51
|
Solé M, Freitas R, Viñas L, Rivera-Ingraham GA. Biomarker considerations in monitoring petrogenic pollution using the mussel Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31854-31862. [PMID: 32504435 DOI: 10.1007/s11356-020-09427-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Mussels are worldwide bioindicators in pollution monitoring since they fulfil the requirements for being good sentinels. However, some methodological concerns arise in the use of particular biomarkers, particularly those displaying low enzymatic rates and/or limited responsiveness to chemicals and biological-related variability. In the present study, the suitability of oxidative stress and detoxification parameters when using mussels as sentinels of polycyclic aromatic hydrocarbon (PAH) pollution is addressed. Present results show that the S9 subcellular fraction of the digestive gland in mussels is an adequate and convenient matrix where to measure most pollution-related biomarkers. Furthermore, this work constitutes the first evidence of the potential suitability of using particular carboxylesterase (CE) activities in determining PAHs exposure in mussels. This fact could imply the replacement of more controversial cytochrome P450 components (phase I oxidation), which are only measurable in microsomal fractions, by CEs (measured in S9 fractions) as good alternatives for phase I reactions in PAH-exposed mussels. Some methodological considerations, such as the need of including commercial purified proteins in biomarker determinations for quality assurance, are evaluated.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia Viñas
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Georgina A Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
52
|
Li W, Wang S, Li J, Wang X, Cui L, Chen J, Liu Z. Antioxidative enzyme activities in the Rhodeinae sinensis Gunther and Macrobrachium nipponense and multi-endpoint assessment under tonalide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110751. [PMID: 32446104 DOI: 10.1016/j.ecoenv.2020.110751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Tonalide or acetyl hexamethyl tetralin (AHTN) is used as a fragrance additive in various household products. Recently, AHTN has drawn attention owing to its negative health effects on aquatic organisms. Data on AHTN toxicity toward aquatic species are limited. Therefore, this study tested the oxidative stress induced by AHTN exposure on the Rhodeinae sinensis Gunther and Macrobrachium nipponense. In this study, malonaldehyde (MDA) content and the activities of acetyl cholinesterase (AchE), superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT) in R. sinensis Gunther were tested after 30 days of exposure to 30.093, 34.005, 38.426, 43.421, 49.067, 55.444, 62.652, 70.800, and 80.000 μg/L AHTN, respectively. The MDA, AchE, SOD, GST and CAT in M. nipponense were tested after 40 days of exposure to 60.000, 72.000, 86.400, 103.680, 124.416, 149.299, 179.159, 214.991, and 257.989 μg/L AHTN, respectively. In addition, an integrated biomarker response (IBR) index was utilised to evaluate the integrated toxic effects of AHTN on R. sinensis Gunther and M. nipponense. Finally, the predicted no-effect concentrations (PNECs) of AHTN, based on reproduction, biochemistry, survival, chronic toxicity, and acute toxicity endpoints were derived. The results indicated that low concentrations of AHTN can induce significant changes of oxidative stress biomarkers. The no observed effect concentrations (NOECs) of SOD, GST, AchE, CAT, and MDA were 103.680, 72.000, <60.000, 72.000, and <60.000 μg/L for R. sinensis Gunther and 38.426, 43.421, 30.093, 30.093, and 38.426 μg/L for M. nipponense, respectively. The IBR calculation results showed that 149.299 μg/L AHTN caused the highest toxic effect on R. sinensis Gunther after 30 days of exposure, whereas 70.797 μg/L AHTN caused the greatest damage to M. nipponense after 40 days of exposure. The PNECs of AHTN based on the non-traditional endpoints of biochemistry and reproduction were 0.00145 μg/L and 0.000395 μg/L, respectively, which were significantly lower than the PNEC of 2.636 μg/L for traditional endpoint survival. Therefore, the protection of aquatic organisms based on non-traditional toxicity endpoints should be considered in ecological risk assessment.
Collapse
Affiliation(s)
- Wenwen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; The College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- The College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
53
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
54
|
Hinojosa-Garro D, Osten JRV, Dzul-Caamal R. Banded tetra (Astyanax aeneus) as bioindicator of trace metals in aquatic ecosystems of the Yucatan Peninsula, Mexico: Experimental biomarkers validation and wild populations biomonitoring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110477. [PMID: 32200148 DOI: 10.1016/j.ecoenv.2020.110477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Bioindicator organisms are important tools in environmental monitoring studies. Understanding this, the overall goal of the present study was to evaluate the sensitivity and viability of the native fish species Banded tetra, (Astyanax aeneus; Günther, 1860), widely spread in the aquatic ecosystems of the Yucatan Peninsula in Mexico, as a bioindicator organism. In order to do this, we performed a bioassay at sublethal concentrations using copper (CuSO4) to experimentally evaluate and validate the relationship between the trace metals and oxidative stress biomarkers response [(catalase (CAT), lipoperoxidation content (LPO)], detoxification [(glutathione S-transferase (GST), metallothionein content (MT)] and neurotoxicity (AChE) in muscle of A. aeneus. Results showed changes in biomarkers after 96 h: Catalase activity (CAT) was significantly higher above 1.5 and 2 mg/L (154.35 and 172.50% increase, respectively); lipid peroxidation contents (TBARS), GST activity, and MT content were very similar to CAT activity at 1.5 and 2 mg/L of Cu. In terms of neurotoxicity, AChE activity was significantly inhibited at 0.1 mg/L (64%; p < 0.001) and 0.5 mg/L (44%; p < 0.001) of Cu. Based on the bioassay results, we performed a trace metal monitoring campaign in muscle of A. aeneus caught in 15 sites with different anthropogenic activities, during the summer of 2017, to establish a baseline of trace metals pollution in the state of Campeche. A. aeneus showed the highest trace metal accumulation in the following order: Al > Fe > Mn > Zn > Cu > Hg > Cr > Pb > Cd > V > As, while sites were arrange as follows: Xnoha lagoon > Palizada River > Candelaria River > Ululmal > Maravillas > López Mateos. PCA showed a cluster between biomarkers (GST, CAT, TBARS, and MT) and concentration of metals (Cd, Cu, Fe, Zn, Hg and Cr). Conversely, AChE inhibition was not related to a specific metal, but highest inhibitions (>50%) were present in those sites with intensive agricultural practices. These results determined that, based on its physiological response and trace metal bioaccumulation, Astyanax aeneus can be considered a good bioindicator for evaluating the presence of trace metals in tropical aquatic systems of the Yucatan Peninsula.
Collapse
Affiliation(s)
- Demián Hinojosa-Garro
- Laboratorio en Ecología Acuática y Monitoreo Ambiental, CEDESU, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, 24070, San Francisco de Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, 24070, San Francisco de Campeche, Campeche, Mexico
| | - Ricardo Dzul-Caamal
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, 24070, San Francisco de Campeche, Campeche, Mexico.
| |
Collapse
|
55
|
Canli EG, Gumus C, Canli M, Ila HB. The effects of titanium nanoparticles on enzymatic and non-enzymatic biomarkers in female Wistar rats. Drug Chem Toxicol 2020; 45:417-425. [PMID: 31899975 DOI: 10.1080/01480545.2019.1708925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in industry, pharmacy, medicine, and food sectors. Therefore, this study deals with the effects of TiO2 NPs in female rats following oral administration in differing doses for 14 days (0, 0.5, 5, and 50 mg/kg b.w./d). The response of enzymatic biomarkers (Na,K-ATPase, Mg-ATPase, and AChE) was measured in the brain, kidney, and small intestine, while non-enzymatic biomarker levels, such as different forms of glutathione (GSH) and thiobarbituric acid reactive substances (TBARSs) were measured in the liver. The images of the tissues were obtained using a transmission electron microscope (TEM) to demonstrate TiO2 NP accumulation. Data showed that brain AChE activity decreased at all TiO2 NP doses, though brain ATPase activities increased. However, ATPase activities in the intestine and kidney did not change significantly. Levels of GSH forms did not change significantly, though there was a significant decrease in TBARS level at the highest NP dose. TEM images demonstrated that TiO2 NPs accumulated in a dose-dependent manner in the tissues. Data emphasized that the brain was the most sensitive organ against the effects of TiO2 NPs. This study suggests the need for further studies to evaluate better the toxic effects of TiO2 NPs.
Collapse
Affiliation(s)
- Esin Gülnaz Canli
- Biology Department, Faculty of Arts and Science, University of Cukurova, Adana, Turkey
| | - Cebrail Gumus
- Physics Department, Faculty of Arts and Science, University of Cukurova, Adana, Turkey
| | - Mustafa Canli
- Biology Department, Faculty of Arts and Science, University of Cukurova, Adana, Turkey
| | - Hasan Basri Ila
- Biology Department, Faculty of Arts and Science, University of Cukurova, Adana, Turkey
| |
Collapse
|
56
|
Dahms-Verster S, Nel A, van Vuren JHJ, Greenfield R. Biochemical responses revealed in an amphibian species after exposure to a forgotten contaminant: An integrated biomarker assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103272. [PMID: 31629886 DOI: 10.1016/j.etap.2019.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Vanadium is a metal whose toxicity towards terrestrial and aquatic species has been under-reported to date.. The biochemical responses of vanadium in amphibian species have not been determined. To establish the effects of vanadium (V) on exposed adult Xenopus laevis, acute and chronic exposures were conducted, and biomarker analyses were performed on liver and muscle tissues from exposed frogs. Biomarkers of exposure, such as acetylcholinesterase (AChE) and metallothioneins (MT), were analysed. Biomarkers of effect were also analysed to determine possible increases in reactive oxygen species (ROS), and the effect of the exposure on the energy balance in the organisms. These included superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), protein carbonyls (PC), malondialdehyde (MDA), and cellular energy allocation (CEA) (energy available, energy consumption, lipids, proteins and glucose). In acute exposures, the energy balances in organisms were distinctly affected, possibly due to insulin mimetic properties of V. In chronic exposures, MT, AChE, SOD, CAT and GSH responses were more pronounced. Although AChE is generally inhibited by pollutant exposure, in this study, it was stimulated. There were significant inhibitions of SOD and CAT, previously observed in frog species. PC levels increased in the highest acute exposure concentration, indicating protein damage. The IBR.v2 revealed the biochemical responses of V more effectively than traditional statistical analysis.
Collapse
Affiliation(s)
- S Dahms-Verster
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - A Nel
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - J H J van Vuren
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - R Greenfield
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
57
|
Chen Y, Wang M, Fu H, Qu X, Zhang Z, Kang F, Zhu D. Spectroscopic and molecular modeling investigation on inhibition effect of nitroaromatic compounds on acetylcholinesterase activity. CHEMOSPHERE 2019; 236:124365. [PMID: 31325829 DOI: 10.1016/j.chemosphere.2019.124365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Nitroaromatic compounds (NACs) are widely distributed in the environment and are considered toxic or carcinogenic. However, little attention has been paid to the binding interactions between NACs and biomacromolecules (e.g., proteins). Here we investigated the effects of three model NACs, nitrobenzene (NB), 1,3-dinitrobenzene (DNB), and 1,3,5-trinitrobenzene (TNB), on the activity of acetylcholinesterase (AChE). The presence of NACs (up to 0.5 mM) effectively suppressed the AChE-catalyzed hydrolysis of acetylthiocholine iodide, with the suppression effect increasing with the nitro-group substitution (TNB > DNB > NB). Consistently, the UV absorption of AChE at 206 nm arising from the skeleton structure decreased by the addition NACs, and the decrease exhibited the same compound sequence, reflecting the perturbing interactions with the skeleton enzyme structure. However, no changes were made on the secondary structure of AChE, as evidenced by the circular dichroism analysis. The fluorescence quenching analysis of AChE demonstrated that NB and DNB interacted with both tryptophan (Trp) and tyrosine (Tyr) residues, whereas TNB interacted only with Trp. The UV absorption and fluorescence quenching analyses both reflected that the interactions with the non-skeleton aromatic amino acids were weak. 1H NMR analysis confirmed the strong π-π coupling interactions between TNB and model Trp. Molecular simulation indicated that the DNB or TNB molecule was sandwiched between Trp84 and Phe330 at the catalytic site via π-π coupling interactions. The findings highlight the importance of specific interactions of NACs with proteins to cause them to malfunction.
Collapse
Affiliation(s)
- Yiqun Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Minli Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Zhaobin Zhang
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Fuxing Kang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Dongqiang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China; School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing, 100871, China.
| |
Collapse
|
58
|
Araujo GS, Pinheiro C, Pestana JLT, Soares AMVM, Abessa DMS, Loureiro S. Toxicity of lead and mancozeb differs in two monophyletic Daphnia species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:230-238. [PMID: 31026744 DOI: 10.1016/j.ecoenv.2019.03.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/08/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Lead and mancozeb are two important chemicals used for different human purposes and activities worldwide. Hazard assessment in different areas of the world is carried out with different but phylogenetically similar species, adapted to different climatic conditions, in order to increase relevance. This study evaluated the sensitivity of two monophyletic species, the tropical species Daphnia similis and the temperate species Daphnia magna, to the two chemicals lead and mancozeb. Standard acute and chronic ecotoxicological tests (reproduction and growth), as well as other sublethal measurements such as the intrinsic rate of population increase (r), feeding rate (FR) and O2 consumption, were recorded along with the analysis of the AChE activity to determine the neurotoxicity of both contaminants. Albeit their similar evolutionary status, D. magna generally presented a lower sensitivity to Pb in comparison to D. similis. Despite the differences in sensitivity, both species presented similar patterns of response under Pb exposure, with diminished reproductive outputs, feeding impairment, reduced O2 consumption and no effect on AChE activity. Mancozeb decreased the reproduction, rate of population increase and feeding rate, increased the AChE activity in both species and increased O2 consumption only in D. magna. While D. magna increased O2 consumption under mancozeb exposure, no effects were observed for D. similis. Thus, species may present different responses and sensitivities to different pollutants, regardless of their phylogeny. Therefore, the use of ecotoxicological assays with native species is crucial for a better ecological risk assessment in contaminated areas.
Collapse
Affiliation(s)
- G S Araujo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| | - C Pinheiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - J L T Pestana
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - D M S Abessa
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, CP 11330-900, São Vicente, SP, Brazil
| | - S Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| |
Collapse
|
59
|
Miranda T, Vieira LR, Guilhermino L. Neurotoxicity, Behavior, and Lethal Effects of Cadmium, Microplastics, and Their Mixtures on Pomatoschistus microps Juveniles from Two Wild Populations Exposed under Laboratory Conditions-Implications to Environmental and Human Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2857. [PMID: 31405089 PMCID: PMC6720622 DOI: 10.3390/ijerph16162857] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023]
Abstract
Microplastics (MPs) were found to modulate the toxicity of other pollutants but the knowledge on the topic is still limited. The goals of this study were to investigate the short-term toxicity of cadmium (Cd) to wild Pomatochistus microps juveniles, the potential modulation of acute Cd toxicity by 1-5 µm polyethylene MPs in this species, and possible differences of sensitivity to Cd and MPs-Cd mixtures between juveniles from two distinct wild populations. Juveniles were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Portugal). One 96 h bioassay with M-est juveniles and another one with L-est juveniles were carried out in laboratory conditions. Each bioassay had 12 treatments: control, 5 Cd concentrations, 1 MPs concentration, and 5 MPs-Cd mixtures. No significant differences in Cd-induced mortality between juveniles from distinct estuaries or between juveniles exposed to Cd alone and those exposed to MPs-Cd mixtures were found. The total 96h LC10 and LC50 of Cd alone were 2 mg/L (95% CI: 0-4 mg/L) and 8 mg/L (95% CI: 2-17 mg/L), respectively. Cd alone significantly decreased the post-exposure predatory performance (PEPP) of M-est (≥6 mg/L) and L-est juveniles (≥3 mg/L), and acetylcholinesterase (AChE) activity of M-est juveniles (13 mg/L). MPs alone (0.14 mg/L) significantly reduced the PEPP and AChE activity of L-est juveniles but not of M-est juveniles. MPs-Cd mixtures (3-13 mg/L of Cd + 0.14 mg/L of MPs) significantly inhibited the PEPP of juveniles from both estuaries and AChE of L-est estuary juveniles but not of M-est juveniles. Evidences of toxicological interactions, namely antagonism, between MPs and Cd were found. Overall, the results indicate that MPs modulated the sub-lethal toxic effects of Cd in wild P. microps juveniles, especially neurotoxicity. Moreover, the environmental conditions of the natural habitats to which juveniles were exposed during pre-developmental phases influence the sub-lethal toxicity of Cd, MPs, and their mixtures. The implications to environmental and human risk assessment are discussed and further research is needed.
Collapse
Affiliation(s)
- Tiago Miranda
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), 4450-208 Matosinhos, Portugal
| | - Luis R Vieira
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), 4450-208 Matosinhos, Portugal
| | - Lúcia Guilhermino
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), 4050-313 Porto, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), 4450-208 Matosinhos, Portugal.
| |
Collapse
|
60
|
Zendehdel R, Fazli Z, Rezazadeh Azari M. Neurological risk assessment of co-exposure to heavy metals (chromium and nickel) in chromium-electroplating workers. Work 2019; 63:355-360. [DOI: 10.3233/wor-192941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rezvan Zendehdel
- Department of Occupational Hygiene and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Fazli
- Department of Occupational Hygiene and safety, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Mansour Rezazadeh Azari
- Department of Occupational Hygiene and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Perić L, Burić P. The effect of copper and chlorpyrifos co-exposure on biomarkers in the marine mussel Mytilus galloprovincialis. CHEMOSPHERE 2019; 225:126-134. [PMID: 30870629 DOI: 10.1016/j.chemosphere.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 05/04/2023]
Abstract
Metals and organophosphorous pesticides commonly co-occur in marine environment, but the effect of their mixtures on non-target organisms is still poorly understood. This study investigated the combined effect of the essential metal copper (Cu) and organophosphorous pesticide chlorpyrifos (Chp) in mussels (Mytilus galloprovincialis) after short-term exposure to their sublethal concentrations. Mussels were exposed for four days to 5 and 15 μg L-1 Cu and 0.05 and 5 μg L-1 Chp, and to their binary mixtures. The investigated biomarkers, namely acetylcholinesterase activity (AChE), glutathione S-transferase activity (GST), metallothioneins content (MTs) and lipid peroxide levels (LPO) displayed unspecific and inconsistent response patterns that varied depending on the concentration of chemicals and composition of mixtures. The exposure to Cu or Chp alone did not induce AChE activity changes, whereas only Cu provoked a significant GST activity increase. Exposure to lower and higher concentration of Chp resulted in MTs content and LPO level increase, respectively. Response of biomarkers to mixtures was generally inconsistent. Data integration by IBR index and PCA revealed different stress levels for given exposure conditions, but no explicit differentiation between single and joint exposures was found. The present results showed that low and environmentally relevant concentrations of Cu and Chp in mixtures may result in a detectable biological response, stressing the need for further investigation of joint effects of widespread marine contaminants in sentinel organisms.
Collapse
Affiliation(s)
- Lorena Perić
- Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, 52210, Rovinj, Croatia.
| | - Petra Burić
- Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, 52210, Rovinj, Croatia; Marine Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
62
|
Halmenschelager PT, da Rocha JBT. Biochemical CuSO 4 Toxicity in Drosophila melanogaster Depends on Sex and Developmental Stage of Exposure. Biol Trace Elem Res 2019; 189:574-585. [PMID: 30178145 DOI: 10.1007/s12011-018-1475-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023]
Abstract
Copper is a transition metal that exists in different chemical forms (e.g., Cu2+,Cu+, and Cu0) and at high concentrations it is toxic. Here, we investigated the Cu2+-induced toxicity in Drosophila melanogaster, evaluating the survival, locomotion, and the activity of acetylcholinesterase (AChE) and glutathione S-transferase (GST) enzymes. Flies were exposed to Cu2+(0.1-1 mmol CuSO4/kg of diet or approximately 0.1-1 mM Cu2+) and allowed to mate during 24 h. GST and AChE enzymes were evaluated in the larvae and in the head and the body (thorax + abdomen) of the adult male and females flies. The total number of adult females (0.4-1 mM) and males (0.75 and 1 mM) was decreased by CuSO4. The climbing ability was hampered in flies exposed to 1 mM Cu2+. In larvae, Cu2+(0.4-1 mM) increased AChE activity (P < 0.002). In males' heads, 0.4 mM Cu2+ increased the AChE activity (P < 0.01). In adults' bodies, Cu2+inhibited the activity in both sexes, but with greater effectiveness in males (0.1 to 1 mM) than in females (1 mM). Regarding GST activity, 0.1 mM Cu2+increased, but 1 mM decrease GST in larvae. In the head of flies, Cu2+decreased the GST activity at intermediate (0.4 mM) and increased GST at the highest concentration (1 mM) in males. In the bodies, the effect of Cu2+was similar. In conclusion, Cu2+exposure in D. melanogaster disrupted locomotion and enzymatic parameters that can be related to changes in AChE and in the detoxifying GST enzyme.
Collapse
Affiliation(s)
- Paula Tais Halmenschelager
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
63
|
Pereira BVR, Silva-Zacarin ECM, Costa MJ, Dos Santos ACA, do Carmo JB, Nunes B. Cholinesterases characterization of three tropical fish species, and their sensitivity towards specific contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:482-493. [PMID: 30802737 DOI: 10.1016/j.ecoenv.2019.01.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Cholinesterases are frequent targets for toxic effects, namely by insecticides derived from phosphoric and carbamic acids. This effects allows the use of cholinesterase inhibition as a biomarker for contamination of aquatic environments by these specific chemical agents. However, cholinesterases are differently responsive to environmental contaminants, according to their different forms and locations. In addition, cholinesterases seem also to be inhibited by metals, so their use as an environmental criterion requires the prior characterization of their specific forms in each species and tissues, and the study of their sensitivity. The objective of this study was to characterize the cholinesterase isoenzymes present in the brain and dorsal muscle of three tropical fish species, namely Phalloceros harpagos (Lucinda, 2008), Pterygoplichthys pardalis (Castelnau, 1855) and Astyanax altiparanae (Garutti and Britski, 2000). In vitro assays were conducted to quantify the effect of pesticides (dimethoate and carbaryl) and metals (lead and copper) on cholinesterases activity. Although acetylcholinesterase seems to be the most prevalent and abundant form, as commonly described in vertebrates, the here-obtained results showed that three cholinesterase isoenzymes occur in tissues of the three fish species. In addition, the pesticide carbaryl caused a stronger inhibition than dimethoate. Copper caused a significantly higher cholinesterasic inhibition than lead, which is also in line with most results concerning the anticholinesterasic effects by these metals. The here obtained results allowed to conclude that acetylcholinesterase is the predominant form in all tissues from the three analyzed species. In addition, cholinesterases of these three fish were responsive to common environmental contaminants, namely metals and pesticides, similarly to what was already described for fish of temperate areas. This allows using the here proposed fish species in environmental studies for the assessment of the presence of neurotoxicants under neotropical conditions.
Collapse
Affiliation(s)
- Beatriz V R Pereira
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Elaine C M Silva-Zacarin
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil; Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Monica Jones Costa
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil; Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - André Cordeiro Alves Dos Santos
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Janaina Braga do Carmo
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil; Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
64
|
Cao R, Zhang T, Li X, Zhao Y, Wang Q, Yang D, Qu Y, Liu H, Dong Z, Zhao J. Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:167-178. [PMID: 30870663 DOI: 10.1016/j.aquatox.2019.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
Ocean acidification (OA) has been found to increase the release of free Cu2+ in seawater. However, only a handful of studies have investigated the influence of OA on Cu accumulation and cellular toxicity in bivalve species. In this study, Pacific oysters, Crassostrea gigas, were exposed to 25 μg/L Cu2+ at three pH levels (8.1, 7.8 and 7.6) for 14 and 28 days. Physiological and histopathological parameters [(clearance rate (CR), respiration rate (RR), histopathological damage and condition index (CI)), oxidative stress and neurotoxicity biomarkers [superoxide dismutase (SOD) and glutathione transferase (GST) activities, lipid peroxidation (LPO) and acetylcholinesterase (AChE) activity], combined with glycolytic enzyme activities [pyruvate kinase (PK) and hexokinase (HK)] were investigated in C. gigas. The bioconcentration of Cu was increased in soft tissues of Cu-exposed oysters under OA. Our results suggest that both OA and Cu could lead to physiological disturbance, oxidative stress, cellular damage, disturbance in energy metabolism and neurotoxicity in oysters. The inhibited CR, increased glycolytic enzymes activities and decreased CI suggested that the energy metabolism strategy adopted by oysters was not sustainable in the long term. Furthermore, integrated biomarker response (IBR) results found that OA and Cu exposure lead to severe stress to oysters, and co-exposure was the most stressful condition. Results from this study highlight the need to include OA in future environmental assessments of pollutants and hazardous materials to better elucidate the risks of those environmental perturbations.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao Li
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuting Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
65
|
Insights into the Potential Role of Mercury in Alzheimer's Disease. J Mol Neurosci 2019; 67:511-533. [PMID: 30877448 DOI: 10.1007/s12031-019-01274-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Mercury (Hg), which is a non-essential element, is considered a highly toxic pollutant for biological systems even when present at trace levels. Elevated Hg exposure with the growing release of atmospheric pollutant Hg and rising accumulations of mono-methylmercury (highly neurotoxic) in seafood products have increased its toxic potential for humans. This review aims to highlight the potential relationship between Hg exposure and Alzheimer's disease (AD), based on the existing literature in the field. Recent reports have hypothesized that Hg exposure could increase the potential risk of developing AD. Also, AD is known as a complex neurological disorder with increased amounts of both extracellular neuritic plaques and intracellular neurofibrillary tangles, which may also be related to lifestyle and genetic variables. Research reports on AD and relationships between Hg and AD indicate that neurotransmitters such as serotonin, acetylcholine, dopamine, norepinephrine, and glutamate are dysregulated in patients with AD. Many researchers have suggested that AD patients should be evaluated for Hg exposure and toxicity. Some authors suggest further exploration of the Hg concentrations in AD patients. Dysfunctional signaling pathways in AD and Hg exposure appear to be interlinked with some driving factors such as arachidonic acid, homocysteine, dehydroepiandrosterone (DHEA) sulfate, hydrogen peroxide, glucosamine glycans, glutathione, acetyl-L carnitine, melatonin, and HDL. This evidence suggests the need for a better understanding of the relationship between AD and Hg exposure, and potential mechanisms underlying the effects of Hg exposure on regional brain functions. Also, further studies evaluating brain functions are needed to explore the long-term effects of subclinical and untreated Hg toxicity on the brain function of AD patients.
Collapse
|
66
|
Mkhinini M, Boughattas I, Alphonse V, Livet A, Bousserrhine N, Banni M. Effect of treated wastewater irrigation in East Central region of Tunisia (Monastir governorate) on the biochemical and transcriptomic response of earthworms Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1245-1255. [PMID: 30180333 DOI: 10.1016/j.scitotenv.2018.07.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/21/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Treated wastewater (TWW) reuse for irrigation has become an excellent way to palliate water scarcity in Mediterranean arid regions. However, the toxicological effects of these effluents on the soil's organisms, especially earthworms, have not been well studied as yet. In this paper, earthworms Eisenia andrei were exposed for 7 days and 14 days to five agricultural soils irrigated with TWW for different periods: 1 year, 8 years, and 20 years. In addition, they were also exposed to soil from one reference site sampled from the Ouardenin perimeter in the Monastir Governorate in Tunisia. The effect on earthworms was assessed at the biochemical level by evaluating for catalase (CAT), glutathione-S-transferase (GST), malondialdehyde accumulation (MDA) and acetylcholinesterase inhibition (AChE). On the other hand, genotoxicity and transcriptomic responses were evaluated using micronuclei test (MNT) and gene expression level of CAT and GST. Moreover, metals uptake by earthworms was analyzed. Results showed that CAT and GST activity in the earthworm increased significantly when they were exposed to soils irrigated with TWW for 1, 8 and 20 years. Furthermore, MDA concentration also increased significantly with the increase in exposure period. However, AChE activity decreased and MNi frequency increased in earthworms after 7 and 14 days of exposure to soils irrigated with TWW for more than a year. The gene expression level of CAT and GST showed a significant variability, thus data are discussed in relation to the studied biomarkers (CAT and GST). These data provide new insights into the effect of toxicity of TWW on the soil's macro fauna, which is strongly affected by the trace elements and other organic compounds accumulated in soils after 20 years of TWW irrigation.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia.
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia.
| | - Vanessa Alphonse
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Alexandre Livet
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia
| |
Collapse
|
67
|
Mkhinini M, Boughattas I, Bousserhine N, Banni M. Biochemical and transcriptomic response of earthworms Eisenia andrei exposed to soils irrigated with treated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2851-2863. [PMID: 30499083 DOI: 10.1007/s11356-018-3794-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In order to ensure better use of treated wastewater (TWW), we investigated the effect of three increasing doses of TWW, 10%, 50%, and 100%, on biochemical and transcriptomic statuses of earthworms Eisenia andrei exposed during 7 and 14 days. The effect of TWW on the oxidative status of E. andrei was observed, but this effect was widely dependent on the dilution degree of TWW. Results showed a significant decrease in the catalase (CAT) activity and an increase in the glutathione-S-transferase (GST) activity, and considerable acetylcholinesterase (AChE) inhibition was recorded after 14 days of exposure. Moreover, malondialdehyde (MDA) accumulation was found to be higher in exposed animals compared to control worms. The gene expression level revealed a significant upregulation of target genes (CAT and GST) during experimentation. These data provided new information about the reuse of TWW and its potential toxicity on soil organisms.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia.
| | - Noureddine Bousserhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, 94010, Créteil cedex, France
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| |
Collapse
|
68
|
Xu YL, Li FY, Ndikuryayo F, Yang WC, Wang HM. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4281. [PMID: 30563111 PMCID: PMC6312092 DOI: 10.3390/s18124281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/04/2023]
Abstract
Nowadays, pesticide residues constitute an increasing public health concern. Cholinesterases, acetylcholinesterase, and butyrylcholinesterase, are reported to be involved in detoxification processes owing to their capability of scavenging organophosphates and carbamates. Thus, these enzymes are targeted for the discovery of sensors aiming at detecting pesticide residues. In recent years, cholinesterase-based biosensors have attracted more and more attention in the detection of pesticides. Herein, this review describes the recent progress on the engineering of cholinesterases and the development of the corresponding sensors that could be used for the detection of organophosphorus pesticide residues.
Collapse
Affiliation(s)
- Yu-Ling Xu
- School of Chemical & Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng-Ye Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, and International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hong-Mei Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
69
|
Araújo MC, Assis CRD, Silva KCC, Souza KS, Azevedo RS, Alves MHME, Silva LC, Silva VL, Adam ML, Carvalho Junior LB, Souza Bezerra R, Oliveira MBM. Characterization of brain acetylcholinesterase of bentonic fish Hoplosternum littorale: Perspectives of application in pesticides and metal ions biomonitoring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:213-226. [PMID: 30408655 DOI: 10.1016/j.aquatox.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is a serine hydrolase, whose main function is to modulate neurotransmission at cholinergic synapses. It is, therefore, the primary target of some pesticides and heavy metals. Its inhibition in aquatic organisms has been used as an indicator of the presence of these pollutants in water bodies. The present study aimed to characterize physicochemical and kinetic parameters of brain AChE in the benthic fish Hoplosternum littorale and to analyze the in vitro effects of pesticides (dichlorvos, diazinon, chlorpyrifos, parathion-methyl, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron, novaluron and pyriproxyfen) and metal ions (As3+, Cd2+, Cu2+, Fe2+, Mn2+, Mg2+, K+, Pb2+, Hg2+, Zn2+) investigating the potential of this enzyme as environmental biomarker based on current regulations. Specific substrates and inhibitors have indicated AChE to be the predominant cholinesterase (ChE) in the brain of H. littorale. Peak activity was observed at pH 8.0 and 30 °C. The enzymatic activity is otherwise moderately thermostable (≈ 50% activity at 45 °C). The enzyme can reduce the activation energy of acetylthiocholine hydrolysis reaction to 8.34 kcal mol-1 while reaching a rate enhancement of 106. Among the pesticides under study, dichlorvos presented an IC50 value below the maximum concentrations allowed by legislation. This study presents the first report on the inhibition of brain AChE activity from Siluriformes by the pesticides novaluron and pyriproxyfen. Mercury ion also exerted a strong inhibitory effect on its enzymatic activity. The H. littorale enzyme thus has the potential to function as an in vitro biomarker for the presence of the pesticide dichlorvos as well as mercury in areas of mining and industrial discharge.
Collapse
Affiliation(s)
- Marlyete Chagas Araújo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Biologia Molecular - BioMol, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Caio Rodrigo Dias Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Kaline Catiely Campos Silva
- Departamento de Educação, Colegiado de Biologia, Universidade do Estado da Bahia - UNEB, Paulo Afonso, BA, Brazil
| | - Kelma Sirleide Souza
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Rafael Souto Azevedo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Luciano Clemente Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Valdir Luna Silva
- Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Mônica Lúcia Adam
- Centro Acadêmico de Vitória de Santo Antão - CAV, Universidade Federal de Pernambuco - UFPE, Vitória de Santo Antão, PE, Brazil
| | | | - Ranilson Souza Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Maria Betânia Melo Oliveira
- Laboratório de Biologia Molecular - BioMol, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| |
Collapse
|
70
|
Zou X, Xiao X, Zhou H, Chen F, Zeng J, Wang W, Feng G, Huang X. Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:365-372. [PMID: 30048951 DOI: 10.1016/j.jhazmat.2018.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus pesticides (OPs) have been widely used to control agricultural insects. Soil acidification is a major problem in soil of intensive agricultural systems, especially in red soil with a low pH buffer capacity. However, the effects of soil acidification on the toxicity of pesticides are still unclear. In the present study, the toxicity of three OPs on E. fetida was determined at individual (14-day lethal test) and biochemical levels (antioxidative defence enzymes) by using acidified soils (pH = 5.5, 4.3 and 3.1). The results showed that the toxicity of tested OPs was slightly increased with the decrease of soil pH. To interpret the phenomena, an optimum Quantitative Structure Activity Relationship (QSAR) model was developed based on the toxicity mechanism and the partial least squares regression (PLS) method. The model indicated bioavailability and toxicodynamics are key factors of soil acidification affecting the toxicity of the OPs. Further results revealed the bioavailability of the OPs was strongly related to their hydrolysis and biodegradation character, whereas the effects of soil acidification on toxicodynamics were mainly caused by the interaction between the acetylcholinesterase (AchE) and the OPs. Results will increase understanding of the effects of soil acidification on the toxicity of pesticides and its mechanism.
Collapse
Affiliation(s)
- Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an, 343009, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaoyu Xiao
- School of Life Science, Jinggangshan University, Ji'an, 343009, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hanfeng Zhou
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Feng Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jianjun Zeng
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Wenbiao Wang
- Shanghai Honess Environmental Protection Engineering Co., Ltd, Shanghai 200433, China
| | - Guangping Feng
- School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
71
|
Chowdhary S, Bhattacharyya R, Banerjee D. 1-Naphthyl acetate: A chromogenic substrate for the detection of erythrocyte acetylcholinesterase activity. Biochimie 2018; 154:194-209. [PMID: 30201403 DOI: 10.1016/j.biochi.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/01/2018] [Indexed: 11/26/2022]
Abstract
Erythrocyte acetylcholinesterase (AChE) is a preferred biomarker for the detection of organophosphorus poisoning. Acetylthiocholine (ATCh) is the most popular substrate for the detection of AChE activity. However, oximolysis is a prominent feature with ATCh. In this context, we have searched alternative substrates for AChE using in silico tools for screening of a better substrate. The in silico approach was performed to understand the fitness and the Total Interaction Energy (TIE) of substrates for AChE. The alternative substrates for AChE were screened in terms of high Goldscore and favorable TIE in comparison to acetylcholine (ACh)-AChE complex and other relevant esterases. Among the screened substrates, 1-Naphthyl acetate (1-NA) exhibited the most favorable interaction with AChE in terms of highest TIE and corresponding high Goldscore. The Molecular Dynamic (MD) simulation of the 1-NA-AChE complex showed a stable complex formation over a period of 5 ns. The results obtained in the in silico studies were validated in vitro using pure erythrocyte AChE and hemolysate. We observed 1-NA to be a better alternative substrate for AChE than ATCh in terms of lower Km value. Its specificity appeared at least similar to ATCh. Therefore, we propose that 1-NA can be an attractive chromogenic substrate for the measurement of AChE activity, and it possess the potential to detect organophosphorus pesticide (OP) poisoning.
Collapse
Affiliation(s)
- Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
72
|
Rusko J, Febbraio F. Development of an automated multienzymatic biosensor for risk assessment of pesticide contamination in water and food. EFSA J 2018; 16:e16084. [PMID: 32626055 PMCID: PMC7015495 DOI: 10.2903/j.efsa.2018.e16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The goal of this research is to better address the problems related to the widespread presence of pesticides in the environment. Despite the unquestionable utility of the pesticides against various pests in the agricultural field, most pesticides and the corresponding pesticide residues are toxic to the environment and hazardous to human health. The recent literature on organophosphate compounds emphasises a clear correlation between their use and the occurrence of disorders in the nervous system, especially in children. The conventional systems for the detection and analysis of these compounds are expensive, time‐consuming and require highly specialised operators; moreover, no online automated screening systems are yet available, that would allow the identification and quantification of the presence of these chemicals in samples from industrial sectors such as the food industry. Esterase‐based biosensors represent a viable alternative to this problem. In this fellowship programme, we aim to develop a robust and sensitive methodology that enables the screening of toxic compounds using a streamlined process, using an automated robotic system to achieve a continuous monitoring for risk assessment of pesticides.
Collapse
|
73
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
74
|
Bonnail E, Buruaem LM, Morais LG, Araujo GS, Abessa DMS, Sarmiento AM, Ángel DelValls T. Integrative assessment of sediment quality in lower basin affected by former mining in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1465-1480. [PMID: 28612322 DOI: 10.1007/s10653-017-9996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, III Región, Chile.
| | - Lucas M Buruaem
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Lucas G Morais
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Giuliana S Araujo
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denis M S Abessa
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Aguasanta M Sarmiento
- Department of Earth Sciences & Research Center of Natural Resources, Health and the Environment, University of Huelva, 21071, Huelva, Spain
| | - T Ángel DelValls
- UNESCO UNITWIN/WiCop, Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
75
|
Nagarjuna A, Karthikeyan P, Mohan D, Rudragouda Marigoudar S. Effect of selenium on Penaeus monodon and Perna viridis: Enzyme activities and histopathological responses. CHEMOSPHERE 2018; 199:340-350. [PMID: 29453060 DOI: 10.1016/j.chemosphere.2018.02.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The study was carried out to evaluate enzyme activities and histopathological changes due to the effect of acute and chronic definitive toxicity of selenium (Se) on the post larvae (PL) of giant tiger shrimp (Penaeus monodon), and green mussel (Perna viridis). The 96-h Median Lethal concentration (LC50) for the PL of shrimp was 3.36 mg L-1 and the chronic value for the long-term survival endpoint in a 21-d exposure was 0.10 mg L-1. The green mussel 96-h LC50 was 28.41 mg L-1 and the chronic value for the long-term survival endpoint in a 30-d exposure was 3.06 mg L-1. Native polyacrylamide gel electrophoresis revealed altered diverse isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the PL of shrimp and green mussel exposed to sublethal concentration of Se. Cellular anomalies such as deformation and fusion of corneal cells, detachment of corneal cells from cornea facet and increased space between ommatidia were observed in the compound eye of PL of shrimp exposed to Se for 21-d. Shrinkage and clumping of mucous gland, degenerative changes in phenol gland, and ciliated epithelium were observed in the foot of green mussel exposed to Se for 30-d. This study shows that cellular anomalies in the compound eye of PL of P. monodon and foot tissues of P. viridis described would affect the vision of shrimp and byssus thread formation in green mussel.
Collapse
Affiliation(s)
- Avula Nagarjuna
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India
| | - Panneerselvam Karthikeyan
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India
| | - Dhandapani Mohan
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
76
|
Lécrivain N, Aurenche V, Cottin N, Frossard V, Clément B. Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:854-865. [PMID: 29734631 DOI: 10.1016/j.scitotenv.2017.11.151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023]
Abstract
The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk.
Collapse
Affiliation(s)
- Nathalie Lécrivain
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, ENTPE, 69120 Vaulx-en-Velin, France.
| | - Vincent Aurenche
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, ENTPE, 69120 Vaulx-en-Velin, France
| | - Nathalie Cottin
- Université de Savoie Mont-Blanc, LCME, 73376 Le Bourget du Lac, France
| | - Victor Frossard
- Université de Savoie Mont-Blanc, UMR 42 CARRTEL, 73376 Le Bourget du Lac, France
| | - Bernard Clément
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, ENTPE, 69120 Vaulx-en-Velin, France
| |
Collapse
|
77
|
Glavan G, Kos M, Božič J, Drobne D, Sabotič J, Kokalj AJ. Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:8-14. [PMID: 29258877 DOI: 10.1016/j.cbpc.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 01/20/2023]
Abstract
Organophosphate pesticide diazinon is a specific inhibitor of acetylcholinesterase (AChE), which is a common neurotoxicity biomarker in environmental studies. In honeybees, AChE exists in two forms having different physiological roles, one existing as a soluble form and the other as membrane-bound. In most studies AChE activity has been analysed without paying considerable attention to different forms of AChE. In this study, we exposed honeybees Apis mellifera carnica for 10days to diazinon via oral exposure and analysed the total AChE activities in salt soluble (SS) and detergent soluble (DS) fractions. We assumed that SS fraction would preferentially contain the soluble AChE, but the DS fraction would contain only membrane AChE. On the contrary, our results showed that SS and DS fractions both contain soluble and membrane AChE and the latter has considerably higher activity. Despite this we obtained a differential response of AChE activity in SS and DS fractions when exposed to diazinon. The head/thorax AChE activity in DS fraction decreased, while the head/thorax AChE activity in SS fraction increased at sublethal concentrations. The AChE activity in honeybee hemolymph shown here for the first time is a salt soluble enzyme. Its activity remained unaltered after diazinon treatment. In conclusion, we provide evidence that varying results regarding AChE activity alterations upon stressor exposure are obtained when extracted through different procedures. In further environmental studies with honeybees this differential response of AChE activity should be given considerable attention because this affects the outcome of ecotoxicity study.
Collapse
Affiliation(s)
- Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Monika Kos
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Jerica Sabotič
- Jožef Stefan Institute, Department of Biotechnology, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
78
|
Morcillo SM, Perego MC, Vizuete J, Caloni F, Cortinovis C, Fidalgo LE, López-Beceiro A, Míguez MP, Soler F, Pérez-López M. Reference intervals for B-esterases in gull, Larus michahellis (Nauman, 1840) from Northwest Spain: influence of age, gender, and tissue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1533-1542. [PMID: 29098577 DOI: 10.1007/s11356-017-0630-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Over the last years, cholinesterase (ChE) and carboxylesterase (CbE) activities have been increasingly used in environmental biomonitoring to detect the exposure to anticholinesterase insecticides such as organophosphorates (OPs) and carbamates (CBs). The aim of this study was to determine ChE and CbE enzymatic activities present in liver and muscle of yellow-legged gulls (Larus michahellis), a seabird species considered suitable to monitor environmental pollution. In order to provide reference data for further biomonitoring studies, the influence of different factors, such as gender, age, sampling mode, and tissue, was considered in the present study. Our data report a statistically significant difference in CbE enzymatic activity comparing liver and muscle samples (P < 0.05) along with an age-related CbE activity in liver samples (P < 0.05). Moreover, according to our results, capture method might influence CbE and ChE activity in both liver and muscle samples (P < 0.05). These findings underline the importance to assess basal levels of ChE and CbE activity considering, among other factors, gender-, age- and organ-related differences and confirm the suitability of Larus michahellis as a sentinel species especially within an urban environment.
Collapse
Affiliation(s)
| | - Maria Chiara Perego
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, 20133, Milan, Italy
| | - Jorge Vizuete
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, 20133, Milan, Italy
| | - Cristina Cortinovis
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, 20133, Milan, Italy
| | - Luis Eusebio Fidalgo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine (USC), 27003, Lugo, Spain
| | - Ana López-Beceiro
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine (USC), 27003, Lugo, Spain
| | - María Prado Míguez
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
| | - Francisco Soler
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
| | - Marcos Pérez-López
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain.
| |
Collapse
|
79
|
The brains of bats foraging at wastewater treatment works accumulate arsenic, and have low non-enzymatic antioxidant capacities. Neurotoxicology 2017; 69:232-241. [PMID: 29248512 DOI: 10.1016/j.neuro.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
Increasing rates of urbanisation cause ubiquitous infrastructures that remove anthropogenic contaminants - particularly Wastewater Treatment Works (WWTWs) - to become stressed, and hence pollute surrounding water systems. Neoromicia nana bats are suitable models to study the effects of pollution in these environments because they exploit abundant pollutant-tolerant chironomid midges that breed at WWTWs, and consequently accumulate metals such as iron, copper and zinc in their livers and kidneys. If these metals persist in their circulatory systems, and cross the blood brain barrier (BBB) they can have adverse effects on critical functions such as flight and echolocation. The aim of this study was to investigate the potential neurological effects on N. nana foraging at WWTWs versus bats at reference sites in Durban, South Africa. Our objectives were to 1) compare trace metal levels in brain and hair samples (as a proxy for circulating metals) between N. nana foraging at WWTWs and reference sites to determine if excess metals pass through the BBB via the circulatory system; and 2) compare biomarkers of neuron function (acetylcholinesterase activity), protection (antioxidant capacity), DNA integrity (DNA fragmentation), lipid integrity (lipid peroxidation) and cell viability (caspase-3 activity) between N. nana foraging at WWTW and reference sites. We found a significantly higher concentration of arsenic in hair (p < 0.05) and brain tissue (p < 0.1) of WWTW bats compared to bats at reference sites. By contrast, acetylcholinesterase activity did not differ in bats among sites and there was no evidence of significant differences in lipid peroxidation, compromised DNA integrity or apoptosis in the brains between WWTW bats and reference site bats. However, total antioxidant capacity was significantly lower in brains of WWTW bats than bats at reference sites suggesting that antioxidant protection may be compromised. Long-term exposure to environmental pollutants at WWTWs may therefore affect cellular processes and protection mechanisms in brains of N. nana bats. It may also affect other mechanisms and functions in the brain such as mitochondrial efficiency and other neurotransmitters but that remains to be tested.
Collapse
|
80
|
Mleiki A, Marigómez I, El Menif NT. Green garden snail, Cantareus apertus, as biomonitor and sentinel for integrative metal pollution assessment in roadside soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24644-24656. [PMID: 28913719 DOI: 10.1007/s11356-017-0091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The present investigation was conceived to study, in a small scale field study, the potential of the green garden snail, Cantareus apertus, as biomonitor and sentinel for integrative metal pollution assessment in soils. For this purpose, we investigated the association between the trace metal (Cd, Pb, As, Fe, Cr, Cu, Ni, and Zn) concentrations in soil, plants (Trifolium repens), and C. apertus depending on the distance (20, 150, and 700 m) from a main roadside in Tunisia as well as between metal concentrations and biomarkers of oxidative stress, oxidative damage, and neurotoxicity in C. apertus. Results revealed a clear association between the concentration of metals such as Ni, Cu, and Zn in snail digestive gland, both amongst them and with oxidative stress and neurotoxicity biomarkers recorded in the same organ. Interestingly, Ni, Pb, and Zn occurred at the highest concentration in soil, plant, and snails and the association appeared related to the immediacy of the roadside and the concentration of these three metals tended to decrease with distance from the roadside in the soil-plant-snail system. Conversely, Cd and Cu were bioaccumulated in plants and snails but their concentrations in soil were not high and did not show a decline in concentration with distance from the roadside. After PCA analysis, PC-01 (56% of the variance) represented metal bioaccumulation and associated toxic effects in snails in the presence of high levels of metal pollution (nearby the roadside) while PC-02 (35% of the variance) represented stress induced by moderate levels of metal pollution (at intermediate distances from the roadside). The four studied sites were clearly discriminated one from each other, depending on how they are affected by traffic pollution. In summary, this field study reveals that (a) C. apertus can be used as biomonitor for metal pollution in roadside soils and as sentinel for pollution effects assessment based on biochemical biomarkers; and (b) that oxidative stress and neurotoxicity biomarkers endow with a powerful biological tool for metal pollution biomonitoring in soils, especially in combination with chemical analysis of the soil-plant-snail transfer system. Moreover, this study provides some baseline data for future impact assessments concerning trace metal pollution in Tunisia.
Collapse
Affiliation(s)
- Anwar Mleiki
- Faculty of Sciences of Bizerta, Laboratory of Environment Biomonitoring, University of Carthage, Zarzouna, 7021, Bizerta, Tunisia
| | - Ionan Marigómez
- CBET Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza w/n, E-48620, Plentzia-Bizkaia, Basque Country, Spain.
- CBET Research Group, BERRILUR Research Consortium, Zoology & Cell Biology Dept. (Science and Technology Faculty), University of the Basque Country (UPV/EHU), Sarriena w/n, E-48940, Leioa-Bizkaia, Basque Country, Spain.
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerta, Laboratory of Environment Biomonitoring, University of Carthage, Zarzouna, 7021, Bizerta, Tunisia
| |
Collapse
|
81
|
A calcium channel blocker nifedipine distorts the effects of nano-zinc oxide on metal metabolism in the marsh frog Pelophylax ridibundus. Saudi J Biol Sci 2017; 26:481-489. [PMID: 30899162 PMCID: PMC6408723 DOI: 10.1016/j.sjbs.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023] Open
Abstract
Global decline of amphibian populations causes particular concern about their vulnerability to novel environmental pollutants, including engineering nanomaterials and pharmaceutical products. We evaluated the bioavailability of nanoform of zinc oxide (n-ZnO) in frog Pelophylax ridibundus and determined whether co-exposure to a common pharmaceutical, a calcium-channel blocker nifedipine (Nfd) can affect this bioavailability. Male frogs were exposed for 14 days to the tap water (Control) and n-ZnO (3.1 μM), Zn2+ (3.1 μM, as a positive control for n-ZnO exposures), Nfd (10 μM), and combination of n-ZnO and Nfd (n-ZnO + Nfd) in environmentally-relevant concentration. Exposure to Zn2+ or n-ZnO led to up-regulation of metal-binding proteins, metallothioneins (MTs) in the liver and Zn-carrying vitellogenin-like proteins in the blood plasma. Notably, upregulation of MTs by Zn2+ or n-ZnO exposures combined with increased binding of Zn and Cu to MTs. This was associated with the more reducing conditions in the liver tissue indicated by elevated lactate to pyruvate ratio. Nfd suppressed the binding of Zn and Cu to MTs and led to a decrease in Lactate/Pyruvate ratio and elevated protein carbonylation indicating pro-oxidant conditions. Redox status parameters were not directly related to DNA fragmentation, nuclear abnormalities or suppression of cholinesterase activity indicating that factors other than oxidative stress are involved in cytotoxicity of different pollutants and their combinations. Furthermore, activity of Phase I biotransformation enzyme (CYP450 oxidase measured as EROD) was elevated in Nfd-containing exposures and in Zn2+ exposed frogs. Tyrosinase-like activity in the frog liver was strongly stimulated by Zn2+ but suppressed by n-ZnO, Nfd and n-ZnO + Nfd. These findings show that Nfd modulates homeostasis of essential metals in amphibians and emphasize that physiological consequences of combined n-ZnO and Nfd exposures are difficult to predict based on the mechanisms of single stressors.
Collapse
|
82
|
Expression of common biomarkers in Antarctic krill (Euphausia superba) exposed to an organochlorine contaminant. Polar Biol 2017. [DOI: 10.1007/s00300-017-2210-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
83
|
Blewett TA, Simon RA, Turko AJ, Wright PA. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:25-30. [PMID: 28575749 DOI: 10.1016/j.aquatox.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Elevated levels of metals have been reported in mangrove ecosystems worldwide. Mangrove fishes also routinely experience severe environmental stressors, such as hypoxia. In the amphibious fish Kryptolebias marmoratus (mangrove rivulus), a key behavioural response to avoid aquatic stress is to leave water (emersion). We hypothesized that copper (Cu) exposure would increase the sensitivity of this behavioural hypoxia avoidance response due to histopathological effects of Cu on gill structure and function. K. marmoratus were exposed to either control (no added Cu) or Cu (300μg/L) for 96h. Following this period, fish were exposed to an acute hypoxic challenge (decline in dissolved oxygen to ∼0% over 15min), and the emersion response was recorded. Gills were examined for histological changes. Fish exposed to Cu emersed at a higher dissolved oxygen level (7.5±0.6%), relative to the control treatment group (5.8±0.4%). Histological analysis showed that the gill surface area increased and the interlamellar cell mass (ILCM) was reduced following Cu exposure, contrary to our prediction. Overall, these data indicate that Cu induces hypoxia-like changes to gill morphology and increases the sensitivity of the hypoxia emersion response.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Robyn A Simon
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
84
|
Perić L, Nerlović V, Žurga P, Žilić L, Ramšak A. Variations of biomarkers response in mussels Mytilus galloprovincialis to low, moderate and high concentrations of organic chemicals and metals. CHEMOSPHERE 2017; 174:554-562. [PMID: 28193588 DOI: 10.1016/j.chemosphere.2017.01.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
The changes of acetylcholinesterase activity (AChE), metallothioneins content (MTs), catalase activity (CAT) and lipid peroxidation (LPO) were assessed after 4 days exposure of mussels Mytilus galloprovincialis to a wide range of sublethal concentrations of chlorpyrifos (CHP, 0.03-100 μg/L), benzo(a)pyrene (B(a)P, 0.01-100 μg/L), cadmium (Cd, 0.2-200 μg/L) and copper (Cu, 0.2-100 μg/L). The activity of AChE in the gills decreased after exposure to CHP and Cu, whereas no change of activity was detected after exposure to B(a)P and Cd. Both induction and decrease of MTs content in digestive gland occurred after exposure to CHP and B(a)P, while a marked increase was evident at highest exposure concentrations of Cd. The content of MTs progressively decreased of MTs with increasing concentration of Cu. CAT activity and LPO in the gills did not change after exposure to any of the chemicals. The results demonstrate different response profile in relation to the type of chemical compound, and highlight the potential implications for evaluation of biological effect of contaminants in marine environment. Furthermore, the AChE activity in the gills and MTs content in the digestive gland could be modulated by CHP and Cu at environmentally relevant concentrations indicating the potential risks of short-term transient mussels exposure that may occur due to run-off from land or accidental releases.
Collapse
Affiliation(s)
- Lorena Perić
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia.
| | - Vedrana Nerlović
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Paula Žurga
- Teaching Institute of Public Health of Primorsko-goranska County, Rijeka, Croatia
| | - Luka Žilić
- Marine Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station Piran, Piran, Slovenia
| |
Collapse
|
85
|
Nunes B, Silva V, Campos I, Pereira JL, Pereira P, Keizer JJ, Gonçalves F, Abrantes N. Off-site impacts of wildfires on aquatic systems - Biomarker responses of the mosquitofish Gambusia holbrooki. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:305-313. [PMID: 28088544 DOI: 10.1016/j.scitotenv.2016.12.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 05/21/2023]
Abstract
The number of wildfires has markedly increased in Mediterranean Europe, including in Portugal. Wildfires are environmentally concerning, not only due to the loss of biodiversity and forest area, but also as a consequence of environmental contamination by specific compounds including metals and polycyclic aromatic compounds (PAHs). These contaminants, mostly bound to ashes, can reach downstream water bodies, namely through surface runoff, being ultimately dispersed by vast areas and contacting with aquatic biota. Being toxicologically noteworthy, the potential toxic outcomes of the input of such chemicals across the aquatic compartment must be characterized. In this context, the present study used a biomarker-based approach to find early-warning signals of toxicity triggered by the exposure of the mosquitofish, Gambusia holbrooki, to affected aqueous runoff and stream water samples collected from a forest burnt area. The chemical analysis revealed concerning levels of metals and polycyclic aromatic hydrocarbons in both runoff and stream water samples. Biological responses elicited by the collected samples showed the occurrence of pro-oxidative modifications, specifically driven by enzymatic forms involved in the metabolism of glutathione. Despite these effects, no further signs of involvement of metals and PAHs were elicited in terms of neurotoxicity. The overall set of data implicates chemicals resulting from wildfires in clear deleterious effects in exposed fish.
Collapse
Affiliation(s)
- Bruno Nunes
- Department of Biology, CESAM, University of Aveiro, Portugal
| | - Vera Silva
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal; Department of Biology, CESAM, University of Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal; The Portuguese Sea and Atmosphere Institute, Portugal
| | | | - Patrícia Pereira
- Department of Biology, CESAM, University of Aveiro, Portugal; The Portuguese Sea and Atmosphere Institute, Portugal
| | - Jan Jacob Keizer
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal
| | | | - Nelson Abrantes
- Department of Environment and Planning, CESAM, University of Aveiro, Portugal.
| |
Collapse
|
86
|
Arduini F, Forchielli M, Scognamiglio V, Nikolaevna KA, Moscone D. Organophosphorous Pesticide Detection in Olive Oil by Using a Miniaturized, Easy-to-Use, and Cost-Effective Biosensor Combined with QuEChERS for Sample Clean-Up. SENSORS 2016; 17:s17010034. [PMID: 28029127 PMCID: PMC5298607 DOI: 10.3390/s17010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
Abstract
Herein, we report a portable electrochemical biosensor based on butyrylcholinesterase (BChE) immobilized on carbon black (CB)-modified screen-printed electrodes (SPEs) for the detection of organophosphorous pesticides in olive oil. The BChE/CB-SPE biosensor was developed to detect paraoxon in standard solutions as well as in olive oil samples previously treated with the QuEChERS method to extract pesticides from the whole fatty matrix. The biosensor shows a linear concentration range of between 20 and 100 ppb for paraoxon both in standard solutions (phosphate buffer 0.05 M) and in olive oil extracts, with a detection limit of 6 ppb in olive oil extract, corresponding to 10% of inhibition. The accuracy of this biosensor in olive oil samples was assessed with olive oil spiked with paraoxon, obtaining satisfactory recovery values.
Collapse
Affiliation(s)
- Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Matteo Forchielli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Via Salaria km 29.300, 00015 Monterotondo, Italy.
| | - Kozitsina Alisa Nikolaevna
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University Named After the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russian Federation.
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
87
|
Franco-Martinez L, Romero D, García-Navarro JA, Tecles F, Teles M, Tvarijonaviciute A. Measurement of p-nitrophenyl acetate esterase activity (EA), total antioxidant capacity (TAC), total oxidant status (TOS) and acetylcholinesterase (AChE) in gills and digestive gland of Mytilus galloprovincialis exposed to binary mixtures of Pb, Cd and Cu. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25385-25392. [PMID: 27696195 DOI: 10.1007/s11356-016-7677-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The aims of the present work were (1) to evaluate oxidative stress biomarkers and AChE in two tissues of wild mussel (Mytilus galloprovincialis) of high biochemical activity and accumulation capacity (gills and digestive gland) and (2) to study the behaviour of these biomarkers in presence of heavy metals. For this, EA, TOS, TAC and AChE were measured in tissues of mussels exposed to binary combination of Pb, Cd and Cu. Mussels (n = 36) were exposed to one of the binary mixtures of Pb (1000 μg L-1), Cd (100 μg L-1) and Cu (100 μg L-1) for 7 days, under controlled conditions. Gills and digestive gland were extracted and frozen at -80 °C until analysis. The automatic methods employed for the measurement of EA, TAC, TOS and AChE in M. galloprovincialis revealed higher levels of these biomarkers in digestive gland than gills. Study results suggest that gills would be the tissue of election for study oxidative stress markers, whereas digestive tissue should be selected for AChE measurements in case of evaluation of combined metal toxicity in mussels.
Collapse
Affiliation(s)
- Lorena Franco-Martinez
- Area of Toxicology, Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Diego Romero
- Area of Toxicology, Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - José A García-Navarro
- Area of Toxicology, Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Mariana Teles
- Departament de Biologia Cel•lular, Fisiologia i Immunologia, Universidad Autónoma de Barcelona. Campus d'excel lència "UAB-CEI", Bellaterra, E-08193, Barcelona, Spain
| | - Asta Tvarijonaviciute
- Departament de Medicina i Cirugia Animals, Universidad Autónoma de Barcelona. Campus d'excel·lència "UAB-CEI", Bellaterra, E-08193, Barcelona, Spain.
| |
Collapse
|
88
|
Silva C, Nunes B, Nogueira AJ, Gonçalves F, Pereira JL. In vitro test systems supporting the development of improved pest control methods: a case study with chemical mixtures and bivalve biofoulers. BIOFOULING 2016; 32:1195-1208. [PMID: 27744710 DOI: 10.1080/08927014.2016.1241993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Using the bivalve macrofouler Corbicula fluminea, the suitability of in vitro testing as a stepping stone towards the improvement of control methods based on chemical mixtures was addressed in this study. In vitro cholinesterase (ChE) activity inhibition following single exposure of C. fluminea tissue to four model chemicals (the organophosphates dimethoate and dichlorvos, copper and sodium dodecyl phosphate [SDS]) was first assessed. Consequently, mixtures of dimethoate with copper and dichlorvos with SDS were tested and modelled; mixtures with ChE revealed synergistic interactions for both chemical pairs. These synergic combinations were subsequently validated in vivo and the increased control potential of these selected combinations was verified, with gains of up to 50% in C. fluminea mortality relative to corresponding single chemical treatments. Such consistency supports the suitability of using time- and cost-effective surrogate testing platforms to assist the development of biofouling control strategies incorporating mixtures.
Collapse
Affiliation(s)
- Carlos Silva
- a Department of Biology , University of Aveiro , Aveiro , Portugal
| | - Bruno Nunes
- b Department of Biology, CESAM - Centre for Environmental and Marine Studies , University of Aveiro , Aveiro , Portugal
| | - António Ja Nogueira
- b Department of Biology, CESAM - Centre for Environmental and Marine Studies , University of Aveiro , Aveiro , Portugal
| | - Fernando Gonçalves
- b Department of Biology, CESAM - Centre for Environmental and Marine Studies , University of Aveiro , Aveiro , Portugal
| | - Joana L Pereira
- b Department of Biology, CESAM - Centre for Environmental and Marine Studies , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
89
|
Chiang CW, Ng DQ, Lin YP, Chen PJ. Dissolved Organic Matter or Salts Change the Bioavailability Processes and Toxicity of the Nanoscale Tetravalent Lead Corrosion Product PbO 2 to Medaka Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11292-11301. [PMID: 27648669 DOI: 10.1021/acs.est.6b02072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanoscale lead dioxide (nPbO2(s)) is a corrosion product formed from the chlorination of lead-containing plumbing materials. This metal oxide nanoparticle (NP) plays a key role in determining lead pollution in drinking water and receiving water bodies. This study uses nPbO2(s) and medaka fish (Oryzias latipes) as surrogates to investigate the aqueous fate and toxicological risk of metal oxide NPs associated with water matrices. The larvae of medaka were treated with solutions containing nPbO2(s) or Pb(II)aq in different water matrices for 7-14 days to investigate the in vivo toxic effects of NPs. Ionic strength enhanced aggregation and sedimentation of nPbO2(s) in water, leading to increased lead contents in fish bodies. However, the presence of dissolved organic matter in water enhanced particle stability and accelerated the lead dissolution, thus changing the bioavailability processes (bioaccessibility) of particles. Oxidative stress response and neurotoxicity in exposed fish was greater for nPbO2(s) solution with increased salinity than dissolved organic matter. We predict the bioavailability processes and toxicity of nPbO2(s) in medaka from the aqueous particle behavior under environmentally relevant exposure conditions. Our investigation suggests a toxicological risk of metal oxide NP pollution in the aquatic environment.
Collapse
Affiliation(s)
- Chun-Wei Chiang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, and ‡Institute of Environmental Engineering, College of Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Ding-Quan Ng
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, and ‡Institute of Environmental Engineering, College of Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Pin Lin
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, and ‡Institute of Environmental Engineering, College of Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, and ‡Institute of Environmental Engineering, College of Engineering, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
90
|
Huang GY, Liu YS, Liang YQ, Shi WJ, Hu LX, Tian F, Chen J, Ying GG. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:273-281. [PMID: 27135591 DOI: 10.1016/j.scitotenv.2016.04.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated toxic effects in mosquitofish from two urban rivers of South China impacted by municipal effluents by using multiple biomarkers including fish morphology, biochemical indicators and transcriptional responses, and explored potential cause-effect relationship with a list of chemicals (metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides). The results showed significant alterations in metallothionein (MT) protein and mRNA expression in mosquitofish collected from the two rivers and a strong association between MT protein and mRNA expression levels and heavy metals in the river water. Both ethoxyresorufin-O-deethylase (EROD) activity and cytochromes P450 1A (CYP1A) mRNA expression were significantly enhanced in mosquitofish at most sampling sites. There existed a strong correlation between EROD activity and CYP1A mRNA expression levels, but no clear correlations between these responses and PAHs in the river water possibly because of the presence of many other agonists of the aryl hydrocarbon receptor in the two rivers. Significant acetylcholinesterase (AChE) inhibition was observed in mosquitofish brain samples. The pesticides in the two rivers showed an influence on the AChE activity, which was also found to be significantly negatively correlated to fipronil concentrations. Moreover, the result also indicates that metals and pesticides present in the two rivers might cause the observed estrogenic and androgenic effects in mosquitofish. The findings from this study clearly showed morphological, biochemical and transcriptional responses in mosquitofish due to chemical contamination of the two urban rivers. This multi-biomarker approach using mosquitofish can be applied to evaluate contamination of riverine environments.
Collapse
Affiliation(s)
- Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yan-Qiu Liang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wen-Jun Shi
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fei Tian
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
91
|
Marisa I, Matozzo V, Munari M, Binelli A, Parolini M, Martucci A, Franceschinis E, Brianese N, Marin MG. In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles: responses in gills, digestive gland and haemolymph. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15275-93. [PMID: 27102620 DOI: 10.1007/s11356-016-6690-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/12/2016] [Indexed: 05/29/2023]
Abstract
Potential nanoparticle (NP) toxicity poses a growing concern in marine coastal environments. Among NPs, zinc oxide nanoparticles (nZnO) are widely used in many common products that ultimately become deposited in coastal habitats from multiple non-point sources. In this study, we evaluated the in vivo effects of nZnO in the clam Ruditapes philippinarum. Animals were exposed to nZnO (1 and 10 μg/L) and ZnCl2 (10 μg/L) for 7 days. ZnCl2 was used to compare the effects of the NPs to those of Zn(2+) and to ascertain whether nZnO toxicity is attributable to the release of ions into the aquatic medium. At differing time intervals during the exposure, several biochemical and cellular responses were evaluated in the clam gills, digestive gland, and haemolymph. The results showed that nZnO, at concentrations close to the predicted environmental levels, significantly affected various parameters in clam tissues. Significant increases in catalase and superoxide dismutase activities and a decreasing trend of glutathione S-transferase activity indicated the involvement of oxidative stress in nZnO toxicity. In clams exposed to ZnCl2, slight variations in antioxidant enzyme activities were detected with respect to nZnO-treated clams. However, no damage to lipids, proteins or DNA was revealed in all exposure conditions, suggesting a protection of antioxidant enzymes in the tissues. Of the various haemolymph parameters measured, haemocyte proliferation increased significantly, in ZnCl2-treated clams in particular. Under nZnO (10 μg/L) and ZnCl2 exposure, DNA damage in haemocytes was also revealed, but it was lower in clams exposed to ZnCl2. A decreasing trend in gill AChE activity of treated clams proposed a possible role of zinc ions in nZnO toxicity. However, the dissimilar modulation of the responses in the nZnO- and ZnCl2-exposed clams suggested different mechanisms of action, with nZnO toxicity possibly depending not only on the release of zinc ions but also on NP-specific features. Changes in the biological parameters measured in the clams were consistent with Zn accumulation in their gills and digestive glands.
Collapse
Affiliation(s)
- Ilaria Marisa
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Marco Munari
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Marco Parolini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Alessandro Martucci
- Industrial Engineering Department and INSTM, University of Padua, Via Marzolo 9, 35131, Padua, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Nicola Brianese
- Institute for Energetics and Interphases (IENI), CNR, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
92
|
Bonnail E, Buruaem LM, Araujo GS, Abessa DMS, DelValls TÁ. Multiple Biomarker Responses in Corbicula fluminea Exposed to Copper in Laboratory Toxicity Tests. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:278-285. [PMID: 27090524 DOI: 10.1007/s00244-016-0281-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the alteration of the enzymatic system of the freshwater Asian clam exposed to different copper concentrations. Individuals of Corbicula fluminea were exposed to different concentrations of dissolved Cu (0.5, 1, and 2 mg L(-1)) for 7 days, then, biomarkers of oxidative stress (GST, GPx, GR), exposure (MTs), effect (AChE), and damage (LPO, DNA strand breaks) were quantified. Results showed positive correlations between dissolved metal concentrations and GPx, MTs, and DNA damage, and negative correlation with GST and AChE. In contrast, no clear trend was found for GR and LPO. In general, the established mechanisms of protection might have a beneficial effect on the decreasing ROS attack on membrane and the activation of the metallothioneins. Integrated biomarker analysis revealed that the measured alterations are well correlated with the levels of increasing dissolved copper concentrations in water, demonstrating the effectiveness of this organism for biomonitoring approach purposes.
Collapse
Affiliation(s)
- Estefanía Bonnail
- UNESCO UNITWIN/WiCop, Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Lucas M Buruaem
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Praça Infante Dom Henrique s/n, 11330-900, São Vicente, SP, Brazil
| | - Giuliana S Araujo
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Praça Infante Dom Henrique s/n, 11330-900, São Vicente, SP, Brazil
| | - Denis M S Abessa
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Praça Infante Dom Henrique s/n, 11330-900, São Vicente, SP, Brazil
| | - T Ángel DelValls
- UNESCO UNITWIN/WiCop, Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
93
|
Chen H, Mu L, Cao J, Mu J, Klerks PL, Luo Y, Guo Z, Xie L. Accumulation and effects of Cr(VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:208-216. [PMID: 27162070 DOI: 10.1016/j.aquatox.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Chromium (Cr) is an essential metal and a nutritional supplement for both human and agricultural uses. It is also a pollutant from a variety of industrial uses. These uses can lead to elevated Cr levels in aquatic environments, where it can enter and affect aquatic organisms. Its accumulation and subsequent effects in fish have received relatively little attention, especially for chronic exposure. In the present study, Japanese medaka were chronically exposed to dissolved or dietary Cr(VI) for 3 months. Cr accumulation in liver, gills, intestine, and brain was evaluated. Effects on the antioxidant system, nervous system (acetylcholinesterase, AChE), digestive system (α-glucosidase, α-Glu), and tissue histology (liver and gills) were also assessed. Cr accumulation was observed in the intestine and liver of fish exposed to Cr-contaminated brine shrimp. However, chronic dissolved Cr exposure led to significant Cr accumulation in all organs tested. Analysis of the subcellular distribution of Cr in medaka livers revealed that 37% of the Cr was present in the heat stable protein fraction. The dissolved Cr exposure had pronounced effects on the antioxidant system in the liver, with an elevated ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and decreases in GSH and glutathione S-transferase (GST). The α-Glu activity in the intestine was significantly inhibited. In addition, Cr exposure caused histopathological alterations in the gills and liver. In general, the effects of dietary Cr were relatively minor, possible due to the much lower accumulation in the fish. Our results imply that Japanese medaka accumulate Cr mainly via uptake of dissolved Cr(VI).
Collapse
Affiliation(s)
- Hongxing Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Lei Mu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jingli Mu
- Division of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, Liaoning 116023, China
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, P. O. Box 43602, Lafayette, LA 70504-3602, USA
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Lingtian Xie
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China.
| |
Collapse
|
94
|
Luis LG, Barreto Â, Trindade T, Soares AMVM, Oliveira M. Effects of emerging contaminants on neurotransmission and biotransformation in marine organisms - An in vitro approach. MARINE POLLUTION BULLETIN 2016; 106:236-244. [PMID: 26988391 DOI: 10.1016/j.marpolbul.2016.02.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The effects of gold (ionic form and nanoparticles - AuNPs) and pharmaceuticals (carbamazepine and fluoxetine) on enzymes involved in neurotransmission (acetylcholinesterase - AChE) and biotransformation (glutathione S-transferases - GST) were assessed by their incubation with Mytilus galloprovincialis' hemolymph and subcellular fraction of gills, respectively. AuNPs did not alter enzymatic activities unlike ionic gold that inhibited AChE and GST activities at 2.5 and 0.42mg·L(-1), respectively. Carbamazepine inhibited AChE activity at 500mg·L(-1) and fluoxetine at 1000mg·L(-1). GST was inhibited by carbamazepine at 250mg·L(-1) and by fluoxetine at 125mg·L(-1). Increased AChE activity was found in simultaneous exposures to fluoxetine and bovine serum albumin coated AuNPs (BSA-AuNPs). Concerning GST, in the simultaneous exposures, AuNPs revealed protective effects against carbamazepine (citrate and polyvinylpyrrolidone coated) and fluoxetine (citrate and BSA coated) induced inhibition. However, BSA-AuNPs increased the inhibition caused by carbamazepine. AuNPs demonstrated ability to interfere with other chemicals toxicity justifying further studies.
Collapse
Affiliation(s)
- Luis G Luis
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
95
|
Falfushynska H, Gnatyshyna L, Fedoruk O, Sokolova IM, Stoliar O. Endocrine activities and cellular stress responses in the marsh frog Pelophylax ridibundus exposed to cobalt, zinc and their organic nanocomplexes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:62-71. [PMID: 26624501 DOI: 10.1016/j.aquatox.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Metal-containing materials are extensively used in industry, personal care products and medicine, and their release in the environment causes concern for the potential impacts on aquatic organisms. We assessed endocrine disrupting potential of N-vinyl-2-pyrrolidone-based nanoparticles (Me-PSs) containing cobalt (Co(2+)) or zinc (Zn(2+)), using the marsh frog Pelophylax ridibundus as a model. Adult males were exposed for 14 days to waterborne Co(2+) (50μg/L), Zn(2+) (100μg/L) or corresponding concentrations of Co-PS, Zn-PS, or parental polymeric compound (PS). The indices of thyroid activity, vitellogenesis, cytochrome P450-dependent monooxygenases activity (EROD) and cytotoxicity markers were evaluated. Exposure to Co(2+) led to the elevation of serum thyrotropin (TSH) and hepatic deiodinase activities accompanied by the up-regulation of EROD activity. In contrast, the action of the polymer-containing substances (Co-PS, Zn-PS and PS) as well as free Zn(2+) caused a prominent decrease of EROD activity and a decrease in serum cortisol and TSH concentrations. Exposures to Zn(2+), Zn-PS and PS upregulated vitellogenesis in males. All exposures except Co(2+) caused neurotoxicity as indicated by the depletion of cholinesterase. These results demonstrate toxicity of Co- and Zn-containing Me-PSs and their parental compounds (Zn(2+) and PS) in frogs and indicate distinct mechanisms of Co(2+) action. Broad disruption of the hormonal pathways and reduced capacity for organic xenobiotic detoxification may have deleterious impacts on amphibian populations from habitats exposed to metallorganic pollution.
Collapse
Affiliation(s)
- Halina Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil, Ukraine; Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA; I.Ya Horbachevsky Ternopil State Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil, Ukraine; I.Ya Horbachevsky Ternopil State Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine
| | - Olga Fedoruk
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil, Ukraine
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Oksana Stoliar
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil, Ukraine.
| |
Collapse
|
96
|
Simonato JD, Mela M, Doria HB, Guiloski IC, Randi MAF, Carvalho PSM, Meletti PC, Silva de Assis HC, Bianchini A, Martinez CBR. Biomarkers of waterborne copper exposure in the Neotropical fish Prochilodus lineatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:31-41. [PMID: 26613196 DOI: 10.1016/j.aquatox.2015.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
The main goal of the present study was to investigate the effects of acute exposure to copper (Cu) using a Neotropical freshwater fish as sentinel species through multi biomarkers analysis at different biological levels. Juveniles of Prochilodus lineatus were kept under control condition (no Cu addition in the water) or exposed to environmentally relevant concentrations of waterborne Cu (5, 9 and 20μgL(-1)) for 96h. These concentrations were selected to bracket the current Brazilian water quality criteria for Cu in fresh water (9 and 13μgL(-1) dissolved copper). Endpoints analyzed included ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity, reduced glutathione (GSH) and metallothionein-like protein (MT) concentration, lipid peroxidation (LPO) level, tissue damage index, and incidence of free melano-macrophages (FMM) and melano-macrophage centers (MMC) in the liver. They also included DNA damage (frequency of nucleoids per comet class, number of damaged nucleoids per fish and DNA damage score) in erythrocytes, as well as muscle and brain acetylcholinesterase (AChE) activity and behavioral parameters (swimming distance and velocity, time spent swimming and swimming activity in the upper and lower layers of the water column). Fish exposed to any of the Cu concentrations tested showed increased liver MT concentration and LPO level, higher number of damaged nucleoids in erythrocytes per fish, and inhibited muscle AChE activity. Also, increased liver SOD activity was observed in fish exposed to 9 and 20μgL(-1) Cu. Fish exposed to 5 and 9μgL(-1) Cu spent lower amount of time swimming. Fish exposed to 9μgL(-1) Cu showed increased swimming distance and velocity while those exposed to 20μgL(-1) Cu had lower swimming distance and velocity, as well as, spent less time swimming in the lower layer of the water column when compared to those kept under control condition. These findings indicate that Cu exposure at environmentally relevant concentrations (below or close to the current Brazilian water quality criteria) induced significant biological (histological, biochemical and genetic) and ecological (swimming and exploratory abilities) damages in the Neotropical fish P. lineatus. They also suggest that MT concentration, DNA damage (comet assay), LPO (TBARS method), SOD and AChE activity, together with swimming behavior analyses are potential biomarkers to assess and monitor areas impacted by Cu in fresh water.
Collapse
Affiliation(s)
- Juliana D Simonato
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Maritana Mela
- Departamento de Biologia Celular e Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Halina B Doria
- Departamento de Biologia Celular e Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Izonete C Guiloski
- Departamento de Biologia Celular e Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marco A F Randi
- Departamento de Biologia Celular e Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Paulo S M Carvalho
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Paulo C Meletti
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Helena C Silva de Assis
- Departamento de Biologia Celular e Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Claudia B R Martinez
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
97
|
Santos CSA, Monteiro MS, Soares AMVM, Loureiro S. Brain cholinesterase reactivation as a marker of exposure to anticholinesterase pesticides: a case study in a population of yellow-legged gull Larus michahellis (Naumann, 1840) along the northern coast of Portugal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:266-272. [PMID: 26564198 DOI: 10.1007/s11356-015-5730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Between late 2010 to early 2011, an increased mortality in gulls was observed along the northern coast of Portugal, with individuals exhibiting neurologic disorders consistent with an eventual anticholinesterase pesticide poisoning event. To clarify if this mortality was related to organophosphate (OP) and/or carbamate (CB) poisoning, chemical and spontaneous cholinesterase (ChE) reactivation was tested in the brain of the yellow-legged gull (Larus michahellis). Initial brain ChE activity in L. michahellis was 40.92 ± 5.23 U/mg of protein (average ± SE). Following chemical and spontaneous reactivation, ChE activity increased in average 70.38 ± 48.59% and 131.95 ± 92.64%, respectively. ChE reactivation was found to decrease at increasing concentrations of the oxime pyridine-2-aldoxime methochloride and dilution factor, underscoring the importance of first optimizing the assay conditions prior to its use on bird species. These results suggest that birds analysed could have been exposed to OP and CB pesticide compounds and that in most cases CB exposure appeared to be the main cause of birds poisoning. These results are an important contribution to environmental monitoring as it demonstrates the suitability of L. michaellis as sentinel species of OP and CB pesticides within an urban environment.
Collapse
Affiliation(s)
- Cátia S A Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Marta S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi. Rua Badejós, Zona Rural, Cx. Postal 66-CEP: 77402-970, Gurupi-TO, Brasil
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
98
|
Li L, Chen H, Bi R, Xie L. Bioaccumulation, subcellular distribution, and acute effects of chromium in Japanese medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2611-2617. [PMID: 26096885 DOI: 10.1002/etc.3112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Chromium (Cr) is an essential element but is toxic to aquatic organisms at elevated concentrations. In the present study, adult Japanese medaka (Oryzias latipes) were exposed to a sublethal hexavalent chromium (Cr(VI)) concentration via dissolved and dietary exposures for 6 d. Various measurements of Cr were made: bioaccumulation in different tissues, subcellular distribution in the liver, effects on antioxidants and acetylcholinesterase (AChE), and Cr-induced lipid peroxidation. The results showed that bioaccumulation increased dramatically in all tested tissues from dissolved exposure but only significantly in the intestine from dietary treatment, implying that dissolved exposure may be predominant for Cr accumulation in medaka. Subcellular distribution revealed that Cr accumulated in the liver was mainly (46%) associated with the heat-stable protein fraction. Among the antioxidants examined, catalase (CAT) responded to dissolved Cr exposure in most tissues whereas superoxide dismutase (SOD) was less responsive. Malondialdehyde concentrations were significantly elevated in most tissues examined in the dissolved Cr-exposed fish, but were only elevated in the liver and intestine in the dietary Cr-exposed fish. The AChE activity in the brain was stimulated by 49% in the dissolved Cr-exposed fish. Reductions in condition factor and gonadosomatic index were also observed. These data help in an understanding of Cr tissue distribution and the acute effects of Cr in Japanese medaka.
Collapse
Affiliation(s)
- Lixia Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning, People's Republic of China
| | - Hongxing Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning, People's Republic of China
| | - Ran Bi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning, People's Republic of China
| | - Lingtian Xie
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning, People's Republic of China
| |
Collapse
|
99
|
Ferreira NGC, Cardoso DN, Morgado R, Soares AMVM, Loureiro S. Long-term exposure of the isopod Porcellionides pruinosus to nickel: Costs in the energy budget and detoxification enzymes. CHEMOSPHERE 2015; 135:354-362. [PMID: 25985212 DOI: 10.1016/j.chemosphere.2015.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Terrestrial isopods from the species Porcellionides pruinosus were exposed to the maximum allowed nickel concentration in the Canadian framework guideline (50 mg Ni/kg soil) and to 5× this concentration (250 mg Ni/kg soil). The exposure lasted for 28 days and was followed by a recovery period of 14 days where organisms were changed to clean soil. Organisms were sampled after 24 h, 48 h, 96 h, 7 days, 14 days, 21 days, and 28 days of exposure, and at days 35 and 42 during the recovery period. For each sampling time the acetylcholinesterase (AChE), glutathione-S-transferases (GST), catalase (CAT), lactate dehydrogenase (LDH) activities were determined as well as lipid peroxidation rate (LPO) along with lipids, carbohydrates, proteins content, energy available (Ea), energy consumption (Ec) and cellular energy allocation (CEA). The integrated biomarker response (IBR) was calculated for each sampling time as well as for each one of the above parameters. In addition, mortality was also recorded throughout the assay. The results obtained showed that nickel induced oxidative stress, evidenced by results on GST, GPx, CAT or LPO, but also on changes in the energy reserves content of these organisms. In addition, this study showed that these organisms possess a specific strategy to handle nickel toxicity. In this case, biomarkers were associated with costs in the energy budget, and the increase of energy reserves has a compensation for that cost.
Collapse
Affiliation(s)
- Nuno G C Ferreira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diogo N Cardoso
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rui Morgado
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
100
|
Domingues I, Santos CSA, Ferreira NGC, Machado L, Oliveira R, Ferreira A, Lopes I, Loureiro S, Soares AMVM. Suitability of enzymatic markers to assess the environmental condition of natural populations of Gambusia affinis and Daphnia magna--a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:208. [PMID: 25805370 DOI: 10.1007/s10661-015-4429-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
In recent years, the use of biochemical markers, especially in the assessment of toxic effects and modes of action, under controlled laboratory conditions has increased. However, transposing their use to in situ monitoring or risk assessment evaluations has encountered barriers, mainly related to the difficulty in interpreting the meaning of biochemical variation. In this work, we aimed at understanding if biochemical marker activities (cholinesterase, glutathione S-transferase and lactate dehydrogenase) can be used to monitor the health status of natural populations of fish (Gambusia affinis) and daphnids (Daphnia magna). For that, two ponds with different water properties were chosen as study sites, and organisms collected at four sampling periods along the year. The pattern of biochemical marker responses was not the same in the two species, showing higher integrated biochemical marker response values in the winter for G. affinis and in the autumn for D. magna, suggesting specificities that must be taken into account in biomonitoring programmes by including representative species of several trophic levels. In the case of G. affinis, the differences in key physicochemical parameters between the two ponds (especially dissolved oxygen levels) did not seem to affect biochemical marker levels as if organisms were already perfectly adapted to their environment. In general, seasonal variation of water quality seems to have an important role on biochemical marker responses. Several parameters above Environmental Quality Standards were identified such as dissolved oxygen (DO), ammonia, nitrites, sulphides and metals, but eventual responses to these stressors could not be discriminated from natural variation except for particular cases.
Collapse
Affiliation(s)
- Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|