51
|
Ball JR, Dimaano C, Bilak A, Kurchan E, Zundel MT, Ullman KS. Sequence Preference in RNA Recognition by the Nucleoporin Nup153. J Biol Chem 2007; 282:8734-40. [PMID: 17242408 DOI: 10.1074/jbc.m608477200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The vertebrate nuclear pore protein Nup153 contains a novel RNA binding domain. This 150-amino acid region was previously found to bind preferentially to a panel of mRNAs when compared with structured RNAs, such as tRNA, U snRNA, and double-stranded RNA. The ability to broadly recognize mRNA led to the conclusion that the Nup153 RNA binding domain confers a general affinity for single-stranded RNA. Here, we have probed Nup153 RNA recognition to decipher how this unique RNA binding domain discriminates between potential targets. We first mapped the binding determinant within an RNA fragment that associates relatively robustly with the Nup153 RNA binding domain. We next designed synthetic RNA oligonucleotides to systematically delineate the features within this minimal RNA fragment that are key to Nup153 RNA-binding domain binding and demonstrated that the binding preferences of Nup153 do not reflect general preferences of an mRNA/single-stranded RNA-binding protein. We further found that the association between Nup153 and a cellular mRNA can be attributed to an interaction with specific subregions of the RNA. These results indicate that Nup153 can discriminate between mRNA and other classes of RNA transcripts due in part to direct recognition of a loose sequence motif. This information adds a new dimension to the interfaces that can contribute to recognition in mRNA export cargo selection and fate.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
52
|
Isgro TA, Schulten K. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J Mol Biol 2006; 366:330-45. [PMID: 17161424 DOI: 10.1016/j.jmb.2006.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/08/2006] [Accepted: 11/14/2006] [Indexed: 01/12/2023]
Abstract
Transport into and out of the nucleus is regulated by the nuclear pore complex. Vital to this regulation are nuclear pore proteins with FG sequence repeats, which have been shown to be crucial for cell viability and which interact with nuclear transport receptors. Here we use molecular dynamics simulations to investigate the binding of FG-repeat peptides to the surface of NTF2, the Ran importer. The simulations, covering over 254 ns, agree with previous X-ray, mutational, NMR, and computational data in identifying four binding spots. They also serve to provide an all-atom view of binding at each spot, whereas FG-repeat binding has been only directly observed at a single spot. Furthermore, the simulations identify two novel binding spots in addition to the four others. All six binding spots broadly form a stripe across the surface of NTF2. The resulting regularity and proximity of binding spots on the surface may be necessary for identification of the transport receptor by the FG-repeats in the nuclear pore complex and for the successful transit of NTF2 through the pore.
Collapse
Affiliation(s)
- Timothy A Isgro
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
53
|
Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 2006; 103:17801-6. [PMID: 17098863 PMCID: PMC1635652 DOI: 10.1073/pnas.0608484103] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear pores span the nuclear envelope and act as gated aqueous channels to regulate the transport of macromolecules between the nucleus and cytoplasm, from individual proteins and RNAs to entire viral genomes. By far the largest subunit of the nuclear pore is the Nup107-160 complex, which consists of nine proteins and is critical for nuclear pore assembly. At mitosis, the Nup107-160 complex localizes to kinetochores, suggesting that it may also function in chromosome segregation. To investigate the dual roles of the Nup107-160 complex at the pore and during mitosis, we set out to identify binding partners by immunoprecipitation from both interphase and mitotic Xenopus egg extracts and mass spectrometry. ELYS, a putative transcription factor, was discovered to copurify with the Nup107-160 complex in Xenopus interphase extracts, Xenopus mitotic extracts, and human cell extracts. Indeed, a large fraction of ELYS localizes to the nuclear pore complexes of HeLa cells. Importantly, depletion of ELYS by RNAi leads to severe disruption of nuclear pores in the nuclear envelope, whereas lamin, Ran, and tubulin staining appear normal. At mitosis, ELYS targets to kinetochores, and RNAi depletion from HeLa cells leads to an increase in cytokinesis defects. Thus, we have identified an unexpected member of the nuclear pore and kinetochore that functions in both pore assembly at the nucleus and faithful cell division.
Collapse
Affiliation(s)
- Beth A. Rasala
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347
| | - Arturo V. Orjalo
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347
| | - Steven Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347
- To whom correspondence may be addressed. E-mail:
| | - Douglass J. Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347
- To whom correspondence may be addressed at:
Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347. E-mail:
| |
Collapse
|
54
|
Stoffler D, Schwarz-Herion K, Aebi U, Fahrenkrog B. Getting across the nuclear pore complex: new insights into nucleocytoplasmic transport. Can J Physiol Pharmacol 2006; 84:499-507. [PMID: 16902595 DOI: 10.1139/y06-001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small ions and molecules can traverse the nuclear pore complex (NPC) simply by diffusion, whereas larger proteins and RNAs require specific signals and factors that facilitate their passage through the NPC. Our understanding of the factors that participate and regulate nucleocytoplasmic transport has increased tremendously over the past years, whereas the actual translocation step through the NPC has remained largely unclear. Here, we present and discuss recent findings on the interaction between the NPC and transport receptors and provide new evidence that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargos.
Collapse
Affiliation(s)
- Daniel Stoffler
- ME Müller Institute, Biozentrum, University of Basel, Switzerland.
| | | | | | | |
Collapse
|
55
|
Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res 2006; 24:17-27. [PMID: 16969692 DOI: 10.1007/s11095-006-9133-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the "wrong" compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.
Collapse
Affiliation(s)
- James R Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
56
|
Orjalo AV, Arnaoutov A, Shen Z, Boyarchuk Y, Zeitlin SG, Fontoura B, Briggs S, Dasso M, Forbes DJ. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 2006; 17:3806-18. [PMID: 16807356 PMCID: PMC1593160 DOI: 10.1091/mbc.e05-11-1061] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.
Collapse
Affiliation(s)
- Arturo V Orjalo
- Sections of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego Medical School, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Stochaj U, Bański P, Kodiha M, Matusiewicz N. The N-terminal domain of the mammalian nucleoporin p62 interacts with other nucleoporins of the FXFG family during interphase. Exp Cell Res 2006; 312:2490-9. [PMID: 16730000 DOI: 10.1016/j.yexcr.2006.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 11/24/2022]
Abstract
Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.
Collapse
Affiliation(s)
- Ursula Stochaj
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada PQ H3G 1Y6.
| | | | | | | |
Collapse
|
58
|
Lim RYH, Aebi U, Stoffler D. From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 2006; 115:15-26. [PMID: 16402261 DOI: 10.1007/s00412-005-0037-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/12/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
Nuclear pore complexes (NPCs) are large supramolecular assemblies that perforate the double-membraned nuclear envelope and serve as the sole gateways of molecular exchange between the cytoplasm and the nucleus in interphase cells. Combining novel specimen preparation regimes with innovative use of high-resolution scanning electron microscopy, Hans Ris produced in the late eighties stereo images of the NPC with unparalleled clarity and structural detail, thereby setting new standards in the field. Since that time, efforts undertaken to resolve the molecular structure and architecture, and the numerous interactions that occur between NPC proteins (nucleoporins), soluble transport receptors, and the small GTPase Ran, have led to a deeper understanding of the functional role of NPCs in nucleocytoplasmic transport. In spite of these breakthroughs, getting to the bottom of the actual cargo translocation mechanism through the NPC remains elusive and controversial. Here, we review recent insights into NPC function by correlating structural findings with biochemical data. By introducing new experimental and computational results, we reexamine how NPCs can discriminate between receptor-mediated and passive cargo to promote vectorial translocation in a highly regulated manner. Moreover, we comment on the importance and potential benefits of identifying and experimenting with individual key components implicated in the translocation mechanism. We conclude by dwelling on questions that we feel are pertinent to a more rational understanding of the physical aspects governing NPC mechanics. Last but not least, we substantiate these uncertainties by boldly suggesting a new direction in NPC research as a means to verify such novel concepts, for example, a de novo designed 'minimalist' NPC.
Collapse
Affiliation(s)
- Roderick Y H Lim
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
59
|
Isgro TA, Schulten K. Binding Dynamics of Isolated Nucleoporin Repeat Regions to Importin-β. Structure 2005; 13:1869-79. [PMID: 16338415 DOI: 10.1016/j.str.2005.09.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022]
Abstract
The nuclear pore complex, through the interaction of its proteins with transport receptors, controls the transport of large molecules into and out of the cell's nucleus. There is ample evidence for proteins with FG sequence repeats playing an essential role in this control. Previous studies have elucidated binding spots for FG sequence repeats on the surface of the transport receptor importin-beta by X-ray crystallography and mutational studies. Molecular dynamics simulations have been performed to characterize the interaction of FG sequence repeats with the transport receptor. Observed binding spots have been verified and novel sites discovered, suggesting that importin-beta features many more binding spots than suspected so far. The observed binding spots are in accord with several models of nucleocytoplasmic transport, and the large number of binding spots on importin-beta may be necessary for the pore complex to distinguish between importin-beta and inert proteins, and to allow for its passage through the pore.
Collapse
Affiliation(s)
- Timothy A Isgro
- Department of Physics, University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | | |
Collapse
|
60
|
Ball JR, Ullman KS. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114:319-30. [PMID: 16133350 DOI: 10.1007/s00412-005-0019-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 10/25/2022]
Abstract
The vertebrate pore protein Nup153 plays pivotal roles in nuclear pore function. In addition to being important to pore architecture, Nup153 is a key participant in both import and export. The scope of Nup153 function also extends beyond the canonical view of the pore as a trafficking gateway. During the transition into mitosis, Nup153 directs proteins involved in membrane remodeling to the nuclear envelope. As cells exit mitosis, Nup153 is recruited to the chromosomal surface, where nuclear pores are formed anew in a complicated process still under much experimental scrutiny. In addition, Nup153 is targeted for protease cleavage during apoptosis and in response to certain viral infections, providing molecular insight into pore reconfiguration during cell response. Overall, the versatile nature of Nup153 underscores an emerging view of the nuclear pore at the nexus of many key cellular processes.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
61
|
Abstract
The separation of transcription in the nucleus and translation in the cytoplasm requires nucleo-cytoplasmic exchange of proteins and RNAs. Viruses have evolved strategies to capitalize on the nucleo-cytoplasmic trafficking machinery of the cell. Here, we first discuss the principal mechanisms of receptor-mediated nuclear import of proteinaceous cargo through the nuclear pore complex, the gate keeper of the cell nucleus. We then focus on viral strategies leading to nuclear import of genomes and subgenomic particles. Nucleo-cytoplasmic transport is directly important for those viruses that are replicating in the nucleus, such as DNA tumor viruses and RNA viruses, including parvoviruses, the DNA retroviruses hepadnaviruses, RNA-retrotransposons and retroviruses, adenoviruses, herpesviruses, papovaviruses, and particular negative-sense RNA viruses, such as the orthomyxovirus influenza virus. The viral strategies of nuclear import turn out to be surprisingly diverse. Their investigation continues to give insight into how nucleic acids pass in and out of the nucleus.
Collapse
Affiliation(s)
- U F Greber
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
62
|
Soop T, Ivarsson B, Björkroth B, Fomproix N, Masich S, Cordes VC, Daneholt B. Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol Biol Cell 2005; 16:5610-20. [PMID: 16195343 PMCID: PMC1289406 DOI: 10.1091/mbc.e05-08-0715] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A specific messenger ribonucleoprotein (RNP) particle, Balbiani ring (BR) granules in the dipteran Chironomus tentans, can be visualized during passage through the nuclear pore complex (NPC). We have now examined the transport through the nuclear basket preceding the actual translocation through the NPC. The basket consists of eight fibrils anchored to the NPC core by nucleoprotein Nup153. On nuclear injection of anti-Nup153, the transport of BR granules is blocked. Many granules are retained on top of the nuclear basket, whereas no granules are seen in transit through NPC. Interestingly, the effect of Nup153 seems distant from the antibody-binding site at the base of the basket. We conclude that the entry into the basket is a two-step process: an mRMP first binds to the tip of the basket fibrils and only then is it transferred into the basket by a Nup153-dependent process. It is indicated that ribosomal subunits follow a similar pathway.
Collapse
Affiliation(s)
- Teresa Soop
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
63
|
Paulillo SM, Phillips EM, Köser J, Sauder U, Ullman KS, Powers MA, Fahrenkrog B. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. J Mol Biol 2005; 351:784-98. [PMID: 16045929 DOI: 10.1016/j.jmb.2005.06.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/08/2005] [Accepted: 06/13/2005] [Indexed: 11/30/2022]
Abstract
Nuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble transport receptors. We have recently shown that the FG-repeat domain of Nup153 is flexible within the NPC, although this nucleoporin is anchored to the nuclear side of the NPC. By using domain-specific antibodies, we have now mapped the domain topology of Nup214 in Xenopus oocytes and in human somatic cells by immuno-EM. We have found that whereas Nup214 is anchored to the cytoplasmic side of the NPC via its N-terminal and central domain, its FG-repeat domain appears flexible, residing on both sides of the NPC. Moreover, the spatial distribution of the FG-repeat domains of both Nup153 and Nup214 shifts in a transport-dependent manner, suggesting that the location of FG-repeat domains within the NPC correlates with cargo/receptor interactions and that they concomitantly move with cargo through the central pore of the NPC.
Collapse
Affiliation(s)
- Sara M Paulillo
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
64
|
Lusk CP, Makhnevych T, Wozniak RW. New ways to skin a kap: mechanisms for controlling nuclear transport. Biochem Cell Biol 2005; 82:618-25. [PMID: 15674429 DOI: 10.1139/o04-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport between the nucleus and the cytoplasm occurs through large macromolecular assemblies called nuclear pore complexes (NPCs). The NPC is traditionally viewed as a passive structure whose primary role is to provide an interface for the soluble transport machinery, the karyopherins and their cargos, to move molecules between these compartments. Recent work has challenged this view of the NPC and provides support for a dynamic structure that can modify its architecture to actively regulate nuclear transport.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | |
Collapse
|
65
|
Abstract
Nuclear transport of proteins and RNA occurs through the nuclear pore complex and is mediated by a superfamily of transport receptors known collectively as karyopherins. Karyopherins bind to their cargoes by recognition of specific nuclear localization signals or nuclear export signals. Transport through the nuclear pore complex is facilitated by transient interactions between the karyopherins and the nuclear pore complex. The interactions of karyopherins with their cargoes are regulated by the Ras-related GTPase Ran. Ran is assisted in this process by proteins that regulate its GTPase cycle and subcellular localization. In this review, we describe several of the major transport pathways that are conserved in higher and lower eukaryotes, with particular emphasis on the role of Ran. We highlight the latest advances in the structure and function of transport receptors and discuss recent examples of steroid hormone receptor import and regulation by signal transduction pathways. Understanding the molecular basis of nuclear transport may provide insight into human diseases by revealing how nucleocytoplasmic trafficking regulates protein activity.
Collapse
Affiliation(s)
- Lucy F Pemberton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
66
|
Kodiha M, Chu A, Matusiewicz N, Stochaj U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ 2005; 11:862-74. [PMID: 15088071 DOI: 10.1038/sj.cdd.4401432] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In growing HeLa cells, severe stress elicited by the oxidant hydrogen peroxide inhibits classical nuclear import. Oxidant treatment collapses the nucleocytoplasmic Ran concentration gradient, thereby elevating cytoplasmic GTPase levels. The Ran gradient dissipates in response to a stress-induced depletion of RanGTP and a decreased efficiency of Ran nuclear import. In addition, oxidative stress induces a relocation of the nucleoporin Nup153 as well as the nuclear carrier importin-beta, and docking of the importin-alpha/beta/cargo complex at the nuclear envelope is reduced. Moreover, Ran, importin-beta and Nup153 undergo proteolysis upon oxidative stress. Caspases and the proteasome degrade Ran and importin-beta; however, ubiquitination of these transport factors is not observed. Inhibition of caspases in stressed cells alleviates the mislocalization of importin-beta, but does not restore the Ran concentration gradient or classical import. In summary, inhibition of classical nuclear import by hydrogen peroxide is caused by a combination of multiple mechanisms that target different components of the transport apparatus.
Collapse
Affiliation(s)
- M Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, PQ, H3G 1Y6, Canada
| | | | | | | |
Collapse
|
67
|
Varadarajan P, Mahalingam S, Liu P, Ng SBH, Gandotra S, Dorairajoo DSK, Balasundaram D. The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr. Mol Biol Cell 2005; 16:1823-38. [PMID: 15659641 PMCID: PMC1073664 DOI: 10.1091/mbc.e04-07-0583] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report that the fission yeast nucleoporin Nup124p is required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr. Failure to import Tf1-Gag into the nucleus in a nup124 null mutant resulted in complete loss of Tf1 transposition. Similarly, nuclear import of HIV-1 Vpr was impaired in nup124 null mutant strains and cells became resistant to Vpr's cell-killing activity. On the basis of protein domain similarity, the human nucleoporin Nup153 was identified as a putative homolog of Nup124p. We demonstrate that in vitro-translated Nup124p and Nup153 coimmunoprecipitate Tf1-Gag or HIV-1 Vpr. Though full-length Nup153 was unable to complement the Tf1 transposition defect in a nup124 null mutant, we provide evidence that both nucleoporins share a unique N-terminal domain, Nup124p(AA264-454) and Nup153(AA448-634) that is absolutely essential for Tf1 transposition. Epigenetic overexpression of this domain in a wild-type (nup124(+)) background blocked Tf1 activity implying that sequences from Nup124p and the human Nup153 challenged the same pathway affecting Tf1 transposition. Our results establish a unique relationship between two analogous nucleoporins Nup124p and Nup153 wherein the function of a common domain in retrotransposition is conserved.
Collapse
Affiliation(s)
- Padmapriya Varadarajan
- Laboratory of Nucleopore Biology, Institute of Molecular and Cell Biology, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Importin beta, once thought to be exclusively a nuclear transport receptor, is emerging as a global regulator of diverse cellular functions. Importin beta acts positively in multiple interphase roles: in nuclear import, as a chaperone for highly charged nuclear proteins, and as a potential motor adaptor for movement along microtubules. In contrast, importin beta plays a negative regulatory role in mitotic spindle assembly, centrosome dynamics, nuclear membrane formation, and nuclear pore assembly. In most of these, importin beta is counteracted by its regulator, Ran-GTP. In light of this, the recent discovery of Ran's involvement in spindle checkpoint control suggested a potential new arena for importin beta action, although it is also possible that one of importin beta's relatives, the karyopherin family of proteins, manages this checkpoint. Lastly, importin beta plays a role in transducing damage signals from the axons of injured neurons back to the cell body.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California, San Diego, 9500 Gilman Drive, Room 2124A, Pacific Hall, La Jolla, CA 92093, USA
| | | |
Collapse
|
69
|
Mosammaparast N, Pemberton LF. Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 2004; 14:547-56. [PMID: 15450977 DOI: 10.1016/j.tcb.2004.09.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The karyopherin beta (or importin beta) family comprises soluble transport factors that mediate the movement of proteins and RNAs between the nucleus and cytoplasm. Recent studies have extended the role of karyopherins to regulating assembly of the nuclear pore complex (NPC), assembly of the nuclear envelope, mitosis and replication. New data also address how karyopherins specifically recognize and transport many distinct cargoes and traverse the NPC. These data raise the possibility that, although there might be a universal mechanism for nuclear transport, specific interactions between karyopherins and components of the NPC might function to regulate differentially the ability of the different karyopherins to cross the NPC.
Collapse
Affiliation(s)
- Nima Mosammaparast
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
70
|
Forler D, Rabut G, Ciccarelli FD, Herold A, Köcher T, Niggeweg R, Bork P, Ellenberg J, Izaurralde E. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol Cell Biol 2004; 24:1155-67. [PMID: 14729961 PMCID: PMC321439 DOI: 10.1128/mcb.24.3.1155-1167.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/02/2003] [Accepted: 10/24/2003] [Indexed: 11/20/2022] Open
Abstract
Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.
Collapse
|
71
|
Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 2004; 115:813-23. [PMID: 14697200 DOI: 10.1016/s0092-8674(03)00986-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eukaryotic cells have developed mechanisms for regulating the nuclear transport of macromolecules that control various cellular events including movement through defined stages of the cell cycle. In yeast cells, where the nuclear envelope remains intact throughout the cell cycle, these transport regulatory mechanisms must also function during mitosis. We have uncovered a mechanism for regulating transport that is controlled by M phase specific molecular rearrangements in the nuclear pore complex (NPC). These changes allow a transport inhibitory nucleoporin, Nup53p, to bind the karyopherin Kap121p specifically during mitosis, slowing its movement through the NPC and inducing cargo release. Yeast strains that possess defects in the function of Kap121p or the fidelity of the inhibitory pathway are delayed in mitosis. We propose that fluctuations in Kap121p transport mediated by the NPC contribute to controlling the subcellular distribution of molecules that direct progression through mitosis.
Collapse
Affiliation(s)
- Taras Makhnevych
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
72
|
Ball JR, Dimaano C, Ullman KS. The RNA binding domain within the nucleoporin Nup153 associates preferentially with single-stranded RNA. RNA (NEW YORK, N.Y.) 2004; 10:19-27. [PMID: 14681581 PMCID: PMC1370514 DOI: 10.1261/rna.5109104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 09/22/2003] [Indexed: 05/24/2023]
Abstract
The nuclear pore protein Nup153 is important for the transport of protein and RNA between the nucleus and cytoplasm. Recently, a novel RNA binding domain (RBD) was mapped within the N-terminal region of Nup153; however, the determinants of RNA association were not characterized. Here we have tested a range of RNAs with different general features to better understand targets recognized by this domain. We have found that the RBD associates with single-stranded RNA with little sequence preference. These results provide new information about a novel RNA binding domain and suggest new models to consider for the contribution of Nup153 to nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
73
|
Fahrenkrog B, Aebi U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 2003; 4:757-66. [PMID: 14570049 DOI: 10.1038/nrm1230] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past two years, it has become evident that there is an unexpected link between nuclear pore complex structure and dynamics, nucleocytoplasmic transport and chromosome segregation. In addition, a tomographic three-dimensional reconstruction of native nuclear pore complexes preserved in thick amorphous ice has unveiled a number of new structural features of this supramolecular machine. These data, together with some of the elementary physical principles that underlie nucleocytoplasmic transport, will be discussed in this review.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland.
| | | |
Collapse
|
74
|
Suh EK, Gumbiner BM. Translocation of β-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp Cell Res 2003; 290:447-56. [PMID: 14568002 DOI: 10.1016/s0014-4827(03)00370-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Catenin nuclear import has been found to be independent of classical nuclear localization signal (NLS) nuclear import factors. Here, we test the hypothesis that beta-catenin interacts directly with nuclear pore proteins to mediate its own transport. We show that beta-catenin, unlike importin-beta, does not interact detectably with Phe/Gly(FG)-repeat-rich nuclear pore proteins or nucleoporins (Nups). Moreover, unlike NLS-containing proteins, beta-catenin nuclear import is not inhibited by wheat germ agglutinin (WGA) or excess importin-beta. These results suggest beta-catenin nuclear translocation does not involve direct interactions with FG-Nups. However, beta-catenin has two regions that can target it to the nucleus, and its import is cold sensitive, indicating that beta-catenin nuclear import is still an active process. Transport is blocked by a soluble form of the C-cadherin cytoplasmic domain, suggesting that masking of the nuclear targeting signal may be a mechanism of regulating beta-catenin subcellular localization.
Collapse
Affiliation(s)
- Eun-Kyung Suh
- Neuroscience Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
75
|
Liu J, Prunuske AJ, Fager AM, Ullman KS. The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153. Dev Cell 2003; 5:487-98. [PMID: 12967567 DOI: 10.1016/s1534-5807(03)00262-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear envelope breakdown is a critical step in the cell cycle of higher eukaryotes. Although integral membrane proteins associated with the nuclear membrane have been observed to disperse into the endoplasmic reticulum at mitosis, the mechanisms involved in this reorganization remain to be fully elucidated. Here, using Xenopus extracts, we report a role for the COPI coatomer complex in nuclear envelope breakdown, implicating vesiculation as an important step. We have found that a nuclear pore protein, Nup153, plays a critical role in directing COPI to the nuclear membrane at mitosis and that this event provides feedback to other aspects of nuclear disassembly. These results provide insight into how key steps in nuclear division are orchestrated.
Collapse
Affiliation(s)
- Jin Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
76
|
Abstract
Analysis of virus-host interactions has revealed a variety of ways in which viruses utilize and/or alter host functions in an effort to facilitate efficient replication. Recent work has suggested that certain RNA viruses that replicate in the cytoplasm disrupt the normal trafficking of cellular RNAs and proteins within the host cell. This review will examine the recent evidence showing that poliovirus and vesicular stomatitis virus (VSV) can inhibit nucleo-cytoplasmic transport within cells. Interestingly, the data indicate that inhibition by both viruses involves targeting components of the nuclear pore complex (NPC). Following this, several possible explanations for why viruses might disrupt nucleo-cytoplasmic transport are discussed. Finally, the possibility that disruption of nucleo-cytoplasmic trafficking may be a more common feature of RNA virus-host interactions than previously thought is examined.
Collapse
Affiliation(s)
- Kurt E Gustin
- Department of Microbiology, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
77
|
Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 2003; 14:4387-96. [PMID: 14551248 PMCID: PMC266759 DOI: 10.1091/mbc.e03-05-0275] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | | | | | | | |
Collapse
|
78
|
Bednenko J, Cingolani G, Gerace L. Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport. J Cell Biol 2003; 162:391-401. [PMID: 12885761 PMCID: PMC2172684 DOI: 10.1083/jcb.200303085] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins containing a classical NLS are transported into the nucleus by the import receptor importin beta, which binds to cargoes via the adaptor importin alpha. The import complex is translocated through the nuclear pore complex by interactions of importin beta with a series of nucleoporins. Previous studies have defined a nucleoporin binding region in the NH2-terminal half of importin beta. Here we report the identification of a second nucleoporin binding region in its COOH-terminal half. Although the affinity of the COOH-terminal region for nucleoporins is dramatically weaker than that of the NH2-terminal region, sets of mutations that perturb the nucleoporin binding of either region reduce the nuclear import activity of importin beta to a similar extent ( approximately 50%). An importin beta mutant with a combination of mutations in the NH2- and COOH-terminal regions is completely inactive for nuclear import. Thus, importin beta possesses two nucleoporin binding sites, both of which are important for its nuclear import function.
Collapse
Affiliation(s)
- Janna Bednenko
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
79
|
Tirián L, Timinszky G, Szabad J. P446L-importin-beta inhibits nuclear envelope assembly by sequestering nuclear envelope assembly factors to the microtubules. Eur J Cell Biol 2003; 82:351-9. [PMID: 12924630 DOI: 10.1078/0171-9335-00324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.
Collapse
Affiliation(s)
- László Tirián
- The University of Szeged, Faculty of Medicine, Department of Biology, Szeged, Hungary
| | | | | |
Collapse
|
80
|
Hase ME, Cordes VC. Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 2003; 14:1923-40. [PMID: 12802065 PMCID: PMC165087 DOI: 10.1091/mbc.e02-09-0620] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 12/13/2002] [Accepted: 01/23/2003] [Indexed: 11/11/2022] Open
Abstract
Tpr is a 267-kDa protein forming coiled coil-dominated homodimers that locate at the nucleoplasmic side of the nuclear pore complex (NPC). The proteins that tether Tpr to this location are unknown. Moreover, the question whether Tpr itself might act as a scaffold onto which other NPC components need to be assembled has not been answered to date. To assess Tpr's role as an architectural element of the NPC, we have studied the sequential disassembly and reassembly of NPCs in mitotic cells, paralleled by studies of cells depleted of Tpr as a result of posttranscriptional tpr gene silencing by RNA interference (RNAi). NPC assembly and recruitment of several nucleoporins, including Nup50, Nup93, Nup96, Nup98, Nup107, and Nup153, in anaphase/early telophase is shown to precede NPC association of Tpr in late telophase. In accordance, cellular depletion of Tpr by RNAi does not forestall binding of these nucleoporins to the NPC. In a search for proteins that moor Tpr to the NPC, we have combined the RNAi approach with affinity-chromatography and yeast two-hybrid interaction studies, leading to the identification of nucleoporin Nup153 as the binding partner for Tpr. The specificity of this interaction is demonstrated by its sensitivity to Tpr amino acid substitution mutations that abolish Tpr's ability to adhere to the NPC and affect the direct binding of Tpr to Nup153. Accordingly, cellular depletion of Nup153 by RNAi is shown to result in mislocalization of Tpr to the nuclear interior. Nup153 deficiency also causes mislocalization of Nup50 but has no direct effect on NPC localization of the other nucleoporins studied in this investigation. In summary, these results render Tpr a protein only peripherally attached to the NPC that does not act as an essential scaffold for other nucleoporins.
Collapse
Affiliation(s)
- Manuela E Hase
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
81
|
Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D, Aebi U. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J Mol Biol 2003; 328:119-30. [PMID: 12684002 DOI: 10.1016/s0022-2836(03)00266-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To go beyond the current structural consensus model of the nuclear pore complex (NPC), we performed cryo-electron tomography of fully native NPCs from Xenopus oocyte nuclear envelopes (NEs). The cytoplasmic face of the NPC revealed distinct anchoring sites for the cytoplasmic filaments, whereas the nuclear face was topped with a massive distal ring positioned above the central pore with indications of the anchoring sites for the nuclear basket filaments and putative intranuclear filaments. The rather "spongy" central framework of the NPC was perforated by an elaborate channel and void system, and at the membrane pore interface it exhibited distinct "handles" protruding into the lumen of the NE. The most variable structural moiety of the NPC was a rather tenuous central plug partially obstructing the central pore. Its mobile character was documented by time-lapse atomic force microscopy. Taken together, the new insights we gained into NPC structure support the notion that the NPC acts as a constrained diffusion pore for molecules and particles without retention signal and as an affinity gate for signal-bearing cargoes.
Collapse
Affiliation(s)
- Daniel Stoffler
- Biozentrum, ME Müller Institute for Structural Biology, University of Basel CH-4056, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
82
|
Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell 2003; 11:853-64. [PMID: 12718872 DOI: 10.1016/s1097-2765(03)00116-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The vertebrate nuclear pore complex, 30 times the size of a ribosome, assembles from a library of soluble subunits and two membrane proteins. Using immunodepletion of Xenopus nuclear reconstitution extracts, it has previously been possible to assemble nuclei lacking pore subunits tied to protein import, export, or mRNA export. However, these altered pores all still possessed the bulk of pore structure. Here, we immunodeplete a single subunit, the Nup107-160 complex, using antibodies to Nup85 and Nup133, two of its components. The resulting reconstituted nuclei are severely defective for NLS import and DNA replication. Strikingly, they show a profound defect for every tested nucleoporin. Even the integral membrane proteins POM121 and gp210 are absent or unorganized. Scanning electron microscopy reveals pore-free nuclei, while addback of the Nup107-160 complex restores functional pores. We conclude that the Nup107-160 complex is a pivotal determinant for vertebrate nuclear pore complex assembly.
Collapse
Affiliation(s)
- Amnon Harel
- Section of Cell and Developmental Biology, Division of Biology 0347, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Nucleocytoplasmic transport is mediated by shuttling receptors that recognize specific signals on protein or RNA cargoes and translocate the cargoes through the nuclear pore complex. Transport receptors appear to move through the nuclear pore complex by facilitated diffusion, involving repeated cycles of binding to and dissociation from nucleoporins with phenylalanine-glycine motifs. We discuss recent experimental approaches and results that have begun to provide molecular insight into the mechanisms by which transport complexes traverse the nuclear pore complex, and point out the significant gaps in understanding that remain.
Collapse
Affiliation(s)
- Janna Bednenko
- Department of Cell, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
84
|
Becskei A, Mattaj IW. The strategy for coupling the RanGTP gradient to nuclear protein export. Proc Natl Acad Sci U S A 2003; 100:1717-22. [PMID: 12563037 PMCID: PMC149899 DOI: 10.1073/pnas.252766999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ran GTPase plays critical roles in both providing energy for and determining the directionality of nucleocytoplasmic transport. The mechanism that couples the RanGTP gradient to nuclear protein export will determine the rate of and limits to accumulation of export cargoes in the cytoplasm, but is presently unknown. We reasoned that plausible coupling mechanisms could be distinguished by comparing the rates of reverse motion of export cargoes through the nuclear pore complex (NPC) with the predictions of a mathematical model. Measurement of reverse export rates in Xenopus oocytes revealed that nuclear export signals can facilitate RanGTP-dependent cargo movement into the nucleus against the RanGTP gradient at rates comparable to export rates. Although export cargoes with high affinity for their receptor are exported faster than those with low affinity, their reverse transport is also greater. The ratio of the rates of reverse and forward export of a cargo is proportional to its rate of diffusion through the NPC, i.e., to the ability of the cargo to penetrate the NPC permeability barrier. The data substantiate a diffusional mechanism of coupling and suggest the existence of a high concentration of RanGTP-receptor complexes within the NPC that decreases sharply at the cytoplasmic boundary of the NPC permeability barrier.
Collapse
Affiliation(s)
- Attila Becskei
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | |
Collapse
|
85
|
Panse VG, Küster B, Gerstberger T, Hurt E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 2003; 5:21-7. [PMID: 12471376 DOI: 10.1038/ncb893] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Revised: 09/13/2002] [Accepted: 10/28/2002] [Indexed: 11/08/2022]
Abstract
The ubiquitin-like protein SUMO-1 (small ubiquitin-related modifier 1) is covalently attached to substrate proteins by ligases and cleaved by isopeptidases. Yeast has two SUMO-1-deconjugating enzymes, Ulp1 and Ulp2, which are located at nuclear pores and in the nucleoplasm, respectively. Here we show that the catalytic C-domain of Ulp1 must be excluded from the nucleoplasm for cell viability. This is achieved by the noncatalytic N-domain, which tethers Ulp1 to the nuclear pores. The bulk of cellular Ulp1 is not associated with nucleoporins but instead associates with three karyopherins (Pse1, Kap95 and Kap60), in a complex that is not dissociated by RanGTP in vitro. The Ulp1 N-domain has two distinct binding sites for Pse1 and Kap95/Kap60, both of which are required for anchoring to the nuclear pore complex. We propose that Ulp1 is tethered to the nuclear pores by a Ran-insensitive interaction with karyopherins associated with nucleoporins. This location could allow Ulp1 to remove SUMO-1 from sumoylated cargo proteins during their passage through the nuclear pore channel.
Collapse
|
86
|
Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem 2002; 277:50597-606. [PMID: 12372823 DOI: 10.1074/jbc.m209037200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between nuclear pore proteins (nucleoporins) and transport factors is crucial for the translocation of macromolecules through nuclear pores. Many nucleoporins contain FG sequence repeats, and previous studies have demonstrated interactions between repeats containing FxFG or GLFG cores and transport factors. The crystal structure of residues 1-442 of importin-beta bound to a GLFG peptide indicates that this repeat core binds to the same primary site as FxFG cores. Importin-beta-I178D shows reduced binding to both FxFG and GLFG repeats, consistent with both binding to an overlapping site in the hydrophobic groove between the A-helices of HEAT repeats 5 and 6. Moreover, FxFG repeats can displace importin-beta or its S. cerevisiae homologue, Kap95, bound to GLFG repeats. Addition of soluble GLFG repeats decreases the rate of nuclear protein import in digitonin-permeabilized HeLa cells, indicating that this interaction has a role in the translocation of carrier-cargo complexes through nuclear pores. The binding of GLFG and FxFG repeats to overlapping sites on importin-beta indicates that functional differences between different repeats probably arise from differences in their spatial organization.
Collapse
Affiliation(s)
- Richard Bayliss
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
87
|
Fahrenkrog B, Aebi U. The vertebrate nuclear pore complex: from structure to function. Results Probl Cell Differ 2002; 35:25-48. [PMID: 11791407 DOI: 10.1007/978-3-540-44603-3_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Birthe Fahrenkrog
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | |
Collapse
|
88
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
89
|
|
90
|
Lyman SK, Guan T, Bednenko J, Wodrich H, Gerace L. Influence of cargo size on Ran and energy requirements for nuclear protein import. J Cell Biol 2002; 159:55-67. [PMID: 12370244 PMCID: PMC2173498 DOI: 10.1083/jcb.200204163] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin alpha/beta and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin beta and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.
Collapse
Affiliation(s)
- Susan K Lyman
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
91
|
Fahrenkrog B, Maco B, Fager AM, Köser J, Sauder U, Ullman KS, Aebi U. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J Struct Biol 2002; 140:254-67. [PMID: 12490173 DOI: 10.1016/s1047-8477(02)00524-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nup153, one of the best characterized nuclear pore complex proteins (nucleoporins), plays a critical role in the import of proteins into the nucleus as well as in the export of RNAs and proteins from the nucleus. Initially an epitope of Nup153 was found to reside at the distal ring of the NPC, whereas more recently another epitope was localized to the nuclear ring moiety of the NPC. In an effort to more definitively determine the location of Nup153 within the 3-D architecture of the NPC we have generated domain-specific antibodies against distinct domains of Xenopus Nup153. With this approach we have found that the N-terminal domain is exposed at the nuclear ring of the NPC, whereas the zinc-finger domain of Nup153 is exposed at the distal ring of the NPC. In contrast, the C-terminal domain of Nup153 is not restricted to one particular subdomain of the NPC but rather appears to be highly flexible. Exogenous epitope-tagged hNup153 incorporated into Xenopus oocyte NPCs further underscored these findings. Our data illustrate that multiple domain-specific antibodies are essential to understanding the topology of a nucleoporin within the context of the NPC. Moreover, this approach has revealed new clues to the mechanisms by which Nup153 may contribute to nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- M.E. Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstr.70, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
92
|
Gustin KE, Sarnow P. Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 2002; 76:8787-96. [PMID: 12163599 PMCID: PMC136411 DOI: 10.1128/jvi.76.17.8787-8796.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 06/06/2002] [Indexed: 12/18/2022] Open
Abstract
Nucleocytoplasmic trafficking pathways and the status of nuclear pore complex (NPC) components were examined in cells infected with rhinovirus type 14. A variety of shuttling and nonshuttling nuclear proteins, using multiple nuclear import pathways, accumulated in the cytoplasm of cells infected with rhinovirus. An in vitro nuclear import assay with semipermeabilized infected cells confirmed that nuclear import was inhibited and that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the NPC was prevented in rhinovirus-infected cells. The relocation of cellular proteins and inhibition of nuclear import correlated with the degradation of two NPC components, Nup153 and p62. The degradation of Nup153 and p62 was not due to induction of apoptosis, because p62 was not proteolyzed in apoptotic HeLa cells, and Nup153 was cleaved to produce a 130-kDa cleavage product that was not observed in cells infected with poliovirus or rhinovirus. The finding that both poliovirus and rhinovirus cause inhibition of nuclear import and degradation of NPC components suggests that this may be a common feature of the replicative cycle of picornaviruses. Inhibition of nuclear import is predicted to result in the cytoplasmic accumulation of a large number of nuclear proteins that could have functions in viral translation, RNA synthesis, packaging, or assembly. Additionally, inhibition of nuclear import also presents a novel strategy whereby cytoplasmic RNA viruses can evade host immune defenses by preventing signal transduction into the nucleus.
Collapse
Affiliation(s)
- Kurt E Gustin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
93
|
Kuersten S, Arts GJ, Walther TC, Englmeier L, Mattaj IW. Steady-state nuclear localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex interaction domains. Mol Cell Biol 2002; 22:5708-20. [PMID: 12138183 PMCID: PMC133969 DOI: 10.1128/mcb.22.16.5708-5720.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.
Collapse
Affiliation(s)
- Scott Kuersten
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
94
|
Zimowska G, Paddy MR. Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Exp Cell Res 2002; 276:223-32. [PMID: 12027452 DOI: 10.1006/excr.2002.5525] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report immunofluorescence localizations of the Drosophila Tpr protein which are inconsistent with a filament-forming protein statically associated with nuclear pore complex-associated intranuclear filaments. Using tissues from throughout the Drosophila life cycle, we observe that Tpr is often localized to discontinuous, likely granular or particulate structures in the deep nuclear interior. These apparent granules have no obvious connectivity to pore complexes in the nuclear periphery, and are often localized on the surfaces of chromosomes and to the perinucleolar region. Most strikingly, after 1 h of heat shock, the great majority of the Tpr in the deep nuclear interior accumulates at a single heat shock puff, while Tpr in the nuclear periphery appears unchanged. This heat shock puff, 93D, is a known repository for many components of pre-mRNA metabolism during heat shock. Although we do not observe Tpr at sites of transcription under normal conditions, the 93D heat shock result leads us to favor a role for Tpr in mRNA metabolism, such as the transport of mRNA through the nuclear interior to nuclear pore complexes. Consistent with this, we observe networks of Tpr containing granules spanning between the nucleolus and the nuclear periphery which are also decorated by an anti-SR protein antibody. Since we also observe Drosophila Tpr in reticular or fibrous structures in other nuclei, such as salivary gland polytene nuclei, these results indicate that Tpr can exist in at least two structural forms, and suggest that Tpr may relocalize or even change structural forms in response to cellular needs.
Collapse
Affiliation(s)
- Grazyna Zimowska
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610-0235, USA.
| | | |
Collapse
|
95
|
Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 2002; 13:1282-97. [PMID: 11950939 PMCID: PMC102269 DOI: 10.1091/mbc.01-11-0538] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleoporin 98 (Nup98), a glycine-leucine-phenylalanine-glycine (GLFG) amino acid repeat-containing nucleoporin, plays a critical part in nuclear trafficking. Injection of antibodies to Nup98 into the nucleus blocks the export of most RNAs. Nup98 contains binding sites for several transport factors; however, the mechanism by which this nucleoporin functions has remained unclear. Multiple subcellular localizations have been suggested for Nup98. Here we show that Nup98 is indeed found both at the nuclear pore complex and within the nucleus. Inside the nucleus, Nup98 associates with a novel nuclear structure that we term the GLFG body because the GLFG domain of Nup98 is required for targeting to this structure. Photobleaching of green fluorescent protein-Nup98 in living cells reveals that Nup98 is mobile and moves between these different localizations. The rate of recovery after photobleaching indicates that Nup98 interacts with other, less mobile, components in the nucleoplasm. Strikingly, given the previous link to nuclear export, the mobility of Nup98 within the nucleus and at the pore is dependent on ongoing transcription by RNA polymerases I and II. These data give rise to a model in which Nup98 aids in direction of RNAs to the nuclear pore and provide the first potential mechanism for the role of a mobile nucleoporin.
Collapse
Affiliation(s)
- Eric R Griffis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
96
|
Shibata S, Matsuoka Y, Yoneda Y. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 2002; 7:421-34. [PMID: 11952838 DOI: 10.1046/j.1365-2443.2002.00525.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND It is known that Tpr is a component of an intranuclear long filament which extends from the nuclear pore complex (NPC) into the nucleoplasm. Since the over-expression of the full-length of or some fragments of Tpr in living cells leads to the accumulation of poly(A)+ RNA within the nuclei, it is generally thought that a relationship exists between Tpr and the nuclear export of mRNA in mammalian cells. In contrast, the nuclear export of poly(A)+ RNA was not inhibited in a double deletion mutant of yeast Tpr homologues (Mlp1p and Mlp2p). Therefore, the precise function of Tpr remains unknown. RESULTS By microinjecting two types of polyclonal antibodies which are specific to Tpr into the cytoplasm of living mammalian interphase cells, we succeeded in reconstituting the Tpr-less nuclei. In the Tpr-less nuclei, the localization of the major components of the NPC, the nuclear import of SV40 T-NLS substrates and the nuclear export of HIV Rev NES-substrates were not affected. However poly(A)+ RNA accumulated in the non-snRNP splicing factor SC35-positive clusters, which became larger in size and fewer in number, compared with normal nuclei. CONCLUSION These results indicate that Tpr plays a critical role in the intranuclear dynamics of RNA pol II transcripts, including the processing, intranuclear transport and targeting, as well as their translocation through the NPC in mammalian cells.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
97
|
Frosst P, Guan T, Subauste C, Hahn K, Gerace L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 2002; 156:617-30. [PMID: 11839768 PMCID: PMC2174070 DOI: 10.1083/jcb.200106046] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.
Collapse
Affiliation(s)
- Phyllis Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
98
|
Huber J, Dickmanns A, Lührmann R. The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 2002; 156:467-79. [PMID: 11815630 PMCID: PMC2173342 DOI: 10.1083/jcb.200108114] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.
Collapse
Affiliation(s)
- Jochen Huber
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
99
|
Abstract
A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Collapse
Affiliation(s)
- I G Macara
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908-0577, USA.
| |
Collapse
|
100
|
Dimaano C, Ball JR, Prunuske AJ, Ullman KS. RNA association defines a functionally conserved domain in the nuclear pore protein Nup153. J Biol Chem 2001; 276:45349-57. [PMID: 11567018 DOI: 10.1074/jbc.m102592200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traffic between the nucleus and cytoplasm takes place through a macromolecular structure termed the nuclear pore complex. To understand how the vital process of nucleocytoplasmic transport occurs, the contribution of individual pore proteins must be elucidated. One such protein, the nucleoporin Nup153, is localized to the nuclear basket of the pore complex and has been shown to be a central component of the nuclear transport machinery. Perturbation of Nup153 function was demonstrated previously to block the export of several classes of RNA cargo. Moreover, these studies also showed that Nup153 can stably associate with RNA in vitro. In this study, we have mapped a domain within Nup153, encompassing amino acids 250-400 in human Nup153, that is responsible for RNA association. After cloning this region of Xenopus Nup153, we performed a cross-species analysis. Despite variation in sequence conservation between Drosophila, Xenopus, and human, this domain of Nup153 displayed robust RNA binding activity in each case, indicating that this property is a hallmark feature of Nup153 and pointing toward a subset of amino acid residues that are key to conferring this ability. We have further determined that a recombinant fragment of Nup153 can bind directly to RNA and that this fragment can interact with endogenous RNA targets. Our findings identify a functionally conserved domain in Nup153 and suggest a role for RNA binding in Nup153 function at the nuclear pore.
Collapse
Affiliation(s)
- C Dimaano
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|