51
|
Iacovelli J, Lopera J, Bott M, Baldwin E, Khaled A, Uddin N, Fernandez-Valle C. Serum and forskolin cooperate to promote G1 progression in Schwann cells by differentially regulating cyclin D1, cyclin E1, and p27Kip expression. Glia 2007; 55:1638-47. [PMID: 17849471 DOI: 10.1002/glia.20578] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proliferation of Schwann cells in vitro, unlike most mammalian cells, is not induced by serum alone but additionally requires cAMP elevation and mitogenic stimulation. How these agents cooperate to promote progression through the G1 phase of the cell cycle is unclear. We studied the integrative effects of these compounds on receptor-mediated signaling pathways and regulators of G1 progression. We show that serum alone induces strong cyclical expression of cyclin D1 and E1, 6 and 12 h after addition, respectively. Serum also promotes strong but transient erbB2, ERK, and Akt phosphorylation, but Schwann cells remain arrested in G1 due to high levels of the inhibitor, p27(Kip). Forskolin with serum promotes G1 progression in 22% of Schwann cells between 18 and 24 h by inducing a steady decline in p27(Kip) levels that reaches a nadir at 12 h coinciding with peak cyclin E1 expression. Forskolin also delays neuregulin-induced loss of erbB2 receptors allowing strong acute activation of PI3K, sustained erbB2 phosphorylation and G1 progression in 31% of Schwann cells. We find that the ability of forskolin to decrease p27(Kip) is associated with its ability to decrease Krox-20 expression that is induced by serum and further increased by neuregulin. Our results explain why serum is required but insufficient to stimulate proliferation and identify two routes by which forskolin promotes proliferation in the presence of serum and neuregulin. These findings provide insights into how G1 progression and, cell cycle arrest leading to myelination are regulated in Schwann cells.
Collapse
Affiliation(s)
- Jared Iacovelli
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Rabert D, Xiao Y, Yiangou Y, Kreder D, Sangameswaran L, Segal MR, Hunt CA, Birch R, Anand P. Plasticity of gene expression in injured human dorsal root ganglia revealed by GeneChip oligonucleotide microarrays. J Clin Neurosci 2007; 11:289-99. [PMID: 14975420 DOI: 10.1016/j.jocn.2003.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/09/2003] [Indexed: 11/29/2022]
Abstract
Root avulsion from the spinal cord occurs in brachial plexus lesions. It is the practice to repair such injuries by transferring an intact neighbouring nerve to the distal stump of the damaged nerve; avulsed dorsal root ganglia (DRG) are removed to enable nerve transfer. Such avulsed adult human cervical DRG ( [Formula: see text] ) obtained at surgery were compared to controls, for the first time, using GeneChip oligonucleotide arrays. We report 91 genes whose expression levels are clearly altered by the injury. This first study provides a global assessment of the molecular events or "gene switches" as a consequence of DRG injuries, as the tissues represent a wide range of surgical delay, from 1 to 100 days. A number of these genes are novel with respect to sensory ganglia, while others are known to be involved in neurotransmission, trophism, cytokine functions, signal transduction, myelination, transcription regulation, and apoptosis. Cluster analysis showed that genes involved in the same functional groups are largely positioned close to each other. This study represents an important step in identifying new genes and molecular mechanisms in human DRG, with potential therapeutic relevance for nerve repair and relief of chronic neuropathic pain.
Collapse
|
53
|
Jiang S, Seng S, Avraham HK, Fu Y, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 2007; 282:12319-29. [PMID: 17324934 DOI: 10.1074/jbc.m701019200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated by progenitor cells that are committed to differentiating into myelin-forming cells of the central nervous system. Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by OLGs. Here, we have characterized a new member of the Kelch-related protein family termed MRP2 (for Mayven-related protein 2) that is specifically expressed in brain. MRP2/KLHL1 is expressed in oligodendrocyte precursors and mature OLGs, and its expression is up-regulated during OLG differentiation. MRP2/KLHL1 expression was abundant during the specific stages of oligodendrocyte development, as identified by A2B5-, O4-, and O1-specific oligodendrocyte markers. MRP2/KLHL1 was localized in the cytoplasm and along the cell processes. Moreover, a direct endogenous association of MRP2/KLHL1 with actin was observed, which was significantly increased in differentiated OLGs compared with undifferentiated OLGs. Overexpression of MRP2/KLHL1 resulted in a significant increase in the process extension of rat OLGs, whereas MRP2/KLHL1 antisense reduced the process length of primary rat OLGs. Furthermore, murine OLGs isolated from MRP2/KLHL1 transgenic mice showed a significant increase in the process extension of OLGs compared with control wild-type murine OLGs. These studies provide insights into the role of MRP2/KLHL1, through its interaction with actin, in the process elongation of OLGs.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
54
|
Gao L, Miller RH. Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. J Neurosci 2006; 26:7619-28. [PMID: 16855089 PMCID: PMC6674293 DOI: 10.1523/jneurosci.0855-06.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cell fate commitment in the developing CNS frequently depends on localized cell-cell interactions. In the avian visual system the optic nerve oligodendrocytes are derived from founder cells located at the floor of the third ventricle. Here we show that the induction of these founder cells is directly dependent on signaling from the retinal ganglion cell (RGC) axons. The appearance of oligodendrocyte precursor cells (OPCs) correlates with the projection of RGC axons, and early eye removal dramatically reduces the number of OPCs. In vitro signaling from retinal neurites induces OPCs in responsive tissue. Retinal axon induction of OPCs is dependent on sonic hedgehog (Shh) and neuregulin signaling, and the inhibition of either signal reduces OPC induction in vivo and in vitro. The dependence of OPCs on retinal axonal cues appears to be a common phenomenon, because ocular retardation (or(J)) mice lacking optic nerve have dramatically reduced OPCs in the midline of the third ventricle.
Collapse
|
55
|
Esper RM, Pankonin MS, Loeb JA. Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease. ACTA ACUST UNITED AC 2006; 51:161-75. [PMID: 16412517 DOI: 10.1016/j.brainresrev.2005.11.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 12/29/2022]
Abstract
The neuregulins are a family of growth and differentiation factors with a wide range of functions in the nervous system. The power and diversity of the neuregulin signaling system comes in part from a large number of alternatively-spliced forms of the NRG1 gene that can produce both soluble and membrane-bound forms. The soluble forms of neuregulin are unique from other factors in that they have a structurally distinct heparin-binding domain that targets and potentiates its actions. In addition, a finely tuned, bidirectional mechanism regulates when and where neuregulin is released from neurons in response to neurotrophic factors produced by both neuronal targets and supporting glial cells. Together, this produces a balanced intercellular signaling system that can be localized to distinct regions for both normal development and maintenance of the mature nervous system. Recent evidence suggests that neuregulin signaling plays important roles in many neurological disorders including multiple sclerosis, traumatic brain and spinal cord injury, peripheral neuropathy, and schizophrenia. Here, we review the basic biology of neuregulins and relate this to research suggesting their involvement with and potential therapeutic uses for neurological disorders.
Collapse
Affiliation(s)
- Raymond M Esper
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
56
|
Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci 2006; 26:5849-59. [PMID: 16723544 PMCID: PMC6675261 DOI: 10.1523/jneurosci.4921-05.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myelin formation involves the outgrowth of an oligodendrocyte cell process that can be regarded as a giant lamellipodium because it is an actively growing structure with extruded cytoplasm. The actin cytoskeleton is critical to morphogenesis, but little is known about regulation of actin dynamics in oligodendrocytes. Wiskott-Aldrich syndrome protein family verprolin homologous (WAVE) proteins mediate lamellipodia formation; thus, we asked whether these proteins function in oligodendrocyte process formation and myelination. Here, we show that WAVE1 is expressed by oligodendrocytes and localizes to the lamella leading edge where actin polymerization is actively regulated. CNS WAVE1 expression increases at the onset of myelination. Expression of dominant-negative WAVE1 impaired process outgrowth and lamellipodia formation in cultured oligodendrocytes. Similarly, oligodendrocytes isolated from mice lacking WAVE1 had fewer processes compared with controls, whereas neurons and astrocytes exhibited normal morphology. In white matter of WAVE1-/- mice, we found regional hypomyelination in the corpus callosum and to a lesser extent in the optic nerve. In optic nerve from WAVE1-/- mice, there were fewer nodes of Ranvier but nodal morphology was normal, implicating a defect in myelin formation. Our in vitro findings support a developmentally dynamic and cell-autonomous role for WAVE1 in regulating process formation in oligodendrocytes. Additionally, WAVE1 function during CNS myelination appears to be linked to regional cues. Although its loss can be compensated for in many CNS regions, WAVE1 is clearly required for normal amounts of myelin to form in corpus callosum and optic nerve. Together, these data demonstrate a role for WAVE1 in oligodendrocyte morphogenesis and myelination.
Collapse
|
57
|
Atanasoski S, Scherer SS, Sirkowski E, Leone D, Garratt AN, Birchmeier C, Suter U. ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J Neurosci 2006; 26:2124-31. [PMID: 16481445 PMCID: PMC6674935 DOI: 10.1523/jneurosci.4594-05.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin/erbB signaling is critically required for survival and proliferation of Schwann cells as well as for establishing correct myelin thickness of peripheral nerves during development. In this study, we investigated whether erbB2 signaling in Schwann cells is also essential for the maintenance of myelinated peripheral nerves and for Schwann cell proliferation and survival after nerve injury. To this end, we used inducible Cre-loxP technology using a PLP-CreERT2 allele to ablate erbB2 in adult Schwann cells. ErbB2 expression was markedly reduced after induction of erbB2 gene disruption with no apparent effect on the maintenance of already established myelinated peripheral nerves. In contrast to development, Schwann cell proliferation and survival were not impaired in mutant animals after nerve injury, despite reduced levels of MAPK-P (phosphorylated mitogen-activated protein kinase) and cyclin D1. ErbB1 and erbB4 do not compensate for the loss of erbB2. We conclude that adult Schwann cells do not require major neuregulin signaling through erbB2 for proliferation and survival after nerve injury, in contrast to development and in cell culture.
Collapse
|
58
|
Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA. Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci 2006; 25:3478-87. [PMID: 15800203 PMCID: PMC6724908 DOI: 10.1523/jneurosci.3766-04.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
How do myelinated axons signal to the nuclei of cells that enwrap them? The cell bodies of oligodendrocytes and Schwann cells are segregated from axons by multiple layers of bimolecular lipid leaflet and myelin proteins. Conventional signal transduction strategies would seem inadequate to the challenge without special adaptations. Wallerian degeneration provides a model to study axon-to-Schwann cell signaling in the context of nerve injury. We show a hitherto undetected rapid, but transient, activation of the receptor tyrosine kinase erbB2 in myelinating Schwann cells after sciatic nerve axotomy. Deconvolving microscopy using phosphorylation state-specific antibodies shows that erbB2 activation emanates from within the microvilli of Schwann cells, in direct contact with the axons they enwrap. To define the functional role of this transient activation, we used a small molecule antagonist of erbB2 activation (PKI166). The response of myelinating Schwann cells to axotomy is inhibited by PKI166 in vivo. Using neuron/Schwann cell cocultures prepared in compartmentalized cell culture chambers, we show that even transient activation of erbB2 is sufficient to initiate Schwann cell demyelination and that the initiating functions of erbB2 are localized to Schwann cells.
Collapse
Affiliation(s)
- Amy D Guertin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | | | |
Collapse
|
59
|
Sussman CR, Vartanian T, Miller RH. The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. J Neurosci 2006; 25:5757-62. [PMID: 15958742 PMCID: PMC6724872 DOI: 10.1523/jneurosci.4748-04.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuregulin is required for proper oligodendrocyte development, but which receptors are involved and whether neuregulin promotes or inhibits maturation remain controversial. To assess the roles of the neuregulin receptor ErbB4 in oligodendrocyte development, we examined oligodendrocyte initiation and maturation in cultures derived from erbB4 knock-out mice and rat spinal cord in the presence of neutralizing erbB4 antibodies. No differences in the development of O4+ oligodendrocytes were detected in the presence or absence of erbB4 signaling. All four epidermal growth factor receptor family members were detected in the ventral neural tube at approximately the time of initial oligodendrocyte development, consistent with redundancy in neuregulin receptor signaling at the onset of oligodendrocyte development. In contrast, greater numbers of differentiated (monoclonal antibody O1+) oligodendrocytes developed in neural tube explants from erbB4(-/-) mice than either erbB4(+/+) or erbB4(+/-) littermates as well as in cultures treated with anti-erbB4. These data indicate that ErbB4 is not required for oligodendrocyte development and, in fact, inhibits oligodendrocyte lineage maturation. Together with previous studies, these data suggest a model in which early oligodendrocyte lineage development is regulated by promiscuous neuregulin receptor signaling, but subsequent lineage progression occurs through a balance of receptor-specific promotion or inhibition of maturation.
Collapse
Affiliation(s)
- Caroline R Sussman
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | |
Collapse
|
60
|
Fu AKY, Ip FCF, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci U S A 2005; 102:15224-9. [PMID: 16203963 PMCID: PMC1257743 DOI: 10.1073/pnas.0507678102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase (Cdk)5 is a key regulator of neural development. We have previously demonstrated that Cdk5/p35 are localized to the postsynaptic muscle and are implicated in the regulation of neuregulin/ErbB signaling in myotube culture. To further elucidate whether Cdk5 activity contributes to neuromuscular junction (NMJ) development in vivo, the NMJ of Cdk5-/- mice was examined. Consistent with our previous demonstration that Cdk5 phosphorylates ErbB2/3 to regulate its tyrosine phosphorylation, we report here that the phosphorylation of ErbB2 and ErbB3 and the ErbB2 kinase activity are reduced in Cdk5-deficient muscle. In addition, Cdk5-/- mice also display morphological abnormalities at the NMJ pre- and postsynaptically. Whereas the outgrowth of the main nerve trunk is grossly normal, the intramuscular nerve projections exhibit profuse and anomalous branching patterns in the Cdk5-/- embryos. The central band of acetylcholine receptor (AChR) clusters is also wider in Cdk5-/- diaphragms, together with the absence of S100 immunoreactivity along the phrenic nerve during late embryonic stages. Moreover, we unexpectedly discovered that the agrin-induced formation of large AChR clusters is significantly increased in primary muscle cultures prepared from Cdk5-null mice and in C2C12 myotubes when Cdk5 activity was suppressed. These abnormalities are accompanied by elevated frequency of miniature endplate potentials in Cdk5-null diaphragm. Taken together, our findings reveal the essential role of Cdk5 in regulating the development of motor axons and neuromuscular synapses in vivo.
Collapse
Affiliation(s)
- Amy K Y Fu
- Department of Biochemistry, Biotechnology Research Institute, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Neuregulin signaling through ErbB receptors is known to play an essential role in Schwann cell proliferation, survival and myelination. Recent studies in zebrafish provide a peek at living Schwann cells migrating along axons in vivo and suggest that ErbB signaling, while not required for cell movement per se, is required to maintain the directed migration of these cells.
Collapse
Affiliation(s)
- Cary Lai
- The Scripps Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
62
|
Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005; 8:745-51. [PMID: 15895088 DOI: 10.1038/nn1460] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 04/19/2005] [Indexed: 11/09/2022]
Abstract
The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cells, Cultured
- Central Nervous System/embryology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Coculture Techniques
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Humans
- Membrane Proteins
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Myelin Sheath/genetics
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Myelin-Associated Glycoprotein/antagonists & inhibitors
- Myelin-Associated Glycoprotein/genetics
- Myelin-Associated Glycoprotein/metabolism
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Tissue Proteins
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- RNA Interference/drug effects
- RNA Interference/physiology
- Ranvier's Nodes/genetics
- Ranvier's Nodes/metabolism
- Ranvier's Nodes/ultrastructure
- Rats
- Rats, Long-Evans
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- rhoA GTP-Binding Protein/metabolism
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Sha Mi
- Department of Discovery Biology, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Jiang S, Avraham HK, Park SY, Kim TA, Bu X, Seng S, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related actin-binding protein Mayven. J Neurochem 2005; 92:1191-203. [PMID: 15715669 DOI: 10.1111/j.1471-4159.2004.02946.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by oligodendrocytes. We observed that the actin-binding protein, Mayven, is expressed during all stages of the oligodendrocyte lineage, and that its expression is up-regulated during oligodendrocyte differentiation. Mayven is localized in the cytoplasm and along the cell processes. Mayven also binds actin, and is involved in the cytoskeletal reorganization in oligodendrocyte precursor cells (O-2A cells) that leads to process elongation. Mayven overexpression resulted in an increase in the process outgrowth of O-2A cells and in the lengths of the processes, while microinjection of Mayven-specific antibodies inhibited process extension in these cells. Furthermore, O-2A cells transduced with recombinant retroviral sense Mayven (pMIG-W-Mayven) showed an increase in the number of oligodendrocyte processes with outgrowth, while recombinant retroviral antisense Mayven (pMIG-W-Mayven-AS) blocked O-2A process extension. Interestingly, co-localization and association of Mayven with Fyn kinase were found in O-2A cells, and these interactions were increased during the outgrowth of oligodendrocyte processes. This association was mediated via the SH3 domain ligand (a.a. 1-45) of Mayven and the SH3 domain of Fyn, suggesting that Mayven may act as a linker to bind Fyn, via its N-terminus. Thus, Mayven plays a role in the dynamics of cytoskeletal rearrangement leading to the process extension of oligodendrocytes.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachussetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Gerecke KM, Wyss JM, Carroll SL. Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci 2005; 27:379-93. [PMID: 15555917 DOI: 10.1016/j.mcn.2004.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 07/07/2004] [Accepted: 08/02/2004] [Indexed: 12/30/2022] Open
Abstract
Neuregulin-1 (NRG-1) growth and differentiation factors and their erbB receptors are hypothesized to promote embryonic hippocampal neuron differentiation via as yet unknown mechanisms. We have found that NRG-1beta increases the outgrowth of primary neurites, neuronal area, total neurite length, and neuritic branching in E18 hippocampal neurons. NRG-1beta effects on neurite extension and arborization are similar to, but not additive with, those of brain-derived neurotrophic factor and reflect direct NRG-1 action on hippocampal neurons as these cells express the NRG-1 receptors erbB2 and erbB4, the erbB-specific inhibitor PD158780 decreases NRG-1beta induced neurite outgrowth, and NRG-1beta stimulation induces p42/44 ERK phosphorylation. Pharmacological inhibition of p42/44 ERK and protein kinase C (PKC), but not PI3K or p38 MAP kinase, inhibits NRG-1beta-induced neurite extension and elaboration. We conclude that NRG-1beta stimulates hippocampal neurite extension and arborization via a signaling pathway that involves erbB membrane tyrosine kinases (erbB2 and/or erbB4), p42/44 ERK, and PKC.
Collapse
Affiliation(s)
- Kimberly M Gerecke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
65
|
Prevot V, Lomniczi A, Corfas G, Ojeda SR. erbB-1 and erbB-4 receptors act in concert to facilitate female sexual development and mature reproductive function. Endocrinology 2005; 146:1465-72. [PMID: 15591145 DOI: 10.1210/en.2004-1146] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glial erbB-1 and erbB-4 receptors are key components of the process by which neuroendocrine glial cells control LHRH secretion and the onset of female puberty. We now provide evidence that these two signaling systems work in a coordinated fashion to control reproductive function. To generate animals carrying functionally impaired erbB-1 and erbB-4 receptors, we crossed Waved 2 (Wa-2+/+) mice harboring a point mutation of the erbB-1 receptor with mice expressing a dominant-negative erbB-4 receptor in astrocytes. In comparison to single-deficient mice, double-mutant animals exhibited a further delay in the onset of puberty and a strikingly diminished adult reproductive capacity. Ligand-dependent erbB receptor phosphorylation and erbB-mediated MAPK (ERK 1/2) phosphorylation were impaired in mutant astrocytes. Wa-2+/+ or double-mutant astrocytes failed to respond to TGF alpha with production of prostaglandin E2, one of the factors mediating the stimulatory effect of astroglial erbB receptor activation on LHRH release. Medium conditioned by Wa-2+/+ or double-mutant astrocytes treated with TGF alpha failed to stimulate LHRH release from GT1-7 cells. The LH response to ovariectomy was significantly attenuated in mutant mice in comparison with wild-type controls. Although the Wa-2 mutation affects all cells bearing erbB-1 receptors, these results suggest that a major defect underlying the reproductive defects of animals with impaired erbB signaling is a decreased ability of glial cells to stimulate LHRH release. Thus, a coordinated involvement of erbB-1 and erbB-4 signaling systems is required for the normalcy of sexual development and the maintenance of mature female reproductive function.
Collapse
Affiliation(s)
- Vincent Prevot
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Sciences Unversity, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
66
|
Fox IJ, Kornblum HI. Developmental profile of ErbB receptors in murine central nervous system: Implications for functional interactions. J Neurosci Res 2005; 79:584-97. [PMID: 15682390 DOI: 10.1002/jnr.20381] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ErbB family, ErbB1 (also known as the epidermal growth factor receptor EGFR), ErbB2, ErbB3, and ErbB4 comprise a group of receptor tyrosine kinases that interact with ligands from the epidermal growth factor (EGF) superfamily, subsequently dimerize, catalytically activate each other by cross-phosphorylation, and then stimulate various signaling pathways. To gain a better understanding of in vivo functions of ErbB receptors in the central nervous system, the current study examined their mRNA expression throughout development in the mouse brain via in situ hybridization. EGFR, ErbB2, and ErbB4 exhibited distinct but sometimes overlapping distributions in multiple cell types within germinal zones, cortex, striatum, and hippocampus in prenatal and postnatal development. In addition, a subpopulation of cells positive for ErbB4 mRNA in postnatal cortex and striatum coexpressed mRNA for either EGFR or GAD67, a marker for gamma-aminobutyric acid (GABA)ergic interneurons, suggesting that both ErbB4 and EGFR are coexpressed in GABAergic interneurons. In contrast, ErbB3 mRNA was not detected within the brain during development and only appeared in white matter tracts in adulthood. Together, these findings suggest that ErbB receptors might mediate multiple functions in central nervous system development, some of which may be initiated by EGFR/ErbB4 heterodimers in vivo.
Collapse
Affiliation(s)
- Irina J Fox
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
67
|
Pearson RJ, Carroll SL. ErbB transmembrane tyrosine kinase receptors are expressed by sensory and motor neurons projecting into sciatic nerve. J Histochem Cytochem 2004; 52:1299-311. [PMID: 15385576 DOI: 10.1177/002215540405201006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive.
Collapse
Affiliation(s)
- Richard J Pearson
- Department of Pathology, University of Alabama at Birmingham, 1720 Seventh Avenue South, SC843, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
68
|
Affiliation(s)
- D A Talmage
- Institute for Human Nutrition and Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
69
|
Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 2004; 15:415-36. [PMID: 15056450 DOI: 10.1016/j.nbd.2003.11.015] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/03/2003] [Accepted: 11/14/2003] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability, and at present, there is no universally accepted treatment. The functional decline following SCI is contributed to both direct mechanical injury and secondary pathophysiological mechanisms that are induced by the initial trauma. These mechanisms initially involve widespread haemorrhage at the site of injury and necrosis of central nervous system (CNS) cellular components. At later stages of injury, the cord is observed to display reactive gliosis. The actions of astrocytes as well as numerous other cells in this response create an environment that is highly nonpermissive to axonal regrowth. Also manifesting important effects is the immune system. The early recruitment of neutrophils and at later stages, macrophages to the site of insult cause exacerbation of injury. However, at more chronic stages, macrophages and recruited T helper cells may potentially be helpful by providing trophic support for neuronal and non-neuronal components of the injured CNS. Within this sea of injurious mechanisms, the oligodendrocytes appear to be highly vulnerable. At chronic stages of SCI, a large number of oligodendrocytes undergo apoptosis at sites that are distant to the vicinity of primary injury. This leads to denudement of axons and deterioration of their conductive abilities, which adds significantly to functional decline. By indulging into the molecular mechanisms that cause oligodendrocyte apoptosis and identifying potential targets for therapeutic intervention, the prevention of this apoptotic wave will be of tremendous value to individuals living with SCI.
Collapse
Affiliation(s)
- Christos Profyris
- Motor Neuron Disease and Paralysis Laboratory, Neural Injury and Repair Group, The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
70
|
Longart M, Liu Y, Karavanova I, Buonanno A. Neuregulin-2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol 2004; 472:156-72. [PMID: 15048684 DOI: 10.1002/cne.20016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuregulin-1 (NRG-1) regulates numerous aspects of neural development and synaptic plasticity; the functions of NRG-2 and NRG-3 are presently unknown. As a first step toward understanding how NRGs contribute to distinct aspects of neural development and function, we characterized their regional and subcellular expression patterns in developing brain. The expression of NRG-1-3 mRNAs was compared postnatally (P0, P7, adult) by using in situ hybridization. NRG-1 expression is highest at birth, whereas NRG-2 mRNA levels increase with development; expression of both genes is restricted to distinct brain regions. In contrast, NRG-3 transcripts are abundant in most brain regions throughout development. NRG-2 antibodies were generated to analyze protein processing, expression, and subcellular distribution. As with NRG-1, the transmembrane NRG-2 proprotein is proteolytically processed in transfected HEK 293 cells and in neural tissues, and its ectodomain is exposed and accumulates on the neuron surface. Despite the structural similarities between NRG-1 and NRG-2, we unexpectedly found that NRG-2 colocalizes with MAP2 in proximal primary dendrites of hippocampal neurons in culture and in vivo, although it is not detectable in axons or in axon terminals. These findings were confirmed with NRG-2 ectodomain antisera and epitope-tagged recombinant protein. In cerebellum, NRG-2 colocalizes with calbindin in proximal dendrites and soma of Purkinje cells. In contrast, NRG-1 is highly expressed in axons of dissociated hippocampal neurons, as well as in somas and dendrites. The distinct temporal, regional, and subcellular expression of NRG-2 suggests its unique and nonredundant role in neural function.
Collapse
Affiliation(s)
- Marines Longart
- Section on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
71
|
Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol 2004; 480:101-14. [PMID: 15514921 DOI: 10.1002/cne.20344] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fate of exogenous neural stem cells (NSCs) in the environment of the adult nervous system continues to be a matter of debate. In the present study, we report that cells of the murine NSC clone C17.2, when grafted into the lumbar segments of the spinal cord of adult rats, survive and undergo partial differentiation. C17.2 cells migrate avidly toward axonal tracts and nerve roots and differentiate into nonmyelinating ensheathing cells. Notably, C17.2 cells induce the de novo formation of host axon tracts aiming at graft innervation. Differentiation and inductive properties of C17.2 cells are independent of the presence of lesions in the spinal cord. The tropic/trophic interactions of C17.2 NSCs with host axons, the avid C17.2 cell-host axon contacts, and the ensheathing properties of these cells are related to their complex molecular profile, which includes the expression of trophic cytokines and neurotrophins such as glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, glial growth factor receptors such as ErbB-2; and PASK, the mammalian homologue of the fray gene that is involved in axon ensheathment. These results show that NSCs might not only play a critical supportive role in repairing axonal injury in the adult spinal cord but also can be used as probes for exploring the molecular underpinnings of the regenerative potential of the mature nervous system after injury.
Collapse
Affiliation(s)
- Jun Yan
- Division of Neuropathology, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
72
|
Chun SJ, Rasband MN, Sidman RL, Habib AA, Vartanian T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. ACTA ACUST UNITED AC 2003; 163:397-408. [PMID: 14581460 PMCID: PMC2173507 DOI: 10.1083/jcb.200304154] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Early steps in myelination in the central nervous system (CNS) include a specialized and extreme form of cell spreading in which oligodendrocytes extend large lamellae that spiral around axons to form myelin. Recent studies have demonstrated that laminin-2 (LN-2; alpha2beta1gamma1) stimulates oligodendrocytes to extend elaborate membrane sheets in vitro (cell spreading), mediated by integrin alpha6beta1. Although a congenital LN-2 deficiency in humans is associated with CNS white matter changes, LN-2-deficient (dy/dy) mice have shown abnormalities primarily within the peripheral nervous system. Here, we demonstrate a critical role for LN-2 in CNS myelination by showing that dy/dy mice have quantitative and morphologic defects in CNS myelin. We have defined the molecular pathway through which LN-2 signals oligodendrocyte cell spreading by demonstrating requirements for phosphoinositide 3-kinase activity and integrin-linked kinase (ILK). Interaction of oligodendrocytes with LN-2 stimulates ILK activity. A dominant negative ILK inhibits LN-2-induced myelinlike membrane formation. A critical component of the myelination signaling cascade includes LN-2 and integrin signals through ILK.
Collapse
Affiliation(s)
- Soo Jin Chun
- Department of Neurology, Beth Israel Deaconess Medical Center, Center for Neurodegeneration and Repair and the Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
73
|
Drøjdahl N, Fenger C, Nielsen HH, Owens T, Finsen B. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice. J Neurosci Res 2003; 75:203-217. [PMID: 14705141 DOI: 10.1002/jnr.10860] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The inflammatory cytokine tumour necrosis factor (TNF) can both induce oligodendrocyte and myelin pathology and promote proliferation of oligodendrocyte progenitor cells and remyelination. We have compared the response of the oligodendrocyte lineage to anterograde axonal (Wallerian) and terminal degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed a tendency towards a greater increase in the number of juxtaposed, potentially proliferating oligodendrocytes. Noteworthy, at day 5 we also observed upregulation of MBP mRNA expression in adjacent hippocampal subregions with lesion-induced axonal sprouting, which were devoid of axonal degeneration, raising the possibility that sprouting axons provide trophic stimuli to the oligodendrocyte lineage. Twenty-eight days after lesioning, oligodendrocyte numbers and MBP mRNA expression were reduced to near normal levels. However, oligodendrocyte densities in the TNF-transgenic mice were significantly lower than in nontransgenics. We conclude that the early response of the oligodendrocyte lineage to axonal lesioning and lesion-induced axonal sprouting appears unaffected by the supranormal TNF levels in the TNF-transgenic mice. TNF may, however, have long-term inhibitory effects on the oligodendrocyte response to axonal lesioning.
Collapse
Affiliation(s)
- Nina Drøjdahl
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark-Odense, Odense C, Denmark
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christina Fenger
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark-Odense, Odense C, Denmark
| | - Helle H Nielsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark-Odense, Odense C, Denmark
| | - Trevor Owens
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bente Finsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark-Odense, Odense C, Denmark
| |
Collapse
|
74
|
Kim DH, Vaccaro AR, Henderson FC, Benzel EC. Molecular biology of cervical myelopathy and spinal cord injury: role of oligodendrocyte apoptosis. Spine J 2003; 3:510-9. [PMID: 14609697 DOI: 10.1016/s1529-9430(03)00117-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Rational design of treatment strategies for cervical myelopathy and spinal cord injury requires a working knowledge of the molecular biology underlying these pathological processes. The cellular process of apoptosis is an important component of tissue and organ development as well as the natural response to disease and injury. Recent studies have convincingly demonstrated that apoptosis also plays a pivotal role in numerous pathological processes, contributing to the adverse effects of various diseases and traumatic conditions. A growing body of evidence has implicated apoptosis as a key determinant of the extent of neurological damage and dysfunction after acute spinal cord injury and in chronic cervical myelopathy. PURPOSE To provide clinicians and research investigators interested in spinal cord injury and myelopathy with a practical and up-to-date basic science review of cellular apoptosis in the context of spinal cord pathology. STUDY DESIGN/SETTING A review of recently published or presented data from molecular biological, animal model and human clinical studies. METHODS A computer-based comprehensive review of the English-language scientific and medical literature was performed in order to identify relevant publications with emphasis given to more recent studies. RESULTS Investigation into the role of apoptosis in spinal cord injury and myelopathy has drawn the interest of an increasing number of researchers and has yielded a substantial amount of new information. CONCLUSIONS Apoptosis is a fundamental biological process that contributes to preservation of health as well as development of disease. There is now strong evidence to support a significant role for apoptosis in secondary injury mechanisms after acute spinal cord injury as well in the progressive neurological deficits observed in such conditions as spondylotic cervical myelopathy.
Collapse
Affiliation(s)
- David H Kim
- The Boston Spine Group, New England Baptist Hospital, Boston, MA 02120, USA
| | | | | | | |
Collapse
|
75
|
Schmucker J, Ader M, Brockschnieder D, Brodarac A, Bartsch U, Riethmacher D. erbB3 is dispensable for oligodendrocyte development in vitro and in vivo. Glia 2003; 44:67-75. [PMID: 12951658 DOI: 10.1002/glia.10275] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development and in the adult, erbB2, erbB3, and erbB4 are expressed in many tissues and as heterodimers (B2/B3, B2/B4) serve as receptors for neuregulins. The general importance of neuregulin receptors for development is underlined by the observed embryonic (erbB2, erbB4) or perinatal (erbB3) lethality in mouse mutants. These mutants further revealed the fundamental role of the erbB2/erbB3 heterodimer for proper Schwann cell development, the ensheathing glia of the peripheral nervous system. However, only little is known about the functions of neuregulins and their receptors during postnatal development and in the adult. erbB2 and erbB3 during late embryogenesis and postnatally are expressed in different areas and cell types of the central nervous system, including oligodendrocytes, the ensheathing glia of the central nervous system. As terminal differentiation of oligodendrocytes peaks during postnatal development, it is not possible to use the neuregulin receptor mouse mutants to study terminal differentiation of oligodendrocytes in their absence in vivo. In order to investigate possible functions of the erbB3 gene in oligodendrocytes, we employed two different techniques. First, we directed the differentiation of erbB3-deficient embryonic stem cells into neural cell types to analyze the development of oligodendrocytes in the absence of erbB3 in vitro. Second, we grafted neural stem cells from spinal cords of erbB3 mutants into the retina of young mice to monitor oligodendrocyte differentiation and myelination in vivo. Results of both experimental approaches clearly show that erbB3 is not required for normal oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Johannes Schmucker
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
The knock-out analyses of neuregulin and its receptors have indicated that they play essential roles in Schwann cell development. However, the role they play in oligodendrocyte development in vivo has remained unclear, because such knock-out animals die before CNS myelination begins. We examined the role of neuregulin signaling in the CNS by generating transgenic mice that express a dominant-negative mutant of the ErbB2 receptor among oligodendrocytes, using an MBP promoter. The transgenic mice exhibited widespread hypomyelination, resulting from a reduction in oligodendrocyte differentiation. The number of progenitors was conversely increased in the transgenic mice. We report that a reduction in oligodendrocyte differentiation is attributed in part to apoptosis of oligodendrocyte progenitors as they exit the cell cycle. A significant reduction in the number of p27+ oligodendrocyte precursors in the transgenic mice supports this conclusion. Taken together, these data suggest that for oligodendrocyte progenitors, ErbB2 signaling plays a role in governing a properly timed exit from the cell cycle during development into myelinating oligodendrocytes.
Collapse
|
77
|
Kim JY, Sun Q, Oglesbee M, Yoon SO. The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 2003; 23:5561-71. [PMID: 12843257 PMCID: PMC6741253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The knock-out analyses of neuregulin and its receptors have indicated that they play essential roles in Schwann cell development. However, the role they play in oligodendrocyte development in vivo has remained unclear, because such knock-out animals die before CNS myelination begins. We examined the role of neuregulin signaling in the CNS by generating transgenic mice that express a dominant-negative mutant of the ErbB2 receptor among oligodendrocytes, using an MBP promoter. The transgenic mice exhibited widespread hypomyelination, resulting from a reduction in oligodendrocyte differentiation. The number of progenitors was conversely increased in the transgenic mice. We report that a reduction in oligodendrocyte differentiation is attributed in part to apoptosis of oligodendrocyte progenitors as they exit the cell cycle. A significant reduction in the number of p27+ oligodendrocyte precursors in the transgenic mice supports this conclusion. Taken together, these data suggest that for oligodendrocyte progenitors, ErbB2 signaling plays a role in governing a properly timed exit from the cell cycle during development into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Ju Young Kim
- Neurobiotechnology Center and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
78
|
Harroch S, Furtado GC, Brueck W, Rosenbluth J, Lafaille J, Chao M, Buxbaum JD, Schlessinger J. A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions. Nat Genet 2002; 32:411-4. [PMID: 12355066 DOI: 10.1038/ng1004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 08/12/2002] [Indexed: 02/03/2023]
Abstract
Several lines of evidence suggest that tyrosine phosphorylation is a key element in myelin formation, differentiation of oligodendrocytes and Schwann cells, and recovery from demyelinating lesions. Multiple sclerosis is a demyelinating disease of the human central nervous system, and studies of experimental demyelination indicate that remyelination in vivo requires the local generation, migration or maturation of new oligodendrocytes, or some combination of these. Failure of remyelination in multiple sclerosis could result from the failure of any of these processes or from the death of oligodendrocytes. Ptprz encodes protein tyrosine phosphatase receptor type Z (Ptpz, also designated Rptpbeta), which is expressed primarily in the nervous system but also in oligodendrocytes, astrocytes and neurons. Here we examine the susceptibility of mice deficient in Ptprz to experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We observe that mice deficient in Ptprz show impaired recovery from EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide. This sustained paralysis is associated with increased apoptosis of mature oligodendrocytes in the spinal cords of mutant mice at the peak of inflammation. We further demonstrate that expression of PTPRZ1, the human homolog of Ptprz, is induced in multiple sclerosis lesions and that the gene is specifically expressed in remyelinating oligodendrocytes in these lesions. These results support a role for Ptprz in oligodendrocyte survival and in recovery from demyelinating disease.
Collapse
Affiliation(s)
- Sheila Harroch
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Colognato H, Baron W, Avellana-Adalid V, Relvas JB, Baron-Van Evercooren A, Georges-Labouesse E, ffrench-Constant C. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 2002; 4:833-41. [PMID: 12379866 DOI: 10.1038/ncb865] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 08/02/2002] [Accepted: 08/09/2002] [Indexed: 01/15/2023]
Abstract
Depending on the stage of development, a growth factor can mediate cell proliferation, survival or differentiation. The interaction of cell-surface integrins with extracellular matrix ligands can regulate growth factor responses and thus may influence the effect mediated by the growth factor. Here we show, by using mice lacking the alpha(6) integrin receptor for laminins, that myelin-forming oligodendrocytes activate an integrin-regulated switch in survival signalling when they contact axonal laminins. This switch alters survival signalling mediated by neuregulin from dependence on the phosphatidylinositol-3-OH kinase (PI(3)K) pathway to dependence on the mitogen-activated kinase pathway. The consequent enhanced survival provides a mechanism for target-dependent selection during development of the central nervous system. This integrin-regulated switch reverses the capacity of neuregulin to inhibit the differentiation of precursors, thereby explaining how neuregulin subsequently promotes differentiation and survival in myelinating oligodendrocytes. Our results provide a general mechanism by which growth factors can exert apparently contradictory effects at different stages of development in individual cell lineages.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Medical Genetics and Center for Brain Repair, University of Cambridge, Cambridge CB2 2PY, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Bongarzone ER. Induction of oligodendrocyte fate during the formation of the vertebrate neural tube. Neurochem Res 2002; 27:1361-9. [PMID: 12512941 DOI: 10.1023/a:1021675716848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of the central nervous system (CNS) comprises a series of inductive and transforming events that includes rostro-caudal and dorso-ventral patterning, neuroglial specification and extensive cell migration. The patterning of the neural tube is also characterized by the transcription of specific genes, which encode for morphogens and transcription factors essential for cell fate specification. The generation of oligodendrocytes, the myelin forming glial cells in the CNS, appears to be restricted to specific domains localized in the ventral neuroepithelium. Signaling mediated by sonic hedgehog (Shh) seems to command the early phase of the specification of uncommitted neural stem cells into the oligodendroglial lineage. Once generated, oligodendrocyte progenitors have to follow a developmental program that involves changes in cell morphology, migratory capacity and sensitivity to extracellular trophic factors before becoming mature myelinating cells. This minireview aims to discuss molecular aspects of the early induction of oligodendroglial fate during the formation of the CNS.
Collapse
Affiliation(s)
- Ernesto R Bongarzone
- Neurobiochemistry Group, Mental Retardation Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
81
|
Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E, Biggerstaff J, Iacovelli J. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 2002; 31:354-62. [PMID: 12118253 DOI: 10.1038/ng930] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most resulting in protein truncation and undetectable amounts of schwannomin protein. Pathogenic mutations that result in production of defective schwannomin include in-frame deletions of exon 2 and three independent missense mutations within this same exon. Mice with conditional deletion of exon 2 in Schwann cells develop schwannomas, which confirms the crucial nature of exon 2 for growth control. Here we report that the molecular adaptor paxillin binds directly to schwannomin at residues 50-70, which are encoded by exon 2. This interaction mediates the membrane localization of schwannomin to the plasma membrane, where it associates with beta 1 integrin and erbB2. It defines a pathogenic mechanism for the development of NF2 in humans with mutations in exon 2 of NF2.
Collapse
Affiliation(s)
- Cristina Fernandez-Valle
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Axon regeneration in the adult CNS is limited by the presence of inhibitory proteins. An interaction of Nogo on the oligodendrocyte surface with Nogo-66 Receptor (NgR) on axons has been suggested to play an important role in limiting axonal growth. Here, we compare the localization of these two proteins immunohistochemically as a test of this hypothesis. Throughout much of the adult CNS, Nogo-A is detected on oligodendrocyte processes surrounding myelinated axons, including areas of axon-oligodendrocyte contact. The NgR protein is detected selectively in neurons and is present throughout axons, indicating that Nogo-A and its receptor are juxtaposed along the course of myelinated fibers. NgR protein expression is restricted to postnatal neurons and their axons. In contrast, Nogo-A is observed in myelinating oligodendrocytes, embryonic muscle, and neurons, suggesting that Nogo-A has additional physiologic roles unrelated to NgR binding. After spinal cord injury, Nogo-A is upregulated to a moderate degree, whereas NgR levels are maintained at constant levels. Taken together, these data confirm the apposition of Nogo ligand and NgR receptor in situations of limited axonal regeneration and support the hypothesis that this system regulates CNS axonal plasticity and recovery from injury.
Collapse
|
83
|
Leimeroth R, Lobsiger C, Lüssi A, Taylor V, Suter U, Sommer L. Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent Progenitor cells. Dev Biol 2002; 246:245-58. [PMID: 12051814 DOI: 10.1006/dbio.2002.0670] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many steps of peripheral glia development appear to be regulated by neuregulin1 (NRG1) signaling but the exact roles of the different NRG1 isoforms in these processes remain to be determined. While glial growth factor 2 (GGF2), a NRG1 type II isoform, is able to induce a satellite glial fate in neural crest stem cells, targeted mutations in mice have revealed a prominent role of NRG1 type III isoforms in supporting survival of Schwann cells at early developmental stages. Here, we investigated the role of NRG1 isoforms in the differentiation of Schwann cells from neural crest-derived progenitor cells. In multipotent cells isolated from dorsal root ganglia, soluble NRG1 isoforms do not promote Schwann cell features, whereas signaling by membrane-associated NRG1 type III induces the expression of the Schwann cell markers Oct-6/SCIP and S100 in neighboring cells, independent of survival. Thus, axon-bound NRG1 might actively promote both Schwann cell survival and differentiation.
Collapse
Affiliation(s)
- Rainer Leimeroth
- Institute of Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
84
|
Viehover A, Miller RH, Park SK, Fischbach G, Vartanian T. Neuregulin: an oligodendrocyte growth factor absent in active multiple sclerosis lesions. Dev Neurosci 2002; 23:377-86. [PMID: 11756753 DOI: 10.1159/000048721] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which results in demyelination and axonal injury. Conventional therapy for MS is immune suppression in the absence of agents that promote neural and glial survival or remyelination. Neuregulins are a family of ligands that exert trophic effects on both neurons and glia. Using mice bearing a null mutation in the neuregulin gene, here we demonstrate that neuregulins are necessary for the normal development of oligodendrocytes. In addition, neuregulins are produced in the normal human CNS by astrocytes as well as neurons. Astrocyte-derived neuregulin is functionally active in bioassays and exists in secreted and membrane-associated beta-isoforms. In active and chronic active MS lesions, however, the expression of astrocyte neuregulin is dramatically reduced. The absence of neuregulin in active MS lesions may contribute to the paucity of remyelination in MS.
Collapse
Affiliation(s)
- A Viehover
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
ErbB-4 is a receptor tyrosine kinase that is activated by the binding of specific growth factors to its ectodomain. In addition to the initiation of signal transduction pathways that direct cell responses, such as proliferation or differentiation, this receptor is subject to ligand-dependent trafficking events. The signal transduction events are controlled by ligand-dependent activation of the receptor tyrosine kinase activity, which results in receptor autophosphorylation and the tyrosine phosphorylation of other cellular proteins. The trafficking events include migration into and out of membrane microdomains, entry into internalization pathways and endocytosis, plus proteolytic fragmentation.
Collapse
Affiliation(s)
- W Zhou
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
86
|
Takanashi J, Inoue K, Tomita M, Kurihara A, Morita F, Ikehira H, Tanada S, Yoshitome E, Kohno Y. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology 2002; 58:237-41. [PMID: 11805250 DOI: 10.1212/wnl.58.2.237] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess alterations in brain metabolites of patients with Pelizaeus-Merzbacher disease (PMD) with the proteolipid protein gene 1 (PLP1) duplications using quantitative proton MRS. METHODS Five unrelated male Japanese patients with PMD with PLP1 duplications were analyzed using automated proton brain examination with the point resolved spectroscopy technique (repetition and echo time of 5,000 and 30 msec). Localized spectra in the posterior portion of the centrum semiovale were acquired, and absolute metabolite concentrations were calculated using the LCModel. RESULTS Absolute concentrations of N-acetylaspartate (NAA), creatine (Cr), and myoinositol (MI) were increased by 16% (p < 0.01), 43% (p < 0.001), and 31% (p < 0.01) in patients with PMD as compared with age-matched controls. There was no statistical difference in choline concentration. CONCLUSION The increased concentration of NAA, which could not be detected by previous relative quantitation methods, suggests two possibilities: axonal involvement secondary to dysmyelination, or increased cell population of oligodendrocyte progenitors. Elevated Cr and MI concentrations may reflect the reactive astrocytic gliosis. Our study thus emphasizes the importance of absolute quantitation of metabolites to investigate the disease mechanism of the dysmyelinating disorders of the CNS.
Collapse
Affiliation(s)
- J Takanashi
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hidalgo A, Kinrade EF, Georgiou M. The Drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev Cell 2001; 1:679-90. [PMID: 11709188 DOI: 10.1016/s1534-5807(01)00074-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuron-glia interactions are necessary for the formation of the longitudinal axon trajectories in the Drosophila central nervous system. Longitudinal glial cells are required for axon guidance and fasciculation, and pioneer neurons for trophic support of the glia. Neuregulin is a neuronal molecule that controls glial survival in the vertebrate nervous system. The Drosophila protein Vein has structural similarities with Neuregulin. We show here that Vein functions like a Neuregulin to maintain glial cell survival. We present direct in vivo evidence at single-cell resolution that Vein is produced by pioneer neurons and maintains the survival of neighboring longitudinal glia. This mechanism links axon guidance to control of glial cell number and may contribute to plasticity during the establishment of normal axonal trajectories.
Collapse
Affiliation(s)
- A Hidalgo
- NeuroDevelopment Group, Department of Genetics, University of Cambridge, CB1 3QJ, Cambridge, United Kingdom.
| | | | | |
Collapse
|
88
|
Hansen MR, Vijapurkar U, Koland JG, Green SH. Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins. Hear Res 2001; 161:87-98. [PMID: 11744285 DOI: 10.1016/s0378-5955(01)00360-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To investigate the role of neuron-glial cell interactions in the auditory nerve, we asked whether spiral ganglion neurons (SGNs) express neuregulin and whether neuregulin regulates proliferation and/or neurotrophin expression in spiral ganglion Schwann cells (SGSCs). Using immunocytochemistry, we found that type I and type II SGNs express neuregulin in vivo and in vitro. Cultured SGSCs express the neuregulin receptors ErbB2 and ErbB3, but not ErbB4. Neuregulin activates ErbB2 and ErbB3 in cultured SGSCs, evidenced by increased tyrosine phosphorylation of the receptors following neuregulin treatment. Neuregulin treatment increased the proliferation rate of cultured SGSCs by 2.5-fold. Fibroblast growth factor-2 (FGF-2) and transforming growth factor beta (TGF-beta) also increased SGSC proliferation. The mitogenic effect of neuregulin and FGF-2 was blocked by inhibition of mitogen-activated protein kinase signaling but not by inhibition of phosphatidylinositol-3'-OH kinase. Using RT-PCR, we found that cultured SGSCs express neurotrophins, including brain-derived neurotrophic factor and neurotrophin-3 (NT-3), raising the possibility that SGSCs contribute to the trophic support of SGNs. Treatment with neither neuregulin nor TGF-beta increased neurotrophin expression in cultured SGSCs, as had been observed in developing sympathetic ganglia, but appeared to negatively regulate NT-3 expression. Thus, neuregulin and neurotrophins may mediate reciprocal neuron-glial interactions in the auditory nerve.
Collapse
Affiliation(s)
- M R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
89
|
Park SK, Miller R, Krane I, Vartanian T. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol 2001; 154:1245-58. [PMID: 11564761 PMCID: PMC2150828 DOI: 10.1083/jcb.200104025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of oligodendrocytes and the generation of myelin internodes within the spinal cord depends on regional signals derived from the notochord and axonally derived signals. Neuregulin 1 (NRG)-1, localized in the floor plate as well as in motor and sensory neurons, is necessary for normal oligodendrocyte development. Oligodendrocytes respond to NRGs by activating members of the erbB receptor tyrosine kinase family. Here, we show that erbB2 is not necessary for the early stages of oligodendrocyte precursor development, but is essential for proligodendroblasts to differentiate into galactosylcerebroside-positive (GalC+) oligodendrocytes. In the presence of erbB2, oligodendrocyte development is normal. In the absence of erbB2 (erbB2-/-), however, oligodendrocyte development is halted at the proligodendroblast stage with a >10-fold reduction in the number of GalC+ oligodendrocytes. ErbB2 appears to function in the transition of proligodendroblast to oligodendrocyte by transducing a terminal differentiation signal, since there is no evidence of increased oligodendrocyte death in the absence of erbB2. Furthermore, known survival signals for oligodendrocytes increase oligodendrocyte numbers in the presence of erbB2, but fail to do so in the absence of erbB2. Of the erbB2-/- oligodendrocytes that do differentiate, all fail to ensheath neurites. These data suggest that erbB2 is required for the terminal differentiation of oligodendrocytes and for development of myelin.
Collapse
Affiliation(s)
- S K Park
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
90
|
Abstract
To understand the cellular and in vivo functions of specific K(+) channels in glia, we have studied mice with a null mutation in the weakly inwardly rectifying K(+) channel subunit Kir4.1. Kir4.1-/- mice display marked motor impairment, and the cellular basis is hypomyelination in the spinal cord, accompanied by severe spongiform vacuolation, axonal swellings, and degeneration. Immunostaining in the spinal cord of wild-type mice up to postnatal day 18 reveals that Kir4.1 is expressed in myelin-synthesizing oligodendrocytes, but probably not in neurons or glial fibrillary acidic protein-positive (GFAP-positive) astrocytes. Cultured oligodendrocytes from developing spinal cord of Kir4.1-/- mice lack most of the wild-type K(+) conductance, have depolarized membrane potentials, and display immature morphology. By contrast, cultured neurons from spinal cord of Kir4.1-/- mice have normal physiological characteristics. We conclude that Kir4.1 forms the major K(+) conductance of oligodendrocytes and is therefore crucial for myelination. The Kir4.1 knock-out mouse is one of the few CNS dysmyelinating or demyelinating phenotypes that does not involve a gene directly involved in the structure, synthesis, degradation, or immune response to myelin. Therefore, this mouse shows how an ion channel mutation could contribute to the polygenic demyelinating diseases.
Collapse
|
91
|
LoPresti P, Muma NA, De Vries GH. Neu differentiation factor regulates tau protein and mRNA in cultured neonatal oligodendrocytes. Glia 2001; 35:147-55. [PMID: 11460270 DOI: 10.1002/glia.1079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Axonal signals activate myelinogenesis via regulation of the extent to which oligodendrocyte (OLG) processes wrap around the axon. The cytoskeleton in OLG processes is actively involved in myelination and is a putative target for axonal regulation of myelination. The axon-associated neuregulins may regulate the cytoskeleton extensions in OLG processes. Here, we report that the neuregulin neu differentiation factor (NDF) increases the expression of tau mRNA and tau protein in OLGs. Treatment of neonatal OLGs with alpha-NDF or beta-NDF resulted in dramatic increases in the length of OLG processes, which appeared either as singular unbranched extensions or as a network of extensively branched processes. By immunoblot analysis with tau-1 mAb, which recognizes the dephosphorylated form of the tau proteins, neonatal OLGs treated with alpha-NDF or beta-NDF, had an increase in tau protein levels. The increase of tau levels in beta-NDF-treated cells is much greater than the twofold increase present in alpha-NDF-treated cells. By immunoblot analysis with the phosphorylation-insensitive tau-5 mAb, beta-NDF-treated cells had a twofold increase in tau. Immunoblot analysis suggest that alpha-NDF and beta-NDF promote a twofold increase in the tau protein levels in OLG, with the beta-factor also promoting a tau dephosphorylation. Using promoters spanning the amino-terminal region of tau, we found that OLGs treated with alpha-NDF or beta-NDF contained approximately twofold more tau mRNA than untreated cells. However, there was no qualitative difference between control and NDF-treated cells in the pattern of tau mRNA isoforms expressed. A model is proposed in which the axonal NDF-induced regulation of tau expression in OLGs may be part of the mechanism by which the axon regulates myelination.
Collapse
MESH Headings
- Animals
- Animals, Newborn/anatomy & histology
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Axons/drug effects
- Axons/metabolism
- Axons/ultrastructure
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Central Nervous System/cytology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Neuregulin-1/metabolism
- Neuregulin-1/pharmacology
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Protein Isoforms/drug effects
- Protein Isoforms/metabolism
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- tau Proteins/drug effects
- tau Proteins/genetics
- tau Proteins/metabolism
Collapse
Affiliation(s)
- P LoPresti
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA.
| | | | | |
Collapse
|
92
|
Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 2001; 21:5429-38. [PMID: 11466414 PMCID: PMC6762664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 05/08/2001] [Accepted: 05/09/2001] [Indexed: 02/20/2023] Open
Abstract
To understand the cellular and in vivo functions of specific K(+) channels in glia, we have studied mice with a null mutation in the weakly inwardly rectifying K(+) channel subunit Kir4.1. Kir4.1-/- mice display marked motor impairment, and the cellular basis is hypomyelination in the spinal cord, accompanied by severe spongiform vacuolation, axonal swellings, and degeneration. Immunostaining in the spinal cord of wild-type mice up to postnatal day 18 reveals that Kir4.1 is expressed in myelin-synthesizing oligodendrocytes, but probably not in neurons or glial fibrillary acidic protein-positive (GFAP-positive) astrocytes. Cultured oligodendrocytes from developing spinal cord of Kir4.1-/- mice lack most of the wild-type K(+) conductance, have depolarized membrane potentials, and display immature morphology. By contrast, cultured neurons from spinal cord of Kir4.1-/- mice have normal physiological characteristics. We conclude that Kir4.1 forms the major K(+) conductance of oligodendrocytes and is therefore crucial for myelination. The Kir4.1 knock-out mouse is one of the few CNS dysmyelinating or demyelinating phenotypes that does not involve a gene directly involved in the structure, synthesis, degradation, or immune response to myelin. Therefore, this mouse shows how an ion channel mutation could contribute to the polygenic demyelinating diseases.
Collapse
Affiliation(s)
- C Neusch
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
93
|
Abstract
Neuregulin 1 (Nrg-1) isoforms have been shown to influence the emergence and growth of oligodendrocytes, the CNS myelin-forming cells. We have investigated how Nrg-1 signaling of ErbB receptors specifically controls the early stages of oligodendrocyte generation from multipotential neural precursors (NPs). We show here that embryonic striatal NPs express multiple Nrg-1 transcripts and proteins as well as their specific receptors, ErbB2 and ErbB4, but not ErbB3. The major isoform synthesized by striatal NPs is a transmembrane type III isoform called cysteine-rich domain Nrg-1. To examine the biological effect of Nrg-1, we added soluble ErbB3 (sErbB3) to growing neurospheres. This inhibitor of Nrg-1 bioactivity decreased mitosis of NPs and increased their apoptosis, resulting in a significant reduction in neurosphere size and number. When NPs were induced to migrate and differentiate by adhesion of neurospheres to the substratum, the level of type III isoforms detected by RT-PCR and Western blot decreased in parallel with a reduction in Nrg-1 fluorescence intensity in differentiating astrocytes, neurons, and oligodendrocytes. Pretreatment of growing neurospheres with sErbB3 induced a threefold increase in the proportion of oligodendrocytes generated from NPs migrating out of the neurosphere. This effect was not observed with an unrelated soluble receptor. Addition of sErbB3 during NP growth and differentiation enhanced oligodendrocyte maturation as shown by expression of galactocerebroside and myelin basic protein. We propose that both type III Nrg-1 signaling and soluble ErbB receptors modulate oligodendrocyte development from NPs.
Collapse
|
94
|
Calaora V, Rogister B, Bismuth K, Murray K, Brandt H, Leprince P, Marchionni M, Dubois-Dalcq M. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci 2001; 21:4740-51. [PMID: 11425901 PMCID: PMC6762347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Neuregulin 1 (Nrg-1) isoforms have been shown to influence the emergence and growth of oligodendrocytes, the CNS myelin-forming cells. We have investigated how Nrg-1 signaling of ErbB receptors specifically controls the early stages of oligodendrocyte generation from multipotential neural precursors (NPs). We show here that embryonic striatal NPs express multiple Nrg-1 transcripts and proteins as well as their specific receptors, ErbB2 and ErbB4, but not ErbB3. The major isoform synthesized by striatal NPs is a transmembrane type III isoform called cysteine-rich domain Nrg-1. To examine the biological effect of Nrg-1, we added soluble ErbB3 (sErbB3) to growing neurospheres. This inhibitor of Nrg-1 bioactivity decreased mitosis of NPs and increased their apoptosis, resulting in a significant reduction in neurosphere size and number. When NPs were induced to migrate and differentiate by adhesion of neurospheres to the substratum, the level of type III isoforms detected by RT-PCR and Western blot decreased in parallel with a reduction in Nrg-1 fluorescence intensity in differentiating astrocytes, neurons, and oligodendrocytes. Pretreatment of growing neurospheres with sErbB3 induced a threefold increase in the proportion of oligodendrocytes generated from NPs migrating out of the neurosphere. This effect was not observed with an unrelated soluble receptor. Addition of sErbB3 during NP growth and differentiation enhanced oligodendrocyte maturation as shown by expression of galactocerebroside and myelin basic protein. We propose that both type III Nrg-1 signaling and soluble ErbB receptors modulate oligodendrocyte development from NPs.
Collapse
Affiliation(s)
- V Calaora
- Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
The neuregulins are a complex family of factors that perform many functions during neural development. Recent experiments have shown that neuregulins promote neuronal migration and differentiation, and regulate the selective expression of neurotransmitter receptors in neurons and at the neuromuscular junction. They also regulate glial commitment, proliferation, survival and differentiation. At interneuronal synapses, neuregulin ErbB receptors associate with PDZ-domain proteins at postsynaptic densities where they can modulate synaptic plasticity. How this combinatorial network - comprising many neuregulin ligands that signal through distinct combinations of dimeric ErbB receptors - elicits its multitude of biological effects is beginning to be resolved.
Collapse
Affiliation(s)
- A Buonanno
- Section on Molecular Neurobiology, Building 49, Room 5A-38, National Institutes of Health, Bethesda, Maryland 20892-4480, USA.
| | | |
Collapse
|
96
|
Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001; 103:203-18. [PMID: 11311801 DOI: 10.1016/s0306-4522(00)00538-8] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apoptosis or programmed cell death has been reported after CNS trauma. However, the significance of this mechanism in the pathophysiology of spinal cord injury, in particular at the cervical level, requires further investigation. In the present study, we used the extradural clip compression model in the rat to examine the cellular distribution of apoptosis following cervical spinal cord injury, the relationship between glial apoptosis and post-traumatic axonal degeneration and the possible role of apo[apoptosis]-1, CD95 (FAS) and p75 in initiating post-traumatic glial apoptosis. In situ terminal-deoxy-transferase mediated dUTP nick end labeling revealed apoptotic cells, largely oligodendrocytes as identified by cell specific markers, in grey and white matter following spinal cord injury. Apoptotic cell death was confirmed using electron microscopy and by the demonstration of DNA laddering on agarose gel electrophoresis. Beta-amyloid precursor protein was used as a molecular marker of axonal degeneration on western blots and immunohistochemistry. Degeneration of axons was temporally and spatially co-localized with glial apoptosis. FAS and p75 protein expression was seen in astrocytes, oligodendrocytes and microglia, and was also seen in some apoptotic glia after cord injury. Both FAS and p75 increased in expression in a temporal course, which mirrored the development of cellular apoptosis. The downstream caspases 3 and 8, which are linked to FAS and p75, demonstrated activation at times of maximal apoptosis, while FLIP-L an inhibitor of caspase 8, decreased at times of maximal apoptosis. We conclude that axonal degeneration after traumatic spinal cord injury is associated with glial, in particular oligodendroglial, apoptosis. Activation of the FAS and p75 death receptor pathways may be involved in initiating this process.
Collapse
Affiliation(s)
- S Casha
- Division of Neurosurgery, Toronto Western Research, The University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
97
|
Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL. Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 2001; 17:761-7. [PMID: 11312610 DOI: 10.1006/mcne.2000.0967] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Neuregulin (betaNRG) is a potent Schwann cell survival factor that binds to and activates a heterodimeric ErbB2/ErbB3 receptor complex. We found that NRG receptor signaling rapidly activated phosphoinositide 3-kinase (PI3K) in serum-starved Schwann cells, while PI3K inhibitors markedly exacerbated apoptosis and completely blocked NRG-mediated rescue. NRG also rapidly signaled the phosphorylation of mitogen-activated protein kinase (MAPK) and the serine/threonine kinase Akt. The activation of Akt and MAPK in parallel pathways downstream from PI3K resulted in the phosphorylation of Bad at different serine residues. PI3K inhibitors that blocked NRG-mediated rescue also blocked the phosphorylation of Akt, MAPK, and Bad. However, selective inhibition of MEK-dependent Bad phosphorylation downstream from PI3K had no effect on NRG-mediated survival. Conversely, ectopic expression of wild-type Akt not only enhanced Bad phosphorylation but also enhanced autocrine- and NRG-mediated Schwann cell survival. Taken together, these results demonstrate that NRG receptor signaling through a PI3K/Akt/Bad pathway functions in Schwann cell survival.
Collapse
Affiliation(s)
- Y Li
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
98
|
The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J Neurosci 2001. [PMID: 11102484 DOI: 10.1523/jneurosci.20-23-08762.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuregulin/erbB receptor and agrin/MuSK pathways are critical for communication between the nerve, muscle, and Schwann cell that establishes the precise topological arrangement at the vertebrate neuromuscular junction (NMJ). ErbB2, erbB3, and erbB4 as well as neuregulin, agrin, and MuSK are known to be concentrated at the NMJ. Here we have examined NMJs from gastrocnemius muscle of adult rat using immunofluorescence confocal microscopy to characterize in detail the distribution of these proteins relative to the distribution of acetylcholine receptors (AChRs). We have determined that erbB2 and erbB4 are enriched in the depths of the secondary junctional folds on the postsynaptic muscle membrane. In contrast, erbB3 at the NMJ was concentrated at presynaptic terminal Schwann cells. This distribution strongly argues that erbB2/erbB4 heterodimers are the functional postsynaptic neuregulin receptors of the NMJ. Neuregulin was localized to the axon terminal, secondary folds, and terminal Schwann cells, where it was in a position to signal through erbB receptors. MuSK was concentrated in the postsynaptic primary gutter region where it was codistributed with AChRs. Agrin was present at the axon terminal and in the basal lamina associated with the primary gutter region, but not in the secondary junctional folds. The differential distributions of the neuregulin and agrin signaling pathways argue against neuregulin and erbB receptors being localized to the NMJ via direct interactions with either agrin or MuSK.
Collapse
|
99
|
Wang JY, Miller SJ, Falls DL. The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 2001; 276:2841-51. [PMID: 11042203 DOI: 10.1074/jbc.m005700200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two neuregulin-1 isoforms highly expressed in the nervous system are the type III neuregulin III-beta1a and the type I neuregulin I-beta1a. The sequence of these two isoforms differs only in the region that is N-terminal of the bioactive epidermal growth factor-like domain. While the biosynthetic processing of the I-beta1a isoform has been well characterized, the processing of III-beta1a has not been reported. In this study, we compared III-beta1a and I-beta1a processing. Both III-beta1a and I-beta1a were synthesized as transmembrane proproteins that were proteolytically cleaved to produce an N-terminal fragment containing the bioactive epidermal growth factor-like domain. For I-beta1a, this product was released into the medium. However, for III-beta1a, this product was a transmembrane protein. In cultures of cells expressing III-beta1a, the amount of neuregulin at the cell surface was much greater, and the amount in the medium was much less than in cultures expressing I-beta1a. Phorbol ester treatment and truncation of the cytoplasmic tail had markedly different effects on III-beta1a and I-beta1a processing. These results demonstrate an important role for the N-terminal region in determining neuregulin biosynthetic processing and show that a major product of III-beta1a processing is a tethered ligand that may act as a cell surface signaling molecule.
Collapse
Affiliation(s)
- J Y Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
100
|
Meintanis S, Thomaidou D, Jessen KR, Mirsky R, Matsas R. The neuron-glia signal ?-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia 2001. [DOI: 10.1002/glia.1038] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|