.1016/j.toxrep.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Objective This study was done to understand the prevalence of various occupational diseases including dry eyes, nail dystrophy, and neuropathy related to pesticide exposure in Indonesian local vegetable farmers. Methods The data were collected through questionnaires and physical examination involving dermatology, neurology, and ophthalmology domains at Ngablak District, Magelang, Central Java directed to local vegetable farmers. Ocular Surface Disease Index (OSDI) questionnaire and the Schirmer test were used. Analysis was done using descriptive statistics using the Statistical Package for the Social Sciences (SPSS 21.0) and presented in tables. Results Inadequate spraying equipment and improper storage of pesticides were found. Out of 105 farmers, 41.9 % experienced occupational skin diseases (OSD). Definite cognitive impairments were found in 3.4 % of subjects but probable in 28.3 % of subjects. Neuropathies were found in 61.7 % of subjects, and dry-eyes syndrome were found in 28.78 % of subjects. Conclusion There was a high prevalence of peripheral neuropathy and tremor, dry eyes syndrome in one-third of the population, and the most common skin problem was nail discoloration, with a low incidence of contact dermatitis.
Collapse
Affiliation(s)
- Sri Awalia Febriana
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Miya Khalidah
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fariz Nurul Huda
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sri Sutarni
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Indra Mahayana
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Niken Indrastuti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fajar Waskito
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Suhardjo Prawiroranu
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Correspondence to: Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Kesehatan No. 1 Sekip, Yogyakarta 55284, Indonesia.
| |
Collapse
|
89
|
Fan L, Wang X, Lv T, Xue F, Wu B, Ma A, Lu M. Follow-up of patients with a 5-year survival after paraquat poisoning using computed tomography images and spirometry. Hum Exp Toxicol 2023; 42:9603271221150243. [PMID: 36622665 DOI: 10.1177/09603271221150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The study aimed to examine long-term survival of patients with acute paraquat poisoning using computed tomography (CT) images and spirometry. METHODS A total of 36 patients with long-term survival after paraquat poisoning were followed-up and divided into mild (11 patients), moderate (17 patients), and severe (8 patients) paraquat poisoning groups. Differences among the groups were compared using clinical indicators, such as peripheral capillary oxygen saturation, arterial partial pressure of oxygen and 6-min walk test (6-MWT), chest CT, spirometry, and serum immunoglobulin E (IgE). RESULTS The 6-MWT distance was significantly shorter in the severe paraquat poisoning group than that in the mild and moderate paraquat poisoning groups. In the mild paraquat poisoning group, CT revealed no obvious lung injury, and spirometry showed normal lung function in most patients. In moderate or severe paraquat poisoning group, CT images showed fibrotic lesions as cord-like high-density shadows, reticulations, and honeycombs. In addition, other pulmonary changes, including bronchiectasis, increased lung transparency, and pulmonary bullae, were discovered. In moderate or severe paraquat poisoning group, obvious obstructive ventilation dysfunction with slight restrictive and diffuse impairment were observed in some patients, with positive bronchial relaxation test and high serum IgE level. CONCLUSION In the long-term follow-up, patients with severe paraquat poisoning showed the lowest exercise endurance. In moderate or severe paraquat poisoning group, CT images revealed diversified changes, not only dynamic evolution of pulmonary fibrosis process, but also signs of bronchiectasis, and chronic obstructive pulmonary disease. Some patients with moderate or severe paraquat poisoning developed obstructive ventilatory dysfunction with airway hyperresponsiveness.
Collapse
Affiliation(s)
- Lu Fan
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Xuejie Wang
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Tianyi Lv
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Fei Xue
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Benhe Wu
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Aiwen Ma
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| | - Mingfeng Lu
- Clinical Medical College, 38043Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
90
|
HIF-1α promotes paraquat induced acute lung injury and implicates a role NF-κB and Rac2 activity. Toxicology 2023; 483:153388. [PMID: 36462643 DOI: 10.1016/j.tox.2022.153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40 mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800 μM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1β, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.
Collapse
|
91
|
Li G, Zhang C, Wang H, Xia W, Zhang X, Liu Z, Wang Y, Zhao H, Xu B. Characterisation of the heat shock protein Tid and its involvement in stress response regulation in Apis cerana. Front Physiol 2022; 13:1068873. [PMID: 36620206 PMCID: PMC9813389 DOI: 10.3389/fphys.2022.1068873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The impact of various environmental stresses on native Apis cerana cerana fitness has attracted intense attention in China. However, the defence responses of A. cerana cerana to different stressors are poorly understood. Here, we aimed to elucidate the regulatory mechanism mediated by the tumorous imaginal discs (Tid) protein of A. cerana cerana (AccTid) in response to stressors. Methods: We used some bioinformatics softwares to analyse the characterisation of Tid. Then, qRT-PCR, RNA interference and heat resistance detection assays were used to explore the function of Tid in stress response in A. cerana cerana. Results: AccTid is a homologous gene of human Tid1 and Drosophila Tid56, contains a conserved J domain and belongs to the heat shock protein DnaJA subfamily. The level of AccTid induced expression was increased under temperature increases from 40°C to 43°C and 46°C, and AccTid knockdown decreased the heat resistance of A. cerana cerana, indicating that the upregulation of AccTid plays an important role when A. cerana cerana is exposed to heat stress. Interestingly, contrary to the results of heat stress treatment, the transcriptional level of AccTid was inhibited by cold, H2O2 and some agrochemical stresses and showed no significant change under ultraviolet ray and sodium arsenite stress. These results suggested that the requirement of A. cerana cerana for Tid differs markedly under different stress conditions. In addition, knockdown of AccTid increased the mRNA levels of some Hsps and antioxidant genes. The upregulation of these Hsps and antioxidant genes may be a functional complement of AccTid knockdown. Conclusion: AccTid plays a crucial role in A. cerana cerana stress responses and may mediate oxidative damage caused by various stresses. Our findings will offer fundamental knowledge for further investigations of the defence mechanism of A. cerana cerana against environmental stresses.
Collapse
Affiliation(s)
- Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Chenghao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Wenli Xia
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xinyi Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| |
Collapse
|
92
|
Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 2022; 113:109301. [DOI: 10.1016/j.intimp.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
93
|
Gohari-Piran M, Omidifar N, Mohammadi M, Nili-Ahmadabadi A. Phlebotomy-induced iron deficiency attenuates the pulmonary toxicity of paraquat in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105278. [PMID: 36464381 DOI: 10.1016/j.pestbp.2022.105278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Phlebotomy is an effective method in the prevention and treatment of some poisonings, among which iron deficiency is a well-known consequence. Given the role of iron in paraquat (PQ) toxicity, the present study investigated the effectiveness of phlebotomy in PQ pulmonary toxicity. After conducting preliminary studies, the duration time of phlebotomy was set to be seven days. Then, the mice were divided into nine separate groups. Groups 1-3 received a single dose of normal saline, and 5 and 10 mg/kg of PQ, respectively, and phlebotomy was not performed on them (NPG status). The animals in groups 4-6 first underwent phlebotomy for seven days and then received a single dose of normal saline, and 5 and 10 mg/kg of PQ (PBPT status). Groups 7-9 first received a single dose of normal saline, and 5 and 10 mg/kg of PQ and then underwent phlebotomy for seven days (PAPT status). Seven days after acute exposure to PQ, the animals were anesthetized and biochemical biomarkers as well as lung tissue changes were evaluated. The findings showed that phlebotomy before and after PQ toxicity significantly decreased serum iron compared to NPG condition. In the PBPT status, phlebotomy could prevent PQ toxicity by increasing the activity of catalase and superoxide dismutase (SOD) and decreasing the activity of myeloperoxidase (MPO), and the levels of hydroxyproline and lipid peroxidation in the lung tissue. In the PAPT status, a significant improvement was observed in SOD and MPO activities compared to the NPG status. Confirming the biochemical findings, the histological results indicated higher effectiveness of phlebotomy in preventing PQ toxicity (PBPT) compared to its therapeutic effects (PAPT). Considering the role of iron in PQ toxicity, it appears that the reduction of serum iron levels during phlebotomy can be effective in preventing lung injuries caused by PQ and improving the performance of the pulmonary antioxidant system.
Collapse
Affiliation(s)
- Mahtab Gohari-Piran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
94
|
Yang W, Tian R, Zhu Y, Huang P, Ma X, Meng X, Dai W, Tao Y, Chen D, Zhang J, Lu J, Xie H, Jian X, Yang Z, Wang R. Paraquat is an agonist of STIM1 and increases intracellular calcium levels. Commun Biol 2022; 5:1151. [PMID: 36310238 PMCID: PMC9618025 DOI: 10.1038/s42003-022-04130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Paraquat (PQ) is an efficient herbicide but leads to high mortality with no antidote in mammals. PQ produces reactive oxygen species (ROS), leading to epithelial-mesenchymal transition (EMT) for pulmonary fibrosis in type II alveolar (AT II) cells. Intriguingly, strategies reducing ROS exhibit limited therapeutic effects, indicating other targets existing for PQ toxicity. Herein we report that PQ is also an agonist for STIM1 that increases intracellular calcium levels. Particularly, PQ promotes STIM1 puncta formation and association with TRPC1 or ORAI for extracellular calcium entry and thus intracellular calcium influx. Further studies reveal the importance of P584&Y586 residues in STIM1 for PQ association that facilitates STIM1 binding to TRPC1. Consequently, the STIM1-TRPC1 route facilitates PQ-induced EMT for pulmonary fibrosis as well as cell death. Our results demonstrate that PQ is an agonist of STIM1 that induces extracellular calcium entry, increases intracellular calcium levels, and thus promotes EMT in AT II cells.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Peijie Huang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xinrun Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Yiming Tao
- Department of Poisoning and Occupational Diseases, Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Daonan Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Zhengfeng Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
95
|
Li W, Li M, Chen K, Tang Y, Yin R, Lan L, Hong G. Oxaloacetate acid ameliorates paraquat-induced acute lung injury by alleviating oxidative stress and mitochondrial dysfunction. Front Pharmacol 2022; 13:1029775. [PMID: 36313362 PMCID: PMC9606601 DOI: 10.3389/fphar.2022.1029775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Acute lung injury (ALI) is the primary cause of death among patients with acute paraquat (PQ) poisoning, whereby peroxidative damage is an important mechanism underlying PQ-induced lung injury. There is a lack of effective interventional drugs for patients with PQ poisoning. Oxaloacetic acid (OAA) participates in multiple in vivo metabolic processes, whereby it facilitates the clearance of reactive oxygen species (ROS) and improves mitochondrial function. The study aimed to assess the protective effects of OAA on PQ-induced ALI and elucidate the underlying molecular mechanism. Our data demonstrated that OAA treatment significantly alleviated PQ-induced ALI and improved the survival rate of PQ-poisoned mice, and also alleviated PQ-induced cellular oxidative stress and mitochondrial dysfunction. OAA-mediated alleviation of PQ-induced mitochondrial dysfunction depends on the following mechanisms which may explain the above findings: 1) OAA effectively cleared intracellular ROS, inhibited ROS accumulation, and mitochondrial depolarization; 2) OAA inhibited the downregulation of L-OPA1 and MFN2 caused by PQ and promoted a dynamic balance of mitochondrial fusion and fission, and 3) the expression of PGC-1α, TFAM, COX2, and COX4I1, increased significantly following OAA intervention which improved mitochondrial respiratory functions and promoted its biogenesis and energy metabolism in damaged cells. In conclusion, OAA effectively cleared ROS and improved mitochondrial dysfunction, thereby significantly improving ALI caused by PQ poisoning and the animal survival rate. Therefore, OAA may be a potential drug for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Wenwen Li
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Li
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Kaiyuan Chen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Ran Yin
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- *Correspondence: Guangliang Hong,
| |
Collapse
|
96
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
97
|
Yen TH, Chang CW, Tsai HR, Fu JF, Yen HC. Immunosuppressive therapies attenuate paraquat-induced renal dysfunction by suppressing inflammatory responses and lipid peroxidation. Free Radic Biol Med 2022; 191:249-260. [PMID: 36031164 DOI: 10.1016/j.freeradbiomed.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Although paraquat (PQ) induces oxidative damage and inflammatory responses in the lungs, the mechanism underlying PQ-induced acute kidney injury in patients is unclear. Immunosuppressive therapy with glucocorticoids and the immunosuppressant cyclophosphamide (CP) has been employed to treat patients with PQ poisoning. This study examined whether PQ could concurrently cause renal injury, inflammatory responses, and oxidative damage in the kidneys, and whether CP and dexamethasone (DEX) could suppress PQ-induced alterations. Mice were assigned to eight groups: Control, PQ, DEX, PQ plus DEX, CP, PQ plus CP, DEX plus CP, and PQ plus DEX with CP. DEX, CP, and DEX plus CP reversed PQ-induced renal injury, as indicated by urinary albumin-to-creatinine ratios and urea nitrogen levels in serum. The treatments also attenuated PQ-induced renal infiltration of leukocytes and macrophages and induction of the Il6, Tnf, Icam, Cxcl2, Tlr4, and Tlr9 genes encoding the inflammatory mediators in the kidneys. However, DEX only partially suppressed the macrophage infiltration, whereas DEX plus CP provided stronger protection than DEX or CP alone for the induction of Il6 and Cxcl2. Moreover, through the detection of F2-isoprostanes (F2-IsoPs) and isofurans in the kidneys and lungs and F2-IsoPs in the plasma and urine, the therapies were found to suppress PQ-induced lipid peroxidation, although DEX was less effective. Finally, PQ decreased ubiquinol-9:ubiquinone-9 ratios in the kidneys. This effect of PQ was not found under CP treatment, but the ratio was lower than that of the control group. Our findings suggest that the suppression of PQ-induced inflammatory responses by DEX and CP in the kidneys can mitigate oxidative damage and acute kidney injury.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Ru Tsai
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiu-Chuan Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
98
|
Shao M, Yang S, Zheng A, Wu Z, Chen M, Yao R, Shi Y, Chen G. Pathophysiological Changes in Rhesus Monkeys with Paraquat-Induced Pulmonary Fibrosis. Lung 2022; 200:549-560. [PMID: 36163517 PMCID: PMC9512975 DOI: 10.1007/s00408-022-00572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Purpose Pulmonary fibrosis is a life-threatening lung disorder. A comprehensive understanding of the pathophysiological changes in the development of pulmonary fibrosis will lead to new insights into its treatment. Methods We used a paraquat (PQ)-induced rhesus monkey model of pulmonary fibrosis to comprehensively investigate the process of pulmonary fibrosis development. Rhesus monkeys were orally administered PQ at concentrations of 25 mg/kg, 40 mg/kg, and 80 mg/kg. The dose was given once. Behavior and clinical data, such as PQ concentration, arterial oxygen saturation, biochemical evaluation, lung histopathology, and medical imaging, were continuously observed. Results Paraquat-exposed monkeys developed pulmonary fibrosis following an expected time course, especially at 25 mg/kg. CT images showed ground-glass lesions in the lung after 4 weeks, and pulmonary fibrosis persisted until the end of follow-up. Using pathological examination, the lung sustained collagen deposition and slight inflammatory cell infiltration. All rhesus monkeys had obvious inflammatory infiltration within 1 week according to the immunohistochemical results and the number of leukocytes in the blood. The CT results showed that pulmonary fibrosis had not formed, indicating that drugs with powerful anti-inflammatory ability are potential candidates for early pulmonary fibrosis treatment. Conclusion Our study describes the dynamic process of paraquat-induced pulmonary fibrosis in rhesus monkeys and provided a pathophysiological basis for the treatment of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1007/s00408-022-00572-9.
Collapse
Affiliation(s)
- Mingyang Shao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Sha Yang
- The Emergency Department, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Aiyi Zheng
- The Emergency Department, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Menglin Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Rong Yao
- The Emergency Department, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China.
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou, Chengdu, 610041, China
| | - Gen Chen
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan, Sichuan Yibin Horizontal and Vertical Biotechnology Co., Ltd., Yibin, 644601, China
| |
Collapse
|
99
|
Eizadi-Mood N, Jaberi D, Barouti Z, Rahimi A, Mansourian M, Dorooshi G, Sabzghabaee AM, Alfred S. The efficacy of hemodialysis on paraquat poisoning mortality: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:74. [PMID: 36353345 PMCID: PMC9639714 DOI: 10.4103/jrms.jrms_235_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Paraquat (PQ) poisoning is a serious public health concern, especially in developing countries, due to its easy access and lack of awareness of potential harms. No effective treatment has been reported yet. Conventional hemodialysis (HD) is still used in many centers for excreting PQ or reducing acute kidney injury, but there is no consensus on its efficacy. Therefore, we aimed to review the HD efficacy in PQ poisoning mortality. MATERIALS AND METHODS We searched Web of Science, PubMed, Excerpta Medical Database, Google Scholar, Scopus, Cochrane, Web of Knowledge, Pro-Quest, ScienceDirect, Springer, Clinical Key, Scientific Information Database, Magiran, and Iran-doc, in publications before January 1, 2020. We compared patients who underwent HD (Group 1) with those who did not (Group 2). The outcome was considered mortality/survival. The data were analyzed by Comprehensive Meta-analysis Software. RESULTS This systematic review and meta-analysis included five studies with a combined total of 203 patients. The patients in the Group 1 had higher mortality than Group 2 (odds ratio, 2.84; 95% confidence interval: 1.22-6.64; P = 0.02). There was no evidence of publication bias (P value for Egger's test = 0.833). CONCLUSION Although HD did not affect the survival of patients, other variables such as the amount of ingested PQ, poisoning severity, the time between PQ ingestion and the start of HD, duration, and times of HD sessions may influence the results regarding mortality.
Collapse
Affiliation(s)
- Nastaran Eizadi-Mood
- Department of Clinical Toxicology, Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Jaberi
- School of Medicine, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Barouti
- School of Medicine, Isfahan Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Rahimi
- Clinical Informationist Research Group, Health Information Technology Research Center, Faculty of Medical Management and Information Sciences, Isfahan University, Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Department of Epidemiology and Biostatistics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamali Dorooshi
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Mohammad Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sam Alfred
- Department of Emergency Medicine, Royal Adelaide Hospital, University of Adelaide, South Australia
| |
Collapse
|
100
|
Wu Q, Tao H, Wu Y, Wang X, Shi Q, Xiang D. A Label-Free Electrochemical Aptasensor Based on Zn/Fe Bimetallic MOF Derived Nanoporous Carbon for Ultra-Sensitive and Selective Determination of Paraquat in Vegetables. Foods 2022; 11:foods11162405. [PMID: 36010404 PMCID: PMC9407144 DOI: 10.3390/foods11162405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Paraquat (PQ) has high acute toxicity, even at low concentrations. For most people, the main pathway of exposure to PQ is through the diet. Therefore, the development of simple and efficient methods for PQ testing is critical for ensuring food safety. In this study, a new electrochemical detection strategy for paraquat is proposed based on the specific binding of PQ to its nucleic acid aptamer. Firstly, the Zn/Fe bimetallic ZIF derived nanoporous carbon (Zn/Fe-ZIF-NPC) and nickel hexacyanoferrate nanoparticles (NiHCF-NPs) were sequentially modified onto the glassy carbon electrode (GCE). NiHCF-NPs served as the signal probes, while Zn/Fe-ZIF-NPC facilitated electron transfer and effectively enhanced the sensing signal of NiHCF-NPs. Au nanoparticles (AuNPs) were then electrodeposited on the NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE and then the thiolated aptamer was assembled on the AuNPs/NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE via Au-S bonding. When incubated with PQ, the formation of PQ–aptamer complexes delayed the interfacial electron transport reaction of NiHCF-NPs, which caused a decrease in the current signals. As a result, simple and highly sensitive detection of PQ can be readily achieved by detecting the signal changes. A linear range was obtained from 0.001 to 100 mg/L with a detection limit as low as 0.34 μg/L. Due to the recognition specificity of the aptamer to its target molecule, the proposed method has excellent anti-interference ability. The prepared electrochemical aptasensor was successfully used for PQ assay in lettuce, cabbage and agriculture irrigation water samples with recoveries ranging from 96.20% to 104.02%, demonstrating the validity and practicality of the proposed method for PQ detection in real samples.
Collapse
Affiliation(s)
- Qiaoling Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-88236895
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qili Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Donglin Xiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|