51
|
Abstract
Solid tumors arise in organs that contain stem cell populations. The tumors in these tissues consist of heterogeneous populations of cancer cells that differ markedly in their ability to proliferate and form new tumors. In both breast cancers and central nervous system tumors, cancer cells differ in their ability to form tumors. While the majority of the cancer cells have a limited ability to divide, a population of cancer stem cells that has the exclusive ability to extensively proliferate and form new tumors can be identified based on marker expression. Growing evidence suggests that pathways that regulate the self-renewal of normal stem cells are deregulated in cancer stem cells resulting in the continuous expansion of self-renewing cancer cells and tumor formation. This suggests that agents that target the defective self-renewal pathways in cancer cells might lead to improved outcomes in the treatment of these diseases.
Collapse
Affiliation(s)
- Muhammad Al-Hajj
- University of Michigan Medical School, CCGC Room 4410, 1500 E Medical Center Drive, Ann Arbor 48109-0936, USA
| | | |
Collapse
|
52
|
Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 2004; 18:1169-75. [PMID: 15103387 DOI: 10.1038/sj.leu.2403367] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is distinguished from other acute myeloid leukemias (AMLs) by cytogenetic, clinical, as well as biological characteristics. The hallmark of APL is the t(15;17), which leads to the expression of the PML/RARalpha fusion protein. PML/RARalpha is the central leukemia-inducing lesion in APL and is directly targeted by all trans retinoic acid (t-RA) as well as by arsenic, both compounds able to induce complete remissions. This review focuses on potential stem cell involvement in APL outlining the knowledge about the APL-initiating stem cell and the influence of PML/RARalpha on the biology of the hematopoietic stem cell. Moreover, the importance of the blockage of t-RA signaling by the PML/RARalpha for the pathogenesis of APL is discussed, taking the relevance of the t-RA signaling pathway for the global hematopoiesis into account.
Collapse
Affiliation(s)
- E Puccetti
- Med. Klinik III/Abtl. Hämatologie, Labor für Experimentelle Hämatologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | |
Collapse
|
53
|
Abstract
A milestone in understanding the functioning of the antiapoptotic cytoplasmic protein Bcl-2 was the discovery that Bcl-2 was capable of heterodimerising with the pro-apoptotic protein Bax at the mitochondrial level, creating a delicate balance of cell death preventing and promoting regulators. In recent years we identified substantial pools of Bcl-2 and Bax in nucleoplasm as well. We demonstrated that nuclear Bcl-2 controls cellular proliferation and, in an indirect manner, apoptosis. Sound support for functional presence of nuclear Bcl-2 and Bax would be evidence of Bcl-2-Bax binding in this compartment. Here we show by immunoprecipitation-using a battery of commercially available, monoclonal antibodies-that Bcl-2 binds Bax in nuclei of human breast cancer cells. Interestingly, findings by others pointed at an interaction between the product of the promyelocytic leukemia gene, the PML protein, and Bax. PML plays a part in cell proliferation and apoptosis, a rather similar role we assigned to nuclear Bcl-2. Nuclear Bcl-2, but not Bax, was found to immunoprecipitate with nuclear PML. These data show that binding of Bcl-2 with structurally and functionally related proteins extends to the nucleus, emphasizing its pivotal role in Bcl-2-mediated actions.
Collapse
Affiliation(s)
- R W M Hoetelmans
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| |
Collapse
|
54
|
Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:229-49. [PMID: 14996506 DOI: 10.1016/j.bbamcr.2003.08.009] [Citation(s) in RCA: 406] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/18/2003] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt, Germany
| | | | | |
Collapse
|
55
|
Abstract
A fundamental issue in cancer biology is the identification of the target cell in which the causative molecular lesion arises. Acute myeloid leukemia (AML) is thought to reflect the transformation of a primitive stem cell compartment. The resultant 'cancer stem cells' comprise only a minor portion of the leukemic clone but give rise through differentiation to more committed progenitors as well as differentiated blasts that constitute the bulk of the tumor. The maintenance of the leukemic clone is dependent on the self-renewal capacity of the cancer stem cell compartment, which is revealed by its ability to re-initiate leukemia in a transplant setting. The cellular basis of acute promyelocytic leukemia (APL) is however less clear. APL has traditionally been considered to be the most differentiated form of AML and to arise from a committed myeloid progenitor. Here we review apparently conflicting evidence pertaining to the cellular origins of APL and propose that this leukemia may originate in more than one cellular compartment. This view could account for many apparent inconsistencies in the literature to date. An understanding of the nature of the target cell involved in transformation of APL has important implications for biological mechanism and for clinical treatment.
Collapse
Affiliation(s)
- D Grimwade
- Department of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | |
Collapse
|
56
|
Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dubé K, Rego EM, Bhaumik M, Bailey DJ, Wells RA, Kamel-Reid S, Pandolfi PP. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 2004; 23:665-78. [PMID: 14737102 DOI: 10.1038/sj.onc.1207073] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of abnormal promyelocytes in the bone marrow (BM), and by the presence of a reciprocal chromosomal translocation involving retinoic acid receptor alpha (RARalpha). To date, five RARalpha partner genes have been identified in APL. NuMA-RARalpha was identified in a pediatric case of APL carrying a translocation t(11;17)(q13;q21). Using a construct containing the NuMA-RARalpha fusion gene driven by the human cathepsin G promoter (hCG-NuMA-RARalpha), two transgenic mouse lines were generated. Transgenic mice were observed to have a genetic myeloproliferation (increased granulopoiesis in BM) at an early age, and rapidly developed a myeloproliferative disease-like myeloid leukemia. This leukemia was morphologically and immunophenotypically indistinguishable from human APL, with a penetrance of 100%. The phenotype of transgenic mice was consistent with a blockade of neutrophil differentiation. NuMA-RARalpha is therefore sufficient for disease development in this APL model.
Collapse
Affiliation(s)
- Mahadeo A Sukhai
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G, Viale G, Appella E, Pelicci P, Minucci S. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J 2004; 23:1144-54. [PMID: 14976551 PMCID: PMC380970 DOI: 10.1038/sj.emboj.7600109] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 01/08/2004] [Indexed: 11/09/2022] Open
Abstract
Mutations of p53 are remarkably rare in acute promyelocytic leukemias (APLs). Here, we demonstrate that the APL-associated fusion proteins PML-RAR and PLZF-RAR directly inhibit p53, allowing leukemic blasts to evade p53-dependent cancer surveillance pathways. PML-RAR causes deacetylation and degradation of p53, resulting in repression of p53 transcriptional activity, and protection from p53-dependent responses to genotoxic stress. These phenomena are dependent on the expression of wild-type PML, acting as a bridge between p53 and PML-RAR. Recruitment of histone deacetylase (HDAC) to p53 and inhibition of p53 activity were abrogated by conditions that either inactivate HDACs or trigger HDAC release from the fusion protein, implicating recruitment of HDAC by PML-RAR as the mechanism underlying p53 inhibition.
Collapse
Affiliation(s)
- Alessandra Insinga
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Silvia Monestiroli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- IFOM-FIRC Institute, Via Serio, Milan, Italy
| | - Simona Ronzoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Roberta Carbone
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mark Pearson
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, Milan, Italy
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, Bethesda MD, USA
| | - PierGiuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- IFOM-FIRC Institute, Via Serio, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. Tel.: + +39 02 57489838; Fax: + +39 02 57489851; E-mail:
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria 26, Milan, Italy
- Tel.: + +39 02 57489835; Fax: + +39 02 57489851; E-mail:
| |
Collapse
|
58
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
59
|
Lane AA, Ley TJ. Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell 2004; 115:305-18. [PMID: 14636558 DOI: 10.1016/s0092-8674(03)00852-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fusion protein PML-RARalpha, generated by the t(15;17)(q22;q11.2) translocation associated with acute promyelocytic leukemia (APL), initiates APL when expressed in the early myeloid compartment of transgenic mice. PML-RARalpha is cleaved in several positions by a neutral serine protease in a human myeloid cell line; purification revealed that the protease is neutrophil elastase (NE). Immunofluorescence localization studies suggested that the cleavage of PML-RARalpha must occur within the cell, and perhaps, within the nucleus. The functional importance of NE for APL development was assessed in NE deficient mice. Greater than 90% of bone marrow PML-RARalpha cleaving activity was lost in the absence of NE, and NE (but not Cathepsin G) deficient animals were protected from APL development. Primary mouse and human APL cells also contain NE-dependent PML-RARalpha cleaving activity. Since NE is maximally produced in promyelocytes, this protease may play a role in APL pathogenesis by facilitating the leukemogenic potential of PML-RARalpha.
Collapse
MESH Headings
- Animals
- Bone Marrow/enzymology
- Cell Extracts
- Cell Line, Tumor
- Gene Deletion
- Genetic Predisposition to Disease
- Humans
- K562 Cells
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukocyte Elastase/chemistry
- Leukocyte Elastase/deficiency
- Leukocyte Elastase/isolation & purification
- Leukocyte Elastase/metabolism
- Mice
- Mice, Knockout
- Molecular Weight
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Andrew A Lane
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW This review discusses the dosage effects of some oncogenes in leukemogenesis and compares various methods that model human hematologic malignancies in mice by introducing genetic lesions in a cell type-specific, time-controlled, and dosage-relevant manner. RECENT FINDINGS Recent evidence indicates that optimal dosage of cancer-related gene products plays an important role in the induction of mouse tumors that recapitulate their human counterparts. SUMMARY The mouse is a very valuable model system for experimentally dissecting the in vivo pathogenesis of cancer, for identifying pharmacological targets of cancer and for evaluating cancer therapies. In modeling human cancer, it has been shown that both the timing of introducing/activating oncogenic mutation(s) and the cell types into which the genetic lesion(s) is targeted are critical for cancer development. Recent studies also showed that efficient induction of relevant human leukemia in mice by certain oncogenes, such as PML/RARalpha and TEL/ABL, only occurred when they were expressed at a low level or close to pathophysiologically relevant level. These studies stress the importance of studying oncoprotein function at pathophysiologically relevant expression levels. Conditional gene expression systems are powerful tools for developing mouse models for human cancer by introducing genetic lesions in a cell type-specific, time-controlled and dosage-relevant manner. The bone marrow retroviral transduction and transplantation system can also mimic the cell and temporally specific origin of hematological malignancies by targeting oncogenes into sorted hematopoietic cells. This versatile approach is particularly powerful in structure-function analysis of oncogenes in vivo. However, overexpression of a transgene driven by retroviral vectors may alter the biological outcomes of the transgene in vivo. My colleagues and I have shown that generating vectors with modulated transgene expression can overcome this limitation of the retroviral transduction system in modeling human cancer in mice. Conditional gene expression and the modified retroviral transduction systems will be complimentary in studying human cancers in mice.
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
61
|
Abstract
Apoptosis, the cell-suicide programme executed by caspases, is critical for maintaining tissue homeostasis, and impaired apoptosis is now recognized to be a key step in tumorigenesis. Whether a cell should live or die is largely determined by the Bcl-2 family of anti- and proapoptotic regulators. These proteins respond to cues from various forms of intracellular stress, such as DNA damage or cytokine deprivation, and interact with opposing family members to determine whether or not the caspase proteolytic cascade should be unleashed. This review summarizes current views of how these proteins sense stress, interact with their relatives, perturb organelles such as the mitochondrion and endoplasmic reticulum and govern pathways to caspase activation. It briefly explores how family members influence cell-cycle entry and outlines the evidence for their involvement in tumour development, both as oncoproteins and tumour suppressors. Finally, it discusses the promise of novel anticancer therapeutics that target these vital regulators.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | |
Collapse
|
62
|
Huang Y, Du KM, Xue ZH, Yan H, Li D, Liu W, Chen Z, Zhao Q, Tong JH, Zhu YS, Chen GQ. Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1alpha. Leukemia 2003; 17:2065-2073. [PMID: 14523474 DOI: 10.1038/sj.leu.2403141] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellular and systemic O(2) concentrations are tightly regulated to maintain delicate oxygen homeostasis. Although the roles of hypoxia in solid tumors have been widely studied, few studies were reported regarding the possible effects of hypoxia on leukemic cells. Here, we showed for the first time that low concentrations of cobalt chloride (CoCl(2)), a hypoxia-mimicking agent, and 2-3% O(2) triggered differentiation of various subtypes of human acute myeloid leukemic (AML) cell lines, including NB4, U937 and Kasumi-1 cells, respectively, from M3, M5 and M2b-type AML, but CoCl(2) did not modulate AML subtype-specific fusion proteins promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) and AML1-ETO. Treatment with CoCl(2) also induced primary leukemic cells from some AML patients to undergo differentiation. Similar to what occurs in solid tumor cells, CoCl(2)-mimicked hypoxia also increased the level of hypoxia-inducible factor (HIF)-1alpha protein and its DNA-binding activity in leukemic cells. The CoCl(2) induction of HIF-1alpha protein and its DNA-binding activity were inhibited by 3-morpholinosydnonimine, which also blocked CoCl(2)-induced cell differentiation in leukemic cells. These results provide an insight into a possible link of hypoxia or HIF-1alpha and leukemic cell differentiation, and are possibly of significance to explore clinical potentials of hypoxia or hypoxia-mimicking agents and novel target-based drugs for differentiation therapy of leukemia.
Collapse
Affiliation(s)
- Y Huang
- Department of Pathophysiology of Basic Medical College, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Passegué E, Jamieson CHM, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11842-9. [PMID: 14504387 PMCID: PMC304096 DOI: 10.1073/pnas.2034201100] [Citation(s) in RCA: 440] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukemia can be viewed as a newly formed, abnormal hematopoietic tissue initiated by a few leukemic stem cells (LSCs) that undergo an aberrant and poorly regulated process of organogenesis analogous to that of normal hematopoietic stem cells. A hallmark of all cancers is the capacity for unlimited self-renewal, which is also a defining characteristic of normal stem cells. Given this shared attribute, it has been proposed that leukemias may be initiated by transforming events that take place in hematopoietic stem cells. Alternatively, leukemias may also arise from more committed progenitors caused by mutations and/or selective expression of genes that enhance their otherwise limited self-renewal capabilities. Identifying the LSCs for each type of leukemia is a current challenge and a critical step in understanding their respective biologies and may provide key insights into more effective treatments. Moreover, LSC identification and purification will provide a powerful diagnostic, prognostic, and therapeutic tool in the clinic.
Collapse
Affiliation(s)
- Emmanuelle Passegué
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
64
|
Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB, Popescu NC, DiPersio JF, Ley TJ. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102:1857-65. [PMID: 12750176 DOI: 10.1182/blood-2002-12-3779] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transgenic mice expressing PML-RARalpha in early myeloid cells under control of human cathepsin G regulatory sequences all develop a myeloproliferative syndrome, but only 15% to 20% develop acute promyelocytic leukemia (APL) after a latent period of 6 to 14 months. However, this transgene is expressed at very low levels in the bone marrow cells of transgenic mice. Because the transgene includes only 6 kb of regulatory sequences from the human cathepsin G locus, we hypothesized that sequences required for high-level expression of the transgene might be located elsewhere in the cathepsin G locus and that a knock-in model might yield much higher expression levels and higher penetrance of disease. We, therefore, targeted a human PML-RARalpha cDNA to the 5' untranslated region of the murine cathepsin G gene, using homologous recombination in embryonic stem cells. This model produced a high-penetrance APL phenotype, with more than 90% of knock-in mice developing APL between 6 and 16 months of age. The latent period and phenotype of APL (including a low frequency of an interstitial deletion of chromosome 2) was similar to that of the previous transgenic model. Remarkably, however, the expression level of PML-RARalpha in bone marrow cells or APL cells was less than 3% of that measured in the low-penetrance transgenic model. Although the explanation for this result is not yet clear, one hypothesis suggests that very low levels of PML-RARalpha expression in early myeloid cells may be optimal for the development of APL in mice.
Collapse
MESH Headings
- Animals
- Antigens, CD34/genetics
- Antineoplastic Agents/pharmacology
- Biomarkers
- Cathepsin G
- Cathepsins/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Chromosomes, Mammalian
- Disease Models, Animal
- Female
- Gene Deletion
- Gene Dosage
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Penetrance
- RNA, Messenger/analysis
- Recombination, Genetic
- Serine Endopeptidases
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Peter Westervelt
- Washington University, Division of Oncology, 660 S Euclid Ave, Campus Box 8007, St Louis, MO 63110-1093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Apoptotic cell death plays a critical role in the development and functioning of the immune system. During differentiation, apoptosis weeds out lymphocytes lacking useful antigen receptors and those expressing dangerous ones. Lymphocyte death is also involved in limiting the magnitude and duration of immune responses to infection. In this review, we describe the role of the Bcl-2 protein family, and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain), in the control of lymphoid and myeloid cell survival. We also consider the pathogenic consequences of failure of apoptosis in the immune system.
Collapse
Affiliation(s)
- Vanessa S Marsden
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | |
Collapse
|
66
|
Le Beau MM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood 2003; 102:1072-4. [PMID: 12689927 DOI: 10.1182/blood-2003-01-0155] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the PML-RARA fusion gene. To identify genetic changes that cooperate with PML-RARA, we performed spectral karyotyping analysis of myeloid leukemias from transgenic PML-RARA mice and from mice coexpressing PML-RARA and BCL2, IL3, activated IL3R, or activated FLT3. A cooperating mutation that enhanced survival (BCL2) was not sufficient to complete transformation and was associated with multiple numeric abnormalities, whereas cooperating mutations that deregulated growth and enhanced survival were associated with normal karyotypes (IL3) or simple karyotypic changes (IL3R, FLT3). Recurring abnormalities included trisomy 15 (49%), trisomy 8 (46%), and -X/-Y (54%). The most common secondary abnormality in human APL is +8 or partial trisomy of 8q24, syntenic to mouse 15. These murine leukemias have a defined spectrum of changes that recapitulates, in part, the cytogenetic abnormalities found in human APL. Our results demonstrate that different cooperating events may generate leukemia via different pathways.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Survival/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromosome Aberrations
- Karyotyping
- Leukemia/genetics
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Michelle M Le Beau
- Section of Hematology/Oncology, University of Chicago, 5841 S Maryland Ave, MC2115, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Phan VT, Shultz DB, Truong BTH, Blake TJ, Brown AL, Gonda TJ, Le Beau MM, Kogan SC. Cooperation of cytokine signaling with chimeric transcription factors in leukemogenesis: PML-retinoic acid receptor alpha blocks growth factor-mediated differentiation. Mol Cell Biol 2003; 23:4573-85. [PMID: 12808098 PMCID: PMC164846 DOI: 10.1128/mcb.23.13.4573-4585.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We utilized a mouse model of acute promyelocytic leukemia (APL) to investigate how aberrant activation of cytokine signaling pathways interacts with chimeric transcription factors to generate acute myeloid leukemia. Expression in mice of the APL-associated fusion, PML-RARA, initially has only modest effects on myelopoiesis. Whereas treatment of control animals with interleukin-3 (IL-3) resulted in expanded myelopoiesis without a block in differentiation, PML-RARA abrogated differentiation that normally characterizes the response to IL-3. Retroviral transduction of bone marrow with an IL-3-expressing retrovirus revealed that IL-3 and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) combined to generate a lethal leukemia-like syndrome in <21 days. We also observed that a constitutively activated mutant IL-3 receptor, beta(c)V449E, cooperated with PML-RARalpha in leukemogenesis, whereas a different activated mutant, beta(c)I374N, did not. Analysis of additional mutations introduced into beta(c)V449E showed that, although tyrosine phosphorylation of beta(c) is necessary for cooperation, the Src homology 2 domain-containing transforming protein binding site is dispensable. Our results indicate that chimeric transcription factors can block the differentiative effects of growth factors. This combination can be potently leukemogenic, but the particular manner in which these types of mutations interact determines the ability of such combinations to generate acute myeloid leukemia.
Collapse
Affiliation(s)
- Vernon T Phan
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Cai X, Yu Y, Huang Y, Zhang L, Jia PM, Zhao Q, Chen Z, Tong JH, Dai W, Chen GQ. Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 2003; 17:1333-7. [PMID: 12835721 DOI: 10.1038/sj.leu.2402983] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (As(2)O(3)), an effective drug for the treatment of acute promyelocytic leukemia (APL), can induce apoptosis and partial differentiation in APL cells in vitro and in vivo. However, As(2)O(3) also induces apoptosis in cancer cells other than APL with complex mechanisms, which seem to be cell type dependent. In this study, we report that APL cells (NB4 cell line) are arrested at early mitotic phase before the collapse of mitochondrial transmembrane potential (Deltavarphi(m)) and apoptosis after treatment with pharmacological concentrations (1.0-2.0 micro M) of As(2)O(3). We have also made the following new discoveries: (1) 0.5 micro M As(2)O(3) that fails to induce apoptosis has no effects on cell cycle distribution. (2) With inhibition of As(2)O(3)-induced Deltavarphi(m) collapse and apoptosis, dithiothreitol also effectively inhibits As(2)O(3)-induced mitotic arrest, suggesting that both As(2)O(3)-induced apoptosis and mitotic arrest involve proteins with thiol groups. (3) 1.5 mM caffeine that relieves cells from G(2)/M arrest also inhibits As(2)O(3)-induced Deltavarphi(m) collapse and apoptosis, (4) 1.0 micro M As(2)O(3) increases the expression of both cyclin B(1) and hCDC20 whereas it inhibits Tyr15 phosphorylation of p34(cdc2). In conclusion, our results strongly support that there is a tight link between As(2)O(3)-induced apoptosis and mitotic arrest, the latter being one of common mechanisms for As(2)O(3)-induced apoptosis in cancer cells.
Collapse
Affiliation(s)
- X Cai
- National Key Laboratory for Medicinal Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM, Abrams TJ, O'Farrell AM, Gilliland DG, Le Beau MM, Kogan SC. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 2003; 101:3188-97. [PMID: 12515727 DOI: 10.1182/blood-2002-06-1800] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PML-RAR alpha fusion protein is central to the pathogenesis of acute promyelocytic leukemia (APL). Expression of this protein in transgenic mice initiates myeloid leukemias with features of human APL, but only after a long latency (8.5 months in MRP8 PML-RARA mice). Thus, additional changes contribute to leukemic transformation. Activating mutations of the FLT3 receptor tyrosine kinase are common in human acute myeloid leukemias and are frequent in human APL. To assess how activating mutations of FLT3 contribute to APL pathogenesis and impact therapy, we used retroviral transduction to introduce an activated allele of FLT3 into control and MRP8 PML-RARA transgenic bone marrow. Activated FLT3 cooperated with PML-RAR alpha to induce leukemias in 62 to 299 days (median latency, 105 days). In contrast to the leukemias that arose spontaneously in MRP8 PML-RARA mice, the activated FLT3/PML-RAR alpha leukemias were characterized by leukocytosis, similar to human APL with FLT3 mutations. Cytogenetic analysis revealed clonal karyotypic abnormalities, which may contribute to pathogenesis or progression. SU11657, a selective, oral, multitargeted tyrosine kinase inhibitor that targets FLT3, cooperated with all-trans retinoic acid to rapidly cause regression of leukemia. Our results suggest that the acquisition of FLT3 mutations by cells with a pre-existing t(15;17) is a frequent pathway to the development of APL. Our findings also indicate that APL patients with FLT3 mutations may benefit from combination therapy with all-trans retinoic acid plus an FLT3 inhibitor.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chromosome Aberrations
- Clone Cells/ultrastructure
- Drug Implants
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Mice
- Mice, Transgenic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Organic Chemicals/administration & dosage
- Organic Chemicals/pharmacology
- Organic Chemicals/therapeutic use
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Radiation Chimera
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- fms-Like Tyrosine Kinase 3
Collapse
Affiliation(s)
- Jastinder Sohal
- Comprehensive Cancer Center and the Department of Laboratory Medicine, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Although much is understood about the ways in which transcription factors regulate various differentiation systems, and one of the hallmarks of many human cancers is a lack of cellular differentiation, relatively few reports have linked these two processes. Recent studies of acute myeloid leukaemia (AML), however, have indicated how disruption of transcription-factor function can disrupt normal cellular differentiation and lead to cancer. This model involves lineage-specific transcription factors, which are involved in normal haematopoietic differentiation. These factors are often targeted in AML--either by direct mutation or by interference from translocation proteins. Uncovering these underlying pathways will improve the diagnosis and treatment of AML, and provide a working model for other types of human cancer, including solid tumours.
Collapse
Affiliation(s)
- Daniel G Tenen
- Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
71
|
Guillemin MC, Raffoux E, Vitoux D, Kogan S, Soilihi H, Lallemand-Breitenbach V, Zhu J, Janin A, Daniel MT, Gourmel B, Degos L, Dombret H, Lanotte M, De Thé H. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 2002; 196:1373-80. [PMID: 12438428 PMCID: PMC2193985 DOI: 10.1084/jem.20021129] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differentiation therapy for acute myeloid leukemia uses transcriptional modulators to reprogram cancer cells. The most relevant clinical example is acute promyelocytic leukemia (APL), which responds dramatically to either retinoic acid (RA) or arsenic trioxide (As(2)O(3)). In many myeloid leukemia cell lines, cyclic adenosine monophosphate (cAMP) triggers growth arrest, cell death, or differentiation, often in synergy with RA. Nevertheless, the toxicity of cAMP derivatives and lack of suitable models has hampered trials designed to assess the in vivo relevance of theses observations. We show that, in an APL cell line, cAMP analogs blocked cell growth and unraveled As(2)O(3)-triggered differentiation. Similarly, in RA-sensitive or RA-resistant mouse models of APL, continuous infusions of 8-chloro-cyclic adenosine monophosphate (8-Cl-cAMP) triggered major growth arrest, greatly enhanced both spontaneous and RA- or As(2)O(3)-induced differentiation and accelerated the restoration of normal hematopoiesis. Theophylline, a well-tolerated phosphodiesterase inhibitor which stabilizes endogenous cAMP, also impaired APL growth and enhanced spontaneous or As(2)O(3)-triggered cell differentiation in vivo. Accordingly, in an APL patient resistant to combined RA-As(2)O(3) therapy, theophylline induced blast clearance and restored normal hematopoiesis. Taken together, these results demonstrate that in vivo activation of cAMP signaling contributes to APL clearance, independently of its RA-sensitivity, thus raising hopes that other myeloid leukemias may benefit from this therapeutic approach.
Collapse
Affiliation(s)
- Marie-Claude Guillemin
- CNRS UPR 9051, Laboratoire Associé au Comité de Paris de la Ligue contre le Cancer, affilié à l'Université de ParisVII, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lian Z, Kluger Y, Greenbaum DS, Tuck D, Gerstein M, Berliner N, Weissman SM, Newburger PE. Genomic and proteomic analysis of the myeloid differentiation program: global analysis of gene expression during induced differentiation in the MPRO cell line. Blood 2002; 100:3209-20. [PMID: 12384419 DOI: 10.1182/blood-2002-03-0850] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used an approach using 2-dimensional gel electrophoresis with mass spectrometry analysis combined with oligonucleotide chip hybridization for a comprehensive and quantitative study of the temporal patterns of protein and mRNA expression during myeloid development in the MPRO murine cell line. This global analysis detected 123 known proteins and 29 "new" proteins out of 220 protein spots identified by tandem mass spectroscopy, including proteins in 12 functional categories such as transcription factors and cytokines. Bioinformatic analysis of these proteins revealed clusters with functional importance to myeloid differentiation. Previous analyses have found that for a substantial number of genes the absolute amount of protein in the cell is not strongly correlated to the amount of mRNA. These conclusions were based on simultaneous measurement of mRNA and protein at just a single time point. Here, however, we are able to investigate the relationship between mRNA and protein in terms of simultaneous changes in their levels over multiple time points. This is the first time such a relationship has been studied, and we find that it gives a much stronger correlation, consistent with the hypothesis that a substantial proportion of protein change is a consequence of changed mRNA levels, rather than posttranscriptional effects. Cycloheximide inhibition also showed that most of the proteins detected by gel electrophoresis were relatively stable. Specific investigation of transcription factor mRNA representation showed considerable similarity to those of mature human neutrophils and highlighted several transcription factors and other functional nuclear proteins whose mRNA levels change prominently during MPRO differentiation but which have not been investigated previously in the context of myeloid development. Data are available online at http://bioinfo.mbb.yale.edu/expression/myelopoiesis.
Collapse
Affiliation(s)
- Zheng Lian
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 2002; 99:11872-7. [PMID: 12193648 PMCID: PMC129361 DOI: 10.1073/pnas.172384399] [Citation(s) in RCA: 373] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hierarchical development from hematopoietic stem cells to mature cells of the hematolymphoid system involves progressive loss of self-renewal capacity, proliferation ability, and lineage potentials. Here we show the prospective isolation of early developmental intermediates, the human clonogenic common myeloid progenitors and their downstream progeny, the granulocyte/macrophage and megakaryocyte/erythrocyte progenitors. All three populations reside in the lineage-negative (lin(-)) CD34(+)CD38(+) fraction of adult bone marrow as well as in cord blood. They are distinguishable by the expression of the IL-3R alpha chain, the receptor of an early-acting hematopoietic cytokine, and CD45RA, an isoform of a phosphotyrosine phosphatase involved in negative regulation of cytokine signaling. Multipotent progenitors, early lymphoid progenitors, and the here-defined myeloid progenitors express distinct profiles of hematopoiesis-affiliated genes. The isolation of highly purified hematopoietic intermediates provides tools to better understand developmental programs underlying normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Markus G Manz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
74
|
Abstract
Despite its many therapeutic qualities, arsenic trioxide has been more commonly remembered as Madame Bovary's poison than as an anticancer drug. The ability of arsenic trioxide to treat acute promyelocytic leukaemia has radically changed this view, providing new insights into the pathogenesis of this malignancy and raising hopes that arsenicals might be useful in treating other cancers.
Collapse
MESH Headings
- Animals
- Arsenic Trioxide
- Arsenicals/history
- Arsenicals/therapeutic use
- Cell Differentiation
- China
- Europe
- Gene Expression Regulation, Neoplastic
- History, 15th Century
- History, 16th Century
- History, 18th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oxides/history
- Oxides/therapeutic use
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/metabolism
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Jun Zhu
- CNRS UPR 9051, Laboratoire associé du comité de Paris de la ligue contre le cancer, affilié à l'université de Paris VII, Hôpital St Louis, 1 avenue C. Vellefaux, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|
75
|
Abstract
Tissue homeostasis is regulated by apoptosis, the cell-suicide programme that is executed by proteases called caspases. The Bcl2 family of intracellular proteins is the central regulator of caspase activation, and its opposing factions of anti- and pro-apoptotic members arbitrate the life-or-death decision. Apoptosis is often impaired in cancer and can limit conventional therapy. A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia.
| | | |
Collapse
|
76
|
Abstract
The acute myeloid leukemias (AML) are often fatal disorders with a range of clinical, morphologic, cytogenetic, and molecular features and a consequent need for a diverse array of therapies. This need for tailored therapy for subsets of patients with AML is exemplified in those with acute promyelocytic leukemia, the subject of a separate article in this issue (Tallman and Nabhan). Unfortunately, we tend to examine novel agents in patients with very advanced disease, in which prior therapies have inevitably altered the tumor. Of a myriad of possible exciting novel agents, a few, including PS-341, Genasense (Genta, Berkeley Heights, NJ), decitabine, 5-azacytidine, clofarabine, and troxacitabine, are briefly reviewed with an emphasis on their mechanisms of action from a perspective that suggests possible synergistic therapeutic interventions. With the growing appreciation of the pivotal role of angiogenesis in AML, angiogenesis modulators are a good example of a core class of drugs upon which future noncytotoxic combinations may be built. Those agents targeting vascular endothelial growth factor are also briefly reviewed.
Collapse
Affiliation(s)
- Francis J Giles
- Section of Developmental Therapeutics, Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 428, Houston, TX 77030, USA.
| |
Collapse
|
77
|
Abstract
For me the search for hematopoietic stem cells (HSC) actually started with the discovery by Till, McCulloch, and colleagues (1-3) that bone marrow contained single cells that could give rise to myeloerythroid colonies in the spleen, and sometimes these colonies contained cells that made more spleen colonies as well as radioprotected and reconstituted lethally irradiated mice (3). But in retrospect, it should have started with the remarkable observation of Ray Owen in 1945 that bovine fraternal twins sharing a single placenta and blood circulation retained production of blood cells genetically defined to be from both throughout their life (4). It could be argued that this was the experiment that began both modern experimental hematology as well as modern cellular immunology. The Till, McCulloch, Wu, Becker, and Simonovitch experiments were elegant demonstrations that single, genetically marked cells existed (random DNA breaks and translocations induced by sublethal irradiation of the donor bone marrow) that could both self-renew and differentiate (2, 5). But these experiments did not put the pure cells in the hands of scientists, and so most of their functions for the next 25 years were implied rather than directly analyzed. Just as genetics is the complement to biochemistry (when one considers genes and gene products), cell marking is the complement to cell purification in the fields of developmental and cellular biology. The first attempts at such cellular purification came from the 'school' of Till & McCulloch (6, 7), and independently the school of Van Bekkum in the Netherlands (8). But what was lacking in those experiments and at that time were both a comprehensive approach that would take into account the clonal activity of stem cells in both self-renewal and differentiation to all blood cell outcomes, and the tools with which one could separate what turned out to be an extremely rare population in the bone marrow. And, it wasn't known until much later that most day 8-10 spleen colonies were the progeny of progenitors, not stem cells (9). Two inventions facilitated the technology of purification of HSC: the advent of monoclonal antibody technology by Kohler & Milstein (10), and the development of the multiparameter fluorescence activated cell sorter by the Herzenberg group (11). My laboratory had established assays for the clonal precursors of T cells and B cells, and we had been using the Till-McCulloch spleen colony clonal assays since the mid-1960s. In the late 1970s and early 1980s we began in earnest the search for mouse early hematopoietic progenitors, including HSCs (12-16). The purification of HSCs proved to be much like the purification of an enzyme, or a cell surface receptor, or a gene. Successive enrichments finally led to the isolation of a population, which could no longer be subdivided and which contained precursors that read out in all clonal assays as well as in radioprotection of lethally irradiated hosts (17). Our first experiments transplanting single HSC in 1991 and 1992, led to the definitive demonstration that these were indeed HSCs (18-20). But these experiments and the ideas that led to them were developed in the context of immunology and experimental hematology as they were emerging in the 1950s and 60 s. This volume of Immunological Reviews is a rich testimony to the kinds of ideas and experiments that, at least in retrospect, turned out to be critical. Many roads were taken, but only one ended up at stem cells.
Collapse
Affiliation(s)
- Irving L Weissman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| |
Collapse
|
78
|
Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Frederik H. Igney
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter H. Krammer
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
79
|
Padua RA, McGlynn A, McGlynn H. Molecular, cytogenetic and genetic abnormalities in MDS and secondary AML. Cancer Treat Res 2002; 108:111-57. [PMID: 11702597 DOI: 10.1007/978-1-4615-1463-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Myelodysplasia (MDS) is a clonal disease, which increases with age, suggesting that multiple steps are required for the evolution of the condition. Approximately 30% of MDS evolve into acute myelogenous leukemia (AML). In this review, we intend to delineate the genetic events, which may drive this sequence and therefore we will focus primarily on cytogenetic abnormalities where the genes have been identified and oncogenes and suppressor genes that have been implicated. In terms of the biological mechanisms, which characterise this process, it is generally thought that the MDS cell has impaired differentiation, and has increased apoptosis. As the disease progresses in addition, the cells have increased proliferation. As the disease evolves, the population of cells, which predominate remain immature, have decreased apoptosis and in many cases, upregulate anti-apoptotic genes and have deregulated proliferation as the number of blast cells increase. Etiological factors, which contribute to the development of leukemia, include therapeutic agents administered for a primary malignancy. The cytogenetic abnormalities, predisposition factors and genes involved in secondary leukemia will also be reviewed.
Collapse
MESH Headings
- Acute Disease
- Aneuploidy
- Apoptosis/genetics
- Biomarkers, Tumor
- Chromosome Aberrations
- Chromosome Deletion
- Chromosome Painting
- Chromosomes, Human/genetics
- Chromosomes, Human/ultrastructure
- Clone Cells/pathology
- Disease Progression
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Genetic Therapy
- Growth Substances/genetics
- Hematopoietic Stem Cells/pathology
- Humans
- Karyotyping
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Multigene Family
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/pathology
- Oncogenes
- Preleukemia/genetics
- Preleukemia/pathology
- Receptors, Growth Factor/genetics
- Signal Transduction/genetics
- Transcription, Genetic/genetics
- Translocation, Genetic
- Trisomy
Collapse
Affiliation(s)
- R A Padua
- Hematology Department, University of Wales College of Medicine, Cardiff, UK
| | | | | |
Collapse
|
80
|
Le Beau MM, Bitts S, Davis EM, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood 2002; 99:2985-91. [PMID: 11929790 DOI: 10.1182/blood.v99.8.2985] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q11.2), which results in the PML-RARA fusion gene. In previous studies, we demonstrated that expression of a human PML-RARA complementary DNA in murine granulocyte precursor cells initiated the development of leukemia. However, leukemogenesis by PML-RARA required additional genetic alterations. To identify genetic changes that cooperate with PML-RARA in leukemogenesis, we performed spectral karyotyping analysis of myeloid leukemias from hMRP8-PML-RARA mice (11 cases) and from mice coexpressing PML-RARA and BCL2 (8 cases). Clonal abnormalities were detected in 18 of 19 cases (95%). Recurring numerical abnormalities identified in these murine leukemias included +15 (15 cases, 79%); loss of a sex chromosome (12 cases, 63%); +8 (10 cases, 53%); +10 (9 cases, 47%); +4, +7, or +14 (8 cases each, 42%); +16 (7 cases, 37%); and +6 (5 cases, 26%). In a series of 965 patients with APL, we identified secondary abnormalities in 368 (38%). The most common recurring abnormalities were +8 or partial trisomy of 8q (120 patients, 12.4%) and ider(17) t(15;17) (42 patients, 4.4%). The critical consequence of +8 in human leukemias appears to be the gain of 8q24, which is syntenic to mouse 15. Thus, our results suggest that PML-RARA-initiated murine leukemia is associated with a defined spectrum of genetic changes, and that these secondary mutations recapitulate, in part, the cytogenetic abnormalities found in human APL.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Chromosome Aberrations
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 8
- Humans
- Karyotyping
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Promyelocytic, Acute/genetics
- Mice
- Mice, Transgenic/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recurrence
Collapse
Affiliation(s)
- Michelle M Le Beau
- Section of Hematology/Oncology, University of Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
81
|
Abstract
Every cell in a multicellular organism has the potential to die by apoptosis, but tumour cells often have faulty apoptotic pathways. These defects not only increase tumour mass, but also render the tumour resistant to therapy. So, what are the molecular mechanisms of tumour resistance to apoptosis and how can we use this knowledge to resensitize tumour cells to cancer therapy?
Collapse
Affiliation(s)
- Frederik H Igney
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg
| | | |
Collapse
|
82
|
Abstract
Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis.
Collapse
Affiliation(s)
- T Reya
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Palo Alto, California 94305, USA.
| | | | | | | |
Collapse
|
83
|
Abstract
Acute promyelocytic leukemia (APL) is a distinct and paradigmatic subtype of myeloid leukemia associated with reciprocal chromosomal translocations always involving the Retinoic Acid Receptor(alpha) (RARalpha) gene on chromosome 17 and variable partner genes (X genes) on different chromosomes. As a consequence of these translocations X-RARalpha and RARalpha-X fusion genes are generated. RARalpha fuses to the PML gene in the vast majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and STAT5b genes respectively. In the last few years, the functions of these aberrant fusion proteins and of the normal gene products involved in these translocations have been extensively characterized in vivo in transgenic and KO animal models. Here we will review the important conclusions, the novel questions and paradoxes that stem from this analysis.
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Pair 17
- Clinical Trials as Topic
- Disease Models, Animal
- Humans
- Leukemia/etiology
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Mice
- Models, Genetic
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription, Genetic
- Translocation, Genetic
- X Chromosome
Collapse
Affiliation(s)
- P P Pandolfi
- Molecular Biology Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
84
|
Affiliation(s)
- S T Eichhorst
- Department of Medicine II, Klinikum Grosshadern, University of Munich, Munich, Germany
| | | |
Collapse
|
85
|
Abstract
Translocations involving a variety of fusion partners, such as promyelocytic leukemia gene, promyelocytic leukemia zinc finger, nucleophosmin, nuclear matrix protein, and signal transducer and activator of transcription protein 5B, with the retinoic acid receptor alpha gene are commonly associated with development of acute promyelocytic leukemia. Through the development of transgenic mouse models, some retinoic acid receptor alpha translocation fusion proteins have been shown to be capable of initiating acute promyelocytic leukemia development, and dictate the leukemias' responsiveness to retinoic acid. Transgenic mouse models also have identified the influence of reciprocal translocation fusion proteins on acute promyelocytic leukemia development, and have demonstrated that additional mutations can contribute to the development of acute promyelocytic leukemia. In this review, the authors summarize current mouse models of acute promyelocytic leukemia and describe current knowledge about additional genetic alterations that occur during development of acute promyelocytic leukemia in the mouse.
Collapse
Affiliation(s)
- J L Pollock
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110-1093, USA
| | | | | | | | | |
Collapse
|
86
|
Largaespada DA. Haploinsufficiency for tumor suppression: the hazards of being single and living a long time. J Exp Med 2001; 193:F15-8. [PMID: 11181707 PMCID: PMC2195912 DOI: 10.1084/jem.193.4.f15] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- D A Largaespada
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
87
|
Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 2001; 193:521-29. [PMID: 11181703 PMCID: PMC2195907 DOI: 10.1084/jem.193.4.521] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2000] [Accepted: 12/14/2000] [Indexed: 11/16/2022] Open
Abstract
The promyelocytic leukemia (PML) gene encodes a putative tumor suppressor gene involved in the control of apoptosis, which is fused to the retinoic acid receptor alpha (RARalpha) gene in the vast majority of acute promyelocytic leukemia (APL) patients as a consequence of chromosomal translocations. The PMLRARalpha oncoprotein is thought to antagonize the function of PML through its ability to heterodimerize with and delocalize PML from the nuclear body. In APL, this may be facilitated by the reduction to heterozygosity of the normal PML allele. To determine whether PML acts as a tumor suppressor in vivo and what the consequences of deregulated programmed cell death in leukemia and epithelial cancer pathogenesis are, we crossed PML(-/-) mice with human cathepsin G (hCG)-PMLRARalpha or mammary tumor virus (MMTV)/neu transgenic mice (TM), models of leukemia and breast cancer, respectively. The progressive reduction of the dose of PML resulted in a dramatic increase in the incidence of leukemia, and in an acceleration of leukemia onset in PMLRARalpha TM. By contrast, PML inactivation did not affect neu-induced tumorigenesis. In hemopoietic cells from PMLRARalpha TM, PML inactivation resulted in impaired response to differentiating agents such as RA and vitamin D3 as well as in a marked survival advantage upon proapoptotic stimuli. These results demonstrate that: (a) PML acts in vivo as a tumor suppressor by rendering the cells resistant to proapoptotic and differentiating stimuli; (b) PML haploinsufficiency and the functional impairment of PML by PMLRARalpha are critical events in APL pathogenesis; and (c) aberrant control of programmed cell death plays a differential role in solid tumor and leukemia pathogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cholecalciferol/pharmacology
- Disease-Free Survival
- Female
- Genes, Tumor Suppressor
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/mortality
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/mortality
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Nuclear Proteins
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- Transcription Factors/genetics
- Tumor Suppressor Proteins
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Eduardo M. Rego
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Zhu-Gang Wang
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Daniela Peruzzi
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Le-Zhen He
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Carlos Cordon-Cardo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Pier Paolo Pandolfi
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| |
Collapse
|