51
|
Zheng Y, Li M, Weng B, Mao H, Zhao J. Exosome-based delivery nanoplatforms: Next-generation theranostic platforms for breast cancer. Biomater Sci 2022; 10:1607-1625. [DOI: 10.1039/d2bm00062h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast cancer is the most frequent type of malignancy, and the leading cause of cancer-related death in women across the globe. Exosomes are naturally derived 50-150 nm nanovesicles with a...
Collapse
|
52
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
53
|
Chang YJ, Wang KC. Therapeutic perspectives of extracellular vesicles and extracellular microRNAs in atherosclerosis. CURRENT TOPICS IN MEMBRANES 2021; 87:255-277. [PMID: 34696887 DOI: 10.1016/bs.ctm.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular signaling molecules, such as growth factors, cytokines, and hormones, regulate cell behaviors and fate through endocrine, paracrine, and autocrine actions and play essential roles in maintaining tissue homeostasis. MicroRNAs, an important class of posttranscriptional modulators, could stably present in extracellular space and body fluids and participate in intercellular communication in health and diseases. Indeed, recent studies demonstrated that microRNAs could be secreted through vesicular and non-vesicular routes, transported in body fluids, and then transmitted to recipient cells to regulate target gene expression and signaling events. Over the past decade, a great deal of effort has been made to investigate the functional roles of extracellular vesicles and extracellular microRNAs in pathological conditions. Emerging evidence suggests that altered levels of extracellular vesicles and extracellular microRNAs in body fluids, as part of the cellular responses to atherogenic factors, are associated with the development of atherosclerosis. This review article provides a brief overview of extracellular vesicles and perspectives of their applications as therapeutic tools for cardiovascular pathologies. In addition, we highlight the role of extracellular microRNAs in atherogenesis and offer a summary of circulating microRNAs in liquid biopsies associated with atherosclerosis.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
54
|
Grangier A, Branchu J, Volatron J, Piffoux M, Gazeau F, Wilhelm C, Silva AKA. Technological advances towards extracellular vesicles mass production. Adv Drug Deliv Rev 2021; 176:113843. [PMID: 34147532 DOI: 10.1016/j.addr.2021.113843] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are becoming essential actors in bio-therapeutics, as much for their regenerative or immunomodulatory properties as for their potential as cargo delivery vehicles. To enable the democratization of these EV-based therapies, many challenges remain such as large-scale production which is necessary to reduce costs of treatment. Herein, we review some advanced works on high-yield EV manufacturing. One approach consists in developing large-scale cell culture platforms, while others focus on cell stimulation to increase particle yield per cell. This can be done by moderate physico-chemical stresses or by disrupting cell membrane towards autoassembled vesicle-like particles. We critically compare these different techniques, keeping in mind that the field still lacks shared characterization standards, underline the importance of therapeutic potency assessment and discuss mass production strategies that have been identified in current clinical trials.
Collapse
Affiliation(s)
- Alice Grangier
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France
| | | | | | - Max Piffoux
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France; Everzom, 75006 Paris, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Florence Gazeau
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France
| | - Claire Wilhelm
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France; Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Université - CNRS, 75005 Paris, France.
| | - Amanda K A Silva
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France.
| |
Collapse
|
55
|
Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, Hu XB, Xiang DX. Artificial exosomes for translational nanomedicine. J Nanobiotechnology 2021; 19:242. [PMID: 34384440 PMCID: PMC8359033 DOI: 10.1186/s12951-021-00986-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are lipid bilayer membrane vesicles and are emerging as competent nanocarriers for drug delivery. The clinical translation of exosomes faces many challenges such as massive production, standard isolation, drug loading, stability and quality control. In recent years, artificial exosomes are emerging based on nanobiotechnology to overcome the limitations of natural exosomes. Major types of artificial exosomes include 'nanovesicles (NVs)', 'exosome-mimetic (EM)' and 'hybrid exosomes (HEs)', which are obtained by top-down, bottom-up and biohybrid strategies, respectively. Artificial exosomes are powerful alternatives to natural exosomes for drug delivery. Here, we outline recent advances in artificial exosomes through nanobiotechnology and discuss their strengths, limitations and future perspectives. The development of artificial exosomes holds great values for translational nanomedicine.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jihua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaohan Qiu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
56
|
Cochran AM, Kornbluth J. Extracellular Vesicles From the Human Natural Killer Cell Line NK3.3 Have Broad and Potent Anti-Tumor Activity. Front Cell Dev Biol 2021; 9:698639. [PMID: 34368150 PMCID: PMC8343581 DOI: 10.3389/fcell.2021.698639] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are critical mediators of immune function, responsible for rapid destruction of tumor cells. They kill primarily through the release of granules containing potent cytolytic molecules. NK cells also release these molecules within membrane-bound exosomes and microvesicles - collectively known as extracellular vesicles (EV). Here we report the characterization and anti-tumor function of EVs isolated from NK3.3 cells, a well described clonal normal human NK cell line. We show that NK3.3 EVs contain the cytolytic molecules perforin, granzymes A and B, and granulysin, and an array of common EV proteins. We previously reported that the E3 ubiquitin ligase, natural killer lytic-associated molecule (NKLAM), is localized to NK granules and is essential for maximal NK killing; here we show it is present in the membrane of NK3.3 EVs. NK3.3-derived EVs also carry multiple RNA species, including miRNAs associated with anti-tumor activity. We demonstrate that NK3.3 EVs inhibit proliferation and induce caspase-mediated apoptosis and cell death of an array of both hematopoietic and non-hematopoietic tumor cell lines. This effect is tumor cell specific; normal cells are unaffected by EV treatment. By virtue of their derivation from a healthy donor and ability to be expanded to large numbers, NK3.3 EVs have the potential to be an effective, safe, and universal immunotherapeutic agent.
Collapse
Affiliation(s)
- Allyson M. Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- St. Louis VA Medical Center, St. Louis, MO, United States
| |
Collapse
|
57
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
58
|
Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WHS, Wei H, Ng IOL, Lee PPW, Chan GCF, Lau YL, Tu W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med 2021; 12:12/563/eaaz3426. [PMID: 32998970 DOI: 10.1126/scitranslmed.aaz3426] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Treatment of life-threatening Epstein-Barr virus (EBV)-associated tumors remains a great challenge, especially for patients with relapsed or refractory disease. Here, we found that exosomes derived from phosphoantigen-expanded Vδ2-T cells (Vδ2-T-Exos) contained death-inducing ligands (FasL and TRAIL), an activating receptor for natural killer (NK) cells (NKG2D), immunostimulatory ligands (CD80 and CD86), and antigen-presenting molecules (MHC class I and II). Vδ2-T-Exos targeted and efficiently killed EBV-associated tumor cells through FasL and TRAIL pathways and promoted EBV antigen-specific CD4 and CD8 T cell expansion. Administration of Vδ2-T-Exos effectively controlled EBV-associated tumors in Rag2-/-γc-/- and humanized mice. Because expanding Vδ2-T cells and preparing autologous Vδ2-T-Exos from cancer patients ex vivo in large scale is challenging, we explored the antitumor activity of allogeneic Vδ2-T-Exos in humanized mouse cancer models. Here, we found that allogeneic Vδ2-T-Exos had more effective antitumor activity than autologous Vδ2-T-Exos in humanized mice; the allogeneic Vδ2-T-Exos increased the infiltration of T cells into tumor tissues and induced more robust CD4 and CD8 T cell-mediated antitumor immunity. Compared with exosomes derived from NK cells (NK-Exos) with direct cytotoxic antitumor activity or dendritic cells (DC-Exos) that induced T cell antitumor responses, Vδ2-T-Exos directly killed tumor cells and induced T cell-mediated antitumor response, thus resulting in more effective control of EBV-associated tumors. This study provided proof of concept for the strategy of using Vδ2-T-Exos, especially allogeneic Vδ2-T-Exos, to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xia Wang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hui Zhi
- Biostatistics and Clinical Research Methodology Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wilfred Hing-Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pamela Pui-Wah Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
59
|
Alavian F, Ghasemi S. The Effectiveness of Nanoparticles on Gene Therapy for Glioblastoma Cells Apoptosis: A Systematic Review. Curr Gene Ther 2021; 21:230-245. [PMID: 33655831 DOI: 10.2174/1566523221666210224110454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and fatal type of glioma. Nanoparticles (NPs) are used in new approaches for the delivery of gene therapy in the treatment of GBM. INTRODUCTION The purpose of this article was to review the efficacy of NPs as the targeted carriers in the gene therapy aimed at apoptosis in GBM. METHODS The appropriate keywords such as nanoparticle, glioblastoma, gene therapy, apoptosis, and related words were used to search from PubMed, ISI Web of Science, and Scopus for relevant publications up to September 4, 2020, with no language restrictions. The present systematic review was performed based on PRISMA protocol and reviewed the articles evaluating the effects of nanoparticles, carriers of various gene therapies essentials, on GBM cells apoptosis in vitro and in vivo. The selected articles were considered using specific scores on the quality of the articles. Data extraction and quality evaluation were performed by two reviewers. RESULTS Of 101 articles retrieved, forty-two met the inclusion criteria and were, therefore, subjected to the final deduction. The most widely used NP in GBM gene therapy studies is polyamidoamine (PAMAM). The most common gene therapy approach for apoptosis in GBM is using siRNAs. CONCLUSION In conclusion, these studies validated that NPs could be a practical choice to enhance the efficiency and specific delivery in gene therapies for GBM cell apoptosis. However, the choice of NP type and gene therapy mechanism affect the GBM cell apoptotic efficiency.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Department of Biology, School of Basic Sciences, Farhangian University, Tehran, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
60
|
Wu F, Xie M, Hun M, She Z, Li C, Luo S, Chen X, Wan W, Wen C, Tian J. Natural Killer Cell-Derived Extracellular Vesicles: Novel Players in Cancer Immunotherapy. Front Immunol 2021; 12:658698. [PMID: 34093547 PMCID: PMC8176011 DOI: 10.3389/fimmu.2021.658698] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are critical components of host innate immunity and function as the first line of defense against tumors and viral infection. There is increasing evidence that extracellular vesicles (EVs) are involved in the antitumor activity of NK cells. NK cell-derived EVs (NKEVs) carrying cargo such as cytotoxic proteins, microRNAs, and cytokines employ multiple mechanisms to kill tumor cells, but also exhibit immunomodulatory activity by stimulating other immune cells. Several studies have reported that NKEVs can reverse immune suppression under tolerogenic conditions and contribute to NK-mediated immune surveillance against tumors. Thus, NKEVs are a promising tool for cancer immunotherapy. In this review, we describe the biological effects and potential applications of NKEVs in antitumor immunity.
Collapse
Affiliation(s)
- Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
61
|
Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 2021; 22:560-570. [PMID: 33753940 PMCID: PMC9389600 DOI: 10.1038/s41590-021-00899-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.
Collapse
|
62
|
Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, Sathyapalan T, Sahebkar A. The Impact of Immune Cell-derived Exosomes on Immune Response Initiation and Immune System Function. Curr Pharm Des 2021; 27:197-205. [PMID: 33290196 DOI: 10.2174/1381612826666201207221819] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Exosomes are small extracellular vesicles that pass genetic material between various cells to modulate or alter their biological function. The role of exosomes is to communicate with the target cell for cell-to-cell communication. Their inherent characteristics of exosomes, such as adhesion molecules, allow targeting specifically to the receiving cell. Exosomes are involved in cell to cell communication in the immune system including antigen presentation, natural killer cells (NK cells) and T cell activation/polarisation, immune suppression and various anti-inflammatory processes. In this review, we have described various functions of exosomes secreted by the immune cells in initiating, activating and modulating immune responses; and highlight the distinct roles of exosomal surface proteins and exosomal cargo. Potential applications of exosomes such as distribution vehicles for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Z Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
63
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
64
|
Ou YH, Zou S, Goh WJ, Wang JW, Wacker M, Czarny B, Pastorin G. Cell-Derived Nanovesicles as Exosome-Mimetics for Drug Delivery Purposes: Uses and Recommendations. Methods Mol Biol 2021; 2211:147-170. [PMID: 33336276 DOI: 10.1007/978-1-0716-0943-9_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cell-derived Drug Delivery Systems (DDSs), particularly exosomes, have grown in popularity and have been increasingly explored as novel DDSs, due to their intrinsic targeting capabilities. However, clinical translation of exosomes is impeded by the tedious isolation procedures and poor yield. Cell-derived nanovesicles (CDNs) have recently been produced and proposed as exosome-mimetics. Various methods for producing exosome-mimetics have been developed. In this chapter, we present a simple, efficient, and cost-effective CDNs production method that uses common laboratory equipment (microcentrifuge) and spin cups. Through a series of extrusion and size exclusion steps, CDNs are produced from in vitro cell culture and are found to highly resemble the endogenous exosomes. Thus, we envision that this strategy holds great potential as a viable alternative to exosomes in the development of ideal DDS.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shui Zou
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Wei Jiang Goh
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Matthias Wacker
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore.
| |
Collapse
|
65
|
Ou YH, Liang J, Czarny B, Wacker MG, Yu V, Wang JW, Pastorin G. Extracellular Vesicle (EV) biohybrid systems for cancer therapy: Recent advances and future perspectives. Semin Cancer Biol 2021; 74:45-61. [PMID: 33609664 DOI: 10.1016/j.semcancer.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a class of cell-derived lipid-bilayer membrane vesicles secreted by almost all mammalian cells and involved in intercellular communication by shuttling various biological cargoes. Over the last decade, EVs - namely exosomes and microvesicles - have been extensively explored as next-generation nanoscale drug delivery systems (DDSs). This is in large due to their endogenous origin, which enables EVs to circumvent some of the limitations associated with existing cancer therapy approaches (i.e. by preventing recognition by the immune system and improving selectivity towards tumor tissue). However, successful translation of these cell-derived vesicles into clinical applications has been hindered by several factors, among which the loading of exogenous therapeutic molecules still represents a great challenge. In order to address this issue and to further advance these biologically-derived systems as drug carriers, EV-biohybrid nano-DDSs, obtained through the fusion of EVs with conventional synthetic nano-DDSs, have recently been proposed as a valuable alternative as DDSs. Building on the idea of "combining the best of both worlds", a combination of these two unique entities aims to harness the beneficial properties associated with both EVs and conventional nano-DDSs, while overcoming the flaws of the individual components. These biohybrid systems also provide a unique opportunity for exploitation of new synergisms, often leading to improved therapeutic outcomes, thus paving the way for advancements in cancer therapy. This review aims to describe the recent developments of EV-biohybrid nano-DDSs in cancer therapy, to highlight the most promising results and breakthroughs, as well as to provide a glimpse on the possible intrinsic targeting mechanisms of EVs that can be bequeathed to their hybrid systems. Finally, we also provide some insights in the future perspectives of EV-hybrid DDSs.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jeremy Liang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science & Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Victor Yu
- Department of Pharmacy, National University of Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
66
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
67
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
68
|
Feng K, Ma R, Zhang L, Li H, Tang Y, Du G, Niu D, Yin D. The Role of Exosomes in Thyroid Cancer and Their Potential Clinical Application. Front Oncol 2020; 10:596132. [PMID: 33335859 PMCID: PMC7736410 DOI: 10.3389/fonc.2020.596132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of thyroid cancer (TC) is rapidly increasing worldwide. The diagnostic accuracy and dynamics of TC need to be improved, and traditional treatments are not effective enough for patients with poorly differentiated thyroid cancer. Exosomes are membrane vesicles secreted specifically by various cells and are involved in intercellular communication. Recent studies have shown that exosomes secreted by TC cells contribute to tumor progression, angiogenesis and metastasis. Exosomes in liquid biopsies can reflect the overall molecular information of tumors, and have natural advantages in diagnosing TC. Exosomes also play an important role in tumor therapy due to their special physicochemical properties. TC patients will benefit as more exosome patterns are discovered. In this review, we discuss the role of TC-derived exosomes in tumorigenesis and development, and describe the application of exosomes in the diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Kaixiang Feng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lele Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Yifeng Tang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongpeng Niu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| |
Collapse
|
69
|
Pelissier Vatter FA, Lucotti S, Zhang H. Recent Advances in Experimental Models of Breast Cancer Exosome Secretion, Characterization and Function. J Mammary Gland Biol Neoplasia 2020; 25:305-317. [PMID: 33351162 DOI: 10.1007/s10911-020-09473-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is responsible for 15% of all the cancer deaths among women in the USA. The tumor microenvironment (TME) has the potential to act as a driver of breast cancer progression and metastasis. The TME is composed of stromal cells within an extracellular matrix and soluble cytokines, chemokines and extracellular vesicles and nanoparticles that actively influence cell behavior. Extracellular vesicles include exosomes, microvesicles and large oncosomes that orchestrate fundamental processes during tumor progression through direct interaction with target cells. Long before tumor cell spread to future metastatic sites, tumor-secreted exosomes enter the circulation and establish distant pre-metastatic niches, hospitable and permissive milieus for metastatic colonization. Emerging evidence suggests that breast cancer exosomes promote tumor progression and metastasis by inducing vascular leakiness, angiogenesis, invasion, immunomodulation and chemoresistance. Exosomes are found in almost all physiological fluids including plasma, urine, saliva, and breast milk, providing a valuable resource for the development of non-invasive cancer biomarkers. Here, we review work on the role of exosomes in breast cancer progression and metastasis, and describe the most recent advances in models of exosome secretion, isolation, characterization and functional analysis. We highlight the potential applications of plasma-derived exosomes as predictive biomarkers for breast cancer diagnosis, prognosis and therapy monitoring. We finally describe the therapeutic approaches of exosomes in breast cancer.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
70
|
Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020; 15:6485-6502. [PMID: 32922012 PMCID: PMC7457829 DOI: 10.2147/ijn.s238099] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of cell-derived, lipid bilayer membrane composed vesicles, and some of them such as exosomes and ectosomes have been proven, playing remarkable roles in transmitting intercellular information, and being involved in each property of cell physiological activities. Nowadays, EVs are considered as potential nanocarriers which could partially resolve the problems of current chemotherapy because of their distinctive advantages. As endogenous membrane encompassed vesicles with nanosize, EVs are able to pass through the natural barriers with prolonged circulation time in vivo and have intrinsic cell targeting properties, they are less toxic, and less immunogenic. Recently, studies focusing on EV-based drug delivery system for cancer therapy have exploded dramatically. This review aims to outline the current applications of EVs as potential nanosized drug carriers in cancer therapy. Firstly, the characteristics and biofunctions of each EV subtype are described. Then the variety of therapeutic cargoes, the loading methods, and the targeting strategy of engineered EVs are emphatically introduced. Thereafter the pros and cons of EVs applied as therapeutic carriers, as well as the future prospects in this field, are discussed.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Hongduo Li
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Hourong Peng
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jinzhao Chen
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, Datong, Shanxi Province 037301, People's Republic of China
| | - Ruixin Yang
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
71
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
72
|
Lu Y, Lan N, Zhang Y, Nie X, Pu S, Yuan W. Role of extracellular vesicles in the progression, diagnosis and treatment of thyroid cancer (Review). Int J Oncol 2020; 57:881-889. [PMID: 32945399 DOI: 10.3892/ijo.2020.5111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) enclose a myriad of proteins and nucleic acids that are released in the extracellular milieu of cells through EVs. These secreted molecules serve as signaling factors that can alter the biological characteristics of tumor cells. Several studies have suggested that EVs are associated with tumor proliferation, metastasis and microenvironmental regulation in thyroid carcinoma (TC). The biomolecules in EVs can serve as differential diagnostic biomarkers for TC. Moreover, EVs derived from natural killer (NK) cells can be developed as potential immunotherapeutic agents, since they can actively target and kill tumor cells in TC. Recent years have witnessed a steep rise in the number of TC cases, and thus, accurate diagnosis and novel TC treatment strategies are being actively explored. The present review discusses the recent research investigations on EVs as far as the biological, clinical diagnosis and treatment of primary TC tumors are concerned. In addition, the new opportunities and challenges encountered in the practical applications of EVs in thyroid carcinoma are outlined.
Collapse
Affiliation(s)
- Ying Lu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ning Lan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuangshuang Pu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
73
|
Taiarol L, Formicola B, Magro RD, Sesana S, Re F. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine (Lond) 2020; 15:1861-1871. [PMID: 32731839 DOI: 10.2217/nnm-2020-0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a serious medical issue in the brain oncology field due to its aggressiveness and recurrence. Immunotherapy has emerged as a valid approach to counteract the growth and metastasization of glioblastoma multiforme. Among the different innovative approaches investigated, nanoparticles gain attention because of their versatility which is key in allowing precise targeting of brain tumors and increasing targeted drug delivery to the brain, thus minimizing adverse effects. This article reviews the progress made in this field over the past 2 years, focusing on nonspherical and biomimetic particles and on vectors for the delivery of nucleic acids. However, challenges still need to be addressed, considering the improvement of the particles passage across the blood-meningeal barrier and/or the blood-brain barrier, promoting the clinical translatability of these approaches.
Collapse
Affiliation(s)
- Lorenzo Taiarol
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Beatrice Formicola
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Roberta Dal Magro
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Silvia Sesana
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Francesca Re
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| |
Collapse
|
74
|
Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 2020; 242:119925. [PMID: 32151860 DOI: 10.1016/j.biomaterials.2020.119925] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Exosomes have emerged as appealing candidate therapeutic agents and delivery nanoplatforms due to their endogenous features and unique biological properties. However, obstacles such as low isolation yield, considerable complexity and potential safety concerns, and inefficient drug payload substantially hamper their therapeutic applicability. To this end, developing bioinspired exosome-like nanoparticles has become a promising area to overcome certain limitations of their natural counterparts. Synthetically fabrication of exosome-like nanoparticles that harbor only crucial components of exosomes through controllable protocols strongly increases the pharmaceutical acceptability of these vesicles. Assembly of exosome-like nanovesicles derived from producer cells allows for a promising strategy for scale-up production. To improve the loading capability and delivery efficiency of exosomes, hybrid exosome-like nanovesicles and membrane-camouflaged nanoparticles towards better bridging synthetic nanocarriers with natural exosomes could be designed. Building off these observations, herein, efforts are made to give an overview of bioinspired exosome-like therapeutics and delivery nanoplatforms. We briefly recapitulate the recent advance in exosome biology with focus on tailoring exosomes as therapeutics and delivery vehicles. Furthermore, we elaborately discuss the biomimicry methodologies for preparation of exosome-like nanoparticles with special emphasis on offering insights into strategies for rational design of exosome-like biomaterials as effective and safe therapeutics and delivery nanoplatforms.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
75
|
Characterization of Human NK Cell-Derived Exosomes: Role of DNAM1 Receptor In Exosome-Mediated Cytotoxicity Against Tumor. Cancers (Basel) 2020; 12:cancers12030661. [PMID: 32178479 PMCID: PMC7140072 DOI: 10.3390/cancers12030661] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/18/2023] Open
Abstract
Despite the pivotal role of natural killer (NK) cells in defenses against tumors, their exploitation in cancer treatment is still limited due to their reduced ability to reaching tumor sites and the inhibitory effects of tumor microenvironment (TME) on their function. In this study, we have characterized the exosomes from IL2- or IL15-cultured human NK cells. Both cytokines induced comparable amounts of exosomes with similar cargo composition. Analysis of molecules contained within or exposed at the exosome surface, allowed the identification of molecules playing important roles in the NK cell function including IFN-γ, Lymphocyte Function-Associated Antigen (LFA-1), DNAX Accessory Molecule-1 (DNAM1) and Programmed Cell Death Protein (PD-1). Importantly, we show that DNAM1 is involved in exosome-mediated cytotoxicity as revealed by experiments using blocking antibodies to DNAM1 or DNAM1 ligands. In addition, antibody-mediated inhibition of exosome cytotoxicity results in a delay in target cell apoptosis. We also provide evidence that NK-exosomes may exert their cytolytic activity after short time interval and even at low concentrations. Regarding their possible use in immunotherapy, NK exosomes, detectable in peripheral blood, can diffuse into tissues and exert their cytolytic effect at tumor sites. This property offers a clue to integrate cancer treatments with NK exosomes.
Collapse
|
76
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
77
|
Nasiri Kenari A, Cheng L, Hill AF. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. Methods 2020; 177:103-113. [PMID: 31917274 DOI: 10.1016/j.ymeth.2020.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane bound vesicles released into the extracellular environment by eukaryotic and prokaryotic cells. EVs are enriched in active biomolecules and they can horizontally transfer cargo to recipient cells. In recent years EVs have demonstrated promising clinical applications due to their theragnostic potential. Although EVs have promising therapeutic potential, there are several challenges associated with using EVs before transition from the laboratory to clinical use. Some of these challenges include issues around low yield, isolation and purification methodologies, and efficient engineering (loading) of EVs with therapeutic cargo. Also, to achieve higher therapeutic efficiency, EV architecture and cargo may need to be manipulated prior to clinical application. Some of these issues have been addressed by developing biomimetic EVs. EV mimetic-nanovesicles (M-NVs) are a type of artificial EVs which can be generated from all cell types with comparable characteristics as EVs for an alternative therapeutic modality. In this review, we will discuss current techniques for modifying EVs and methodology used to generate and customize EV mimetic-nanovesicles.
Collapse
Affiliation(s)
- Amirmohammad Nasiri Kenari
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia.
| |
Collapse
|
78
|
Abstract
Extracellular vesicles (EVs) are nano-membrane vesicles containing exosomes and microvesicles, and are released by almost all types of cells. They can carry lipids, proteins, mRNAs, and miRNAs to enable intercellular communication between cells either locally or distantly without direct cell-to-cell contact. Cancer-derived EVs are known to facilitate tumor progression and metastasis by preparing premetastatic niches. Here, we define a strategy to label cancer derived EVs with Renilla luciferase for noninvasive bioluminescence imaging (BLI) and monitoring of intravenously administered EVs in vivo.
Collapse
|
79
|
Zhang YF, Shi JB, Li C. Small extracellular vesicle loading systems in cancer therapy: Current status and the way forward. Cytotherapy 2019; 21:1122-1136. [PMID: 31699595 DOI: 10.1016/j.jcyt.2019.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Systemic chemotherapy is a conventional and important strategy for inhibition of cancer progression, but it is usually accompanied by various adverse effects. Targeting drug delivery systems, effective tools to avoid the adverse effects of chemotherapy, have been intensively studied and developed. Recently, the emerging application of exosomes and exosome-mimics (small extracellular vesicles [sEVs]) in targeted drug delivery and therapeutics has been widely appreciated. The sEVs-based delivery system comprises three basic components: vesicles, cargoes and surface decorations. In this article, we review the current status, existing challenges and future directions in this field from the following aspects: selection and production of vesicles; cargoes and methods to load them into vesicles; modifications to the surfaces of vesicles; as well as ways to prolong the half-life of sEVs in the circulation. Existing and emerging data indicate that sEVs are promising nanocarriers for clinical use, but additional efforts are needed to translate research findings into therapeutic products.
Collapse
Affiliation(s)
- Yue-Feng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jin-Bo Shi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
80
|
Wu CH, Li J, Li L, Sun J, Fabbri M, Wayne AS, Seeger RC, Jong AY. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J Extracell Vesicles 2019; 8:1588538. [PMID: 30891164 PMCID: PMC6419691 DOI: 10.1080/20013078.2019.1588538] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted membrane vesicles, which play complex physiological and pathological functions in intercellular communication. Recently, we isolated natural killer (NK) cell-derived EVs (NK-EVs) from ex vivo expansion of NK cell cultures. The isolated NK-EVs contained cytotoxic proteins and several activated caspases, and they induced apoptosis in target cells. In this report, the protein levels of cytotoxic proteins from NK-EV isolates were analysed by ELISA. The mean values of perforin (PFN, 550 ng/mL), granzyme A (GzmA, 185 ng/mL), granzyme B (GzmB, 23.4 ng/mL), granulysin (GNLY, 56 ng/mL), and FasL (2.5 ng/mL) were obtained from >60 isolations using dot plots. The correlation between cytotoxicity and cytotoxic protein levels was examined by linear regression. PFN, GzmA, GzmB, GNLY all had a positive, moderate correlation with cytotoxicity, suggesting that there is not a single cytotoxic protein dominantly involved in killing and that all of these proteins may contribute to cytotoxicity. To further explore the possible killing mechanisms, cells were treated with NK-EVs, proteins extracted and lysates assessed by Western blotting. The levels of Gzm A substrates, SET and HMG2, were diminished in targeted cells, indicating that GzmA may induce a caspase-independent death pathway. Also, cytochrome C was released from mitochondria, a central hallmark of caspase-dependent death pathways. In addition, several ER-associated proteins were altered, suggesting that NK-EVs may induce ER stress resulting in cell death. Our results indicate that multiple killing mechanisms are activated by NK-derived EVs, including caspase-independent and -dependent cell death pathways, which can mediate cytotoxicity against cancer cells. Abbreviations: NK: natural killer cells; aNK: activated NK cells; EV: extracellular vesicles; ER: endoplasmic reticulum; ALL: acute lymphoblastic leukaemia; FBS: foetal bovine serum. GzmA: granzyme A; GzmB: granzyme B; GNLY: granulysin; PFN: perforin.
Collapse
Affiliation(s)
- Chun-Hua Wu
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jingbo Li
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianping Sun
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muller Fabbri
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S. Wayne
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C. Seeger
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ambrose Y. Jong
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
81
|
Golán I, Rodríguez de la Fuente L, Costoya JA. NK Cell-Based Glioblastoma Immunotherapy. Cancers (Basel) 2018; 10:E522. [PMID: 30567306 PMCID: PMC6315402 DOI: 10.3390/cancers10120522] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Collapse
Affiliation(s)
- Irene Golán
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Laura Rodríguez de la Fuente
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
82
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|