51
|
De S, Wurster AL, Precht P, Wood WH, Becker KG, Pazin MJ. Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Mol Cell Biol 2011; 31:1512-27. [PMID: 21262765 PMCID: PMC3135292 DOI: 10.1128/mcb.00920-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/14/2011] [Indexed: 12/12/2022] Open
Abstract
T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.
Collapse
Affiliation(s)
| | - Andrea L. Wurster
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Patricia Precht
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | | | | | - Michael J. Pazin
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, NIH, Baltimore, Maryland 21224
| |
Collapse
|
52
|
Miller SA, Mohn SE, Weinmann AS. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 2010; 40:594-605. [PMID: 21095589 PMCID: PMC3032266 DOI: 10.1016/j.molcel.2010.10.028] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/09/2010] [Accepted: 08/27/2010] [Indexed: 01/11/2023]
Abstract
The stable and heritable H3K27-methyl mark suppresses transcription of lineage-specific genes in progenitor cells. During developmental transitions, histone demethylases are required to dramatically alter epigenetic and gene expression states to create new cell-specific profiles. It is unclear why demethylase proteins that antagonize polycomb-mediated repression continue to be expressed in terminally differentiated cells where further changes in H3K27 methylation could be deleterious. In this study, we show that the H3K27 demethylases, Jmjd3 and UTX, mediate a functional interaction between the lineage-defining T-box transcription factor family and a Brg1-containing SWI/SNF remodeling complex. Importantly, Jmjd3 is required for the coprecipitation of Brg1 with the T-box factor, T-bet, and this interaction is necessary for Ifng remodeling in differentiated Th1 cells. Thus, Jmjd3 has a required role in general chromatin remodeling that is independent from its H3K27 demethylase potential. This function for H3K27 demethylase proteins may explain their presence in differentiated cells where the epigenetic profile is already established.
Collapse
Affiliation(s)
- Sara A. Miller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah E. Mohn
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Amy S. Weinmann
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
53
|
Abstract
Significant strides in the understanding of the role of epigenetic regulation in asthma and allergy using both epidemiological approaches as well as experimental ones have been made. This review focuses on new research within the last 2 years. These include advances in determining how environmental agents implicated in airway disease can induce epigenetic changes, how epigenetic regulation can influence T helper cell differentiation and T regulatory cell production, and new discoveries of epigenetic regulation associated with clinical outcomes.
Collapse
Affiliation(s)
- J S Kuriakose
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
54
|
An epigenetic chromatin remodeling role for NFATc1 in transcriptional regulation of growth and survival genes in diffuse large B-cell lymphomas. Blood 2010; 116:3899-906. [PMID: 20664054 DOI: 10.1182/blood-2009-12-257378] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors functions as integrators of multiple signaling pathways by binding to chromatin in combination with other transcription factors and coactivators to regulate genes central for cell growth and survival in hematopoietic cells. Recent experimental evidence has implicated the calcineurin/NFAT signaling pathway in the pathogenesis of various malignancies, including diffuse large B-cell lymphoma (DLBCL). However, the molecular mechanism(s) underlying NFATc1 regulation of genes controlling lymphoma cell growth and survival is still unclear. In this study, we demonstrate that the transcription factor NFATc1 regulates gene expression in DLBCL cells through a chromatin remodeling mechanism that involves recruitment of the SWItch/Sucrose NonFermentable chromatin remodeling complex ATPase enzyme SMARCA4 (also known as Brahma-related gene 1) to NFATc1 targeted gene promoters. The NFATc1/Brahma-related gene 1 complex induces promoter DNase I hypersensitive sites and recruits other transcription factors to the active chromatin site to regulate gene transcription. Targeting NFATc1 with specific small hairpin RNA inhibits DNase I hypersensitive site formation and down-regulates target gene expression. Our data support a novel epigenetic control mechanism for the transcriptional regulation of growth and survival genes by NFATc1 in the pathophysiology of DLBCL and suggests that targeting NFATc1 could potentially have therapeutic value.
Collapse
|
55
|
Precht P, Wurster AL, Pazin MJ. The SNF2H chromatin remodeling enzyme has opposing effects on cytokine gene expression. Mol Immunol 2010; 47:2038-46. [PMID: 20471682 PMCID: PMC2891439 DOI: 10.1016/j.molimm.2010.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 01/10/2023]
Abstract
Cytokine gene expression is a key control point in the function of the immune system. Cytokine gene regulation is linked to changes in chromatin structure; however, little is known about the remodeling enzymes mediating these changes. Here we investigated the role of the ATP-dependent chromatin remodeling enzyme SNF2H in mouse T cells; to date, SNF2H has not been investigated in T cells. We found that SNF2H repressed expression of IL-2 and other cytokines in activated cells. By contrast, SNF2H activated expression of IL-3. The ISWI components SNF2H and ACF1 bound to the tested loci, suggesting the regulation was direct. SNF2H decreased accessibility at some binding sites within the IL2 locus, and increased accessibility within some IL3 binding sites. The changes in gene expression positively correlated with accessibility changes, suggesting a simple model that accessibility enables transcription. We also found that loss of the ISWI ATPase SNF2H reduced binding to target genes and protein expression of ACF1, a binding partner for SNF2H, suggesting complex formation stabilized ACF1. Together, these findings reveal a direct role for SNF2H in both repression and activation of cytokine genes.
Collapse
Affiliation(s)
- Patricia Precht
- Laboratory of Cellular and Molecular Biology National Institute on Aging, NIH Baltimore, MD 21224
| | - Andrea L. Wurster
- Laboratory of Cellular and Molecular Biology National Institute on Aging, NIH Baltimore, MD 21224
| | - Michael J. Pazin
- Address correspondence and reprint requests to: Dr. Michael J. Pazin; LCMB. NIA, NIH; 251 Bayview Blvd; Baltimore, MD 21224. Phone: 410-558-8094; Fax: 410-558-8386;
| |
Collapse
|
56
|
Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, Peng W, O'Shea JJ, Kanno Y. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 2010; 32:840-51. [PMID: 20620946 PMCID: PMC2904651 DOI: 10.1016/j.immuni.2010.06.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 01/30/2023]
Abstract
Signal transducer and activator of transcription 4 (STAT4) and STAT6 are key factors in the specification of helper T cells; however, their direct roles in driving differentiation are not well understood. Using chromatin immunoprecipitation and massive parallel sequencing, we quantitated the full complement of STAT-bound genes, concurrently assessing global STAT-dependent epigenetic modifications and gene transcription by using cells from cognate STAT-deficient mice. STAT4 and STAT6 each bound over 4000 genes with distinct binding motifs. Both played critical roles in maintaining chromatin configuration and transcription of a core subset of genes through the combination of different epigenetic patterns. Globally, STAT4 had a more dominant role in promoting active epigenetic marks, whereas STAT6 had a more prominent role in antagonizing repressive marks. Clusters of genes negatively regulated by STATs were also identified, highlighting previously unappreciated repressive roles of STATs. Therefore, STAT4 and STAT6 play wide regulatory roles in T helper cell specification.
Collapse
Affiliation(s)
- Lai Wei
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Wendy T. Watford
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Hiroaki Takatori
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Haydee L. Ramos
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Hayato Takahashi
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Jonathan Liang
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Chongzhi Zang
- Department of Physics, George Washington University, Washington, DC 20052, U.S.A
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, U.S.A
| | - John J. O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, U.S.A
| |
Collapse
|
57
|
Placek K, Gasparian S, Coffre M, Maiella S, Sechet E, Bianchi E, Rogge L. Integration of distinct intracellular signaling pathways at distal regulatory elements directs T-bet expression in human CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 183:7743-51. [PMID: 19923468 DOI: 10.4049/jimmunol.0803812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
T-bet is a key regulator controlling Th1 cell development. This factor is not expressed in naive CD4(+) T cells, and the mechanisms controlling expression of T-bet are incompletely understood. In this study, we defined regulatory elements at the human T-bet locus and determined how signals originating at the TCR and at cytokine receptors are integrated to induce chromatin modifications and expression of this gene during human Th1 cell differentiation. We found that T cell activation induced two strong DNase I-hypersensitive sites (HS) and rapid histone acetylation at these elements in CD4(+) T cells. Histone acetylation and T-bet expression were strongly inhibited by cyclosporine A, and we detected binding of NF-AT to a HS in vivo. IL-12 and IFN-gamma signaling alone were not sufficient to induce T-bet expression in naive CD4(+) T cells, but enhanced T-bet expression in TCR/CD28-stimulated cells. We detected a third HS 12 kb upstream of the mRNA start site only in developing Th1 cells, which was bound by IL-12-induced STAT4. Our data suggest that T-bet locus remodeling and gene expression are initiated by TCR-induced NF-AT recruitment and amplified by IL-12-mediated STAT4 binding to distinct distal regulatory elements during human Th1 cell differentiation.
Collapse
Affiliation(s)
- Katarzyna Placek
- Institut Pasteur, Immunoregulation Unit and Centre National de la Recherche Scientifique Unité de Recherche Associée 1961, Department of Immunology, Paris, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Jeong SM, Lee C, Lee SK, Kim J, Seong RH. The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression. J Biol Chem 2009; 285:2340-50. [PMID: 19910461 DOI: 10.1074/jbc.m109.026997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The SWI/SNF chromatin-remodeling complex has been implicated in the activation and proliferation of T cells. After T cell receptor signaling, the SWI/SNF complex rapidly associates with chromatin and controls gene expression in T cells. However, the process by which the SWI/SNF complex regulates peripheral T cell activation has not been elucidated. In this study, we show that the SWI/SNF complex regulates cytokine production and proliferation of T cells. During T cell activation, the SWI/SNF complex is recruited to the promoter of the transcription factor AP-1, and it increases the expression of AP-1. Increased expression of the SWI/SNF complex resulted in enhanced AP-1 activity, cytokine production, and proliferation of peripheral T cells, whereas knockdown of the SWI/SNF complex expression impaired the AP-1 expression and reduced the activation and proliferation of T cells. Moreover, mice that constitutively expressed the SWI/SNF complex in T cells were much more susceptible to experimentally induced autoimmune encephalomyelitis than the normal mice were. These results suggest that the SWI/SNF complex plays a critical role during T cell activation and subsequent immune responses.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, and Research Center for Functional Cellulomics, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
59
|
Abstract
In this issue of Immunity, Gomez-Rodriguez et al. (2009) demonstrate that signaling via the Itk kinase, a component of the T cell receptor signaling pathway, is required for interleukin-17A but not interleukin-17F expression in T helper 17 cells.
Collapse
Affiliation(s)
- Leslie J Berg
- University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
60
|
Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh N, O'Malley JT, Perumal NB, Kaplan MH. Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. THE JOURNAL OF IMMUNOLOGY 2009; 183:3839-47. [PMID: 19710469 DOI: 10.4049/jimmunol.0901411] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
STAT4 is a critical component in the development of inflammatory adaptive immune responses. It has been extensively characterized as a lineage-determining factor in Th1 development. However, the genetic program activated by STAT4 that results in an inflammatory cell type is not well defined. In this report, we use DNA isolated from STAT4-chromatin immunoprecipitation to perform chromatin immunoprecipitation-on-chip analysis of over 28,000 mouse gene promoters to identify STAT4 targets. We demonstrate that STAT4 binds multiple gene-sets that program distinct components of the Th1 lineage. Although many STAT4 target genes display STAT4-dependent IL-12-inducible expression, other genes displayed IL-12-induced histone modifications but lack induction, possibly due to high relative basal expression. In the subset of genes that STAT4 programs for expression in Th1 cells, IL-12-induced mRNA levels remain increased for a longer time than mRNA from genes that are not programmed. This suggests that STAT4 binding to target genes, while critical, is not the only determinant for STAT4-dependent gene programming during Th1 differentiation.
Collapse
Affiliation(s)
- Seth R Good
- School of Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Placek K, Coffre M, Maiella S, Bianchi E, Rogge L. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 2009; 127:155-62. [PMID: 19476511 DOI: 10.1111/j.1365-2567.2009.03059.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Significant progress has been made during the past years in our understanding of the mechanisms that control the differentiation of naïve CD4(+) T cells into effector T-cell subsets with distinct functional properties. Previous work allowed the identification of key molecules involved in regulating this highly complex process, such as cytokines and their receptors, signal transducers and transcription factors. More recently, the emphasis of research in this field has been to elucidate how the multiplicity of signals is integrated to shape a T helper subset-specific gene-expression program controlling differentiation and effector functions. In this review we will highlight advances that have been made in unravelling the genetic and epigenetic networks controlling differentiation of naïve CD4(+) T cells into interferon-gamma(IFN-gamma)-secreting T helper type 1 (Th1) cells.
Collapse
|
62
|
Abstract
The developmental program of T helper and regulatory T cell lineage commitment is governed by both genetic and epigenetic mechanisms. The principal events, signaling pathways and the lineage determining factors involved have been extensively studied in the past ten years. Recent studies have elucidated the important role of chromatin remodeling and epigenetic changes for proper regulation of gene expression of lineage-specific cytokines. These include DNA methylation and histone modifications in epigenomic reprogramming during T helper cell development and effector T cell functions. This review discusses the basic epigenetic mechanisms and the role of transcription factors for the differential cytokine gene regulation in the T helper lymphocyte subsets.
Collapse
Affiliation(s)
- Choong-Gu Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Anupama Sahoo
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
63
|
Meng G, Zhang F, Fuss I, Kitani A, Strober W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 2009; 30:860-74. [PMID: 19501001 PMCID: PMC2764254 DOI: 10.1016/j.immuni.2009.04.012] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/23/2009] [Accepted: 04/08/2009] [Indexed: 01/01/2023]
Abstract
Missense mutations of the gene encoding NLRP3 are associated with autoinflammatory disorders characterized with excessive production of interleukin-1beta (IL-1beta). Here we analyzed the immune responses of gene-targeted mice carrying a mutation in the Nlrp3 gene equivalent to the human mutation associated with Muckle-Wells Syndrome. We found that antigen-presenting cells (APCs) from such mice produced massive amounts of IL-1beta upon stimulation with microbial stimuli in the absence of ATP. This was likely due to a diminished inflammasome activation threshold that allowed a response to the small amount of agonist. Moreover, the Nlrp3 gene-targeted mice exhibited skin inflammation characterized by neutrophil infiltration and a Th17 cytokine-dominant response, which originated from hematopoietic cells. The inflammation of Nlrp3 gene-targeted mice resulted from excess IL-1beta production from APCs, which augmented Th17 cell differentiation. These results demonstrate that the NLRP3 mutation leads to inflammasome hyperactivation and consequently Th17 cell-dominant immunopathology in autoinflammation.
Collapse
Affiliation(s)
- Guangxun Meng
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
64
|
Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna G, Hata A. The four-and-a-half LIM domain protein 2 regulates vascular smooth muscle phenotype and vascular tone. J Biol Chem 2009; 284:13202-12. [PMID: 19265191 PMCID: PMC2676052 DOI: 10.1074/jbc.m900282200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/23/2009] [Indexed: 01/14/2023] Open
Abstract
In response to vascular injury, differentiated vascular smooth muscle cells (vSMCs) undergo a unique process known as "phenotype modulation," transitioning from a quiescent, "contractile" phenotype to a proliferative, "synthetic" state. We have demonstrated previously that the signaling pathway of bone morphogenetic proteins, members of the transforming growth factor beta family, play a role in the induction and maintenance of a contractile phenotype in human primary pulmonary artery smooth muscle cells. In this study, we show that a four-and-a-half LIM domain protein 2 (FHL2) inhibits transcriptional activation of vSMC-specific genes mediated by the bone morphogenetic protein signaling pathway through the CArG box-binding proteins, such as serum response factor and members of the myocardin (Myocd) family. Interestingly, FHL2 does not affect recruitment of serum response factor or Myocd, however, it inhibits recruitment of a component of the SWI/SNF chromatin remodeling complex, Brg1, and RNA polymerase II, which are essential for the transcriptional activation. This is a novel mechanism of regulation of SMC-specific contractile genes by FHL2. Finally, aortic rings from homozygous FHL2-null mice display abnormalities in both endothelial-dependent and -independent relaxation, suggesting that FHL2 is essential for the regulation of vasomotor tone.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/metabolism
- Blotting, Western
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Chromatin Assembly and Disassembly
- Chromatin Immunoprecipitation
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Fluorescent Antibody Technique
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Humans
- LIM-Homeodomain Proteins
- Mice
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- Nicole A Neuman
- Department of Biochemistry, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
65
|
Schulz EG, Mariani L, Radbruch A, Höfer T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 2009; 30:673-83. [PMID: 19409816 DOI: 10.1016/j.immuni.2009.03.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/30/2008] [Accepted: 03/03/2009] [Indexed: 01/10/2023]
Abstract
Differentiation of naive T lymphocytes into type I T helper (Th1) cells requires interferon-gamma and interleukin-12. It is puzzling that interferon-gamma induces the Th1 transcription factor T-bet, whereas interleukin-12 mediates Th1 cell lineage differentiation. We use mathematical modeling to analyze the expression kinetics of T-bet, interferon-gamma, and the IL-12 receptor beta2 chain (IL-12Rbeta2) during Th1 cell differentiation, in the presence or absence of interleukin-12 or interferon-gamma signaling. We show that interferon-gamma induced initial T-bet expression, whereas IL-12Rbeta2 was repressed by T cell receptor (TCR) signaling. The termination of TCR signaling permitted upregulation of IL-12Rbeta2 by T-bet and interleukin-12 signaling that maintained T-bet expression. This late expression of T-bet, accompanied by the upregulation of the transcription factors Runx3 and Hlx, was required to imprint the Th cell for interferon-gamma re-expression. Thus initial polarization and subsequent imprinting of Th1 cells are mediated by interlinked, sequentially acting positive feedback loops of TCR-interferon-gamma-Stat1-T-bet and interleukin-12-Stat4-T-bet signaling.
Collapse
Affiliation(s)
- Edda G Schulz
- Theoretical Biophysics, Institute of Biology, Humboldt Universität, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
66
|
Abstract
Naive CD4(+) T cells give rise to T-helper-cell subsets with functions that are tailored to their respective roles in host defence. The specification of T-helper-cell subsets is controlled by networks of lineage-specifying transcription factors, which bind to regulatory elements in genes that encode cytokines and other transcription factors. The nuclear context in which these transcription factors act is affected by epigenetic processes, which allow programmes of gene expression to be inherited by progeny cells that at the same time retain the potential for change in response to altered environmental signals. In this Review, we describe these epigenetic processes and discuss how they collaborate to govern the fate and function of T helper cells.
Collapse
|
67
|
Miller SA, Weinmann AS. Common themes emerge in the transcriptional control of T helper and developmental cell fate decisions regulated by the T-box, GATA and ROR families. Immunology 2009; 126:306-15. [PMID: 19302139 PMCID: PMC2669811 DOI: 10.1111/j.1365-2567.2008.03040.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 01/12/2023] Open
Abstract
Cellular differentiation requires the precise action of lineage-determining transcription factors. In the immune system, CD4(+) T helper cells differentiate into at least three distinct effector lineages, T helper type 1 (Th1), Th2 and Th17, with the fate of the cell at least in part determined by the transcription factors T-box expressed in T cells (T-bet), GATA-3 and retinoid-related orphan receptor gammat (RORgammat), respectively. Importantly, these transcription factors are members of larger families that are required for numerous developmental transitions from early embryogenesis into adulthood. Mutations in members of these transcription factor families are associated with a number of human genetic diseases due to a failure in completing lineage-specification events when the factor is dysregulated. Mechanistically, there are both common and distinct functional activities that are utilized by T-box, GATA and ROR family members to globally alter the cellular gene expression profiles at specific cell fate decision checkpoints. Therefore, understanding the molecular events that contribute to the ability of T-bet, GATA-3 and RORgammat to define T helper cell lineages can provide valuable information relevant to the establishment of other developmental systems and, conversely, information from diverse developmental systems may provide unexpected insights into the molecular mechanisms utilized in T helper cell differentiation.
Collapse
|
68
|
Janson PCJ, Winerdal ME, Winqvist O. At the crossroads of T helper lineage commitment-Epigenetics points the way. Biochim Biophys Acta Gen Subj 2008; 1790:906-19. [PMID: 19162128 DOI: 10.1016/j.bbagen.2008.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022]
Abstract
The immune system has the capacity to respond to various types of pathogens including bacteria, viruses, tumors and parasites. This requires a flexible immune system, which in part depends on the development of alternative effector T helper cells, with different cytokine repertoires that direct the overall immune response. The reciprocal effects of the T helper subtypes Th1 and Th2 are well documented, but the mechanisms involved in alternative cytokine expression and silencing are less well defined. Introduction of advances within the field of chromatin folding and epigenetic regulation of transcription has begun to explain some of the fundamental principles of T helper cell development. In addition, epigenetic regulation has proven essential also for the more recently discovered T helper cell subtypes; regulatory T cells and the Th17 lineage. As the importance of proper epigenetic regulation becomes evident, attention is also focused on the potential harmfulness of epigenetic dysregulation. Autoimmunity and allergy are two clinical situations that have been implicated as results of imperfect cytokine silencing. This review will address recent advances in the field of epigenetic regulation of T lymphocytes and their maturation from naive cells into different effector T cell lineages. In particular, epigenetic involvement in regulation of key effector cytokines and specific transcription factors determining the CD4(+) T lymphocyte lineage commitment will be discussed.
Collapse
Affiliation(s)
- Peter C J Janson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
69
|
Wurster AL, Pazin MJ. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol Cell Biol 2008; 28:7274-85. [PMID: 18852284 PMCID: PMC2593447 DOI: 10.1128/mcb.00835-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/25/2008] [Accepted: 10/01/2008] [Indexed: 11/20/2022] Open
Abstract
During T helper cell differentiation, distinct programs of gene expression play a key role in defining the immune response to an environmental challenge. How chromatin remodeling events at the associated cytokine loci control differentiation is not known. We found that the ATP-dependent remodeling enzyme subunit BRG1 was required for T helper 2 (Th2) differentiation and Th2 cytokine transcription. BRG1 binding to cytokine genes was regulated by the extent of differentiation, the extent of activation, and cell fate. BRG1 was required for some features of the chromatin structure in target genes (DNase I hypersensitivity and histone acetylation), suggesting that BRG1 remodeling activity was directly responsible for changes in gene expression. NFAT and STAT6 activity were required for BRG1 recruitment to the Th2 locus control region, and STAT6 associated with BRG1 in a differentiation-inducible manner, suggesting direct recruitment of BRG1 to the bound loci. Together, these findings suggest BRG1 interprets differentiation signals and plays a causal role in gene regulation, chromatin structure, and cell fate.
Collapse
Affiliation(s)
- Andrea L Wurster
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
70
|
Thieu VT, Yu Q, Chang HC, Yeh N, Nguyen ET, Sehra S, Kaplan MH. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 2008; 29:679-90. [PMID: 18993086 PMCID: PMC2768040 DOI: 10.1016/j.immuni.2008.08.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 06/20/2008] [Accepted: 08/29/2008] [Indexed: 02/07/2023]
Abstract
Transcriptional regulatory networks direct the development of specialized cell types. The transcription factors signal tranducer and activator of transcription 4 (Stat4) and T-bet are required for the interleukin-12 (IL-12)-stimulated development of T helper 1 (Th1) cells, although the hierarchy of activity by these factors has not been clearly defined. In this report, we show that these factors did not function in a linear pathway and that each factor played a unique role in programming chromatin architecture for Th1 gene expression, with subsets of genes depending on Stat4, T-bet, or both for expression in Th1 cells. T-bet was not able to transactivate expression of Stat4-dependent genes in the absence of endogenous Stat4 expression. Thus, T-bet requires Stat4 to achieve complete IL-12-dependent Th1 cell-fate determination. These data provide a basis for understanding how transiently activated and lineage-specific transcription factors cooperate in promoting cellular differentiation.
Collapse
Affiliation(s)
- Vivian T. Thieu
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Qing Yu
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hua-Chen Chang
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Norman Yeh
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Evelyn T. Nguyen
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sarita Sehra
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
71
|
Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 2008; 9:1297-306. [PMID: 18849990 PMCID: PMC4778724 DOI: 10.1038/ni.1663] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/10/2008] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms underlying the differentiation of interleukin 17-producing T helper cells (T(H)-17 cells) are still poorly understood. Here we show that optimal transcription of the gene encoding interleukin 17 (Il17) required a 2-kilobase promoter and at least one conserved noncoding (enhancer) sequence, CNS-5. Both cis-regulatory elements contained regions that bound the transcription factors RORgammat and Runx1. Runx1 influenced T(H)-17 differentiation by inducing RORgammat expression and by binding to and acting together with RORgammat during Il17 transcription. However, Runx1 also interacts with the transcription factor Foxp3, and this interaction was necessary for the negative effect of Foxp3 on T(H)-17 differentiation. Thus, our data support a model in which the differential association of Runx1 with Foxp3 and with RORgammat regulates T(H)-17 differentiation.
Collapse
Affiliation(s)
- Fuping Zhang
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Guangxun Meng
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
72
|
Yu Q, Chang HC, Ahyi ANN, Kaplan MH. Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3346-52. [PMID: 18714006 PMCID: PMC2625301 DOI: 10.4049/jimmunol.181.5.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The IL-18Ralpha-chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Ralpha) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report, we demonstrate the establishment of DH patterns that are distinct among undifferentiated CD4 T, Th1, and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation, and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Ralpha. These data provide further mechanistic insight into transcription factor-dependent establishment of Th subset-specific patterns of gene expression.
Collapse
Affiliation(s)
- Qing Yu
- Departments of Pediatrics, HB Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hua-Chen Chang
- Departments of Pediatrics, HB Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ayele-Nati N. Ahyi
- Departments of Pediatrics, HB Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Departments of Pediatrics, HB Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
73
|
Pipkin ME, Monticelli S. Genomics and the immune system. Immunology 2008; 124:23-32. [PMID: 18298549 PMCID: PMC2434389 DOI: 10.1111/j.1365-2567.2008.02818.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 01/04/2023] Open
Abstract
While the hereditary information encoded in the Watson-Crick base pairing of genomes is largely static within a given individual, access to this information is controlled by dynamic mechanisms. The human genome is pervasively transcribed, but the roles played by the majority of the non-protein-coding genome sequences are still largely unknown. In this review we focus on insights to gene transcriptional regulation by placing special emphasis on genome-wide approaches, and on how non-coding RNAs, which derive from global transcription of the genome, in turn control gene expression. We review recent progress in the field with highlights on the immune system.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Immune Disease Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
74
|
Abstract
Interferon-gamma (IFN-gamma) is crucial for immunity against intracellular pathogens and for tumor control. However, aberrant IFN-gamma expression has been associated with a number of autoinflammatory and autoimmune diseases. This cytokine is produced predominantly by natural killer (NK) and natural killer T (NKT) cells as part of the innate immune response, and by Th1 CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops. Herein, we briefly review the functions of IFN-gamma, the cells that produce it, the cell extrinsic signals that induce its production and influence the differentiation of naïve T cells into IFN-gamma-producing effector T cells, and the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine. We then review and discuss recent insights regarding the molecular regulation of IFN-gamma, focusing on work that has led to the identification and characterization of distal regulatory elements and epigenetic modifications with the IFN-gamma locus (Ifng) that govern its expression. The epigenetic modifications and three-dimensional structure of the Ifng locus in naive CD4 T cells, and the modifications they undergo as these cells differentiate into effector T cells, suggest a model whereby the chromatin architecture of Ifng is poised to facilitate either rapid opening or silencing during Th1 or Th2 differentiation, respectively.
Collapse
|
75
|
Kano SI, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells. Nat Immunol 2007; 9:34-41. [PMID: 18059273 DOI: 10.1038/ni1538] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/15/2007] [Indexed: 12/20/2022]
Abstract
Interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) drive T helper type 1 (T(H)1) differentiation, but the mechanisms underlying the regulation of the complicated gene networks involved in this differentiation are not fully understood. Here we show that the IFN-gamma-induced transcription factor IRF1 was essential in T(H)1 differentiation by acting on Il12rb1, the gene encoding the IL-12 receptor beta1 subunit (IL-12Rbeta1). IRF1 directly interacted with and activated the Il12rb1 promoter in CD4+ T cells. Notably, the IRF1-dependent induction of IL-12Rbeta1 was essential for IFN-gamma-IL-12 signaling but was dispensable for IL-23-IL-17 signaling. Because both IL-12 and IL-23 bind to and transmit signals through IL-12Rbeta1, our data suggest that distinct thresholds of IL-12Rbeta1 expression are required for T(H)1 versus T(H)-17 differentiation.
Collapse
Affiliation(s)
- Shin-ichi Kano
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Chang HD, Radbruch A. The pro- and anti-inflammatory potential of IL-12: the dual role of Th1 cells. Expert Rev Clin Immunol 2007; 3:709-19. [PMID: 20477022 DOI: 10.1586/1744666x.3.5.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differentiation of T-helper (Th) lymphocytes into various types of T-helper effector and memory cells with distinct functions depending on the type of concomitant signals they receive upon activation is a critical event determining the course of an immune reaction. Th1 cells characterized by the expression of IFN-gamma and the recently described Th17 cells promote inflammation and are critically involved in the induction and maintenance of autoimmunity, whereas the secretion of IL-4 is a hallmark of Th2 cells mediating protection from parasites and allergy. Original stimulation in the presence of IL-12 results in the imprinting of Th1 memory cells for the expression of IFN-gamma by expression of the transcription factor T-bet and epigenetic modification of the ifngamma gene. It has been demonstrated that Th1 cells are potent inducers of inflammation. However, in the chronic phase of such inflammation, the regulatory potential of IL-12 and Th1 cells themselves may play an important role in limiting immunopathology.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- German Rheumatism Research Center, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
77
|
Osipovich O, Cobb RM, Oestreich KJ, Pierce S, Ferrier P, Oltz EM. Essential function for SWI-SNF chromatin-remodeling complexes in the promoter-directed assembly of Tcrb genes. Nat Immunol 2007; 8:809-16. [PMID: 17589511 DOI: 10.1038/ni1481] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022]
Abstract
The assembly of genes encoding antigen receptors is regulated by developmental changes in chromatin that either permit or deny access to a single variable-(diversity)-joining recombinase. These changes are guided by transcriptional promoters and enhancers, which serve as accessibility-control elements in antigen-receptor loci. The function of each accessibility-control element and the factors they recruit to remodel chromatin remain obscure. Here we show that the recruitment of SWI-SNF chromatin-remodeling complexes compensated for the accessibility-control element function of a promoter but not an enhancer of the T cell receptor-beta locus (Tcrb). Loss of SWI-SNF function in thymocytes inactivated recombinase targets at the endogenous Tcrb locus. Thus, initiation of Tcrb gene assembly and T cell development is contingent on the recruitment of SWI-SNF to promoters, which exposes gene segments to variable-(diversity)-joining recombinase.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
78
|
Yu Q, Thieu VT, Kaplan MH. Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Ralpha gene during Th1 differentiation. EMBO J 2007; 26:2052-60. [PMID: 17380127 PMCID: PMC1852779 DOI: 10.1038/sj.emboj.7601653] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 02/22/2007] [Indexed: 12/12/2022] Open
Abstract
Stat4 is required for Th1 development, although how a transiently activated factor generates heritable patterns of gene expression is still unclear. We examined the regulation of IL-18Ralpha expression to define a mechanism for Stat4-dependent genetic programming of a Th1-associated gene. Although Stat4 binds the Il18r1 promoter following IL-12 stimulation and transiently increases acetylated histones H3 and H4, patterns of histone acetylation alone in Th1 cells may not be sufficient to explain cell-type-specific patterns of gene expression. The level of DNA methylation and recruitment of Dnmt3a to Il18r1 inversely correlate with IL-18Ralpha expression, and blocking DNA methylation increases IL-18Ralpha expression. Moreover, there was decreased Il18r1-Dnmt3a association and DNA methylation following transient trichostatin A-induced histone hyperacetylation in Stat4-/-Th1 cultures. Increased association of Dnmt3a and the Dnmt3a cofactor Dnmt3L with the promoters of several Stat4-dependent genes was found in Stat4-/- Th1 cultures, providing a general mechanism for Stat4-dependent gene programming. These data support a mechanism wherein the transient hyperacetylation induced by Stat4 prevents the recruitment of DNA methyltransferases and the subsequent repression of the Il18r1 locus.
Collapse
Affiliation(s)
- Qing Yu
- Departments of Microbiology and Immunology, and Pediatrics, Walther Oncology Center, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
| | - Vivian T Thieu
- Departments of Microbiology and Immunology, and Pediatrics, Walther Oncology Center, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
| | - Mark H Kaplan
- Departments of Microbiology and Immunology, and Pediatrics, Walther Oncology Center, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
- Departments of Pediatrics and, Microbiology and Immunology, HB Wells Center for Pediatric Research, Indiana University School of Medicine, 702 Barnhill Dr, RI 2600, Indianapolis, IN 46202, USA. Tel.: +1 317 278 3696; Fax: +1 317 274 5378; E-mail:
| |
Collapse
|
79
|
Letimier FA, Passini N, Gasparian S, Bianchi E, Rogge L. Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12Rbeta2 expression during human Th1 cell differentiation. EMBO J 2007; 26:1292-302. [PMID: 17304212 PMCID: PMC1817634 DOI: 10.1038/sj.emboj.7601586] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/11/2007] [Indexed: 01/08/2023] Open
Abstract
Interleukin-12 (IL-12) is a key cytokine for the development of T helper type 1 (Th1) responses; however, naïve CD4(+) T cells do not express IL-12Rbeta2, and are therefore unresponsive to IL-12. We have examined the mechanisms that control Th1-specific expression of the human IL-12Rbeta2 gene at early time points after T-cell stimulation. We have identified a Th1-specific enhancer element that binds signal transducer and activator of transcription 4 (STAT4) in vivo in developing Th1 but not Th2 cells. T-cell receptor (TCR) signaling induced histone hyperacetylation and recruitment of BRG1, the ATPase subunit of the SWI/SNF-like BAF chromatin remodeling complex, to the IL-12Rbeta2 regulatory regions and was associated with low-level gene transcription at the IL-12Rbeta2 locus. However, high-level IL-12Rbeta2 expression required TCR triggering in the presence of IL-12. Our results indicate a synergistic role of TCR-induced chromatin remodeling and cytokine-induced STAT4 activation to direct IL-12Rbeta2 expression during Th1 cell development.
Collapse
Affiliation(s)
- Fabrice A Letimier
- Immunoregulation Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | | | - Sona Gasparian
- Immunoregulation Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Laboratory, Department of Immunology, Institut Pasteur, Paris, France
| | - Lars Rogge
- Immunoregulation Laboratory, Department of Immunology, Institut Pasteur, Paris, France
- Immunoregulation Laboratory, Department of Immunology, Institut Pasteur, 25 rue du Dr Roux, Paris 75724, France. Tel.: +33 1 4061 3822; Fax: +33 1 4061 3204; E-mail:
| |
Collapse
|