51
|
Abstract
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and four-dimensional analyses, permitting global characterizations of nuclear order. These approaches will help uncover how seemingly separate nuclear processes may be coupled and aid in the effort to understand the role of nuclear organization in development and disease.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
52
|
Tattermusch A, Brockdorff N. A scaffold for X chromosome inactivation. Hum Genet 2011; 130:247-53. [PMID: 21660507 DOI: 10.1007/s00439-011-1027-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
X chromosome inactivation (XCI), the silencing of one of the two X chromosomes in XX female cells, equalises the dosage of X-linked genes relative to XY males. The process is mediated by the non-coding RNA X inactive specific transcript (Xist) that binds in cis and propagates along the inactive X chromosome elect, triggering chromosome-wide silencing. The mechanisms by which Xist RNA binds and spreads along the chromosome, and initiates Xist-mediated chromosome silencing remain poorly understood. Accumulating evidence suggests that chromosome and nuclear organisation are important in both processes. Notably, recent studies have identified specific factors, previously shown to be components of the nuclear matrix or scaffold, to play a role both in Xist RNA-binding and in Xist-mediated silencing. In this review we provide a perspective on these studies in the context of previous work on chromosome/nuclear architecture in XCI.
Collapse
Affiliation(s)
- Anna Tattermusch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
53
|
Gontan C, Jonkers I, Gribnau J. Long Noncoding RNAs and X Chromosome Inactivation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:43-64. [PMID: 21287133 DOI: 10.1007/978-3-642-16502-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In female somatic cells, one of the two X chromosomes is inactivated to equalize the dose of sex-linked gene products between female and male cells. X chromosome inactivation X chromosome inactivation (XCI) is initiated very early during development and requires Xist Xist , which is a noncoding X-linked gene. Upon initiation of XCI, Xist-RNA spreads along the X chromosome in cis, and Xist spreading is required for the recruitment of different chromatin remodeling complexes involved in the establishment and maintenance of the inactive X chromosome. Because XCI acts chromosomewise, Xist-mediated silencing has served as an important paradigm to study the function of noncoding RNAs (ncRNA) in gene silencing. In this chapter, we describe the current knowledge about the structure and function of Xist. We also discuss the important cis- and trans-regulatory elements and proteins in the initiation, establishment, and maintenance of XCI. In addition, we highlight new findings with other ncRNAs involved in gene repression and discuss these findings in relation to Xist-mediated gene silencing.
Collapse
Affiliation(s)
- Cristina Gontan
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
54
|
Naughton C, Sproul D, Hamilton C, Gilbert N. Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol Cell 2010; 40:397-409. [PMID: 21070966 PMCID: PMC3038259 DOI: 10.1016/j.molcel.2010.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/24/2010] [Accepted: 08/26/2010] [Indexed: 11/28/2022]
Abstract
Using a genetic model, we present a high-resolution chromatin fiber analysis of transcriptionally active (Xa) and inactive (Xi) X chromosomes packaged into euchromatin and facultative heterochromatin. Our results show that gene promoters have an open chromatin structure that is enhanced upon transcriptional activation but the Xa and the Xi have similar overall 30 nm chromatin fiber structures. Therefore, the formation of facultative heterochromatin is dependent on factors that act at a level above the 30 nm fiber and transcription does not alter bulk chromatin fiber structures. However, large-scale chromatin structures on Xa are decondensed compared with the Xi and transcription inhibition is sufficient to promote large-scale chromatin compaction. We show a link between transcription and large-scale chromatin packaging independent of the bulk 30 nm chromatin fiber and propose that transcription, not the global compaction of 30 nm chromatin fibers, determines the cytological appearance of large-scale chromatin structures.
Collapse
Affiliation(s)
- Catherine Naughton
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | |
Collapse
|
55
|
Grimaud C, Becker PB. Form and function of dosage-compensated chromosomes--a chicken-and-egg relationship. Bioessays 2010; 32:709-17. [PMID: 20658709 DOI: 10.1002/bies.201000029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Does the three-dimensional (3D) conformation of interphase chromosomes merely reflect their function or does it actively contribute to gene regulation? The analysis of sex chromosomes that are subject to chromosome-wide dosage compensation processes promises new insight into this question. Chromosome conformations are dynamic and largely determined by association of distant chromosomal loci in the nuclear space or by their anchoring to the nuclear envelope, effectively generating chromatin loops. The type and extent of such interactions depend on chromatin-bound transcription regulators and therefore reflects function. Dosage compensation adjusts the overall transcription activity of X chromosomes to assure balanced expression in the two sexes. Initial analyses of mammalian and Drosophila X chromosomes have led to the hypothesis that their conformations may not only reflect their functional state but may in turn contribute to the coordination of chromosome-wide tuning of transcription.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM) Ludwig-Maximilians University, Munich, Germany
| | | |
Collapse
|
56
|
Abstract
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them.
Collapse
Affiliation(s)
- Thomas Cremer
- Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
57
|
Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One 2010; 5:e12218. [PMID: 20811620 PMCID: PMC2928267 DOI: 10.1371/journal.pone.0012218] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/02/2010] [Indexed: 01/20/2023] Open
Abstract
Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL) model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.
Collapse
|
58
|
Nuclear Architecture in Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:14-25. [DOI: 10.1007/978-1-4419-7037-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Grimaud C, Becker PB. The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev 2009; 23:2490-5. [PMID: 19884256 DOI: 10.1101/gad.539509] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dosage compensation complex (DCC) in Drosophila globally increases transcription from the X chromosome in males to compensate for its monosomy. We discovered a male-specific conformation of the X chromosome that depends on the associations of high-affinity binding sites (HAS) of the DCC. The core DCC subunits MSL1-MSL2 are responsible for this male-specific organization. Contrary to emerging concepts, we found that neither DCC assembly nor the conformation of the male X chromosome are influenced by nuclear pore components. We propose that nuclear organization of HAS is central to the faithful distribution of the DCC along the X chromosome.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, 80336 Munich, Germany
| | | |
Collapse
|
60
|
Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B. Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 2008; 16:523-62. [PMID: 18461488 DOI: 10.1007/s10577-008-1236-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The vast majority of microscopic data in biology of the cell nucleus is currently collected using fluorescence microscopy, and most of these data are subsequently subjected to quantitative analysis. The analysis process unites a number of steps, from image acquisition to statistics, and at each of these steps decisions must be made that may crucially affect the conclusions of the whole study. This often presents a really serious problem because the researcher is typically a biologist, while the decisions to be taken require expertise in the fields of physics, computer image analysis, and statistics. The researcher has to choose between multiple options for data collection, numerous programs for preprocessing and processing of images, and a number of statistical approaches. Written for biologists, this article discusses some of the typical problems and errors that should be avoided. The article was prepared by a team uniting expertise in biology, microscopy, image analysis, and statistics. It considers the options a researcher has at the stages of data acquisition (choice of the microscope and acquisition settings), preprocessing (filtering, intensity normalization, deconvolution), image processing (radial distribution, clustering, co-localization, shape and orientation of objects), and statistical analysis.
Collapse
Affiliation(s)
- O Ronneberger
- Department of Pattern Recognition and Image Processing, University of Freiburg, 79110, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 2008; 117:381-97. [PMID: 18408947 DOI: 10.1007/s00412-008-0157-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
The human genes CFTR, ASZ1/GASZ, and CTTNBP2/CORTBP2 map to adjacent loci on chromosome 7q31 and display characteristic patterns of nuclear positioning, which strictly correlate with the state of activity. To address the evolutionary conservation of gene positioning, we investigated transcriptional activity and nuclear positioning of the highly conserved murine orthologs and of additional murine genes mapping to the region of conserved synteny on mouse chromosome 6. The results showed that all murine loci investigated constitutively localized in the nuclear interior irrespective of their functional state. Silenced loci did not display preferential association with the nuclear periphery or with chromocenters, respectively, and no differential positioning with respect to the chromosome 6 territory could be observed. This positional behavior of the murine loci was in striking contrast to the positioning of the human orthologs, and the results show that the transcription-dependent positioning of CFTR and adjacent loci has not been conserved. The findings reveal that the nuclear organization of conserved chromosomal regions can change rapidly during evolution and is not always as highly conserved as other features of chromosome organization. Furthermore, the results suggest that the way how nuclear positioning contributes to the regulation of conserved loci can be different in different vertebrate species.
Collapse
|
62
|
Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 2008; 121:1119-27. [DOI: 10.1242/jcs.026104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian inactive X chromosome (Xi) is a model for facultative heterochromatin. Increased DNA compaction for the Xi, and for facultative heterochromatin in general, has long been assumed based on recognition of a distinct Barr body using nucleic-acid staining. This conclusion has been challenged by a report revealing equal volumes occupied by the inactive and active X chromosomes. Here, we use light and electron microscopy to demonstrate in mouse and human fibroblasts a unique Xi ultrastructure, distinct from euchromatin and constitutive heterochromatin, containing tightly packed, heterochromatic fibers/domains with diameters in some cases approaching that of prophase chromatids. Significant space between these packed structures is observed even within condensed regions of the Xi. Serial-section analysis also reveals extensive contacts of the Xi with the nuclear envelope and/or nucleolus, with nuclear envelope association being observed in all cells. Implications of our results for models of Xi gene silencing and chromosome territory organization are discussed.
Collapse
Affiliation(s)
- Alena Rego
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Paul B. Sinclair
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Wei Tao
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Igor Kireev
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
63
|
Abstract
The Latin word "facultas" literally means "opportunity." Facultative heterochromatin (fHC) then designates genomic regions in the nucleus of a eukaryotic cell that have the opportunity to adopt open or compact conformations within temporal and spatial contexts. This review focuses on the molecular and functional aspects of fHC that distinguish it from constitutive heterochromatin (cHC) and euchromatin (EC) and discusses various concepts regarding the regulation of fHC structure. We begin by revisiting the historical developments that gave rise to our current appreciation of fHC.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute, New York University Medical School, 522 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
64
|
Abstract
The compensation of the different level of transcripts of X-linked genes in male and female mammals is achieved through X chromosome inactivation, a complex process that differentially regulates the sex chromosomes of female cells. This mechanism has been dissected at evolutionary, genetic and molecular levels: here, we discuss some of the latest examples that illustrate better these intricate connections, focusing particularly on the emerging role of spatial and three-dimensional chromatin arrangements in the building of this special chromosome, the inactive X chromosome.
Collapse
Affiliation(s)
- Maria R Matarazzo
- Institute of Genetics and Biophysics A. Buzzati Traverso, National Research Council (CNR), via Castellino 111, Naples, Italy
| | | | | |
Collapse
|
65
|
Sexton T, Schober H, Fraser P, Gasser SM. Gene regulation through nuclear organization. Nat Struct Mol Biol 2007; 14:1049-55. [PMID: 17984967 DOI: 10.1038/nsmb1324] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nucleus is a highly heterogeneous structure, containing various 'landmarks' such as the nuclear envelope and regions of euchromatin or dense heterochromatin. At a morphological level, regions of the genome that are permissive or repressive to gene expression have been associated with these architectural features. However, gene position within the nucleus can be both a cause and a consequence of transcriptional regulation. New results indicate that the spatial distribution of genes within the nucleus contributes to transcriptional control. In some cases, position seems to ensure maximal expression of a gene. In others, it ensures a heritable state of repression or correlates with a developmentally determined program of tissue-specific gene expression. In this review, we highlight mechanistic links between gene position, repression and transcription. Recent findings suggest that architectural features have multiple functions that depend upon organization into dedicated subcompartments enriched for distinct enzymatic machinery.
Collapse
Affiliation(s)
- Tom Sexton
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, UK CB22 3AT
| | | | | | | |
Collapse
|
66
|
Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A. Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosome Res 2007; 15:899-916. [PMID: 17926137 DOI: 10.1007/s10577-007-1172-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 12/14/2022]
Abstract
Interphase chromosomes are organized into discrete chromosome territories (CTs) that may occupy preferred sub-nuclear positions. While chromosome size and gene density appear to influence positioning, the biophysical mechanisms behind CT localization, especially the relationship between morphology and positioning, remain obscure. One reason for this has been the difficulty in imaging, segmenting, and analyzing structures with variable or imprecise boundaries. This prompted us to develop a novel approach, based on the two-dimensional (2D) wavelet-transform modulus maxima (WTMM) method, adapted to perform objective and rigorous CT segmentation from nuclear background. The wavelet transform acts as a mathematical microscope to characterize spatial image information over a continuous range of size scales. This multiresolution nature, combined with full objectivity of the formalism, makes it more accurate than intensity-based segmentation algorithms and more appropriate than manual intervention. Using the WTMM method in combination with numerical simulation models, we show that CTs have a highly nonspherical 3D morphology, that CT positioning is nonrandom, and favors heterologous CT groupings. We discuss potential relationships between morphology, positioning, chromosomal function, and instability.
Collapse
Affiliation(s)
- A Khalil
- Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Matarazzo MR, Boyle S, D'Esposito M, Bickmore WA. Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 2007; 104:16546-51. [PMID: 17923676 PMCID: PMC2034264 DOI: 10.1073/pnas.0702924104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Indexed: 02/07/2023] Open
Abstract
Chromosome territory (CT) organization and chromatin condensation have been linked to gene expression. Although individual genes can be transcribed from inside CTs, some regions that have constitutively high expression or are coordinately activated loop out from CTs and decondense. The relationship between epigenetic marks, such as DNA methylation, and higher-order chromatin structures is largely unexplored. DNMT3B mutations in immunodeficiency centromeric instability facial anomalies (ICF) syndrome result in loss of DNA methylation at particular sites, including CpG islands on the inactive X chromosome (Xi). This allows the specific effects of DNA methylation on CTs to be examined. Using fluorescence in situ hybridization, we reveal a differential organization of the human pseudoautosomal region (PAR)2 between the CTs of the X and Y in normal males and the active X (Xa) and the Xi in females. There is also a more condensed chromatin structure on Xi compared with Xa in this region. PAR2 genes are relocalized toward the outside of the Y and Xi CTs in ICF, and on the Xi, we show that this can extend to genes distant from the site of DNA hypomethylation itself. This reorganization is not simply a reflection of the transcriptional activation of the relocalized genes. This report of altered CT organization in a human genetic disease illustrates that DNA hypomethylation at restricted sites in the genome can lead to more extensive changes in nuclear organization away from the original site of epigenetic change.
Collapse
Affiliation(s)
- Maria R. Matarazzo
- *Institute of Genetics and Biophysics “Adriano Buzzati Traverso,” Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; and
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Maurizio D'Esposito
- *Institute of Genetics and Biophysics “Adriano Buzzati Traverso,” Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; and
| | - Wendy A. Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
68
|
Abstract
There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work.
Collapse
|
69
|
Murata SI, Nakazawa T, Ohno N, Terada N, Iwashina M, Mochizuki K, Kondo T, Nakamura N, Yamane T, Iwasa S, Ohno S, Katoh R. Conservation and alteration of chromosome territory arrangements in thyroid carcinoma cell nuclei. Thyroid 2007; 17:489-96. [PMID: 17614768 DOI: 10.1089/thy.2006.0328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chromosome territories (CTs) are intranuclear subregions occupied by individual chromosomes in an interphase cell. In this study, we investigated intranuclear CT positionings of chromosomes 10 (CS10), 18 (CS18), and 19 (CS19) in epithelial cells from four normal thyroid tissue (NT), four adenomatous goiters (AGs), six papillary carcinomas (PCs), and two undifferentiated carcinomas (UCs) using the multicolor fluorescence in situ hybridization method. In the NT and AGs, the radial positionings of CS10 and CS18 were detected at the periphery of nuclei in more than 60% and 80% of cells, respectively, whereas the radial positioning of CS19 was in the central region of the nuclei in more than 80% of cells. In the PCs, radial positioning pattern of CS10 and CS18 were similar to that in the NT. The nuclei with centrally located CS19 in PCs were less frequent than those in NT cells (p < 0.01). On the other hand, UCs with cells having DNA amplification demonstrated the locational abnormalities of the CS10, CS18, and CS19 radial positions. These findings indicate that alteration of CT positioning could be related to DNA amplification and, morphologically, may explain the nuclear atypia that accompanies the abnormal chromatin feature.
Collapse
Affiliation(s)
- Shin-Ichi Murata
- Department of Pathology, Saitama Medical University International Medical Center, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mora-Bermúdez F, Ellenberg J. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 2007; 41:158-67. [PMID: 17189858 DOI: 10.1016/j.ymeth.2006.07.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 10/23/2022] Open
Abstract
Mitotic and meiotic chromosomes are the compact packages that faithfully transport the genetic and epigenetic information to the following cell generations. How chromatin dynamically cycles between the decompacted interphase state that supports transcription and replication and the compacted state required for chromosome segregation is not understood. To address this long-standing problem, the structure of chromatin should ideally be studied in the physiological context of intact cells and organisms. We discuss here, the contributions that live-cell imaging can and has made to the study of mitotic chromosome compaction and highlight the power and limitations of this approach. We review methodologies used and suggest that combinatorial approaches and developing new imaging technologies will be key to shedding light on this long-standing question in cell biology.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
71
|
Zhang LF, Huynh KD, Lee JT. Perinucleolar Targeting of the Inactive X during S Phase: Evidence for a Role in the Maintenance of Silencing. Cell 2007; 129:693-706. [PMID: 17512404 DOI: 10.1016/j.cell.2007.03.036] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/11/2006] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
In mammalian females, two X chromosomes are epigenetically distinguished as active and inactive chromosomes to balance X-linked gene dosages between males and females. How the Xs are maintained differently in the same nucleus remains unknown. Here, we demonstrate that the inactive X (Xi) is targeted to a distinct nuclear compartment following pairing with its homologous partner. During mid-to-late S phase, 80%-90% of Xi contact the nucleolus and reside within a Snf2h-enriched ring. Autosomes carrying ectopic X-inactivation center sequences are also targeted to the perinucleolar compartment. Deleting Xist results in a loss of nucleolar association and an inability to maintain Xi heterochromatin, leading to Xi reactivation at the single gene level. We propose that the Xi must continuously visit the perinucleolar compartment to maintain its epigenetic state. These data raise a mechanism by which chromatin states can be replicated by spatial and temporal separation in the nucleus.
Collapse
Affiliation(s)
- Li-Feng Zhang
- Howard Hughes Medical Institute, Boston, MA 02114 USA
| | | | | |
Collapse
|
72
|
Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 2007; 27:4475-87. [PMID: 17420274 PMCID: PMC1900058 DOI: 10.1128/mcb.00208-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 2006; 103:7688-93. [PMID: 16682630 PMCID: PMC1472506 DOI: 10.1073/pnas.0601069103] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Indexed: 11/18/2022] Open
Abstract
We investigated whether genes escape X chromosome inactivation by positioning outside of the territory defined by XIST RNA. Results reveal an unanticipated higher order organization of genes and noncoding sequences. All 15 X-linked genes, regardless of activity, position on the border of the XIST RNA territory, which resides outside of the DAPI-dense Barr body. Although more strictly delineated on the inactive X chromosome (Xi), all genes localized predominantly to the outer rim of the Xi and active X chromosome. This outer rim is decorated only by X chromosome DNA paints and is excluded from both the XIST RNA and dense DAPI staining. The only DNA found well within the Barr body and XIST RNA territory was centromeric and Cot-1 DNA; hence, the core of the X chromosome essentially excludes genes and is composed primarily of noncoding repeat-rich DNA. Moreover, we show that this core of repetitive sequences is expressed throughout the nucleus yet is silenced throughout Xi, providing direct evidence for chromosome-wide regulation of "junk" DNA transcription. Collective results suggest that the Barr body, long presumed to be the physical manifestation of silenced genes, is in fact composed of a core of silenced noncoding DNA. Instead of acting at a local gene level, XIST RNA appears to interact with and silence core architectural elements to effectively condense and shut down the Xi.
Collapse
Affiliation(s)
- Christine Moulton Clemson
- Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
| | - Lisa L. Hall
- Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
| | - Meg Byron
- Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
| | - John McNeil
- Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
| | - Jeanne Bentley Lawrence
- Department of Cell Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
74
|
Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S. Chromosome territories--a functional nuclear landscape. Curr Opin Cell Biol 2006; 18:307-16. [PMID: 16687245 DOI: 10.1016/j.ceb.2006.04.007] [Citation(s) in RCA: 475] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/10/2006] [Indexed: 11/17/2022]
Abstract
Understanding nuclear architecture is indispensable for understanding the cell-type-dependent orchestration of active and silent genes and other nuclear functions, such as RNA splicing, DNA replication and repair. Yet, while it is now generally agreed that chromosomes in the cell nucleus are organized as chromosome territories, present models of chromosome territory architecture differ widely with respect to the possible functional implications of dynamic changes of this architecture during the cell cycle and terminal cell differentiation.
Collapse
Affiliation(s)
- Thomas Cremer
- Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, D-82152, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
75
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
76
|
Abstract
Based on the idea that chromatin domains provide physical barriers for large molecules and multi-enzyme complexes, including the components of the transcription machinery, it has been proposed that transcription should be confined to the surfaces of chromatin domains. As a consequence nascent RNA should accumulate in the interchromatin space, which is thought to provide a special nuclear compartment involved in transcription, as well as in the processing and export of RNA (Cremer et al. 1993, Cremer & Cremer 2001). To further address the relationships between chromatin organization and RNA synthesis, we investigated the localization of BrUTP-labelled nascent RNA in HeLa cells stably expressing green fluorescent protein (GFP)-tagged histone H2B, which highlights the chromatin structure. Our results showed that nascent RNA does not preferentially localize within the interchromatin space. The findings do not support the idea that the interchromatin space provides a nuclear compartment playing an essential role in nascent RNA synthesis. However, the results are in agreement with the emerging view that even condensed chromatin domains display a highly dynamic organization and are not a physical barrier for transcription factors.
Collapse
Affiliation(s)
- Nicolas Sadoni
- Universität München (LMU), Department Biologie II, Goethestr. 31, 80336 München, Germany
| | | |
Collapse
|
77
|
Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P. Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 2005; 301:266-79. [PMID: 15530862 DOI: 10.1016/j.yexcr.2004.08.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/03/2004] [Indexed: 01/29/2023]
Abstract
Knowledge about the functional impact of the topological organization of DNA sequences within interphase chromosome territories is still sparse. Of the few analyzed single copy genomic DNA sequences, the majority had been found to localize preferentially at the chromosome periphery or to loop out from chromosome territories. By means of dual-color fluorescence in situ hybridization (FISH), immunolabeling, confocal microscopy, and three-dimensional (3D) image analysis, we analyzed the intraterritorial and nuclear localization of 10 genomic fragments of different sequence classes in four different human cell types. The localization of three muscle-specific genes FLNA, NEB, and TTN, the oncogene BCL2, the tumor suppressor gene MADH4, and five putatively nontranscribed genomic sequences was predominantly in the periphery of the respective chromosome territories, independent from transcriptional status and from GC content. In interphase nuclei, the noncoding sequences were only rarely found associated with heterochromatic sites marked by the satellite III DNA D1Z1 or clusters of mammalian heterochromatin proteins (HP1alpha, HP1beta, HP1gamma). However, the nontranscribed sequences were found predominantly at the nuclear periphery or at the nucleoli, whereas genes tended to localize on chromosome surfaces exposed to the nuclear interior.
Collapse
Affiliation(s)
- Markus O Scheuermann
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Cohen HR, Royce-Tolland ME, Worringer KA, Panning B. Chromatin modifications on the inactive X chromosome. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:91-122. [PMID: 15881892 DOI: 10.1007/3-540-27310-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In female mammals, one X chromosome is transcriptionally silenced to achieve dosage compensation between XX females and XY males. This process, known as X-inactivation, occurs early in development, such that one X chromosome is silenced in every cell. Once X-inactivation has occurred, the inactive X chromosome is marked by a unique set of epigenetic features that distinguishes it from the active X chromosome and autosomes. These modifications appear sequentially during the transition from a transcriptionally active to an inactive state and, once established, act redundantly to maintain transcriptional silencing. In this review, we survey the unique epigenetic features that characterize the inactive X chromosome, describe the mechanisms by which these marks are established and maintained, and discuss how each contributes to silencing the inactive X chromosome.
Collapse
Affiliation(s)
- Hannah R Cohen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
79
|
Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. ACTA ACUST UNITED AC 2004; 166:815-25. [PMID: 15364959 PMCID: PMC2172106 DOI: 10.1083/jcb.200404107] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated in different human cell types nuclear positioning and transcriptional regulation of the functionally unrelated genes GASZ, CFTR, and CORTBP2, mapping to adjacent loci on human chromosome 7q31. When inactive, GASZ, CFTR, and CORTBP2 preferentially associated with the nuclear periphery and with perinuclear heterochromatin, whereas in their actively transcribed states the gene loci preferentially associated with euchromatin in the nuclear interior. Adjacent genes associated simultaneously with these distinct chromatin fractions localizing at different nuclear regions, in accordance with their individual transcriptional regulation. Although the nuclear localization of CFTR changed after altering its transcription levels, the transcriptional status of CFTR was not changed by driving this gene into a different nuclear environment. This implied that the transcriptional activity affected the nuclear positioning, and not vice versa. Together, the results show that small chromosomal subregions can display highly flexible nuclear organizations that are regulated at the level of individual genes in a transcription-dependent manner.
Collapse
Affiliation(s)
- Daniele Zink
- Ludwig Maximilians University Munich, Department of Biology II, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. ACTA ACUST UNITED AC 2004; 164:515-26. [PMID: 14970191 PMCID: PMC2171989 DOI: 10.1083/jcb.200305142] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments.
Collapse
Affiliation(s)
- Jayson Wang
- Human Cytogenetics Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, England, UK
| | | | | | | | | | | | | |
Collapse
|
81
|
Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, Solovei I. Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 2004; 11:485-502. [PMID: 12971724 DOI: 10.1023/a:1025016828544] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The location of centromeres and telomeres was studied in human and mouse lymphocyte nuclei (G0) employing 3D-FISH, confocal microscopy, and quantitative image analysis. In both human and murine lymphocytes, most centromeres were found in clusters at the nuclear periphery. The distribution of telomere clusters, however, differed: in mouse nuclei, most clusters were detected at the nuclear periphery, while, in human nuclei, most clusters were located in the nuclear interior. In human cell nuclei we further studied the nuclear location of individual centromeres and their respective chromosome territories (CTs) for chromosomes 1, 11, 12, 15, 17, 18, 20, and X. We found a peripheral location of both centromeres and CTs for 1, 11, 12, 18, X. A mostly interior nuclear location was observed for CTs 17 and 20 and the CTs of the NOR-bearing acrocentric 15 but the corresponding centromeres were still positioned in the nuclear periphery. Autosomal centromeres, as well as the centromere of the active X, were typically located at the periphery of the respective CTs. In contrast, in about half of the inactive X-CTs, the centromere was located in the territory interior. While the centromere of the active X often participated in the formation of centromere clusters, such a participation was never observed for the centromere of the inactive X.
Collapse
Affiliation(s)
- Claudia Weierich
- Department of Biology II, Human Genetics, Ludwig Maximillians University (LMU), Richard Wagner Str. 10, 80333 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
82
|
Mayr C, Jasencakova Z, Meister A, Schubert I, Zink D. Comparative analysis of the functional genome architecture of animal and plant cell nuclei. Chromosome Res 2004; 11:471-84. [PMID: 12971723 DOI: 10.1023/a:1024978711705] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many studies have shown that the functional architecture of eukaryotic genomes displays striking similarities in evolutionarily distant organisms. For example, late-replicating and transcriptionally inactive chromatin is associated with the nuclear periphery in organisms as different as budding yeast and man. These findings suggest that eukaryotic genomes are organized in cell nuclei according to conserved principles. In order to investigate this, we examined nuclei of different animal and plant species by comparing replicational pulse-labelling patterns and their topological relationship to markers for heterochromatin and euchromatin. The data show great similarities in the nuclear genome organization of the investigated animal and plant species, supporting the idea that eukaryotic genomes are organized according to conserved principles. There are, however, differences between animals and plants with regard to histone acetylation patterns and the nuclear distribution of late-replicating chromatin.
Collapse
Affiliation(s)
- Christoph Mayr
- University of Munich (LMU), Department Biology II, Goethestr. 31, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
83
|
Abstract
Alteration of chromatin pattern is one of the most important clues to detect the malignant cell. However, the exact cause of change of chromatin pattern still is not clearly known. Recently, in last 20 yr, modern advanced technologies, such as fluorescent in situ hybridization (FISH), chromosome painting, green fluorescent protein (GFP) fusion technology, fluorescent recovery after photobleaching (FRAP), confocal microscopy, and multicolor four-dimensional imaging of living cell, have unfolded the mystery of the chromatin structure and dynamics. In this study, I have discussed the possible causes of chromatin change in malignant cells based on available recent information. Multiple factors are responsible for alteration of chromatin pattern in malignant cells. The important factors in this respect are chromatin relocation, DNA aneuploidy, change of nuclear matrix protein (NMP), histone protein alteration, abnormal nuclear lamin-chromatin interaction, and nuclear pore dysfunction. It is not impossible that the chromatin pattern alteration may be just a secondary change due to the interaction of fixative with chromatin and nonchromatinic substances in the nucleus.
Collapse
Affiliation(s)
- Pranab Dey
- Cytology Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait.
| |
Collapse
|
84
|
Togashi T, Obata M, Aoyagi Y, Kominami R, Mishima Y. Two distinct methods analyzing chromatin structure using centrifugation and antibodies to modified histone H3: both provide similar chromatin states of the Rit1/Bcl11b gene. Biochem Biophys Res Commun 2004; 313:489-95. [PMID: 14697215 DOI: 10.1016/j.bbrc.2003.11.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chromatin state of a 2-Mb region harboring Rit1/Bcl11b on mouse chromosome 12 was examined using two distinct methods. One is ChIP assay examining the degree of enrichment with histone H3 methylated at lysine 9 (H3-mLys9) in chromatin and the other is H/E (heterochromatin/euchromatin) assay that measures a chromatin condensation state by using centrifugation. The ChIP assay showed that a 50-kb interval covering the gene and an upstream region constituted chromatin enriched with unmethylated H3-mLys9 in cells expressing Rit1 compared to cells not expressing Rit1. In contrast, regions other than the 50-kb interval did not show much difference in the enrichment between the two different types of cells. On the other hand, H/E assay of two expressing and two non-expressing tissues provided compatible fractionation patterns, suggesting that the chromatin condensation state detected by H/E assay is correlated with the chromatin state controlled by histone H3 tail modification linked to gene expression. These results indicate that the centrifugation-based H/E assay should provide a new approach to the regulation of chromatin structure with respect to its condensation state, complementing ChIP assays.
Collapse
Affiliation(s)
- Tadayuki Togashi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
85
|
Chadwick BP, Willard HF. Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 2003; 14:359-67. [PMID: 15015743 DOI: 10.1016/j.semcdb.2003.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X chromosome inactivation refers to the developmentally regulated process of silencing gene expression from all but one X chromosome per cell in female mammals in order to equalize the levels of X chromosome derived gene expression between the sexes. While much attention has focused on the genetic and epigenetic events early in development that initiate the inactivation process, it is also important to understand the events that ensure maintenance of the inactive state through subsequent cell divisions. Gene silencing at the inactive X chromosome is irreversible in somatic cells and is achieved through the formation of facultative heterochromatin (visible as the Barr body) that is remarkably stable and faithfully preserved. Here we review the many features of inactive X chromatin in terminally differentiated cells and address the highly redundant mechanisms of maintaining the inactive X chromatin.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Molecular Genetics & Microbiology, Institute for Genome Sciences and Policy, 103 Research Drive, Box 3382, Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
86
|
Helbig R, Fackelmayer FO. Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 2003; 112:173-82. [PMID: 14608463 DOI: 10.1007/s00412-003-0258-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/02/2003] [Indexed: 11/26/2022]
Abstract
Female mammalian cells inactivate transcription from one of their X chromosomes to equalize gene expression of X-linked genes between males and females. Inactivation is a multistep process that involves a large non-coding RNA termed XIST, a variety of epigenetic modifications of chromatin, and alterations in protein composition such as enrichment of the histone variant macroH2A. We show here that inactive X chromosomes are also enriched in a well-characterized protein component of the nuclear scaffold, SAF-A. This protein has been implicated in chromatin organization, owing to its high specificity for scaffold-associated region (SAR)-DNA, in transcriptional regulation, e.g. of hormone-regulated genes, owing to its functional interaction with steroid receptors, and in RNA processing, owing to its interaction with RNA and heterogeneous nuclear ribonucleoprotein (hnRNP) particles. After near complete removal of DNA and associated chromatin proteins such as macroH2A, SAF-A remains with the "nuclear matrix", still highlighting the former position of inactive X chromosomes. Interestingly, the enrichment of SAF-A in the inactive X chromosome depends on the RNA binding domain of the protein, the RGG box, raising the possibility that interaction of SAF-A with XIST RNA may contribute to the silencing of X-linked genes by local changes in nuclear architecture.
Collapse
Affiliation(s)
- Roger Helbig
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | | |
Collapse
|
87
|
Abstract
With the sequence of the human genome now complete, studies must focus on how the genome is functionally organized within the confines of the cell nucleus and the dynamic interplay between the genome and its regulatory factors to effectively control gene expression and silencing. In this review I describe our current state of knowledge with regard to the organization of chromosomes within the nucleus and the positioning of active versus inactive genes. In addition, I discuss studies on the dynamics of chromosomes and specific genetic loci within living cells and its relationship to gene activity and the cell cycle. Furthermore, our current understanding of the distribution and dynamics of RNA polymerase II transcription factors is discussed in relation to chromosomal loci and other nuclear domains.
Collapse
Affiliation(s)
- David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
88
|
Abstract
Microscopy of cells has changed dramatically since its early days in the mid-seventeenth century. Image analysis has concurrently evolved from measurements of hand drawings and still photographs to computational methods that (semi-) automatically quantify objects, distances, concentrations, and velocities of cells and subcellular structures. Today's imaging technologies generate a wealth of data that requires visualization and multi-dimensional and quantitative image analysis as prerequisites to turning qualitative data into quantitative values. Such quantitative data provide the basis for mathematical modeling of protein kinetics and biochemical signaling networks that, in turn, open the way toward a quantitative view of cell biology. Here, we will review technologies for analyzing and reconstructing dynamic structures and processes in the living cell. We will present live-cell studies that would have been impossible without computational imaging. These applications illustrate the potential of computational imaging to enhance our knowledge of the dynamics of cellular structures and processes.
Collapse
Affiliation(s)
- Roland Eils
- Intelligent Bioinformatics Systems Division, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | | |
Collapse
|
89
|
Lemke J, Claussen J, Michel S, Chudoba I, Mühlig P, Westermann M, Sperling K, Rubtsov N, Grummt UW, Ullmann P, Kromeyer-Hauschild K, Liehr T, Claussen U. The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet 2002; 71:1051-9. [PMID: 12370837 PMCID: PMC385084 DOI: 10.1086/344286] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 08/01/2002] [Indexed: 11/03/2022] Open
Abstract
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.
Collapse
Affiliation(s)
- Johannes Lemke
- Institute of Human Genetics and Anthropology, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zink D, Mayr C, Janz C, Wiesmüller L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 2002; 21:4788-800. [PMID: 12101417 DOI: 10.1038/sj.onc.1205614] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 04/09/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
Our previous recombination and biochemical analyses have led to the hypothesis that the tumor suppressor p53 monitors homologous recombination, a function which was previously attributed to the mismatch repair protein MSH2. Here, we show that a certain fraction of p53 is concentrated within discrete nuclear foci of cells synchronized in G1 phase, a pattern which becomes even more pronounced in S phase, especially after gamma-ray treatment. p53 foci show some colocalization with MSH2 within distinct foci during G1 phase, while dots formed by BRCA1 display an independent localization pattern. In S phase nuclei, p53 foci almost completely colocalize with MSH2 foci and associate with the recombination surveillance factor BRCA1 in irradiated S phase cells. These p53 and MSH2 foci also show significant overlaps with foci of the recombination enzymes Rad50 and Rad51, which for the first time unveiled recombination-related functions of p53 in replicating cells. During S phase, p53 and MSH2 are maximally active in binding to early recombination intermediates, and coexist within the same nuclear DNA-protein complexes. Our data suggest that p53 is linked similarly to homologous recombination as MSH2 and provide further evidence for the new concept of a dual role of p53 in the regulation of growth and repair.
Collapse
Affiliation(s)
- Daniele Zink
- Institut für Anthropologie und Humangenetik LMU München, Goethestr. 31,80336 München, Germany
| | | | | | | |
Collapse
|
91
|
Falk M, Lukásová E, Kozubek S, Kozubek M. Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes. Gene 2002; 292:13-24. [PMID: 12119095 DOI: 10.1016/s0378-1119(02)00667-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Topography of three genetic elements--dystrophin (dmd) exons 5-7 (E(1)), 46-47 (E(2)), and centromere of chromosome X (N(X)) were studied relative to cell nuclei and to chromosome X territories of spatially fixed human lymphocytes. Repeated three-dimensional (3D) dual color fluorescence in situ hybridization combined with high-resolution cytometry was used. In addition, the nuclear location of fluorescence weight centers (FWC), spatial volume, and maximal area per one section of chromosome-X territories were investigated. The larger (X(L)) and smaller (X(S)) homologous X-chromosomes were distinguished for each nucleus according to the 3D volume of their territories. The distributions of the [center of nucleus]-to-[genetic element] distances (radial distributions) of dmd exons E(1), E(2), centromere N(X) and FWC were very similar for both homologous X-chromosomes of female lymphocytes as well as for the chromosome X of the human male. On the other hand, larger average mutual distances between all pairs of signals (E(1), E(2), N(X), FWC) and larger average maximal area were observed for the larger chromosome (X(L)) in comparison with the smaller one (X(S)). The territory of the larger homologue showed also more irregular surface. The most significant differences between homologous X-chromosomes were found for N(X)-E(1), N(X)-E(2) and E(1)-E(2) distances that were in average about twice longer for X(L) as compared with X(S). These parameters correlate to each other and can be used for the reliable determination of more (de)condensed X-chromosome territory. The longer E(1)-E(2) distances for X(L) indicate more open chromatin structure of the dystrophin gene on this chromosome in contrary to closed structure on X(S). Substantially shorter distances of the dystrophin exons from the centromeric heterochromatin in X(S) as compared to X(L) can be explained by silencing effect of centromeres as described in Nature 1 (2000) 137.
Collapse
Affiliation(s)
- Martin Falk
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
92
|
Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 2002; 157:579-89. [PMID: 11994314 PMCID: PMC2173868 DOI: 10.1083/jcb.200111071] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The position of genes within the nucleus has been correlated with their transcriptional activity. The interchromosome domain model of nuclear organization suggests that genes preferentially locate at the surface of chromosome territories. Conversely, high resolution analysis of chromatin fibers suggests that chromosome territories do not present accessibility barriers to transcription machinery. To clarify the relationship between the organization of chromosome territories and gene expression, we have used fluorescence in situ hybridization to analyze the spatial organization of a contiguous approximately 1 Mb stretch of the Wilms' tumor, aniridia, genitourinary anomalies, mental retardation syndrome region of the human genome and the syntenic region in the mouse. These regions contain constitutively expressed genes, genes with tissue-restricted patterns of expression, and substantial regions of intergenic DNA. We find that there is a spatial organization within territories that is conserved between mouse and humans: certain sequences do preferentially locate at the periphery of the chromosome territories in both species. However, we do not detect genes necessarily at the periphery of chromosome territories or at the surface of subchromosomal domains. Intraterritory organization is not different among cell types that express different combinations of the genes under study. Our data demonstrate that transcription of both ubiquitous and tissue-restricted genes is not confined to the periphery of chromosome territories, suggesting that the basal transcription machinery and transcription factors can readily gain access to the chromosome interior.
Collapse
Affiliation(s)
- Nicola L Mahy
- Medical Research Council Human Genetics Unit, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | |
Collapse
|
93
|
Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C. Morphology and dynamics of chromosome territories in living cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1551:M29-39. [PMID: 11553419 DOI: 10.1016/s0304-419x(01)00023-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromosome territories formed by fluorescence-labeled sub-chromosomal foci were analyzed in time-lapse series of 3D confocal data sets of living HeLa and human neuroblastoma cells. The quantitative analysis of the chromosome territory morphology confirmed previous results obtained by visual observation [Zink et al., Hum. Genet. 102 (1998) 241-251] that chromosome territories persisted as stable entities over an observation time >4 h. The changes in morphology with time of single chromosome territories were found to be less pronounced than differences in morphology of different chromosome territories in fixed cells. The analysis of the individual motion of chromosome territories recently showed 'Brownian' diffusion-like motion at very slow rates [Bornfleth et al., Biophys. J. 77 (1999) 2871-2886]. Here, we show that the mutual motion of different chromosome territories was independent and also 'Brownian' diffusion-like.
Collapse
Affiliation(s)
- P Edelmann
- Kirchhoff Institute for Physics, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
94
|
Hong B, Reeves P, Panning B, Swanson MS, Yang TP. Identification of an autoimmune serum containing antibodies against the Barr body. Proc Natl Acad Sci U S A 2001; 98:8703-8. [PMID: 11438711 PMCID: PMC37499 DOI: 10.1073/pnas.151259598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.
Collapse
Affiliation(s)
- B Hong
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
95
|
Mascetti G, Carrara S, Vergani L. Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI. CYTOMETRY 2001; 44:113-9. [PMID: 11378861 DOI: 10.1002/1097-0320(20010601)44:2<113::aid-cyto1089>3.0.co;2-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study investigated the relationship between chromatin compactness, which is directly related to chromatin condensation, and DAPI uptake. Materials and Methods For the structural characterization of in situ chromatin, we used fluorescence microscopy and differential scanning calorimetry on calf thymocytes. The compactness of nuclear chromatin was altered by permeabilizing native cells with NP40 detergent. A time-dependent analysis of detergent effects was performed by acquiring nuclear images at different time intervals after permeabilization. In order to compare nuclei of different sizes, we implemented a geometrical correction in the calculation of the integrated fluorescence intensity. For a quantitative evaluation of chromatin condensation we introduced two new parameters, "average chromatin packing ratio" and "average dye spatial density." RESULTS This approach allowed us to estimate the effects of NP40 detergent at the level of in situ chromatin. Detergent effects could be modulated by changing the ionic composition of buffer. Moreover, changes of chromatin condensation induced by detergent were inversely related to modifications of nuclear volume. CONCLUSIONS The combination of complementary information obtained by fluorescence microscopy, supported by a proper geometrical correction, and differential calorimetry allowed us to interpret the patterns of fluorescence intensities inside the nucleus in terms of chromatin structure.
Collapse
Affiliation(s)
- G Mascetti
- X-Istituto di Calcolo Scientifico, Institute for Scientific Computing, Genoa, Italy
| | | | | |
Collapse
|
96
|
Tao W, He M, Hao S. Ultrastructural localization of active genes inAllium cepa cells. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf02900468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Maxwell CA, Hendzel MJ. The integration of tissue structure and nuclear function. Biochem Cell Biol 2001. [DOI: 10.1139/o01-078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living cells can filter the same set of biochemical signals to produce different functional outcomes depending on the deformation of the cell. It has been suggested that the cell may be "hard-wired" such that external forces can mediate internal nuclear changes through the modification of established, balanced, internal cytoskeletal tensions. This review will discuss the potential of subnuclear structures and nuclear chromatin to participate in or respond to transduction of mechanical signals originating outside the nucleus. The mechanical interactions of intranuclear structure with the nuclear lamina will be examined. The nuclear lamina, in turn, provides a structural link between the nucleus and the cytoplasmic and cortical cytoskeleton. These mechanical couplings may provide a basis for regulating gene expression through changes in cell shape.Key words: gene expression, cell structure, nuclear structure, mechanotransduction, chromatin.
Collapse
|
98
|
Vergani L, Mascetti G, Nicolini C. Changes of nuclear structure induced by increasing temperatures. J Biomol Struct Dyn 2001; 18:535-44. [PMID: 11245249 DOI: 10.1080/07391102.2001.10506686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Despite the recent improvement in understanding the higher-order structure of chromatin fibers, the organization of interphase chromosomes in specific nuclear domains emerged only recently and it is still controversial. This study took advantage of an integrated approach using complementary techniques in order to investigate the structure and organization of chromatin in interphase nucleus. Native CHO-K1 cells were progressively heated from 310 K to 410 K and the effects of increasing temperatures on nuclear chromatin were analyzed in situ by means of cytometric and calorimetric techniques. Distribution and organization of chromatin domains were analyzed by Fluorescence microscopy, while the mean condensation of nuclear chromatin was measured by Differential scanning calorimetry. The results show as changes of nuclear structures (envelope and matrix, namely) affect significantly organization and condensation of in situ chromatin. Moreover when volume is modified by an external force (the temperature gradient in our case) we observe significant alterations of chromatin structure. These data are in accordance with the hypothesis of an inverse relationship between nuclear volume and chromatin condensation.
Collapse
Affiliation(s)
- L Vergani
- Department of Biophysical Sciences and Technologies M & O, School of Medicine, University of Genova, Italy.
| | | | | |
Collapse
|
99
|
Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3:134-9. [PMID: 11175745 DOI: 10.1038/35055033] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined changes in intranuclear chromosome positioning induced by a transcriptional activator in a simple experimental system. Targeting the VP16 acidic activation domain (AAD) to an engineered chromosome site resulted in its transcriptional activation and redistribution from a predominantly peripheral to a more interior nuclear localization. Direct visualization in vivo revealed that the chromosome site normally moves into the nuclear interior transiently in early G1 and again in early S phase. In contrast, VP16 AAD targeting induced this site's permanent interior localization in early G1. A single transcriptional activator therefore can modify the cell-cycle-dependent programme of intranuclear positioning of chromosome loci.
Collapse
Affiliation(s)
- T Tumbar
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Room B107 C&LSL, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
100
|
Hendzel MJ, Kruhlak MJ, MacLean NA, Boisvert F, Lever MA, Bazett-Jones DP. Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol 2001; 76:9-21. [PMID: 11384859 DOI: 10.1016/s0960-0760(00)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell nucleus is increasingly recognized as a spatially organized structure. In this review, the nature and controversies associated with nuclear compartmentalization are discussed. The relationship between nuclear structure and organization of proteins involved in the regulation of RNA polymerase II-transcribed genes is then discussed. Finally, very recent data on the mobility of these proteins within the cell nucleus is considered and their implications for regulation through compartmentalization of proteins and genomic DNA are discussed.
Collapse
Affiliation(s)
- M J Hendzel
- Department of Oncology and Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave., Alta, T6G 1Z2, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|