51
|
Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. J Bacteriol 2010; 192:68-76. [PMID: 19880595 DOI: 10.1128/jb.00969-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is one of the most frequent bacterial causes of food-borne gastrointestinal disease in developed countries. Previous work indicates that the binding of C. jejuni to human intestinal cells is crucial for host colonization and disease. Fibronectin (Fn), a major constituent of the extracellular matrix, is a approximately 250-kDa glycoprotein present at regions of cell-to-cell contact in the intestinal epithelium. Fn is composed of three types of repeating units: type I (approximately 45 amino acids), type II (approximately 60 amino acids), and type III (approximately 90 amino acids). The deduced amino acid sequence of C. jejuni flpA (Cj1279c) contains at least three Fn type III domains. Based on the presence of the Fn type III domains, we hypothesized that FlpA contributes to the binding of C. jejuni to human INT 407 epithelial cells and Fn. We assessed the contribution of FlpA in C. jejuni binding to host cells by in vitro adherence assays with a C. jejuni wild-type strain and a C. jejuni flpA mutant and binding of purified FlpA protein to Fn by enzyme-linked immunosorbent assay (ELISA). Adherence assays revealed the binding of the C. jejuni flpA mutant to INT 407 epithelial cells was significantly reduced compared with that for a wild-type strain. In addition, rabbit polyclonal serum generated against FlpA blocked C. jejuni adherence to INT 407 cells in a concentration-dependent manner. Binding of FlpA to Fn was found to be dose dependent and saturable by ELISA, demonstrating the specificity of the interaction. Based on these data, we conclude that FlpA mediates C. jejuni attachment to host epithelial cells via Fn binding.
Collapse
|
52
|
Karim Z, Vepachedu R, Gorska M, Alam R. UNC119 inhibits dynamin and dynamin-dependent endocytic processes. Cell Signal 2009; 22:128-37. [PMID: 19781630 DOI: 10.1016/j.cellsig.2009.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/14/2009] [Indexed: 12/26/2022]
Abstract
Unc119 is an adapter signaling molecule, which regulates activation of tyrosine kinases in T cells, eosinophils and fibroblasts. It plays an important role in the photoreceptor synapses of the retina. Recently, we have shown that it inhibits bacterial uptake through macropinocytosis. In this paper we demonstrate a role for Unc119 in clathrin- and caveolae-based endocytosis as well as macropinocytosis. Depletion of Unc119 in fibroblasts increases, whereas overexpression inhibits uptake of transferrin, FM4-64, albumin, viruses, and ligand-coated beads. Physiological stimuli that upregulate the expression of Unc119 also inhibits endocytosis. Unc119 has the opposite effect on cholera toxin B uptake, which represents a clathrin- and dynamin-independent endocytic process. Unc119 interacts with dynamin, a key effector molecule of many endocytic processes. More importantly, Unc119 inhibits the GTPase activity of dynamin. Binding of Unc119 to dynamin decreases the association with its binding partner amphiphysin, a known regulator of dynamin activation. Thus, Unc119 regulates various endocytic pathways through dynamin and sets a threshold point for vesicular trafficking.
Collapse
Affiliation(s)
- Zunayet Karim
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
53
|
Vepachedu R, Karim Z, Patel O, Goplen N, Alam R. Unc119 protects from Shigella infection by inhibiting the Abl family kinases. PLoS One 2009; 4:e5211. [PMID: 19381274 PMCID: PMC2667249 DOI: 10.1371/journal.pone.0005211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/13/2009] [Indexed: 01/11/2023] Open
Abstract
Background Bacteria engage cell surface receptors and intracellular signaling molecules to enter the cell. Unc119 is an adaptor protein, which interacts with receptors and tyrosine kinases. Its role in bacterial invasion of cells is unknown. Methodology/Principal Findings We used biochemical, molecular and cell biology approaches to identify the binding partners of Unc119, and to study the effect of Unc119 on Abl family kinases and Shigella infection. We employed loss-of-function and gain-in-function approaches to study the effect of Unc119 in a mouse model of pulmonary shigellosis. Unc119 interacts with Abl family kinases and inhibits their kinase activity. As a consequence, it inhibits Crk phosphorylation, which is essential for Shigella infection. Unc119 co-localizes with Crk and Shigella in infected cells. Shigella infectivity increases in Unc119-deficient epithelial and macrophage cells. In a mouse model of shigellosis cell-permeable TAT-Unc119 inhibits Shigella infection. Conversely, Unc119 knockdown in vivo results in enhanced bacterial invasion and increased lethality. Unc119 is an inducible protein. Its expression is upregulated by probacteria and bacterial products such as lipopolysacharide and sodium butyrate. The latter inhibits Shigella infection in mouse lungs but is ineffective in Unc119 deficiency. Conclusions Unc119 inhibits signaling pathways that are used by Shigella to enter the cell. As a consequence it provides partial but significant protection from Shigella infections. Unc119 induction in vivo boosts host defense against infections.
Collapse
Affiliation(s)
| | - Zunayet Karim
- National Jewish Health, Denver, Colorado, United States of America
| | - Ojas Patel
- University of Colorado at Denver Health Sciences Center, Denver, Colorado, United States of America
| | - Nicholas Goplen
- National Jewish Health, Denver, Colorado, United States of America
| | - Rafeul Alam
- National Jewish Health, Denver, Colorado, United States of America
- University of Colorado at Denver Health Sciences Center, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
54
|
Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System. Curr Top Microbiol Immunol 2009; 337:231-55. [DOI: 10.1007/978-3-642-01846-6_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Dupuy AG, Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci 2008; 121:1773-83. [PMID: 18492791 DOI: 10.1242/jcs.018036] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By linking actin dynamics to extracellular components, integrins are involved in a wide range of cellular processes that are associated with or require cytoskeletal remodelling and cell-shape changes. One such function is integrin-dependent phagocytosis, a process that several integrins are capable of mediating and that allows the binding and clearance of particles. Integrin-dependent phagocytosis is involved in a wide range of physiological processes, from the clearance of microorganisms and apoptotic-cell removal to extracellular-matrix remodelling. Integrin signalling is also exploited by microbial pathogens for entry into host cells. Far from being a particular property of specific integrins and specialised cells, integrin-dependent uptake is emerging as a general, intrinsic ability of most integrins that is associated with their capacity to signal to the actin cytoskeleton. Integrin-mediated phagocytosis can therefore be used as a robust model in which to study integrin regulation and signalling.
Collapse
Affiliation(s)
- Aurélien G Dupuy
- Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
56
|
Mumy KL, Chen X, Kelly CP, McCormick BA. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am J Physiol Gastrointest Liver Physiol 2008; 294:G599-609. [PMID: 18032477 PMCID: PMC3212754 DOI: 10.1152/ajpgi.00391.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-kappaB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection.
Collapse
Affiliation(s)
- Karen L Mumy
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
57
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
58
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
59
|
Mejía E, Bliska JB, Viboud GI. Yersinia controls type III effector delivery into host cells by modulating Rho activity. PLoS Pathog 2008; 4:e3. [PMID: 18193942 PMCID: PMC2186360 DOI: 10.1371/journal.ppat.0040003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 11/27/2007] [Indexed: 11/30/2022] Open
Abstract
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.
Collapse
Affiliation(s)
- Edison Mejía
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Gloria I Viboud
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
60
|
Alsaleh G, Messer L, Semaan N, Boulanger N, Gottenberg JE, Sibilia J, Wachsmann D. BAFF synthesis by rheumatoid synoviocytes is positively controlled by alpha5beta1 integrin stimulation and is negatively regulated by tumor necrosis factor alpha and Toll-like receptor ligands. ACTA ACUST UNITED AC 2007; 56:3202-14. [PMID: 17907168 DOI: 10.1002/art.22915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE It was recently demonstrated that synoviocytes (FLS) from rheumatoid arthritis (RA) patients express BAFF transcripts that are up-regulated by tumor necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). Thus, BAFF increases in RA target cells might be related to activation of the receptors of innate immunity. The purpose of this study was to determine whether ligands of Toll-like receptor 2 (TLR-2), TLR-4, TLR-9, and alpha5beta1 integrin are able to induce BAFF synthesis by RA FLS. METHODS Quantitative reverse transcription-polymerase chain reaction analyses and enzyme-linked immunosorbent assays were performed to evaluate BAFF messenger RNA induction and BAFF release from FLS after stimulation by ligands for TLR-2, TLR-4, TLR-9, alpha5beta1 integrin (bacterial lipopeptide [BLP] palmitoyl-3-cysteine-serine-lysine-4, lipopolysaccharide [LPS], CpG, and protein I/II, respectively), TNFalpha, and IFNgamma. RESULTS In contrast to IFNgamma, neither TNFalpha, LPS, BLP, nor CpG induced the de novo synthesis and release of BAFF by FLS. Priming of cells with IFNgamma did not have a synergistic effect on BAFF synthesis by FLS stimulated with bacterial products known as pathogen-associated molecular patterns. Moreover, we found that IFNgamma-induced BAFF synthesis is inhibited by simultaneous stimulation with either TLR ligands or TNFalpha. We also showed that interplay between TLRs, TNF receptors, and IFNgamma signaling induces the expression of suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 and reduces IFNgamma-dependent STAT-1 phosphorylation, which might explain this inhibition. In contrast, we demonstrated that stimulation of alpha5beta1 integrin can induce BAFF synthesis and release per se and that stimulation of this pathway has no inhibitory effect on IFNgamma-induced BAFF synthesis. CONCLUSION Our findings indicate that BAFF secretion by resident cells in target organs of autoimmunity is tightly regulated by innate immunity, with positive and negative controls, depending on the receptors and the pathways triggered.
Collapse
Affiliation(s)
- Ghada Alsaleh
- EA 3432, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Swanson KA, Crane DD, Caldwell HD. Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun 2007; 75:5669-77. [PMID: 17908813 PMCID: PMC2168331 DOI: 10.1128/iai.01096-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans that exhibits species-specific biological characteristics in its early interactions with host cells that are likely important to pathogenesis. One such characteristic is the tyrosine phosphorylation (Tyr-P) of an approximately 70-kDa polypeptide that occurs only after infection of mammalian cells by human strains. We sought to identify this protein because of its potential significance to the pathogenesis of human chlamydial infections. Using an immunoproteomic approach we identified the host protein ezrin, a member of the ezrin-radixin-moesin (ERM) protein family that serves as a physical link between host cell receptors and the actin cytoskeleton. Confocal microscopy studies showed colocalization of ezrin and actin at the tips and crypts of microvilli, the site of chlamydial attachment and entry, respectively. To demonstrate a functional role for ezrin we infected cells with a dominant-negative (DN) ezrin phenotype or treated cells with ezrin-specific small interfering RNA (siRNA). We found that both DN and siRNA-treated cells were significantly less susceptible to infection by human chlamydial strains. Moreover, we demonstrated that inhibition of infection in ezrin DN cells occurred at the stage of chlamydial entry. We hypothesize that the C. trachomatis-specific Tyr-P of ezrin might relate to an undefined species-specific mechanism of pathogen entry that involves chlamydial specific ligand(s) and host cell coreceptor usage.
Collapse
Affiliation(s)
- Kena A Swanson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | |
Collapse
|
63
|
Abstract
Shigella and related enteropathogens deliver effector molecules into the cytoplasm of epithelial cells and macrophages via a type III secretion system. Epithelial cells respond to contact with Shigella by rearranging the cytoskeleton, which leads to uptake of the bacterium. Apart from several cytoskeletal proteins, this process involves the recruitment and activation of kinases, and the small GTPase rho. Macrophages infected with Shigella undergo apoptosis and release mature IL-1beta, a pro-inflammatory cytokine. This apoptotic pathway requires caspase-1 (IL-1beta-converting enzyme). Pro-inflammatory macrophage apoptosis triggers acute shigellosis and might be relevant in other infectious diseases.
Collapse
Affiliation(s)
- H Hilbi
- Skirball Institute, Department of Microbiology, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
64
|
Scibelli A, Roperto S, Manna L, Pavone LM, Tafuri S, Della Morte R, Staiano N. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet J 2007; 173:482-91. [PMID: 16546423 DOI: 10.1016/j.tvjl.2006.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Integrins are heterodimeric receptors that mediate important cell functions, including cell adhesion, migration and tissue organisation. These transmembrane receptors regulate the direct association of cells with each other and with extracellular matrix proteins. However, by binding their ligands, integrins provide a transmembrane link for the bidirectional transmission of mechanical forces and biochemical signals across the plasma membrane. Interestingly, several of this family of receptors are exploited by pathogens to establish contact with the host cells. Hence, microbes subvert normal eukaryotic cell processes to create a specialised niche which allows their survival. This review highlights the fundamental role of integrins in bacterial pathogenesis.
Collapse
Affiliation(s)
- Antonio Scibelli
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
65
|
Wang B, Li S, Dedhar S, Cleary PP. Paxillin phosphorylation: bifurcation point downstream of integrin-linked kinase (ILK) in streptococcal invasion. Cell Microbiol 2007; 9:1519-28. [PMID: 17298394 DOI: 10.1111/j.1462-5822.2007.00889.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient group A streptococcus (GAS) invasion of mammalian cells requires fibronectin (Fn) binding proteins, such as M1 and PrtF1/SfbI, that bridge bacteria to integrins and activate cellular signalling for ingestion. Previous studies of GAS invasion, mediated by both proteins, suggest a common signalling pathway. However, distinct cellular morphological changes at the port of bacterial entry suggest that different signals are also induced. Here we report that paxillin is phosphorylated in response to Fn-bound GAS that express either M1 or PrtF1/SfbI protein, but is not phosphorylated in response to a mutant deficient in both proteins. Inhibition of paxillin phosphorylation by a tyrosine kinase inhibitor, PP2, or by expression of a dominant negative form of paxillin significantly reduced invasion by M1+ but did not affect ingestion of PrtF1/SfbI+ strains. In contrast, another tyrosine inhibitor, genistein, did not significantly prevent paxillin phosphorylation and had no effect on ingestion of the M1+ strain, but reduced PrtF1/SfbI-mediated entry. This suggests that paxillin phosphorylation is induced by both proteins but only required for M1-mediated invasion. A bifurcation point, downstream of integrin-linked kinase (ILK) and phosphoinositide 3-kinase, likely accounts for the distinct morphological changes. Furthermore, ILK activity is indispensable for M1-induced paxillin recruitment and phosphorylation.
Collapse
Affiliation(s)
- Beinan Wang
- Department of Microbiology, Medical School, University of Minnesota, 1460 Mayo Memorial Building, MMC 196, 420 Delaware Street SE. Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
66
|
Abstract
Cell adhesion, migration and the maintenance of cell polarity are all processes that depend on the correct targeting of integrins and the dynamic remodelling of integrin-containing adhesion sites. The importance of the endo/exocytic cycle of integrins as a key regulator of these functions is increasingly recognized. Several recent publications have provided mechanistic insight into how integrin traffic is regulated in cells. Increasing evidence suggests that small GTPases such as Arf6 and members of the Rab family control integrin internalization and recycling back to the plasma membrane along microtubules. The fine tuning of these trafficking events seems to be mediated by specific guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition, several kinases regulate integrin traffic. The identification of their substrates has demonstrated how these kinases regulate integrin traffic by controlling small GTPases or stabilizing cytoskeletal tracks that are crucial for efficient traffic of integrins to the plasma membrane.
Collapse
|
67
|
Demali KA, Jue AL, Burridge K. IpaA targets beta1 integrins and rho to promote actin cytoskeleton rearrangements necessary for Shigella entry. J Biol Chem 2006; 281:39534-41. [PMID: 17060328 DOI: 10.1074/jbc.m605939200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Shigella invasion into the colonic epithelium involves many steps including the formation of large membrane protrusions by the epithelial cells that facilitate bacterial engulfment. IpaA, a Shigella protein secreted into target cells upon cell contact induces a loss of actin stress fibers in cells and promotes the reorganization of actin at the site of entry. The mechanism for this is not known but is thought to involve recruitment of the focal adhesion protein vinculin to IpaA. Here we have examined the mechanism for the effects of IpaA on the actin cytoskeleton. We show that IpaA-induced loss of actin stress fibers and cell rounding do not require vinculin expression or an intact vinculin binding site on IpaA. Rather, we find that cells expressing IpaA exhibited elevated Rho activity and increased myosin light chain phosphorylation. In addition, IpaA decreases integrin affinity for extracellular matrix ligands by interfering with talin recruitment to the integrin cytoplasmic tail. The combination of these two effects, namely weakened adhesion and increased contractility, account for the loss of actin stress fibers and cell rounding observed in cells exposed to IpaA.
Collapse
Affiliation(s)
- Kris A Demali
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
68
|
Schroeder GN, Hilbi H. Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol 2006; 9:265-78. [PMID: 16925787 DOI: 10.1111/j.1462-5822.2006.00787.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pro-inflammatory macrophage apoptosis is pivotal in the aetiology of bacillary dysentery, an acute inflammatory diarrhoea caused by Shigella spp. S. flexneri triggers its uptake by macrophages, escapes the phagosome and kills the host cell by a cytotoxic pathway, which activates and requires caspase-1 [interleukin (IL)-1beta-converting enzyme] and releases mature IL-1beta. The bacterial type III-secreted translocator/effector protein IpaB triggers cell death and directly binds to caspase-1. Here, we demonstrate that in S. flexneri-infected macrophages, activated caspase-1 is present in the cytoplasm, the nucleus and on vesicular membranes. IpaB partitions with membrane and cytoplasmic fractions and colocalizes with activated caspase-1 on the surface of bacteria, in the macrophage cytoplasm and on vesicular membranes. Macrophages treated with the cholesterol-sequestering compound methyl-beta-cyclodextrin (MCD) were depleted from cholesterol within minutes and were impaired for phagocytosis of S. flexneri. Consequently, cytotoxicity as determined by lactate dehydrogenase release was blocked. Interestingly, if MCD was added 15-30 min post infection, cytotoxicity, activation of caspase-1, and apoptosis were inhibited, while phagocytosis of the bacteria, escape from the phagosome and type III secretion of IpaB was not affected. Inhibition of Shigella cytotoxicity by MCD coincided with a reduced association of IpaB to host cell membranes. Contrarily, the activation of caspase-1 and cytotoxicity triggered by the K+/H+ antiport ionophore nigericin or by ATP was not affected or even increased by MCD. These results indicate that cholesterol is specifically required for caspase-1 activation and apoptosis triggered by Shigella after the escape from phagosomes, and suggest that membrane association of IpaB contributes to the activation of caspase-1.
Collapse
Affiliation(s)
- Gunnar N Schroeder
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli Strasse 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
69
|
Erskine PT, Knight MJ, Ruaux A, Mikolajek H, Wong Fat Sang N, Withers J, Gill R, Wood SP, Wood M, Fox GC, Cooper JB. High resolution structure of BipD: an invasion protein associated with the type III secretion system of Burkholderia pseudomallei. J Mol Biol 2006; 363:125-36. [PMID: 16950399 DOI: 10.1016/j.jmb.2006.07.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/25/2022]
Abstract
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.
Collapse
Affiliation(s)
- P T Erskine
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Knight MJ, Ruaux A, Mikolajek H, Erskine PT, Gill R, Wood SP, Wood M, Cooper JB. Crystallization and preliminary X-ray diffraction analysis of BipD, a virulence factor from Burkholderia pseudomallei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:761-4. [PMID: 16880550 PMCID: PMC2242920 DOI: 10.1107/s1744309106024857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 06/27/2006] [Indexed: 01/16/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a protein-secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to secrete virulence-associated proteins into target cells of the host organism. The BipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and most likely functionally analogous to IpaD from Shigella and SipD from Salmonella. Thus, the BipD protein is likely to be a component of a type III protein-secretion system (TTSS) in B. pseudomallei. Proteins in the same class as BipD, such as IpaD and SipD, are thought to act as extracellular chaperones to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and might even link the translocon pore with the secretion needle. There is evidence that the translocator proteins also bind an integrin which stimulates actin-mediated insertion of the bacterium into the host-cell membrane. Native BipD has been crystallized in a monoclinic crystal form that diffracts X-rays to 2.5 angstroms resolution. BipD protein which incorporates selenomethionine (SeMet-BipD) has also been expressed and forms crystals which diffract to a higher resolution of 2.1 angstroms.
Collapse
Affiliation(s)
- M. J. Knight
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - A. Ruaux
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - H. Mikolajek
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - P. T. Erskine
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - R. Gill
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - S. P. Wood
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| | - M. Wood
- Institute of Animal Health, Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, England
| | - J. B. Cooper
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
| |
Collapse
|
71
|
Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J Dent Res 2006; 85:392-403. [PMID: 16632751 DOI: 10.1177/154405910608500502] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Emerging data on the consequences of the interactions between invasive oral bacteria and host cells have provided new insights into the pathogenesis of periodontal disease. Indeed, modulation of the mucosal epithelial barrier by pathogenic bacteria appears to be a critical step in the initiation and progression of periodontal disease. Periodontopathogens such as Porphyromonas gingivalis have developed different strategies to perturb the structural and functional integrity of the gingival epithelium. P. gingivalis adheres to, invades, and replicates within human epithelial cells. Adhesion of P. gingivalis to host cells is multimodal and involves the interaction of bacterial cell-surface adhesins with receptors expressed on the surfaces of epithelial cells. Internalization of P. gingivalis within host cells is rapid and requires both bacterial contact-dependent components and host-induced signaling pathways. P. gingivalis also subverts host responses to bacterial challenges by inactivating immune cells and molecules and by activating host processes leading to tissue destruction. The adaptive ability of these pathogens that allows them to survive within host cells and degrade periodontal tissue constituents may contribute to the initiation and progression of periodontitis. In this paper, we review current knowledge on the molecular cross-talk between P. gingivalis and gingival epithelial cells in the development of periodontitis.
Collapse
Affiliation(s)
- E Andrian
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Quebec City, Canada
| | | | | |
Collapse
|
72
|
Kaminski RW, Turbyfill KR, Oaks EV. Mucosal adjuvant properties of the Shigella invasin complex. Infect Immun 2006; 74:2856-66. [PMID: 16622224 PMCID: PMC1459713 DOI: 10.1128/iai.74.5.2856-2866.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Shigella invasin complex (Invaplex) is an effective mucosal vaccine capable of protecting against Shigella challenge in animal models. The major antigenic constituents of Invaplex are the Ipa proteins and lipopolysaccharide. The cell-binding capacity of the Ipa proteins prompted the investigation into the adjuvanticity of Invaplex. Using ovalbumin (OVA) as a model antigen, intranasal immunization with OVA combined with Invaplex was found to enhance anti-OVA serum immunoglobulin G (IgG) and IgA responses and induce OVA-specific mucosal antibody responses at sites located both proximal and distal to the immunization site. The immune responses induced with OVA and Invaplex were comparable in both magnitude and duration to the immune responses induced after immunization with OVA and cholera toxin. The OVA-specific immune response was characterized by high levels of serum IgG1 and increased production of interleukin-4 (IL-4), IL-5, or IL-10 from lymphoid cells of immunized animals, suggesting a Th2 response. In addition to enhancing the immunogenicity of OVA, Invaplex-specific immune responses were also induced, indicating the potential for the development of a combination vaccine consisting of Invaplex and other immunogens. Preexisting Invaplex-specific immunity did not interfere with the capacity to enhance the immunogenicity of a second, unrelated vaccine antigen, suggesting that Invaplex could be used as a mucosal adjuvant in multiple vaccine regimens.
Collapse
Affiliation(s)
- Robert W Kaminski
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, The Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | | |
Collapse
|
73
|
Harrington A, Darboe N, Kenjale R, Picking WL, Middaugh CR, Birket S, Picking WD. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry 2006; 45:626-36. [PMID: 16401091 DOI: 10.1021/bi0512593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shigella flexneri causes dysentery after invading the epithelial cells of the human colon. Enterocyte invasion is induced by the bacterial effector IpaC (invasion plasmid antigen C), which triggers Shigella entry into epithelial cells by a rather poorly understood mechanism. IpaC is also involved in pathogen escape into the host cell cytoplasm following uptake, and this property may be reflected in its ability to disrupt phospholipid vesicles in vitro. Purified recombinant IpaC interacts with liposome vesicles to cause the release of small molecules trapped inside. This interaction requires that the liposomes possess an acidic phospholipid component. To better understand the events involved in the disruption of liposomes by IpaC, single tryptophan mutants were generated to permit the use of intrinsic fluorescence, circular dichroism, and ultraviolet absorption spectroscopies to examine the effect that phospholipid membrane association has on IpaC structure and stability. These mutants were also used to determine how amino acid substitutions within specific regions of IpaC influence its activity in vivo. The outcomes of this study include findings that cholesterol greatly impacts IpaC association with phospholipid membranes, tryptophan incorporation into specific regions of IpaC (especially near the C-terminus) can greatly impact its in vivo activity, and interaction with phospholipid membranes causes differing degrees of change in the fluorescence of tryptophan residues introduced at specific sites within IpaC. These data, together with fluorescence quenching analyses, provide new functional and structural information concerning IpaC and its insertion into phospholipid membranes.
Collapse
Affiliation(s)
- Amanda Harrington
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
75
|
Heise T, Dersch P. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci U S A 2006; 103:3375-80. [PMID: 16488979 PMCID: PMC1413876 DOI: 10.1073/pnas.0507749103] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For many pathogens, cell adhesion factors are critical virulence determinants. Enteropathogenic Yersinia species express the afimbrial adhesin YadA, the prototype of a class of homotrimeric outer membrane adhesins, which mediates adherence to host cells by binding to extracellular matrix components. In this study, we demonstrate that different pathogenic functions are attributable to highly homologous YadA proteins. YadA of Yersinia pseudotuberculosis (YadA(pstb)) and Yersinia enterocolitica (YadA(ent)) exhibit fundamental differences in their specificity of extracellular matrix substrate binding, they cause dissimilar bacterial aggregation behaviors, and YadA(pstb), but not YadA(ent), promotes efficient uptake into human cells. Evidence is presented here that a unique N-terminal amino acid sequence of YadA(pstb), which is absent in YadA(ent), acts as an "uptake domain" by mediating tight binding to fibronectin bound on alpha(5)beta(1) integrin receptors, which are crucial for initiating the entry process. Deleting this motif in YadA(pstb) generated all features of the YadA(ent) protein, i.e., the molecule lost its adhesiveness to fibronectin and its invasiveness, but gained adhesion potential to collagen and laminin. Loss of the "uptake region" also attenuated host tissue colonization by Y. pseudotuberculosis during oral infections of mice, demonstrating that this motif plays a crucial role in defining pathogen-host cell interaction and pathogenesis. We conclude that even small variations in adhesion factors can provoke major differences in the virulence properties of related pathogens.
Collapse
Affiliation(s)
- Tanja Heise
- *Junior Research Group NG6, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany; and
| | - Petra Dersch
- *Junior Research Group NG6, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany; and
- Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
76
|
Wang B, Yurecko RS, Dedhar S, Cleary PP. Integrin-linked kinase is an essential link between integrins and uptake of bacterial pathogens by epithelial cells. Cell Microbiol 2006; 8:257-66. [PMID: 16441436 DOI: 10.1111/j.1462-5822.2005.00618.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Entry of Streptococcus pyogenes or group A streptococcus (GAS) into host cells is mediated by fibronectin bound to surface proteins, M1 or PrtF1, forming a bridge to alpha5beta1 integrins. This interaction leads to cytoskeletal rearrangement and uptake of streptococci. We postulated that integrin-linked kinase (ILK), which directly associates with integrins, is the universal link between integrins and several bacterial pathogens. We showed that inhibition of ILK expression by siRNA silencing, or ILK kinase activity by chemical inhibitors or expression of a dominant negative form of ILK reduced M1-mediated invasion of epithelial cells up to 80%. To evaluate the ILK requirement for PrtF1-mediated GAS invasion, a M1-PrtF1+ recombinant strain within the M1 background was constructed. Inhibition of ILK kinase activity also significantly reduced invasion of epithelial cells by this recombinant and wild-type strain JRS4 that expresses PrtF1. In addition, impaired ILK kinase activity results in significant reduction of integrin-dependent invasion mediated by invasins of two other important pathogens, Staphylococcus aureus and Yersinia spp. This study suggests that bacterial pathogens evolved different molecules and strategies to exploit the host integrin signalling pathway for their survival.
Collapse
Affiliation(s)
- Beinan Wang
- Department of Microbiology, Medical School, University of Minnesota, 1460 Mayo Memorial Building, MMC 196, 420 Delaware Street SE., Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
77
|
Paukner S, Stiedl T, Kudela P, Bizik J, Al Laham F, Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert Opin Drug Deliv 2005; 3:11-22. [PMID: 16370937 DOI: 10.1517/17425247.3.1.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although there are powerful drugs against infectious diseases and cancer on the market, delivery systems are needed to decrease serious toxic and noncurative side effects. In order to enhance compliance, several delivery systems such as polymeric micro- and nanoparticles, liposomal systems and erythrocyte ghosts have been developed. Bacterial ghosts representing novel advanced delivery and targeting vehicles suitable for the delivery of hydrophobic or water-soluble drugs, are the main focus of this review. They are useful nonliving carriers, as they can carry different active substances in more than one cellular location separately and simultaneously. Bacterial ghosts combine excellent natural or engineered adhesion properties with versatile carrier functions for drugs, proteins and DNA plasmids or DNA minicircles. The simplicity of both bacterial ghost production and packaging of drugs and/or DNA makes them particularly suitable for the use as a delivery system. Further advantages of bacterial ghost delivery vehicles include high bioavailability and a long shelf life without the need of cold-chain storage due to the possibility to freeze-dry the material.
Collapse
Affiliation(s)
- Susanne Paukner
- Department of Medical/Pharmaceutical Chemistry, University of Vienna, UZA II, 2B255, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
78
|
Pils S, Schmitter T, Neske F, Hauck CR. Quantification of bacterial invasion into adherent cells by flow cytometry. J Microbiol Methods 2005; 65:301-10. [PMID: 16185780 DOI: 10.1016/j.mimet.2005.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/10/2005] [Accepted: 08/15/2005] [Indexed: 11/26/2022]
Abstract
Quantification of invasive, intracellular bacteria is critical in many areas of cellular microbiology and immunology. We describe a novel and fast approach to determine invasion of bacterial pathogens in adherent cell types such as epithelial cells or fibroblasts based on flow cytometry. Using the CEACAM-mediated uptake of Opa-expressing Neisseria gonorrhoeae as a well-characterized model of bacterial invasion, we demonstrate that the flow cytometry-based method yields results comparable to a standard antibiotic protection assay. Furthermore, the quantification of intracellular bacteria by the novel approach is not biased by intracellular killing of the microbes and correctly discriminates between cell-associated extracellular and bona fide intracellular bacteria. As flow cytometry-based quantification is also applicable to other pathogen-host interactions such as the integrin-mediated internalization of Staphylococcus aureus, this approach provides a fast and convenient alternative for the quantification of bacterial uptake and should be particularly useful in elucidating the molecular mechanisms of pathogen-triggered host cell invasion.
Collapse
Affiliation(s)
- Stefan Pils
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
79
|
Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 2005; 56:590-603. [PMID: 15819617 DOI: 10.1111/j.1365-2958.2005.04568.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Bacterial pathogens cause a wide spectrum of diseases in human and other animals. Some virulence factors, which are referred to as effectors, are directly translocated into the host cell via an injection apparatus, i.e., the type-III secretion system. Most effectors mimic host molecules, and translocated effectors are thereby able to perturb or modulate host cell signaling, cytoskeletal rearrangement, vesicular traffic, and autophagy, thus eliciting disease. Effectors are roughly classified among exotoxins, but in most cases, their functions are exerted focally when they are translocated into the host cell.
Collapse
Affiliation(s)
- Akio Abe
- Laboratory of Bacterial Infection, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | |
Collapse
|
81
|
Konkel ME, Christensen JE, Keech AM, Monteville MR, Klena JD, Garvis SG. Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Mol Microbiol 2005; 57:1022-35. [PMID: 16091041 DOI: 10.1111/j.1365-2958.2005.04744.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of Campylobacter jejuni to fibronectin (Fn), a component of the extracellular matrix, is mediated by a 37 kDa outer membrane protein termed CadF for Campylobacter adhesion to Fn. Previous studies have indicated that C. jejuni binds to Fn on the basolateral surface of T84 human colonic cells. To further characterize the interaction of the CadF protein with Fn, enzyme-linked immunosorbent assays were performed to identify the Fn-binding domain (Fn-BD). Using overlapping 30-mer and 16-mer peptides derived from translated cadF nucleotide sequence, maximal Fn-binding activity was localized to four amino acids (AA 134-137) consisting of the residues phenylalanine-arginine-leucine-serine (FRLS). A mouse alpha-CadF peptide polyclonal antibody (M alpha-CadF peptide pAb) was generated using FRLS containing peptides and found to react with viable C. jejuni as judged by indirect fluorescent microscopy, suggesting that the FRLS residues are surface-exposed. Binding of CadF to purified Fn and INT 407 human epithelial cells was significantly inhibited with peptides containing the Fn-BD. Moreover, a CadF recombinant variant protein, in which the Phe-Arg-Leu residues (CadF AA 134-136) were altered to Ala-Ala-Gly, exhibited a 91% decrease in Fn-binding activity as compared with the wild-type CadF protein. Collectively, these data indicate that the FRLS residues (CadF AA 134-137) of the C. jejuni CadF protein possess Fn-binding activity.
Collapse
Affiliation(s)
- Michael E Konkel
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR. Cellular invasion byStaphylococcus aureusreveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci 2005; 118:2189-200. [PMID: 15855238 DOI: 10.1242/jcs.02328] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nosocomial infections by Staphylococcus aureus, a Gram-positive pathogen colonising human skin and mucosal surfaces, are an increasing health care problem. Clinical isolates almost invariably express fibronectin-binding proteins that, by indirectly linking the bacteria with host integrin α5β1, can promote uptake of the microorganisms by eukaryotic cells. Integrin engagement by pathogenic fibronectin-binding S. aureus, but not by non-pathogenic S. carnosus, triggered the recruitment of focal contact-associated proteins vinculin, tensin, zyxin and FAK to the sites of bacterial attachment. Moreover, dominant-negative versions of FAK-blocked integrin-mediated internalisation and FAK-deficient cells were severely impaired in their ability to internalise S. aureus. Pathogen binding induced tyrosine phosphorylation of several host proteins associated with bacterial attachment sites, including FAK and the Src substrate cortactin. In FAK-deficient cells, local recruitment of cortactin still occurred, whereas the integrin- and Src-dependent tyrosine phosphorylation of cortactin was abolished. As siRNA-mediated gene silencing of cortactin or mutation of critical amino acid residues within cortactin interfered with uptake of S. aureus, our results reveal a novel functional connection between integrin engagement, FAK activation and Src-mediated cortactin phosphorylation. Cooperation between FAK, Src and cortactin in integrin-mediated internalisation of bacteria also suggests a molecular scenario of how engagement of integrins could be coupled to membrane endocytosis.
Collapse
Affiliation(s)
- Franziska Agerer
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 2005; 73:1432-40. [PMID: 15731041 PMCID: PMC1064949 DOI: 10.1128/iai.73.3.1432-1440.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated secretion of IpaD is also required for translocation pore formation, bacterial invasion, and virulence, but the mechanistic role of this protein is unclear. IpaD is also known to be involved in controlling Ipa protein secretion, but here it is shown that this activity can be separated from its requirement for cellular invasion. Amino acids 40 to 120 of IpaD are not essential for IpaD-dependent invasion; however, deletions in this region still lead to constitutive IpaB/IpaC secretion. Meanwhile, a central deletion causes only a partial loss of control of Ipa secretion but completely eliminates IpaD's invasion function, indicating that IpaD's role in invasion is not a direct outcome of its ability to control Ipa secretion. As shigellae expressing ipaD N-terminal deletion mutations have reduced contact-mediated hemolysis activity and are less efficient at introducing IpaB and IpaC into erythrocyte membranes, it is possible that IpaD is responsible for insertion of IpaB/IpaC pores into target cell membranes. While efficient insertion of IpaB/IpaC pores is needed for optimal invasion efficiency, it may be especially important for Ipa-dependent membrane disruption and thus for efficient vacuolar escape and intercellular spread.
Collapse
Affiliation(s)
- Wendy L Picking
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
84
|
Lucchini S, Liu H, Jin Q, Hinton JCD, Yu J. Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 2005; 73:88-102. [PMID: 15618144 PMCID: PMC538992 DOI: 10.1128/iai.73.1.88-102.2005] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, the etiologic agent of bacillary dysentery, invades epithelial cells as well as macrophages and dendritic cells and escapes into the cytosol soon after invasion. Dissection of the global gene expression profile of the bacterium in its intracellular niche is essential to fully understand the biology of Shigella infection. We have determined the complete gene expression profiles for S. flexneri infecting human epithelial HeLa cells and human macrophage-like U937 cells. Approximately one quarter of the S. flexneri genes showed significant transcriptional adaptation during infection; 929 and 1,060 genes were up- or down-regulated within HeLa cells and U937 cells, respectively. The key S. flexneri virulence genes, ipa-mxi-spa and icsA, were drastically down-regulated during intracellular growth. This theme seems to be common in bacterial infection, because the Ipa-Mxi-Spa-like type III secretion systems were also down-regulated during mammalian cell infection by Salmonella enterica serovar Typhimurium and Escherichia coli O157. The bacteria experienced restricted levels of iron, magnesium, and phosphate in both host cell types, as shown by up-regulation of the sitABCD system, the mgtA gene, and genes of the phoBR regulon. Interestingly, ydeO and other acid-induced genes were up-regulated only in U937 cells and not in HeLa cells, suggesting that the cytosol of U937 cells is acidic. Comparison with the gene expression of intracellular Salmonella serovar Typhimurium, which resides within the Salmonella-containing vacuole, indicated that S. flexneri is exposed to oxidative stress in U937 cells. This work will facilitate functional studies of hundreds of novel intracellularly regulated genes that may be important for the survival and growth strategies of Shigella in the human host.
Collapse
Affiliation(s)
- Sacha Lucchini
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | | | | |
Collapse
|
85
|
Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 2005; 73:18-29. [PMID: 15618137 PMCID: PMC538947 DOI: 10.1128/iai.73.1.18-29.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
86
|
Abstract
The facultative intracellular pathogen Salmonella enterica triggers programmed cell death in macrophages. The close examination of this phenomenon has revealed an unusually complex picture involving diverse mechanisms that lead to different types of programmed cell death. It appears that the outcome of the interaction of salmonella with macrophages depends on the relative contribution of two type III protein secretion systems, in conjunction with the stimulation of innate immunity outputs through conserved determinants collectively known as 'pathogen-associated molecular patterns' (PAMPs). These interactions result in a breakdown of the balance between survival and pro-apoptotic cellular pathways, which eventually leads to macrophage cell death. The relative significance for the infection process of the different types of macrophage cell death triggered by salmonella remains to be established.
Collapse
Affiliation(s)
- Karsten Hueffer
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
87
|
Jennison AV, Verma NK. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 2004; 28:43-58. [PMID: 14975529 DOI: 10.1016/j.femsre.2003.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 02/08/2023] Open
Abstract
Shigella flexneri is a gram-negative bacterium which causes the most communicable of bacterial dysenteries, shigellosis. Shigellosis causes 1.1 million deaths and over 164 million cases each year, with the majority of cases occurring in the children of developing nations. The pathogenesis of S. flexneri is based on the bacteria's ability to invade and replicate within the colonic epithelium, which results in severe inflammation and epithelial destruction. The molecular mechanisms used by S. flexneri to cross the epithelial barrier, evade the host's immune response and enter epithelial cells have been studied extensively in both in vitro and in vivo models. Consequently, numerous virulence factors essential to bacterial invasion, intercellular spread and the induction of inflammation have been identified in S. flexneri. The inflammation produced by the host has been implicated in both the destruction of the colonic epithelium and in controlling and containing the Shigella infection. The host's humoral response to S. flexneri also appears to be important in protecting the host, whilst the role of the cellular immune response remains unclear. The host's immune response to shigellosis is serotype-specific and protective against reinfection by the same serotype, making vaccination a possibility. Since the 1940s vaccines for S. flexneri have been developed with little success, however, the growing understanding of S. flexneri's pathogenesis and the host's immune response is assisting in the generation of more refined vaccine strategies. Current research encompasses a variety of vaccine types, which despite disparity in their efficacy and safety in humans represent promising progress in S. flexneri vaccine development.
Collapse
Affiliation(s)
- Amy V Jennison
- Faculty of Science, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
88
|
Kuwae A, Ohishi M, Watanabe M, Nagai M, Abe A. BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell Microbiol 2004; 5:973-83. [PMID: 14641181 DOI: 10.1046/j.1462-5822.2003.00341.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cytotoxicity of Bordetella bronchiseptica to infected cells is known to be dependent on a B. bronchiseptica type III secretion system. Although the precise mechanism of the type III secretion system is unknown, BopN, BopD and Bsp22 have been identified as type III secreted proteins. In order to identify other proteins secreted via the type III secretion machinery in Bordetella, a type III mutant was generated, and its secretion profile was compared with that of the wild-type strain. The results showed that the wild-type strain, but not the type III mutant, secreted a 40-kDa protein into the culture supernatant. This protein was identified as BopB by the analysis of its N-terminal amino acid sequence. Severe cytotoxicity such as necrosis was induced in L2 cells by infection with the wild-type B. bronchiseptica. In contrast, this effect was not observed by the BopB mutant infection. The haemolytic activity of the BopB mutant was greatly impaired compared with that of the wild-type strain. The results of a digitonin assay strongly suggested that BopB was translocated into HeLa cells infected with the wild-type strain. Taken together, our results demonstrate that Bordetella secretes BopB via a type III secretion system during infection. BopB may play a role in the formation of pores in the host plasma membrane which serve as a conduit for the translocation of effector proteins into host cells.
Collapse
Affiliation(s)
- Asaomi Kuwae
- Laboratory of Bacterial Infection, Kitasato Institute for Life Sciences, Kitasato University, Shirokane, Tokyo, Japan
| | | | | | | | | |
Collapse
|
89
|
Abstract
IpaC of Shigella is essential for initial bacterial entry into epithelial cells. We report here that IpaC interacts with beta-catenin and destabilizes the cadherin-mediated cell adhesion complex. Using a yeast two-hybrid system, we identified beta-catenin as a binding partner of IpaC within the host cell after cell entry, but not in the initial entry. Co-immunoprecipitation, confocal microscopy, and GST pull-down experiments confirmed the intracellular and cell-free interactions between these two proteins. The interaction sites were mapped to the ninth armadillo repeat of beta-catenin and to the C-terminus of IpaC. IpaC-associated beta-catenin was phosphorylated at tyrosine residues. This phosphorylation led to the destabilization of the functional cadherin-catenin complex, which could be a mechanism whereby the epithelial cell-cell tight adhesion is disrupted. These events may facilitate the further basolateral invasion of bacteria through the disrupted space and/or modulate the cell-to-cell spread of Shigella.
Collapse
Affiliation(s)
- Nurmohammad Shaikh
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | |
Collapse
|
90
|
Yilmaz Ö, Young PA, Lamont RJ, Kenny GE. Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2417-2426. [PMID: 12949167 DOI: 10.1099/mic.0.26483-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, an oral pathogen, can internalize within primary gingival epithelial cells (GECs) through an invasion mechanism mediated by interactions between P. gingivalis fimbriae and integrins on the surface of the GECs. Fimbriae-integrin-based signalling events were studied by fluorescence microscopy, and the subcellular localization of integrin-associated signalling molecules paxillin and focal adhesion kinase (FAK), and the architecture of the actin and microtubule cytoskeleton were examined. GECs infected with P. gingivalis for 30 min demonstrated significant redistribution of paxillin and FAK from the cytosol to cell peripheries and assembly into focal adhesion complexes. In contrast, a fimbriae-deficient mutant of P. gingivalis did not contribute substantially to activation of paxillin or FAK. After 24 h, the majority of paxillin and FAK had returned to the cytoplasm with significant co-localization with P. gingivalis in the perinuclear region. Wild-type P. gingivalis induced nucleation of actin filaments forming microspike-like protrusions and long stable microfilaments distributed throughout the cells. Fimbriae mutants promoted a rich cortical actin meshwork accompanied by membrane ruffling dispersed along the cell membrane. Remarkable disassembly and nucleation of the actin and microtubule filamentous network was observed following 24 h infection with either wild-type or fimbriae-deficient mutants of P. gingivalis. The results show that fimbriated P. gingivalis cells induce formation of integrin-associated focal adhesions with subsequent remodelling of the actin and tubulin cytoskeleton.
Collapse
Affiliation(s)
- Özlem Yilmaz
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | - Patrick A Young
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | - Richard J Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - George E Kenny
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
91
|
Neff L, Zeisel M, Druet V, Takeda K, Klein JP, Sibilia J, Wachsmann D. ERK 1/2- and JNKs-dependent synthesis of interleukins 6 and 8 by fibroblast-like synoviocytes stimulated with protein I/II, a modulin from oral streptococci, requires focal adhesion kinase. J Biol Chem 2003; 278:27721-8. [PMID: 12761229 DOI: 10.1074/jbc.m212065200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein I/II, a pathogen-associated molecular pattern from oral streptococci, is a potent inducer of interleukin-6 (IL-6) and IL-8 synthesis and release from fibroblast-like synoviocytes (FLSs), cells that are critically involved in joint inflammation. This synthesis implicates ERK 1/2 and JNKs as well as AP-1-binding activity and nuclear translocation of NF-kappaB. The mechanisms by which protein I/II activates MAPKs remain, however, elusive. Because focal adhesion kinase (FAK) was proposed to play a role in signaling to MAPKs, we examined its ability to contribute to the MAPKs-dependent synthesis of IL-6 and IL-8 in response to protein I/II. We used FAK-/- fibroblasts as well as FAK+/+ fibroblasts and FLSs transfected with FRNK, a dominant negative form of FAK. The results demonstrate that IL-6 and IL-8 release in response to protein I/II was strongly inhibited in both protein I/II-stimulated FAK-/- and FRNK-transfected cells. Cytochalasin D, which inhibits protein I/II-induced phosphorylation of FAK (Tyr-397), had no effect either on activation of ERK 1/2 and JNKs or on IL-6 and IL-8 release. Taken together, these results indicate that IL-6 and IL-8 release by protein I/II-activated FLSs is regulated by FAK independently of Tyr-397 phosphorylation.
Collapse
Affiliation(s)
- Laurence Neff
- Laboratoire d'Immunologie et de Biochimie Bactérienne, Inserm U392, Université Louis Pasteur de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
92
|
Watarai M, Kim S, Erdenebaatar J, Makino SI, Horiuchi M, Shirahata T, Sakaguchi S, Katamine S. Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 2003; 198:5-17. [PMID: 12847134 PMCID: PMC2196088 DOI: 10.1084/jem.20021980] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The products of the Brucella abortus virB gene locus, which are highly similar to conjugative DNA transfer system, enable the bacterium to replicate within macrophage vacuoles. The replicative phagosome is thought to be established by the interaction of a substrate of the VirB complex with macrophages, although the substrate and its host cellular target have not yet been identified. We report here that Hsp60, a member of the GroEL family of chaperonins, of B. abortus is capable of interacting directly or indirectly with cellular prion protein (PrPC) on host cells. Aggregation of PrPC tail-like formation was observed during bacterial swimming internalization into macrophages and PrPC was selectively incorporated into macropinosomes containing B. abortus. Hsp60 reacted strongly with serum from human brucellosis patients and was exposed on the bacterial surface via a VirB complex-associated process. Under in vitro and in vivo conditions, Hsp60 of B. abortus bound to PrPC. Hsp60 of B. abortus, expressed on the surface of Lactococcus lactis, promoted the aggregation of PrPC but not PrPC tail formation on macrophages. The PrPC deficiency prevented swimming internalization and intracellular replication of B. abortus, with the result that phagosomes bearing the bacteria were targeted into the endocytic network. These results indicate that signal transduction induced by the interaction between bacterial Hsp60 and PrPC on macrophages contributes to the establishment of B. abortus infection.
Collapse
Affiliation(s)
- Masahisa Watarai
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro-shi, Hokkaido 080-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Hume PJ, McGhie EJ, Hayward RD, Koronakis V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol Microbiol 2003; 49:425-39. [PMID: 12828640 DOI: 10.1046/j.1365-2958.2003.03559.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An essential early event in Shigella and Salmonella pathogenesis is invasion of non-phagocytic intestinal epithelial cells. Pathogen entry is triggered by the delivery of multiple bacterial effector proteins into target mammalian cells. The Shigella invasion plasmid antigen B (IpaB), which inserts into the host plasma membrane, is required for effector delivery and invasion. To investigate the biochemical properties and membrane topology of IpaB, we purified the native full-length protein following expression in laboratory Escherichia coli. Purified IpaB assembled into trimers via an N-terminal domain predicted to form a trimeric coiled-coil, and is predominantly alpha-helical. Upon lipid interaction, two transmembrane domains (residues 313-333 and 399-419) penetrate the bilayer, allowing the intervening hydrophilic region (334-398) to cross the membrane. Purified IpaB integrated into model, erythrocyte and mammalian cell membranes without disrupting bilayer integrity, and induced liposome fusion in vitro. An IpaB-derived 162 residue alpha-helical polypeptide (IpaB(418-580)) is a potent inhibitor of IpaB-directed liposome fusion in vitro and blocked Shigella entry into cultured mammalian cells at 10(-8) M. It is also a heterologous inhibitor of Salmonella invasion protein B (SipB) activity and Salmonella entry. In contrast, IpaB(418-580) failed to prevent the contact-dependent haemolytic activity of Shigella. These findings question the proposed direct link between contact-dependent haemolysis and Shigella entry, and demonstrate that IpaB and SipB share biochemical properties and membrane topology, consistent with a conserved mode of action during cell entry.
Collapse
Affiliation(s)
- Peter J Hume
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | | | |
Collapse
|
94
|
Laarmann S, Schmidt MA. The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1871-1882. [PMID: 12855738 DOI: 10.1099/mic.0.26264-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AIDA-I autotransporter adhesin, as a prototype of the AIDA adhesin family, represents a tripartite antigen consisting of the functional adhesin AIDA-I (alpha-domain), which mediates the specific attachment of bacteria to target cells, and a two-domain translocator (AIDA(c)) organized in the beta(1)- and beta(2)-domains. Cellular receptor moieties for the adhesin AIDA-I have not been identified. Here, it is demonstrated that the purified adhesin binds specifically to a high-affinity class of receptors on HeLa cells. Additionally, the adhesin was found to bind to a variety of mammalian cell types, indicating a broad tissue distribution of the receptor moiety. By using complementary techniques, including co-immunoprecipitation and one- and two-dimensional gel electrophoresis, the AIDA-I binding protein on HeLa cells was identified as a surface glycoprotein of about 119 kDa (gp119). The gp119 AIDA-I cellular receptor protein was characterized biochemically and found to be an integral N-glycosylated membrane protein with a pI of 5.2.
Collapse
Affiliation(s)
- Sven Laarmann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - M Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
95
|
Fowler T, Johansson S, Wary KK, Höök M. Src kinase has a central role in in vitro cellular internalization of Staphylococcus aureus. Cell Microbiol 2003; 5:417-26. [PMID: 12780779 DOI: 10.1046/j.1462-5822.2003.00290.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditionally recognized as an extracellular pathogen, the Gram-positive bacterium Staphylococcus aureus can also be internalized by a variety of cell types in vitro. Internalization is known to involve binding of the host extracellular protein fibronectin to the bacterium, recognition of the fibronectin-coated bacterium by the fibronectin-binding integrin alpha5beta1 on the host cell surface, and integrin-mediated internalization. Here we examine elements of mammalian cell signalling pathways involved in S. aureus internalization. The mouse fibroblast cell line GD25, in which the gene encoding the beta1 integrin subunit is inactivated, has been complemented with a beta1 integrin cDNA encoding a tyrosine (Y) to phenylalanine (F) mutation in each of the two beta1 integrin intracellular NPXY motifs. This cell line, GD25beta1 A Y783/795F, is defective in migration on fibronectin coated surfaces and intracellular signalling activities involving the tyrosine kinase Src. GD25beta1 A Y783/795F cells have a decreased ability to internalize S. aureus compared to GD25beta1 A cells expressing wild-type beta1 integrins. Furthermore, using mouse embryo fibroblasts in which different members of the Src family kinases are genetically inactivated, we demonstrate that optimal internalization is dependent on expression of Src kinase. Interferon, which has been implicated in repression of the effects of the viral homologue of Src inhibits internalization of S. aureus indicating that internalization may be blocked by inhibitors of Src kinase function. We then demonstrate that Src family kinase specific inhibitors effectively block S. aureus internalization into HeLa cells leading to the conclusion that a function unique to Src is required for optimal internalization of S. aureus in vitro.
Collapse
Affiliation(s)
- Trent Fowler
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, TX, USA
| | | | | | | |
Collapse
|
96
|
Fernandez MI, Sansonetti PJ. Shigella interaction with intestinal epithelial cells determines the innate immune response in shigellosis. Int J Med Microbiol 2003; 293:55-67. [PMID: 12755366 DOI: 10.1078/1438-4221-00244] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shigellae are Gram-negative bacilli that cause bacillary dysentery in humans. This review summarizes current knowledge of Shigella pathogenesis and pathogenicity factors, invasion of epithelial cells, intracellular motility and cell-to-cell spreading, as well as components of the host cell involved in innate immune responses.
Collapse
Affiliation(s)
- M Isabel Fernandez
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, Rue du Dr. Roux 28, F-75724 Paris 15, France
| | | |
Collapse
|
97
|
Prasadarao NV, Srivastava PK, Rudrabhatla RS, Kim KS, Huang SH, Sukumaran SK. Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue. Infect Immun 2003; 71:1680-8. [PMID: 12654781 PMCID: PMC152083 DOI: 10.1128/iai.71.4.1680-1688.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is one of the most common gram-negative bacteria that cause meningitis in neonates. Our previous studies have shown that outer membrane protein A (OmpA) of E. coli interacts with a 95-kDa human brain microvascular endothelial cell (HBMEC) glycoprotein, Ecgp, for invasion. Here, we report the identification of a gene that encodes Ecgp by screening of an HBMEC cDNA expression library as well as by 5' rapid amplification of cDNA ends. The sequence of the Ecgp gene shows that it is highly similar to gp96, a tumor rejection antigen-1, and contains an endoplasmic reticulum retention signal, KDEL. Overexpression of either Ecgp or gp96 in both HBMECs and CHO cells increases E. coli binding and invasion. We further show that Ecgp gene-transfected HBMECs express Ecgp on the cell surface despite the presence of the KDEL motif. Northern blot analysis of total RNA from various eukaryotic cells indicates that Ecgp is significantly expressed in HBMECs. Recombinant His-tagged Ecgp blocked E. coli invasion efficiently by binding directly to the bacteria. These results suggest that OmpA of E. coli K1 interacts with a gp96-like molecule on HBMECs for invasion.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Base Sequence
- Brain/blood supply
- CHO Cells
- Cells, Cultured
- Cloning, Molecular
- Cricetinae
- Endothelium, Vascular/cytology
- Endothelium, Vascular/microbiology
- Escherichia coli/metabolism
- Escherichia coli/pathogenicity
- Gene Library
- Humans
- Molecular Sequence Data
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Nemani V Prasadarao
- Division of Infectious Diseases, MS #51, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Köhler H, McCormick BA, Walker WA. Bacterial-enterocyte crosstalk: cellular mechanisms in health and disease. J Pediatr Gastroenterol Nutr 2003; 36:175-85. [PMID: 12548051 DOI: 10.1097/00005176-200302000-00005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Henrik Köhler
- Mucosal Immunology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
99
|
Shinji H, Seki K, Tajima A, Uchida A, Masuda S. Fibronectin bound to the surface of Staphylococcus aureus induces association of very late antigen 5 and intracellular signaling factors with macrophage cytoskeleton. Infect Immun 2003; 71:140-6. [PMID: 12496159 PMCID: PMC143151 DOI: 10.1128/iai.71.1.140-146.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus Cowan I and a clinically isolated coagulase-negative Staphylococcus strain, S. saprophyticus 10312, were found to have two fibronectin binding proteins, FnBPA and FnBPB. While both staphylococci bound to serum fibronectin to a similar extent, fibronectin binding significantly increased the phagocytic activity of macrophages against S. aureus (by ca. 150%) but not against S. saprophyticus. This enhancing effect of fibronectin was inhibited by an RGD sequence-containing peptide and also by anti-very late antigen 5 antibody. This suggests that the effect is mediated by very late antigen 5 expressed on macrophages. In macrophages ingesting fibronectin-bound Cowan I, alpha(5) and beta(1) chains were associated with the cytoskeleton. Cytosolic signaling factors such as paxillin, c-Src, and c-Csk were also associated with the cytoskeleton. On the contrary, beta(3) integrin transiently disappeared from the cytoskeleton when macrophages ingested the fibronectin-treated S. aureus Cowan I. Furthermore, the Src kinase family tyrosine kinase Lyn dissociated from the cytoskeleton. These cellular components did not respond in a fibronectin-dependent manner when macrophages phagocytosed S. saprophyticus. This means that only fibronectin-treated S. aureus Cowan I induces the accumulation of very late antigen 5, which in turn induces the association of paxillin and tyrosine kinases. It is thought that the phagocytic activity of macrophages against fibronectin-treated S. aureus was increased by signaling via the activation of very late antigen 5.
Collapse
Affiliation(s)
- Hitomi Shinji
- Department of Microbiology II, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
100
|
Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, van der Goot F. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 2002; 21:4449-57. [PMID: 12198147 PMCID: PMC126195 DOI: 10.1093/emboj/cdf457] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 07/15/2002] [Accepted: 07/15/2002] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is an acute inflammatory bowel disease caused by the enteroinvasive bacterium SHIGELLA: Upon host cell-Shigella interaction, major host cell signalling responses are activated. Deciphering the initial molecular events is crucial to understanding the infectious process. We identified a molecular complex involving proteins of both the host, CD44 the hyaluronan receptor, and Shigella, the invasin IpaB, which partitions during infection within specialized membrane microdomains enriched in cholesterol and sphingolipids, called rafts. We also document accumulation of cholesterol and raft-associated proteins at Shigella entry foci. Moreover, we report that Shigella entry is impaired after cholesterol depletion using methyl-beta-cyclodextrin. Finally, we find that Shigella is less invasive in sphingosid-based lipid-deficient cell lines, demonstrating the involvement of sphingolipids. Our results show that rafts are implicated in Shigella binding and entry, suggesting that raft-associated molecular machineries are engaged in mediating the cell signalling response required for the invasion process.
Collapse
Affiliation(s)
- Frank Lafont
- Department of Genetics and Microbiology, Centre Medical Universitaire, 1 rue Michel Servet, and Department of Biochemistry, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland, Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue de Dr Roux, F-75724 Paris Cedex 15, France and Department of Biochemistry and Cell Biology, National Institute of Infectious diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Corresponding author e-mail:
| | - Guy Tran Van Nhieu
- Department of Genetics and Microbiology, Centre Medical Universitaire, 1 rue Michel Servet, and Department of Biochemistry, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland, Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue de Dr Roux, F-75724 Paris Cedex 15, France and Department of Biochemistry and Cell Biology, National Institute of Infectious diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Corresponding author e-mail:
| | - Kentaro Hanada
- Department of Genetics and Microbiology, Centre Medical Universitaire, 1 rue Michel Servet, and Department of Biochemistry, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland, Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue de Dr Roux, F-75724 Paris Cedex 15, France and Department of Biochemistry and Cell Biology, National Institute of Infectious diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Corresponding author e-mail:
| | - Philippe Sansonetti
- Department of Genetics and Microbiology, Centre Medical Universitaire, 1 rue Michel Servet, and Department of Biochemistry, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland, Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue de Dr Roux, F-75724 Paris Cedex 15, France and Department of Biochemistry and Cell Biology, National Institute of Infectious diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Corresponding author e-mail:
| | - F.Gisou van der Goot
- Department of Genetics and Microbiology, Centre Medical Universitaire, 1 rue Michel Servet, and Department of Biochemistry, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland, Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue de Dr Roux, F-75724 Paris Cedex 15, France and Department of Biochemistry and Cell Biology, National Institute of Infectious diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan Corresponding author e-mail:
| |
Collapse
|