51
|
Wang D, Ruan W, Fan L, Xu H, Song Q, Diao H, He R, Jin Y, Zhang A. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129577. [PMID: 35850069 DOI: 10.1016/j.jhazmat.2022.129577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a widespread naturally contaminant. Previous studies have highlighted the issue of liver fibrosis induced by arsenic exposure, while the exact mechanisms are not yet fully understood. Recent studies suggest that Mig-6/EGFR/ERK signaling appear to play important roles in fibrosis caused by various factors. In this study, we focused on the epigenetic modification combined with the signaling dysregulation to validate the role of Mig-6 in regulating EGFR/ERK signaling in arsenite-induced human hepatic stellate cells (HSCs) activation. Our results revealed that arsenite exposure induced HSCs activation and extracellular matrix (ECM) deposition. The EGFR/ERK signaling was significantly hyperphosphorylated in arsenite-exposed HSCs, and Mig-6 inactivation was involved in arsenite induced hyperphosphorylation of EGFR and activation of HSCs. Additionally, we further illustrated that hypermethylation of Mig-6 gene promoter region was responsible for the downregulation of Mig-6 induced by arsenite exposure. Moreover, 5-Aza-dC (a DNA methyltransferase inhibitor) can efficiently rescue hypermethylation of Mig-6 gene, decrease the hyperphosphorylation of EGFR/ERK signaling, then reverse arsenite induced HSCs activation. Taken together, the present study strongly suggests that inactivating of Mig-6 function by hypermethylation of its promoter region leading to hyperphosphorylation of EGFR/ERK signaling, and is involved in arsenite-induced HSCs activation and ECM deposition.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
52
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
53
|
Peng C, Li L, Luo G, Tan S, Xia R, Zeng L. Integrated analysis of the M2 macrophage-related signature associated with prognosis in ovarian cancer. Front Oncol 2022; 12:986885. [PMID: 36091124 PMCID: PMC9458878 DOI: 10.3389/fonc.2022.986885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background M2 macrophages play an important role in cancer development. However, the underlying biological fator affecting M2 macrophages infiltration in ovarian cancer (OV) has not been elucidated. Methods R software v 4.0.0 was used for all the analysis. The expression profile and clinical information of OV patients enrolled in this study were all downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Results The CIBERSORT algorithm was used to quantify the M2 macrophage infiltration in OV tissue, which was found a risk factor for patients survival. Based on the limma package, a total of 196 DEGs were identified between OV patients with high and low M2 macrophage infiltration, which were defined as M2 macrophages related genes. Finally, the genes PTGFR, LILRA2 and KCNA1 were identified for prognosis model construction, which showed a great prediction efficiency in both training and validation cohorts (Training cohort, 1-year AUC = 0.661, 3-year AUC = 0.682, 8-year AUC = 0.846; Validation cohort, 1-year AUC = 0.642, 3-year AUC = 0.716, 5-year AUC = 0.741). Clinical correlation showed that the riskscore was associated with the worse clinical features. Pathway enrichment analysis showed that in high risk patients, the pathway of epithelial-mesenchymal transition (EMT), TNF-α signaling via NFKB, IL2/STAT5 signaling, apical junction, inflammatory response, KRAS signaling, myogenesis were activated. Moreover, we found that the PTGFR, LILRA2 and KCNA1 were all positively correlated with M2 macrophage infiltration and PTGFR was significantly associated with the pathway of autophagy regulation. Moreover, we found that the low risk patients might be more sensitive to cisplatin, while high risk patient might be more sensitive to axitinib, bexarotene, bortezomib, nilotinib, pazopanib. Conclusions In this study, we identified the genes associated with M2 macrophage infiltration and developed a model that could effectively predict the prognosis of OV patients.
Collapse
Affiliation(s)
- Caijiao Peng
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Licheng Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Guangxia Luo
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Shanmei Tan
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Ruming Xia
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Lanjuan Zeng
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
- *Correspondence: Lanjuan Zeng,
| |
Collapse
|
54
|
Yang S, Zhao H, Xiao W, Shao L, Zhao C, Sun P. Extracellular vesicle-packaged miR-181c-5p from epithelial ovarian cancer cells promotes M2 polarization of tumor-associated macrophages via the KAT2B/HOXA10 axis. J Gene Med 2022; 24:e3446. [PMID: 36027869 DOI: 10.1002/jgm.3446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The molecular mechanistic actions of tumor-derived extracellular vesicles (EVs) in modulating macrophage polarization in the tumor microenvironment of epithelial ovarian cancer (EOC) is largely unknown. The study was performed to clarify the effect and downstream mechanism of microRNA-181c-5p (miR-181c-5p)-containing EVs from EOC cells in the M2 polarization of tumor-associated macrophages (TAMs). METHODS EVs were isolated from normoxic and hypoxic human EOC cells SKOV3. Human mononuclear cells THP-1 was induced by PMA to differentiate into TAMs. Targeting relationship between miR-181c-5p and KAT2B was verified by dual luciferase reporter gene assay. The interaction between KAT2B and HOXA10 was detected by immunofluorescence, Co-IP and ChIP assays. EdU staining, scratch test, and Transwell assay were used to assess the resultant cell proliferation, migration, and invasion. Mouse xenograft model and pulmonary metastasis model were developed through intraperitoneal injection of SKOV3 cells and tail vein injection of THP-1 cells, respectively. RESULTS Hypoxic SKOV3 cell-derived EVs could be internalized by TAMs. SKOV3 cell-derived EVs induced by hypoxia (H-EVs) promoted M2 polarization of TAMs and facilitated proliferation, migration, and invasion of SKOV3 cells. miR-181c-5p was highly expressed in H-EVs and promoted M2 polarization of TAMs. Further, miR-181c-5p targeted KAT2B, upregulated HOXA10 and activated the JAK1/STAT3 pathway, thereby promoting M2 polarization of TAMs. In both mouse models, H-EVs-derived miR-181c-5p promoted growth and metastasis of EOC cells. CONCLUSION The miR-181c-5p-containing EVs from hypoxic EOC cells may upregulate HOXA10 by targeting KAT2B and activate the JAK1/STAT3 pathway to promote the M2 polarization of TAMs and ultimately promoting growth and metastasis of EOC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Shuyan Yang
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Honghui Zhao
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Wei Xiao
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Lei Shao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, P. R. China
| | - Chunyan Zhao
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Pengcheng Sun
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
55
|
Glycan targeting nanoparticle for photodynamic immunotherapy of melanoma. Acta Pharm Sin B 2022; 13:1903-1918. [DOI: 10.1016/j.apsb.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
|
56
|
The Evaluation Value of CT in the Efficacy of Neoadjuvant Chemotherapy in Ovarian Cancer Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7195888. [PMID: 35800240 PMCID: PMC9200539 DOI: 10.1155/2022/7195888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Aim To discuss the evaluation value of CT in the efficacy of neoadjuvant chemotherapy in patients with ovarian cancer. Methods The clinical, pathological, and CT imaging information of 72 patients with ovarian cancer treated in our hospital from January 2018 to January 2022 were retrospectively analyzed. CT examination and pathological examination were compared to evaluate the efficacy of neoadjuvant chemotherapy. Results Using the CRS grading system, 26 cases (36.11%) scored 1, 42 cases (58.33%) scored 2, and 4 cases (5.56%) scored 3. CRS grading system scores of 1, 2, 3, and 4–7 patients were compared, P > 0.05. The CT manifestations of lymphadenectasis, degree of peritoneal thickening, ascites, and maximum length diameter of the mass were compared between the patients before and after chemotherapy, P < 0.05. According to RECIST 1.1, there were 1 (1.39%) CR, 38 (52.78%) PR, 29 (40.28%) SD, and 4 (5.56%) PD. The comparison was done between RECIST 1.1 and CRS grading system, P > 0.05. Conclusion CT could be used to evaluate the efficacy of neoadjuvant chemotherapy for ovarian cancer.
Collapse
|
57
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
58
|
Chen Y, Hong C, Qu J, Chen J, Qin Z. Knockdown of lncRNA PCAT6 suppresses the growth of non-small cell lung cancer cells by inhibiting macrophages M2 polarization via miR-326/KLF1 axis. Bioengineered 2022; 13:12834-12846. [PMID: 35609331 PMCID: PMC9275980 DOI: 10.1080/21655979.2022.2076388] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common malignant tumor of lung, which seriously threatens the life of people. It has been reported that lncRNA prostate cancer-associated transcript 6 (PCAT6) could facilitate the metastasis of NSCLC cells. However, whether lncRNA PCAT6 in NSCLC cells could affect the tumor microenvironment (TME) remains unclear. In the present study, the level of PCAT6 in NSCLC cells was detected using RT-qPCR. The effects of PCAT6 knockdown on the viability and apoptosis in NSCLC cells were detected with CCK-8 and flow cytometry assay. NSCLC cell-derived exosomes were isolated with ultracentrifugation. Next, transwell assay was conducted to assess the migration and invasion of NSCLC cells. Dual-luciferase reporter assay was performed to verify the relationship among PCAT6, miR-326, and KLF1 in A549 cells. In addition, nanoparticle tracking analysis (NTA) was applied to detect the particle size of isolated exosomes. Moreover, ELISA assay was performed to detect the levels of IL-1β and IL-10 in the supernatant of macrophage. We found knockdown of PCAT6 significantly inhibited the viability, migration, and invasion of NSCLC cells. In addition, dual-luciferase reporter assay illustrated that miR-326 was the target of PCAT6 and KLF1 was the target of miR-326 in NSCLC cells. Moreover, NSCLC cells-derived exosomes could promote macrophages M2 polarization by transporting PCAT6. Meanwhile, macrophages M2 polarization was able to promote the metastasis and epithelial-mesenchymal transition (EMT) process of NSCLC cells via regulating PCAT6/miR-326/KLF1 axis. Taken together, knockdown of lncRNA PCAT6 suppressed the growth of NSCLC cells by inhibiting macrophages M2 polarization via miR-326/KLF1 axis.
Collapse
Affiliation(s)
- Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jing Qu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Junjun Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
59
|
Cao Y, Mai W, Li R, Deng S, Li L, Zhou Y, Qin Q, Zhang Y, Zhou X, Han M, Liang P, Yan Y, Hao Y, Xie W, Yan J, Zhu L. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway. Cell Mol Life Sci 2022; 79:303. [PMID: 35588334 PMCID: PMC11071853 DOI: 10.1007/s00018-022-04319-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
The pathogenesis of liver fibrosis in nonalcoholic fatty liver disease (NAFLD) remains unclear and the effective treatments have not been explored yet. The activation of hepatic stellate cells (HSCs) is considered as the most critical factor in the progression of liver fibrosis and cirrhosis. Autophagy has recently been identified as a new mechanism to regulate HSC activation. Here, we found that liver macrophages were polarized toward type 2 (M2) during the progression of nonalcoholic steatohepatitis (NASH) and liver fibrosis in both patients and NAFLD mice. Using the methionine-choline-deficient (MCD) diet NAFLD murine model and the in vitro cell culture system, we identified that the M2 macrophages promoted HSC autophagy by secreting prostaglandin E2 (PGE2) and binding its receptor EP4 on the surface of HSCs, which consequently enhanced HSC activation, extracellular matrix deposition, and liver fibrosis. Mechanistically, PGE2/EP4 signals enhanced HSC autophagy through the Erk pathway. A specific PGE2/EP4 antagonist E7046 significantly inhibited M2 macrophage-mediated HSC autophagy and improved liver fibrosis and histopathology in NAFLD mice. Our study provides novel mechanistic insights into the regulation of HSC activation and liver fibrosis. Our findings suggest that the PGE2/EP4 pathway is a promising therapeutic target to prevent NASH progression into cirrhosis.
Collapse
Affiliation(s)
- Ying Cao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Weili Mai
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Department of Gastroenterology, General Hospital of the Southern Theater of the Chinese People's Liberation Army, Guangzhou, 510030, China
| | - Rui Li
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Shuwei Deng
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Lan Li
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yanxi Zhou
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiushi Qin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, 100015, China
| | - Yue Zhang
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Ming Han
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Pu Liang
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yonghong Yan
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yu Hao
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Jie Yan
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Liuluan Zhu
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
60
|
Hu Y, Li H, Zhang H, Tang Q, Zhang G, Li X, Xue F. The long non-coding RNA LIMT inhibits metastasis of hepatocellular carcinoma and is suppressed by EGF signaling. Mol Biol Rep 2022; 49:4749-4757. [PMID: 35526240 PMCID: PMC9262785 DOI: 10.1007/s11033-022-07325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/06/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
Background The long non-coding RNA LIMT (lncRNA inhibiting metastasis) acts as a tumor suppressor factor in some cancers. However, the biological role of LIMT in hepatocellular carcinoma (HCC) has not been explored. Methods and Results Quantitative real-time PCR was performed to evaluate the expression of LIMT in HCC tissue. The effects of LIMT on tumor growth and metastasis were assessed by in vitro experiments, including colony formation and transwell assays, and in vivo in nude mouse models. Western blot analysis was used to evaluate the expression levels of proteins associated with epithelial-mesenchymal transition (EMT). LIMT expression was significantly lower in HCC than in normal liver tissue. Functionally, overexpression of LIMT repressed the proliferation, invasion, and EMT of HCC cells, while LIMT knockdown increased proliferation, invasion, and EMT of HCC cells in vitro. Furthermore, LIMT overexpression suppressed HCC growth and metastasis while silencing of LIMT had an opposite effect in vivo. Finally, LIMT overexpression reversed EGF-induced EMT. Conclusions Our results suggest that LIMT could play an anti-cancer effect in HCC and might be a potential novel therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07325-0.
Collapse
Affiliation(s)
- Yu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Qiang Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Guangtan Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
61
|
Zhao N, Wang C, Guo P, Hou J, Yang H, Lan T, Zhou Y, Li J, Bhawal UK, Liu Y. CCDC106 promotes the proliferation and invasion of ovarian cancer cells by suppressing p21 transcription through a p53-independent pathway. Bioengineered 2022; 13:10956-10972. [PMID: 35484984 PMCID: PMC9208459 DOI: 10.1080/21655979.2022.2066759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancers are the major cause of mortality for women worldwide. This study was aimed to elucidate the biological activities of CCDC106 in the proliferation and invasion of mutant p53 and of wild-type p53 ovarian cancer cells. CAOV3 (mutant p53) cells showed high expression levels of CCDC106, but it was expressed at low levels in SKOV3 (mutant p53) and in A2780 (wild-type p53) cells. The overexpression of CCDC106 promoted the expression of proliferation markers (cyclin family members), invasion and Epithelial-to-mesenchymal transition (EMT) markers (claudin-1, claudin-4, N-cadherin, snail, slug) while the knockdown of CCDC106 inhibited their expression in mutant p53 cells but not in wild-type p53 cells. Treatment with a CK2 inhibitor blocked the translocation of CCDC106 into the nuclei of mutant p53 cells. Immunoprecipitation assays confirmed that ATF4 is a potential binding partner of CCDC106. The overexpression of CCDC106 reduced p21 and p27 protein expression levels while treatment with an ATF4 siRNA rescued their expression. The overexpression of CCDC106 promoted colony formation and invasion of mutant p53 cells, which was suppressed by treatment with an ATF4 siRNA. Immunohistochemistry results showed that CCDC106 and ATF4 are expressed at high levels but p21 is expressed at low levels in FIGO III-IV stage and in mutant p53 ovarian cancer samples. A significant association between poor overall survival and high CCDC106 and ATF4 expression levels was observed in human ovarian cancer samples. In conclusion, CCDC106 promotes proliferation, invasion and EMT of mutant p53 ovarian cancer cells via the ATF4 mediated inhibition of p21.
Collapse
Affiliation(s)
- Na Zhao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chen Wang
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Peng Guo
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jun Hou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Yang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Lan
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yehan Zhou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiayu Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ujjal K Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yang Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
62
|
Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J. Tumor-Associated Macrophages and Ovarian Cancer: Implications for Therapy. Cancers (Basel) 2022; 14:2220. [PMID: 35565348 PMCID: PMC9101750 DOI: 10.3390/cancers14092220] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) has been implicated to play an important role in the progression of ovarian cancer. One of the most important components of the TME is tumor associated macrophages (TAMs). Phenotypically, macrophages are broadly categorized as M1 pro-inflammatory or M2 anti-inflammatory, based on the cytokines and chemokines that they secrete. The tumor microenvironment is associated with macrophages of an M2 phenotype which suppress the surrounding immune environment, assist tumor cells in evading immune targeting, and support tumor growth and metastasis. Contrarily, M1 macrophages help mount an immune response against tumors, and are associated with a more favorable prognosis in solid tumors. One of the characteristic indicators of a poor prognosis in ovarian cancer is the overrepresentation of M2-type TAMs. As such, therapeutic modalities targeting TME and TAMs are of increasing interest. Pharmacological approaches to eliminate TAMs, include decreasing macrophage survival and recruitment and increasing phagocytosis, have been underwhelming. Clinical strategies targeting these macrophage subtypes via repolarization to an M1 antitumoral state deserve increasing attention, and may serve as a new modality for immunotherapy.
Collapse
Affiliation(s)
- David Schweer
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Annabel McAtee
- School of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Khaga Neupane
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Christopher Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.N.); (C.R.)
| | - Frederick Ueland
- Markey Cancer Center, Division of Gynecologic Oncology, University of Kentucky, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Pharmacology and Toxicology, University of Kentucky, Lexington, KY 40202, USA
| |
Collapse
|
63
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
64
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
65
|
Yin W, Qian S. Delivery of cisplatin and resiquimod in nanomicelles for the chemoimmunotherapy of ovarian cancer. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-021-00094-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
To explore the effect and mechanism of delivery of cisplatin (CDDP) and resiquimod in nanomicelles for the chemoimmunotherapy of ovarian cancer in vivo and in vitro.
Methods
Poly(l-glutamic acid)-graft-methoxypolyethylene glycols (PLG-g-mPEG) was used to carry cisplatin and resiquimod for the preparation of CDDP/resiquimod/PLG-g-mPEG. We determined the loading content (LC) and encapsulation efficiency (EE), and then observed the particle shape, particle size distribution and zeta potential. In this study, we recruited 30 healthy adult participants and isolated mononuclear cells, and they were randomly classified into a control group, a CDDP group, a resiquimod group, a CDDP/resiquimod/PLG-g-mPEG group and a IFN-γ + LPS group to identify macrophages markers in different polarization states. We conducted microprobe synchrotron radiation X-ray fluorescence (SRXRF) imaging to observe the cell uptake. Furthermore, we observed the effects of CDDP/resiquimod/PLG-g-mPEG on the growth and colony formation of SW626 cells and the expressions of apoptosis-associated genes and proteins. Tumor-bearing mouse models of ovarian cancer were prepared and randomized into a negative control group, a PLG-g-mPEG group, a CDDP group, a resiquimod group and a CDDP/resiquimod/PLG-g-mPEG group, so as to analyze the anti-cancer effect of CDDP/resiquimod/PLG-g-mPEG in vivo.
Results
The LC and EE of CDDP/resiquimod/PLG-g-mPEG were 19.42% and 90.12%, respectively. Nanoparticles were uniform spherical in shape and closely arranged together, with a typical core–shell structure, and their average particle size and zeta potential were 82.36 nm and − 23.69 mV, respectively. When CDDP/resiquimod/PLG-g-mPEG group was compared with the control group, the positive expression rate of CD16 in the CDDP/resiquimod/PLG-g-mPEG group highly increased, whereas the positive expression rate of CD163 dramatically decreased. In the meantime, Arg1 and Mrc1 mRNA expressions significantly decreased whereas IL-12 and NOS2 mRNA expressions dramatically increased (P < 0.05). Elemental mapping of cells exhibited notable internalization of cisplatin delivered by CDDP/resiquimod/PLG-g-mPEG to cytoplasm. We compared the cell survival rate between the CDDP/resiquimod/PLG-g-mPEG group and the control group, the CDDP/resiquimod/PLG-g-mPEG group sharply reduced (P < 0.05). What’s more, the inhibitory effect got strengthened as the reaction time was prolonged, with the synergy coefficient of 0.31.
Conclusion
PLG-g-mPEG-loaded CDDP and resiquimod effectively achieves the targeted delivery of chemotherapy and immunotherapy, with a strong synergistic anti-cancer effect.
Collapse
|
66
|
Liu C, Zhang Y, Li X, Wang D. Ovarian cancer-specific dysregulated genes with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation. Ann N Y Acad Sci 2022; 1512:154-173. [PMID: 35247207 DOI: 10.1111/nyas.14748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
A major cause of gynecological cancer -related deaths worldwide, ovarian cancer is characterized by heterogeneity in both tumor cells and the tumor microenvironment (TME). Our study aimed to characterize tumor cell heterogeneity and the infiltration of M2 tumor-associated macrophages (TAMs) in the ovarian cancer TME by single-cell RNA-Seq (scRNA-Seq) analysis combined with bulk RNA sequencing (bulk RNA-Seq). Several highly variable genes were identified in ovarian cancer tissues, and tumor cell heterogeneity and infiltrating immune tumor cell heterogeneity were characterized in ovarian cancer cells. M2 TAMs in the TME were the predominant phenotype of TAM. Further, M2 TAM infiltration in the TME was negatively correlated with poor prognosis of ovarian cancer patients. Four M2 TAM-associated genes (SLAMF7, GNAS, TBX2-AS1, and LYPD6) correlated with the prognostic survival of ovarian cancer patients. Knockdown of SLAMF7 or GNAS mRNA repressed malignancy and cisplatin resistance of ovarian cancer cells. ScRNA-Seq combined with bulk RNA-Seq identified the same four genes associated with M2 TAMs. The prognostic risk score model based on these four genes may hold favorable predictive value for the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohan Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
67
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
68
|
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022; 12:772615. [PMID: 35237507 PMCID: PMC8882594 DOI: 10.3389/fonc.2022.772615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and differentiating into macrophages after exuding tissues. TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype, which have different expressions of receptors, cytokines and chemokines. M1 is characterized by expressing a large amount of inducible nitric oxide synthase and TNF-α, and exert anti-tumor activity by promoting pro-inflammatory and immune responses. M2 usually expresses Arginase 1 and high levels of cytokines, growth factors and proteases to support their carcinogenic function. Recent studies demonstrate that TAMs participate in the process of TNBC from occurrence to metastasis, and might serve as potential biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Luo
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| |
Collapse
|
69
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
70
|
Dai L, Wang C, Wang W, Song K, Ye T, Zhu J, Di W. Activation of SphK2 contributes to adipocyte-induced EOC cell proliferation. Open Med (Wars) 2022; 17:229-238. [PMID: 35178477 PMCID: PMC8812714 DOI: 10.1515/med-2022-0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of deaths due to cancer in women. Adipocytes have been suggested to play a key role in the stimulation of EOC growth. However, the mechanisms underlying the adipocyte-induced EOC proliferation remain undefined. Here, we provide the first evidence that adipocytes induce the activation of sphingosine kinase (SphK) 2 in EOC, which represents a novel pathway that mediates the adipocyte-induced EOC growth. SphK2 inhibition in EOC cells led to a remarkable inhibition of the adipocyte-induced cell proliferation. Moreover, the adipocyte-induced SphK2 activation in EOC cells was extracellular signal-regulated protein kinases (ERK) dependent. Furthermore, silencing SphK2 in EOC significantly inhibited the adipocyte-induced expression of phospho-ERK and c-Myc, two crucial players in EOC growth. Collectively, the current study unraveled a previously unrecognized role of SphK2 in the adipocyte-induced growth-promoting action in EOC, suggesting a novel target for EOC treatment.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Taiyang Ye
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Jie Zhu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
- Department of Cell Biology, Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
71
|
Huang J, Wang G, Liao K, Xie N, Deng K. UCP1 modulates immune infiltration level and survival outcome in ovarian cancer patients. J Ovarian Res 2022; 15:16. [PMID: 35090503 PMCID: PMC8800348 DOI: 10.1186/s13048-022-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The uncoupling proteins (UCPs) are critical genes associated with tumorigenesis and chemoresistance. However, little is known about the molecular mechanism of the UCPs in ovarian cancer (OV).
Material and methods
UCPs expression analysis was conducted using Gene Expression Profiling Interactive Analysis (GEPIA), and its potential in clinical prognosis was analyzed using Kaplan- Meier analyses. The influence of UCPs on immune infiltration was analyzed by TIMER. In addition, the correlation between UCPs expression and molecular mechanisms was investigated by TIMER and Cancer Single-cell State Atlas (CancerSEA).
Results
UCP1, UCP2, UCP3 and UCP5 expression levels correlated with a favorable prognosis and tumor progression. Moreover, UCP1 expression correlated to several immune cell markers and regulated tumorigenesis, such as tumor invasion, EMT, metastasis and DNA repair. In addition, UCP1 potentially involved in genes expression of SNAI2, MMP2, BRCA1 and PARP1.
Conclusions
These results implied a critical role of UCP1 in the prognosis and immune infiltration of ovarian cancer. In addition, UCP1 expression participated in regulating multiple oncogenes and tumorigenesis.
Collapse
|
72
|
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|
73
|
Liu Y, Li J, Zeng S, Zhang Y, Zhang Y, Jin Z, Liu S, Zou X. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer. Front Mol Biosci 2021; 8:762924. [PMID: 34901156 PMCID: PMC8652210 DOI: 10.3389/fmolb.2021.762924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results:FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5β1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion:FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.
Collapse
Affiliation(s)
- Yuanjie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiepin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shuhong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhichao Jin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
74
|
Guo Y, Jiang F, Yang W, Shi W, Wan J, Li J, Pan J, Wang P, Qiu J, Zhang Z, Li B. Effect of 1α,25(OH) 2D 3-Treated M1 and M2 Macrophages on Cell Proliferation and Migration Ability in Ovarian Cancer. Nutr Cancer 2021; 74:2632-2643. [PMID: 34894920 DOI: 10.1080/01635581.2021.2014903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The biological active form of vitamin D3, 1α,25-dehydroxyvitamin D3 [1α,25(OH)2D3], exerts pleiotropic effects including bone mineralization, anti-tumor, as well as immunomodulator. This study aimed to explore the potential impact of 1α,25(OH)2D3 on tumor-associated macrophages (TAMs) infiltration in ovarian cancer. Firstly, human monocytic THP-1 cells were differentiated into macrophages (M0) in the presence of phorbol 12-myristate 13-acetate (PMA). In Vivo, 1α,25(OH)2D3 not only reversed the polarization of M2 macrophages, but also decreased the proliferation and migration abilities of ovarian cancer cells induced by M2 macrophages supernatant. Furthermore, 1α,25(OH)2D3 dramatically decreased the secretion of TGF-β1 and MMP-9 in M2 macrophages. However, no significant effect was observed in 1α,25(OH)2D3 treated M1 macrophages. In Vivo, vitamin D3 had an inhibitive effect of 1α,25(OH)2D3-treated M2 macrophages on tumorigenesis. In addition, we conducted the association of TAMs with the poor prognosis of patients with ovarian cancer by meta-analysis, which suggested the higher proportion of M2 macrophages was related to the poorer prognosis in ovarian cancer. Collectively, these results identified distinct roles of 1α,25(OH)2D3 treated M1 and M2 macrophages on cell proliferation and migration abilities in ovarian cancer.
Collapse
Affiliation(s)
- Yi Guo
- Medical College of Soochow University, Suzhou, China.,Jiangpu Community Healthcare Service, Suzhou, Kunshan, China
| | - Fei Jiang
- Medical College of Soochow University, Suzhou, China
| | - Wenqing Yang
- Medical College of Soochow University, Suzhou, China
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College of Soochow University, Suzhou, China
| | - Jie Li
- Medical College of Soochow University, Suzhou, China
| | - Jinjing Pan
- Medical College of Soochow University, Suzhou, China
| | - Ping Wang
- Medical College of Soochow University, Suzhou, China
| | - Junlan Qiu
- Medical College of Soochow University, Suzhou, China.,Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zengli Zhang
- Medical College of Soochow University, Suzhou, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou, China
| |
Collapse
|
75
|
Long L, Hu Y, Long T, Lu X, Tuo Y, Li Y, Wang M, Ke Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J Immunother Cancer 2021; 9:e003973. [PMID: 34969774 PMCID: PMC8718465 DOI: 10.1136/jitc-2021-003973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OvCa)-tumor-associated macrophages (TAMs) spheroids are abundantly present within ascites of high malignant patients. This study investigated the mutual interaction of OvCa cells and TAMs in the spheroids. METHODS Three-dimensional coculture system and transwell coculture system were created to mimic the OvCa and TAMs in spheroids and in disassociated state. Transwell-migration assay and scratch wound healing assay were used to measure the invasive and migratory capacity. Western blot, quantitative reverse transcription-PCR and immunostaining were used to measure the mesenchymal and epithelial markers. Flow cytometry was used to assess the polarization of TAMs. Also, the differential gene expression profile of OvCa cells and OvCa cells from spheroids were tested by RNA-sequence. Finally, the ovarian mice models were constructed by intraperitoneal injection of ID8 or OvCa-TAMs spheroids. RESULTS Our results indicated that the formation of OvCa-TAMs spheroids was positive related to the malignancy of OvCa cells. M2-TAMs induced the epithelial-mesenchymal transition of OvCa cells by releasing chemokine (C-C motif) ligand 18 (CCL18) in the spheroids. While, CCL18 induced macrophage colony-stimulating factor (M-CSF) transcription in OvCa cells through zinc finger E-box-binding homeobox 1 (ZEB1). This study further indicated that M-CSF secreted by OvCa cells drived the polarization of M2-TAMs. Therefore, a CCL18-ZEB1-M-CSF interacting loop between OvCa cells and TAMs in the spheroids was identified. Moreover, with blocking the expression of ZEB1 in the OvCa cell, the formation of OvCa-TAMs spheroids was impeded. In the ovarian mice models, the formation of OvCa-TAMs spheroids in the ascites was promoted by overexpressing of ZEB1 in OvCa cells, which resulted in faster and earlier transcoelomic metastasis. CONCLUSION These findings suggested that the formation of OvCa-TAMs spheroids resulted in aggressive phenotype of OvCa cells, as a specific feedback loop CCL18-ZEB1-M-CSF in it. Inhibition of ZEB1 reduced OvCa-TAMs spheroids in the ascites, impeding the transcoelomic metastasis and improving the outcome of ovarian patients.
Collapse
Affiliation(s)
- Lingli Long
- Translation Medicine Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yue Hu
- Translation Medicine Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Ying Tuo
- Department of Pathology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yubing Li
- The Reproductive Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Min Wang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zunfu Ke
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
76
|
LncRNAs in tumor microenvironment: The potential target for cancer treatment with natural compounds and chemical drugs. Biochem Pharmacol 2021; 193:114802. [PMID: 34678226 DOI: 10.1016/j.bcp.2021.114802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
It was thought that originally long non-coding RNAs (lncRNAs) were a kind of RNAs without any encoding function. Recently, a variety of studies have shown that lncRNAs play important roles in many life activities. The abnormal expression of lncRNAs in tumor microenvironment (TME) usually promotes the proliferation, migration, and drug resistance of tumor cells through direct or indirect effects, which also usually predicts the poor prognosis. The regulation of lncRNAs expression in TME could significantly inhibit tumor progress. However, the interaction between lncRNAs and TME has not been fully defined at present. Therefore, this paper provided the systemic summary of their interaction and natural products and chemicals targeting lncRNAs in cancer treatment. Currently, the strategies of cancer treatment still have their limits. Understanding the relationship between TME and lncRNAs can help us to realize breakthrough strategy for tumor treatment.
Collapse
|
77
|
Suo RY, Wang ZY, Wang JS, Zhang GJ, Zhang J. Role of long non-coding RNA in regulating polarization of gastric cancer macrophages. Shijie Huaren Xiaohua Zazhi 2021; 29:1096-1101. [DOI: 10.11569/wcjd.v29.i19.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of the tumor microenvironment. They are distributed in tumor tissues and distant metastatic sites, and are related to tumor progression and prognosis. TAMs M2 can promote tumor biological processes such as tumor proliferation, invasion, and metastasis, and inhibit apoptosis, and are obviously related to the poor prognosis of tumor patients. In recent years, the role of long non-coding RNAs (lncRNAs) in regulating the polarization of macrophages has gradually been revealed, which can affect the occurrence and development of tumors by adjusting the polarization of macrophages. Studies have shown that lncRNAs play an important role in the polarization process of gastric cancer macrophages. This article summarizes the related research reports, hoping to provide ideas for studies that interfere with the polarization process of TAMs to inhibit tumor progression.
Collapse
Affiliation(s)
- Rui-Yang Suo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhi-Yu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Sheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guang-Jian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
78
|
Jiang W, Pan S, Chen X, Wang ZW, Zhu X. The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer 2021; 20:116. [PMID: 34496886 PMCID: PMC8424797 DOI: 10.1186/s12943-021-01406-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has recently shown promising antitumor effects in various types of tumors. Among all immune checkpoints, the PD-1/PD-L1 pathway plays an important role in the immune evasion of tumor cells, making it a potent target in antitumor immunity. Accordingly, antibodies targeting the PD-1/PD-L1 pathway have been developed to attack tumor cells; however, resistance to immune therapy remains to be solved. Hence, identification of the underlying modulators of the PD-1/PD-L1 pathway is of significant importance to understand the mechanisms of antitumor immunotherapy. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been identified to regulate the PD-1/PD-L1 pathway, leading to participation in the immune response and immunotherapy. Therefore, this review focuses on the functions of lncRNAs and circRNAs in regulation of the PD-1/PD-L1 axis in tumorigenesis and tumor progression. We hope this review will stimulate research to supply more precise and effective cancer immune checkpoint therapies for a large number of tumors.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xin Chen
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-wei Wang
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
79
|
Serini S, Cassano R, Bruni M, Servidio C, Calviello G, Trombino S. Characterization of a hyaluronic acid and folic acid-based hydrogel for cisplatin delivery: Antineoplastic effect in human ovarian cancer cells in vitro. Int J Pharm 2021; 606:120899. [PMID: 34324990 DOI: 10.1016/j.ijpharm.2021.120899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
We successfully prepared and characterized a hyaluronic acid- and folic acid-based hydrogel for the delivery of cisplatin (GEL-CIS) with the aim to induce specific and efficient incorporation of CIS into ovarian cancer (OC) cells, improve its antineoplastic effect and avoid CIS-resistance. The slow and controlled release of the drug from the polymeric network and its swelling degree at physiologic pH suggested its suitability for CIS delivery in OC. We compared here the effects of pure CIS to that of GEL-CIS on human OC cell lines, either wild type or CIS-resistant, in basal conditions and in the presence of macrophage-derived conditioned medium, mimicking the action of tumor-associated macrophages in vivo. GEL-CIS inhibited OC cell growth and migration more efficiently than pure CIS and modulated the expression of proteins involved in the Epithelial Mesenchymal Transition, a process playing a key role in OC metastatic spread and resistance to CIS.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Matilde Bruni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Camilla Servidio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy.
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
80
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
81
|
LINC00337 induces tumor development and chemoresistance to paclitaxel of breast cancer by recruiting M2 tumor-associated macrophages. Mol Immunol 2021; 138:1-9. [PMID: 34314939 DOI: 10.1016/j.molimm.2021.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND M2 tumor-associated macrophages are closely related to the progression and prognosis of breast cancer (BCa), and could be regulated by long intergenic non-coding RNAs (lincRNAs). Moreover, the differential expression of lincRNAs affects tumor resistance. This study focused on the potential involvement and mechanism of LINC00337 in BCa. METHODS The expression of LINC00337 in BCa was detected by bioinformatics analysis and RT-qPCR. Cell viability and proliferation were analyzed by cell counting kit-8 (CCK-8) and clone formation assay. BCa cells were treated with different concentrations of paclitaxel (PAX) to determine the chemotherapy resistance of LINC00337. Tumor formation assay, Western blot, ELISA and immunohistochemistry were performed to determine the relationship between LINC00337 and PAX in vivo. Macrophages were induced to M2-like polarization, and then functional experiments (CCK-8, wound healing) and molecular experiments (ELISA, RT-qPCR, Western blot) were used to verify the role of LINC00337. RESULTS LINC00337 was up-regulated in BCa. High-expressed LINC00337 accelerated viability and proliferation of BCa cells, improved the resistance of BCa cells to PAX, and accelerated tumor growth. Overexpressed LINC00337 up-regulated the expressions of M2 macrophage markers and M-CSF, and reduced the level of GM-CSF. PAX significantly reduced the viability of BCa cells and down-regulated LINC00337. Furthermore, the successfully induced M2 type macrophages to promote BCa cell activity, migration and EMT protein expression, and LINC00337 enhanced the effect of M2 type macrophages. ShLINC00337 had the opposite effect to overexpressed LINC00337. CONCLUSION LINC00337 accelerated the malignant phenotype of BCa cells and promoted chemoresistance to paclitaxel through M2-like macrophages.
Collapse
|
82
|
Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun 2021; 14:51-68. [PMID: 34247159 DOI: 10.1159/000516780] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages, the central mediators of innate immune responses, being in the first-line of defense, they have to readily respond to pathogenic or tissue damage signals to initiate the inflammatory cascade. Such rapid responses require energy to support orchestrated production of pro-inflammatory mediators and activation of phagocytosis. Being a cell type that is present in diverse environments and conditions, macrophages have to adapt to different nutritional resources. Thus, macrophages have developed plasticity and are capable of utilizing energy at both normoxic and hypoxic conditions and in the presence of varying concentrations of glucose or other nutrients. Such adaptation is reflected on changes in signaling pathways that modulate responses, accounting for the different activation phenotypes observed. Macrophage metabolism has been tightly associated with distinct activation phenotypes within the range of M1-like and M2-like types. In the context of diseases, systemic changes also affect macrophage metabolism, as in diabetes and insulin resistance, which results in altered metabolism and distinct activation phenotypes in the adipose tissue or in the periphery. In the context of solid tumors, tumor-associated macrophages adapt in the hypoxic environment, which results in metabolic changes that are reflected on an activation phenotype that supports tumor growth. Coordination of environmental and pathogenic signals determines macrophage metabolism, which in turn shapes the type and magnitude of the response. Therefore, modulating macrophage metabolism provides a potential therapeutic approach for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleni Vergadi
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
83
|
Shigeoka M, Koma YI, Kodama T, Nishio M, Akashi M, Yokozaki H. Tongue Cancer Cell-Derived CCL20 Induced by Interaction With Macrophages Promotes CD163 Expression on Macrophages. Front Oncol 2021; 11:667174. [PMID: 34178651 PMCID: PMC8219974 DOI: 10.3389/fonc.2021.667174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD163-positive macrophages contribute to the aggressiveness of oral squamous cell carcinoma. We showed in a previous report that CD163-positive macrophages infiltrated not only to the cancer nest but also to its surrounding epithelium, depending on the presence of stromal invasion in tongue carcinogenesis. However, the role of intraepithelial macrophages in tongue carcinogenesis remains unclear. In this study, we assessed the biological behavior of intraepithelial macrophages on their interaction with cancer cells. Materials and Methods We established the indirect coculture system (intraepithelial neoplasia model) and direct coculture system (invasive cancer model) of human monocytic leukemia cell line THP-1-derived CD163-positive macrophages with SCC25, a tongue squamous cell carcinoma (TSCC) cell line. Conditioned media (CM) harvested from these systems were analyzed using cytokine array and enzyme-linked immunosorbent assay and extracted a specific upregulated cytokine in CM from the direct coculture system (direct CM). The correlation of both this cytokine and its receptor with various clinicopathological factors were evaluated based on immunohistochemistry using clinical samples from 59 patients with TSCC. Moreover, the effect of this cytokine in direct CM on the phenotypic alterations of THP-1 was confirmed by real-time polymerase chain reaction, western blotting, immunofluorescence, and transwell migration assay. Results It was shown that CCL20 was induced in the direct CM specifically. Interestingly, CCL20 was produced primarily in SCC25. The expression level of CCR6, which is a sole receptor of CCL20, was higher than the expression level of SCC25. Our immunohistochemical investigation showed that CCL20 and CCR6 expression was associated with lymphatic vessel invasion and the number of CD163-positive macrophages. Recombinant human CCL20 induced the CD163 expression and promoted migration of THP-1. We also confirmed that a neutralizing anti-CCL20 antibody blocked the induction of CD163 expression by direct CM in THP-1. Moreover, ERK1/2 phosphorylation was associated with the CCL20-driven induction of CD163 expression in THP-1. Conclusions Tongue cancer cell-derived CCL20 that was induced by interaction with macrophages promotes CD163 expression on macrophages.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
84
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
85
|
Colorectal cancer cells promote osteoclastogenesis and bone destruction through regulating EGF/ERK/CCL3 pathway. Biosci Rep 2021; 40:225098. [PMID: 32478376 PMCID: PMC7315727 DOI: 10.1042/bsr20201175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Bone metastasis of colorectal cancer (CRC) cells leads to osteolysis. Aberrant activation of osteoclasts is responsible for bone resorption in tumor. In general, bone marrow-derived monocytes (BMMs) differentiate into osteoclasts, however, how CRC cells interact with BMMs and how to regulate the differentiation is elusive. We here report that CRC cells promote bone resorption in bone metastasis. Transcriptomic profiling revealed CCL3 up-regulated in MC-38 conditional medium treated BMMs. Further investigation demonstrated that CCL3 produced by BMMs facilitated cell infusion and thus promoted the osteoclastogenesis. In addition, CRC cells derived EGF stimulated the production of CCL3 in BMMs through activation of ERK/CREB pathway. Blockage of EGF or CCL3 can efficiently attenuate the osteolysis in bone metastasis of CRC.
Collapse
|
86
|
Casagrande N, Borghese C, Agostini F, Durante C, Mazzucato M, Colombatti A, Aldinucci D. In Ovarian Cancer Multicellular Spheroids, Platelet Releasate Promotes Growth, Expansion of ALDH+ and CD133+ Cancer Stem Cells, and Protection against the Cytotoxic Effects of Cisplatin, Carboplatin and Paclitaxel. Int J Mol Sci 2021; 22:ijms22063019. [PMID: 33809553 PMCID: PMC7999151 DOI: 10.3390/ijms22063019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
A high platelet count is associated with a poor prognosis in ovarian cancer (OvCa). Despite good clinical responses with platinating agents in combination with taxanes, numerous OvCa patients relapse due to chemotherapy resistance. Here, we report that treatment of OvCa cells A2780, OVCAR5 and MDAH with releasate from activated platelets (PR) promoted multicellular tumor spheroid (MCTS) formation. These OvCa-MCTSs had increased percentages of CD133+ and aldehyde dehydrogenase (ALDH)+ cells, bona fide markers of OvCa cancer stem cells (CSCs). PR increased OVCAR5- and MDAH-MCTS viability and decreased the cytotoxic and pro-apoptotic effects of paclitaxel, cisplatin and carboplatin. PR increased the volume of spontaneously formed OVCAR8-MCTSs and counteracted their size reduction due to cisplatin, carboplatin and paclitaxel treatment. PR promoted the survival of ALDH+ and CD133+ OvCa cells during cisplatin, carboplatin and paclitaxel treatment. In conclusion, molecules and growth factors released by activated platelets (EGF, PDGF, TGF-β, IGF and CCL5) may protect tumor cells from chemotherapy by promoting the expansion of ALDH+ and CD133+ OvCa-CSCs, favoring drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Naike Casagrande
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Cinzia Borghese
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Alfonso Colombatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Donatella Aldinucci
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
- Correspondence:
| |
Collapse
|
87
|
Schelch K, Vogel L, Schneller A, Brankovic J, Mohr T, Mayer RL, Slany A, Gerner C, Grusch M. EGF Induces Migration Independent of EMT or Invasion in A549 Lung Adenocarcinoma Cells. Front Cell Dev Biol 2021; 9:634371. [PMID: 33777943 PMCID: PMC7994520 DOI: 10.3389/fcell.2021.634371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Tumors and the tumor microenvironment produce multiple growth factors that influence cancer cell behavior via various signal transduction pathways. Growth factors, like transforming growth factor β (TGFβ) and epidermal growth factor (EGF), have been shown to induce proliferation, migration, and invasion in different cell models. Both factors are frequently overexpressed in cancer and will often act in combination. Although both factors are being used as rational targets in clinical oncology, the similarities and differences of their contributions to cancer cell migration and invasion are not fully understood. Here we compared the impact of treating A549 lung adenocarcinoma cells with TGFβ, EGF, and both in combination by applying videomicroscopy, functional assays, immunoblotting, real-time PCR, and proteomics. Treatment with both factors stimulated A549 migration to a similar extent, but with different kinetics. The combination had an additive effect. EGF-induced migration depended on activation of the mitogen-activated protein kinase (MAPK) pathway. However, this pathway was dispensable for TGFβ-induced migration, despite a strong activation of this pathway by TGFβ. Proteome analysis (data are available via ProteomeXchange with identifier PXD023024) revealed an overlap in expression patterns of migration-related proteins and associated gene ontology (GO) terms by TGFβ and EGF. Further, only TGFβ induced the expression of epithelial to mesenchymal transition (EMT)-related proteins like matrix metalloproteinase 2 (MMP2). EGF, in contrast, made no major contribution to EMT marker expression on either the protein or the transcript level. In line with these expression patterns, TGFβ treatment significantly increased the invasive capacity of A549 cells, while EGF treatment did not. Moreover, the addition of EGF failed to enhance TGFβ-induced invasion. Overall, these data suggest that TGFβ and EGF can partly compensate for each other for stimulation of cell migration, but abrogation of TGFβ signaling may be more suitable to suppress cell invasion.
Collapse
Affiliation(s)
- Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Lisa Vogel
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anja Schneller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Jelena Brankovic
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rupert L. Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
88
|
The prospects of nanotherapeutic approaches for targeting tumor-associated macrophages in oral cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102371. [PMID: 33662592 DOI: 10.1016/j.nano.2021.102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
OSCC (oral squamous cell carcinoma) is currently one of the most formidable cancers plagued by challenges like low overall survivability, lymph node associated metastasis, drug resistance, and poor diagnostics. The tumor microenvironment (TME) and its constituent stromal elements are crucial modulators of tumor growth and treatment response, more specifically so with regards to resident tumor associated macrophages (TAMs) and their liaison with the different stromal elements in the tumor niche (Figure 1). Interestingly, there isn't much information on TAM-targeted nanotherapy in OSCC where the first line of therapeutics for oral cancer is surgery with other therapeutics such as chemo- and radiotherapy acting only as adjuvant therapy for oral cancer. In the face of this real time situation, there have been some successful attempts at targeted therapy for OSCC cells and we believe they might elicit favorable responses against TAMs as well. Demanding our immediate attention, this review intends to provide a glimpse of the prevailing anti-TAM treatment strategies, which present great prospect for an uncharted territory like OSCC.
Collapse
|
89
|
Feng SH, Zhao B, Zhan X, Motanyane R, Wang SM, Li A. Danggui Buxue Decoction in the Treatment of Metastatic Colon Cancer: Network Pharmacology Analysis and Experimental Validation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:705-720. [PMID: 33658761 PMCID: PMC7917330 DOI: 10.2147/dddt.s293046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
Purpose This study aimed to reveal Danggui Buxue Decoction (DBD) candidate targets and mechanisms in the treatment of metastatic colon cancer (MCC), using network pharmacology-based analyses and experimental validation. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database query and text mining were used to screen active compounds in DBD, and the Swiss target prediction platform was applied to predict compound-related target proteins. Targets likely associated with MCC were determined using GeneCards and OMIM databases. Targets common to DBD and MCC were obtained from the Venn platform; subsequently, Cytoscape was used to construct drug-compound-target-disease and protein-protein interaction networks. The hub gene was determined by R, while GO and KEGG enrichment analyses were performed on common targets to elucidate biological processes and signaling pathways involved in DBD against MCC. Finally, the metastatic colon cancer mouse model was used to detect the levels of expression of protein Bax, Bcl2, Caspase3, and Cleaved caspase3 by Western blot. Results A total of 28 active compounds and 61 common targets were predicted. The main compounds were quercetin, hederagenin, jaranol, methylnissolin, formononetin, calycosin, kaempferol, 3.9-di-O-methylnissolin, 24-propylcholesterol, and 7-O-methylisomucronulatol, present in Astragalus membranaceus (Huangqi, HQ). In addition, beta-sitosterol, ferulic acid, and stigmasterol, present in Angelica sinensis (Danggui, DG), were detected. JUN, PTSG2, EGFR, ESR1and, CASP3 genes were the top 5 hub genes in the PPI network. GO and KEGG enrichment analyses indicated that apoptosis played a major role in the biological processes and signaling pathways involved. Moreover, the in vivo experiment revealed that DBD inhibited MCC by up-regulating the expression of Bax, Caspase3, and Cleaved caspase3, and by down-regulating the expression of Bcl2. Conclusion This study revealed candidate DBD targets and mechanisms in the treatment of MCC, using network pharmacology-based analyses and experimental validation. The present findings provide a reference for tumor treatment during the perioperative period.
Collapse
Affiliation(s)
- Shi-Han Feng
- Yong Chuan Hospital of Chongqing Medical University, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Zhao
- Yong Chuan Hospital of Chongqing Medical University, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue Zhan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Retsepile Motanyane
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Shu-Mei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People's Republic of China
| | - Ao Li
- Yong Chuan Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
90
|
Cole JM, Dahl R, Cowden Dahl KD. MAPK Signaling Is Required for Generation of Tunneling Nanotube-Like Structures in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13020274. [PMID: 33450985 PMCID: PMC7828401 DOI: 10.3390/cancers13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Ovarian cancer is the 5th leading cause of cancer death in US women, due to late diagnosis. The vast majority of patients with ovarian cancer have metastatic disease at diagnosis, leading to poor survival. As the tumor cells metastasize, they are influenced by other cells they encounter. In particular, we found that macrophages induce a mechanism of communication in tumor cells called tunneling nanotubes. These tunneling nanotubes allow cells to share molecules that promote metastasis. We found that macrophages send signals to the tumor cells in order to activate oncogenic MAPKinase signaling, which is required for tunneling nanotubes to form. Our new understanding of these events will enable us to devise ways to target tunneling nanotubes and limit tumor spread. Abstract Ovarian cancer (OC) cells survive in the peritoneal cavity in a complex microenvironment composed of diverse cell types. The interaction between tumor cells and non-malignant cells is crucial to the success of the metastatic process. Macrophages activate pro-metastatic signaling pathways in ovarian cancer cells (OCCs), induce tumor angiogenesis, and orchestrate a tumor suppressive immune response by releasing anti-inflammatory cytokines. Understanding the interaction between immune cells and tumor cells will enhance our ability to combat tumor growth and dissemination. When co-cultured with OCCs, macrophages induce projections consistent with tunneling nanotubes (TnTs) to form between OCCs. TnTs mediate transfer of material between cells, thus promoting invasiveness, angiogenesis, proliferation, and/or therapy resistance. Macrophage induction of OCC TnTs occurs through a soluble mediator as macrophage-conditioned media potently induced TnT formation in OCCs. Additionally, EGFR-induced TnT formation in OCCs through MAPK signaling may occur. In particular, inhibition of ERK and RSK prevented EGFR-induced TnTs. TnT formation in response to macrophage-conditioned media or EGFR signaling required MAPK signaling. Collectively, these studies suggest that inhibition of ERK/RSK activity may dampen macrophage-OCC communication and be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jennifer M. Cole
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI 54601, USA;
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617, USA;
| | - Karen D. Cowden Dahl
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI 54601, USA;
- Correspondence: ; Tel.: +1-608-775-3606
| |
Collapse
|
91
|
Lv J, Feng ZP, Chen FK, Liu C, Jia L, Liu PJ, Yang CZ, Hou F, Deng ZY. M2-like tumor-associated macrophages-secreted Wnt1 and Wnt3a promotes dedifferentiation and metastasis via activating β-catenin pathway in thyroid cancer. Mol Carcinog 2021; 60:25-37. [PMID: 33283877 DOI: 10.1002/mc.23268] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thyroid carcinoma (TC) has been a global issue for its rapid increasing incidence worldwide. Although most TC was not so aggressive with a good prognosis, treatment against anaplastic TC was relatively limited and the mechanisms are not well elucidated yet. METHODS TC cell lines (IHH4 and TPC-1) were used. Flow cytometry was used to identify the surface marker of M2-like tumor-associated macrophages (TAMs) from cell culture. Quantitative real-time polymerase chain reaction, western blot analysis, immunostaining, and immunohistochemistry were used to detect the expression of Wnt1, Wnt3a, components of Wnt/β-catenin pathway, and proliferation/epithelial-mesenchymal transition (EMT)-related proteins. Alkaline phosphatase activity assay, colony formation assay, and transwell assay were used to examine the roles of Wnt1, Wnt3a, and β-catenin pathway in cell dedifferentiation, proliferation, migration, and invasion of TC cells, respectively. Subcutaneous tumor growth was monitored in nude mice. RESULTS Coculture with M2-like TAMs facilitated dedifferentiation, proliferation, migration, and invasion in TC cells. EMT and proliferation-related proteins were also promoted in cocultured TC cells. The level of Wnt1 and Wnt3a was increased in the coculture system. Block of Wnt1 or Wnt3a suppressed malignant behaviors in cocultured tumor cells. Furthermore, Wnt1 or Wnt3a knockdown inhibited Wnt/β-catenin signaling pathway, and suppressed EMT and proliferation-related signals in cocultured tumor cells. Knockdown of Wnt1 or Wnt3a inhibited tumor growth in xenograft model. CONCLUSION M2-like TAMs promoted dedifferentiation, proliferation, and metastasis of TC by Wnt1 and Wnt3a secretion and ensuing β-catenin activation.
Collapse
Affiliation(s)
- Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Zhi-Ping Feng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Fu-Kun Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Li Jia
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Peng-Jie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Chuan-Zhou Yang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Fei Hou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Zhi-Yong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
92
|
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021; 12:54-64. [PMID: 33391402 PMCID: PMC7738842 DOI: 10.7150/jca.49692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.
Collapse
Affiliation(s)
- Shunyao Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyi Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixi Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- Xiaoshan Hosptital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Senlin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
93
|
Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020; 133:133/24/jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tissue microenvironment supports normal tissue function and regulates the behaviour of parenchymal cells. Tumour cell behaviour, on the other hand, diverges significantly from that of their normal counterparts, rendering the microenvironment hostile to tumour cells. To overcome this problem, tumours can co-opt and remodel the microenvironment to facilitate their growth and spread. This involves modifying both the biochemistry and the biophysics of the normal microenvironment to produce a tumour microenvironment. In this Cell Science at a Glance article and accompanying poster, we outline the key processes by which epithelial tumours influence the establishment of the tumour microenvironment. As the microenvironment is populated by genetically normal cells, we discuss how controlling the microenvironment is both a significant challenge and a key vulnerability for tumours. Finally, we review how new insights into tumour-microenvironment interactions has led to the current consensus on how these processes may be targeted as novel anti-cancer therapies.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
94
|
Zhang D, Cai X, Cai S, Chen W, Hu C. Long Intergenic Non-Protein Coding RNA 01089 Weakens Tumor Proliferation, Migration, and Invasion by Sponging miR-3187-3p in Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:12151-12162. [PMID: 33269007 PMCID: PMC7701693 DOI: 10.2147/cmar.s258532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs), a class of endogenous non-coding RNAs, play an important role in the development and metastasis of non-small cell lung cancer (NSCLC). However, the function and mechanism of action of long intergenic non-protein coding RNA 1089 (LINC01089) in NSCLC remains unclear. This study aimed to identify the role of LINC01089 in cell proliferation, migration, and invasion of NSCLC. Methods Expression of LINC01089 and the relationship between LINC01089 and overall survival (OS) in NSCLC were determined using GEPIA 2.0. Similarly, microRNAs (miRNAs) that showed increased expression in NSCLC and correlated with OS were identified using the online OncomiR cancer database. Target miRNAs of LINC01089 were predicted using starBase. Cell models of LINC01089 and miR-3187-3p overexpression were constructed using transfection. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to analyze the expression of LINC01089 and miR-3187-3p. MTS assay was used to assess cell proliferation. Transwell was used for migration and invasion assays. Results LINC01089 expression was significantly reduced in NSCLC tissues and cells. Gain-of-function studies further demonstrated that LINC01089 overexpression inhibited proliferation, migration, and invasion of lung cancer cell lines, A549 and SK-MES-1. Based on starBase prediction and subsequent verification, we revealed that miR-3187-3p is a target miRNA of LINC01089. Additionally, miR-3187-3p expression was significantly increased in NSCLC tissues and cells. Overexpression of miR-3187-3p promoted proliferation, migration, and invasion of A549 and SK-MES-1 cells, thereby reversing the effect of LINC01089. Conclusion LINC01089 attenuates tumor proliferation, migration, and invasion by sponging miR-3187-3p in NSCLC. LINC01089 acts as a tumor suppressor and represents a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xingdong Cai
- Department of Respiratory Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wenyou Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
95
|
Wu S, Xu R, Zhu X, He H, Zhang J, Zeng Q, Wang Y, Zhao X. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization. Aging (Albany NY) 2020; 12:25845-25864. [PMID: 33234721 PMCID: PMC7803526 DOI: 10.18632/aging.202147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
MIBC (muscle invasive bladder cancer) only accounts for only a minority of bladder cancers, however, the disease-specific and overall survival rates of patients with MIBC are low. Macrophage M2 polarization has been reported to be associated with poorer prognosis in bladder cancer. Through cancer bioinformatics and experimental analyses, FGF9 was found to be upregulated in MIBC tissues. FGF9 knockdown in T24 cells strongly suppressed the viability, migratory capacity, and invasive capacity of cells; culture with medium from FGF9 knockdown T24 cells (si-FGF9-CM) significantly inhibited macrophage M2 polarization, while promoting M1 polarization. The long noncoding RNA (lncRNA) LINC01140 was positively correlated with FGF9 and was significantly upregulated in MIBC tissues. LINC01140 knockdown inhibited the viability, migratory capacity and invasive capacity of T24 cells; culture in si-LINC01140-CM also inhibited macrophage M2 polarization, while promoting M1 polarization. LINC01140 targeted miR-140-5p, while miR-140-5p targeted FGF9 to form a lncRNA-miRNA-mRNA axis. The effects of miR-140-5p inhibition on bladder cancer aggressiveness and macrophage M2 polarization were opposite to those of LINC01140 or FGF9 knockdown; additionally, miR-140-5p inhibition partially reversed the effects of LINC01140 knockdown on FGF9 protein levels, bladder cancer phenotype, and macrophage M2 polarization. In conclusion, LINC01140, miR-140-5p, and FGF9 form a lncRNA-miRNA-mRNA axis that modulates the bladder cancer phenotype, affects macrophage M2 polarization through the tumor microenvironment, and in turn affects bladder cancer cell aggressiveness.
Collapse
Affiliation(s)
- Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Jinhua Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Qi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| |
Collapse
|
96
|
Li X, Lv F, Li F, Du M, Liang Y, Ju S, Liu Z, Zhou B, Wang B, Gao Y. LINC01089 Inhibits Tumorigenesis and Epithelial-Mesenchymal Transition of Non-small Cell Lung Cancer via the miR-27a/SFRP1/Wnt/β-catenin Axis. Front Oncol 2020; 10:532581. [PMID: 33282723 PMCID: PMC7705259 DOI: 10.3389/fonc.2020.532581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as regulators of gene expression and play critical regulatory roles in diverse biological functions and diseases, including cancer. In this study, we report the downregulation of LINC01089 in non-small cell lung cancer (NSCLC) samples, relative to adjacent non-tumor tissues, and demonstrate its role in the inhibition of proliferation, migration, and epithelial–mesenchymal transition (EMT) of NSCLC cells. Mechanistic analysis indicates that LINC01089 acts as a sponge for miR-27a, regulating its expression in NSCLC. Interestingly, LINC01089 mediated the upregulation of SFRP1 expression by inhibiting the Wnt/β-catenin–EMT pathway and inhibiting the epithelial–mesenchymal transition of NSCLC via sponging miR-27a. Overall, our findings highlight LINC01089’s tumorigenic role and regulatory mechanism in NSCLC, thereby suggesting its potential as a therapeutic target for managing NSCLC.
Collapse
Affiliation(s)
- Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaolong Ju
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
97
|
Zhang X, Li W, Sun J, Yang Z, Guan Q, Wang R, Li X, Li Y, Feng Y, Wang Y. How to use macrophages to realise the treatment of tumour. J Drug Target 2020; 28:1034-1045. [PMID: 32603199 DOI: 10.1080/1061186x.2020.1775236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages (Mø) are immune cells with natural phagocytic ability and play an important role in tumorigenesis, development and metastasis. Mø play a dual role of tumour inhibition and tumour promotion in tumour development due to their two different phenotypes. Mø in the tumour microenvironment have long been referred to as tumour-associated Mø (TAMs). Mø are mainly involved in tumour resistance, cancer metastasis and mediating immunosuppression. Nowadays, Mø and Mø membranes have been widely used in drug delivery systems (DDSs) because of their good biocompatibility, natural phagocytosis and their important role in tumour development. In this review, from the perspective of Mø's role in tumour development, we present strategies and drugs of Mø targeting and focusing on the several types of biomimetic nanoparticles constructed by Mø and Mø membranes in tumour therapy, and discuss the problem of this delivery system in present research and future directions.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, P.R. China
| | - Zhixin Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Qingxia Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Rui Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Xiuyan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yongji Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yufei Feng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
98
|
Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E1761. [PMID: 32630708 PMCID: PMC7409311 DOI: 10.3390/cancers12071761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.
Collapse
Affiliation(s)
- Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT), 31037 Toulouse, France
| | - Jean-Pierre Delord
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| |
Collapse
|
99
|
Chen Z, Chen G, Zhao H. FDPS promotes glioma growth and macrophage recruitment by regulating CCL20 via Wnt/β-catenin signalling pathway. J Cell Mol Med 2020; 24:9055-9066. [PMID: 32596949 PMCID: PMC7417684 DOI: 10.1111/jcmm.15542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Glioma is one of the most lethal tumours and common malignant in the central nervous system (CNS), which exhibits diffuse invasion and aggressive growth. Several studies have reported the association of FDPS to tumour development and progression. However, the role of FDPS in progression of glioma and macrophage recruitment is not well‐elucidated. In the current study, a remarkable enhancement in FDPS level was observed in glioma tissues and associated with poor prognosis, contributed to tumour growth. FDPS was correlated with macrophage infiltration in glioma and pharmacological deletion of macrophages largely abrogated the oncogenic functions of FDPS in glioma. Mechanistically, FDPS activated Wnt/β‐catenin signalling pathway and ultimately facilitates macrophage infiltration by inducing CCL20 expression. In conclusion, overexpressed FDPS exhibits an immunomodulatory role in glioma. Therefore, targeting FDPS may be an effective therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Zhuo Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Guangyong Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Hang Zhao
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| |
Collapse
|
100
|
Bai Y, Yin K, Su T, Ji F, Zhang S. CTHRC1 in Ovarian Cancer Promotes M2-Like Polarization of Tumor-Associated Macrophages via Regulation of the STAT6 Signaling Pathway. Onco Targets Ther 2020; 13:5743-5753. [PMID: 32606786 PMCID: PMC7306458 DOI: 10.2147/ott.s250520] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The infiltration of tumor-associated macrophages (TAMs) facilitates the progression of epithelial ovarian cancer (EOC). TAMs are mainly M2-like due to exposure to various factors in the tumor microenvironment. In our previous study, we reported that collagen triple helix repeat containing 1(CTHRC1), a secreted protein, is associated with ovarian cancer progression and metastasis. However, the correlation between CTHRC1 and the immunological microenvironment in EOC remains unknown. Methods The association with the expression of CTHRC1 and CD68+CD163+ TAMs infiltration density and phosphorylation of STAT6 was analyzed in tumor tissues of ovarian cancer patients by immunohistochemistry. Western blot and flow cytometry analysis were used to analyze M2-like macrophage polarization induced by CTHRC1. Cell Counting Kit-8 and adhesion assays were used to detect cell proliferation and adhesion, respectively. Cell migration and invasion were detected using transwell assays. Results In the present study, we observed that the overexpression of CTHRC1 and increased TAMs infiltration density are closely correlated to an advanced stage of EOC. Meanwhile, CTHRC1 expression was positively associated with the infiltration density of M2-like CD68+CD163+TAMs and phosphorylation of STAT6 in EOC. In human PBMC-derived monocytes, recombinant CTHRC1 protein (rCTHRC1) induces an M2-like macrophage phenotype, in a dose-dependent manner, characterized by activating the STAT6 signaling pathway. The conditioned culture medium of Lenti-CTHRC1 EOC cells promoted M2 polarization of macrophages, and by contrast, CTHRC1 knockdown abolished STAT6-mediated M2 polarization of macrophages. Moreover, the culture supernatants of rCTHRC1-treated macrophages efficiently increased the migration and invasion abilities of ovarian cancer cells. Conclusion Our data indicate that CTHRC1 might play an important role in regulating M2 polarization of macrophages in the ovarian tumor microenvironment and suggest that it is a potential therapeutic target for antitumor immunity.
Collapse
Affiliation(s)
- Yihan Bai
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kemin Yin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tong Su
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fang Ji
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shu Zhang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|