51
|
Castro M, Laviña B, Ando K, Álvarez-Aznar A, Abu Taha A, Brakebusch C, Dejana E, Betsholtz C, Gaengel K. CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. Circ Res 2020; 124:1240-1252. [PMID: 30732528 DOI: 10.1161/circresaha.118.314300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Aberrant formation of blood vessels precedes a broad spectrum of vascular complications; however, the cellular and molecular events governing vascular malformations are not yet fully understood. OBJECTIVE Here, we investigated the role of CDC42 (cell division cycle 42) during vascular morphogenesis and its relative importance for the development of cerebrovascular malformations. METHODS AND RESULTS To avoid secondary systemic effects often associated with embryonic gene deletion, we generated an endothelial-specific and inducible knockout approach to study postnatal vascularization of the mouse brain. Postnatal endothelial-specific deletion of Cdc42 elicits cerebrovascular malformations reminiscent of cerebral cavernous malformations (CCMs). At the cellular level, loss of CDC42 function in brain endothelial cells (ECs) impairs their sprouting, branching morphogenesis, axial polarity, and normal dispersion within the brain tissue. Disruption of CDC42 does not alter EC proliferation, but malformations occur where EC proliferation is the most pronounced during brain development-the postnatal cerebellum-indicating that a high, naturally occurring EC proliferation provides a permissive state for the appearance of these malformations. Mechanistically, CDC42 depletion in ECs elicited increased MEKK3 (mitogen-activated protein kinase kinase kinase 3)-MEK5 (mitogen-activated protein kinase kinase 5)-ERK5 (extracellular signal-regulated kinase 5) signaling and consequent detrimental overexpression of KLF (Kruppel-like factor) 2 and KLF4, recapitulating the hallmark mechanism for CCM pathogenesis. Through genetic approaches, we demonstrate that the coinactivation of Klf4 reduces the severity of vascular malformations in Cdc42 mutant mice. Moreover, we show that CDC42 interacts with CCMs and that CCM3 promotes CDC42 activity in ECs. CONCLUSIONS We show that endothelial-specific deletion of Cdc42 elicits CCM-like cerebrovascular malformations and that CDC42 is engaged in the CCM signaling network to restrain the MEKK3-MEK5-ERK5-KLF2/4 pathway.
Collapse
Affiliation(s)
- Marco Castro
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Bàrbara Laviña
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Koji Ando
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Alberto Álvarez-Aznar
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Abdallah Abu Taha
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Cord Brakebusch
- Biotech Research and Innovation Center, University of Copenhagen, Denmark (C. Brakebusch).,ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet/AstraZeneca/Integrated Cardio Metabolic Centre, Huddinge, Stockholm, Sweden (C. Betsholtz)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.).,FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology Foundation, Milan, Italy (E.D.)
| | - Christer Betsholtz
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| | - Konstantin Gaengel
- From the Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.C., B.L., K.A., A.Á.-A., A.A.T., E.D., C. Betsholtz, K.G.)
| |
Collapse
|
52
|
Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. Int J Mol Sci 2020; 21:ijms21020675. [PMID: 31968585 PMCID: PMC7013531 DOI: 10.3390/ijms21020675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases.
Collapse
|
53
|
Manet S, Vannier D, Bouin AP, Lisowska J, Albiges-Rizo C, Faurobert E. Immunofluorescence of Cell-Cell and Cell-Extracellular Matrix Adhesive Defects in In Vitro Endothelial CCM Model: Juxtacrine Role of Mutant Extracellular Matrix on Wild-Type Endothelial Cells. Methods Mol Biol 2020; 2152:401-416. [PMID: 32524568 DOI: 10.1007/978-1-0716-0640-7_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells lining cerebral cavernous malformations (CCM) present strong adhesive and mechanical defects. Increased cell contractility is a driver to the onset and the expansion of the CCM lesions. 2D in vitro endothelial models have been developed from either endothelial cells isolated from ccm1-3 knock-out mice or CCM1-3-silenced primary endothelial cells. These in vitro models faithfully recapitulate the adhesive and contractile defects of the CCM-deficient endothelial cells such as increased cell-extracellular matrix (ECM) adhesion through β1 integrin-anchored actin stress fibers, abnormal remodeling of the ECM, and destabilized VE-cadherin-dependent cell-cell junctions. Using such 2D in vitro CCM models, we have shown that the ECM remodeled by CCM-depleted endothelial cells can propagate CCM-like adhesive defects to wild-type endothelial cells, a process potentially pertinent to CCM lesion expansion. Here, we detail methods for studying the morphology of focal adhesions, actomyosin cytoskeleton, and VE-cadherin-dependent Adherens junctions by immunofluorescence and morphometric analyses. Moreover, we detail the protocols to produce and purify remodeled ECM and to test its effect on endothelial cell adhesion.
Collapse
Affiliation(s)
- Sandra Manet
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Daphné Vannier
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Anne-Pascale Bouin
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Justyna Lisowska
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France.
| |
Collapse
|
54
|
Hale P, Soliman SI, Sun H, Lopez-Ramirez MA. Isolation and Purification of Mouse Brain Endothelial Cells to Study Cerebral Cavernous Malformation Disease. Methods Mol Biol 2020; 2152:139-150. [PMID: 32524550 DOI: 10.1007/978-1-0716-0640-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a method to purify primary brain microvascular endothelial cells (BMEC) from mice bearing floxed alleles of Krit1 (Krit1fl/fl) or Pdcd10 (Pdcd10fl/fl) and an endothelial-specific tamoxifen-regulated Cre recombinase (Pdgfb-iCreERT2), and used these to delete Krit1 or Pdcd10 genes in a time-controlled manner. These BMEC culture models contain a high degree of purity and have been used to identify the major molecular processes involved in loss of Krit1/Pdcd10-induced altered brain endothelial phenotype and function. In addition, these in vitro models of cerebral cavernous malformations (CCMs) enable molecular, biochemical, and pharmacological studies that have contributed significantly to understand the pathogenesis of CCMs. The findings using this in vitro CCMs model have been validated in mouse CCM models and observed in human CCMs. In this chapter, we summarize procedures for isolation and purification of BMEC from transgenic mice, as well as our experience to genetically inactivate CCM genes in the brain endothelium.
Collapse
Affiliation(s)
- Preston Hale
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Shady Ibrahim Soliman
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Hao Sun
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
55
|
Choi JP, Zheng X. Generation of Cerebral Cavernous Malformation in Neonatal Mouse Models Using Inducible Cre-LoxP Strategy. Methods Mol Biol 2020; 2152:253-258. [PMID: 32524557 DOI: 10.1007/978-1-0716-0640-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mutations in the CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation (CCM) in humans. Neonatal mouse models of CCM disease have been established by deleting any one of the Ccm genes. These mouse models provide invaluable in vivo disease model to investigate molecular mechanisms and therapeutic approaches for the disease. Here, we describe detailed methodology to generate CCM disease in mouse models (Ccm1 and Ccm2-deficient) using inducible Cre/loxP recombination strategy.
Collapse
Affiliation(s)
- Jaesung P Choi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
- Laboratory of Cardiovascular Signalling, Centenary Institute, and Sydney Medical School, University of Sydney, University of Sydney, Sydney, New South Wales, Australia.
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signalling, Centenary Institute, and Sydney Medical School, University of Sydney, University of Sydney, Sydney, New South Wales, Australia
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
56
|
DiStefano PV, Glading AJ. VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 2019; 24:632-639. [PMID: 31746130 PMCID: PMC6933401 DOI: 10.1111/jcmm.14773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The exact molecular mechanisms underlying CCM pathogenesis remain a complicated and controversial topic. Our previous work illustrated an important VEGF signalling loop in KRIT1 depleted endothelial cells. As VEGF is a major mediator of many vascular pathologies, we asked whether the increased VEGF signalling downstream of KRIT1 depletion was involved in CCM formation. Using an inducible KRIT1 endothelial‐specific knockout mouse that models CCM, we show that VEGFR2 activation plays a role in CCM pathogenesis in mice. Inhibition of VEGFR2 using a specific inhibitor, SU5416, significantly decreased the number of lesions formed and slightly lowered the average lesion size. Notably, VEGFR2 inhibition also decreased the appearance of lesion haemorrhage as denoted by the presence of free iron in adjacent tissues. The presence of free iron correlated with increased microvessel permeability in both skeletal muscle and brain, which was completely reversed by SU5416 treatment. Finally, we show that VEGFR2 activation is a common downstream consequence of KRIT1, CCM2 and CCM3 loss of function, though the mechanism by which VEGFR2 activation occurs likely varies. Thus, our study clearly shows that VEGFR2 activation downstream of KRIT1 depletion enhances the severity of CCM formation in mice, and suggests that targeting VEGF signalling may be a potential future therapy for CCM.
Collapse
Affiliation(s)
- Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| |
Collapse
|
57
|
Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nat Commun 2019; 10:5243. [PMID: 31748531 PMCID: PMC6868140 DOI: 10.1038/s41467-019-13220-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR. Integrin-linked kinase (ILK) is an important mediator of integrin signaling. Here Park et al. show that mice with endothelial-specific deletion of Ilk develop vascular defects that resemble familial exudative vitreoretinopathy, and identify mutations in ILK in patients with exudative vitreoretinopathy suggesting a potential role in human pathogenesis.
Collapse
|
58
|
Li J, Zhao Y, Coleman P, Chen J, Ting KK, Choi JP, Zheng X, Vadas MA, Gamble JR. Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signalling pathways. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165519. [DOI: 10.1016/j.bbadis.2019.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
|
59
|
KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. Int J Mol Sci 2019; 20:ijms20194930. [PMID: 31590384 PMCID: PMC6801783 DOI: 10.3390/ijms20194930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023] Open
Abstract
Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.
Collapse
|
60
|
Abstract
Cardiovascular diseases are the most prominent maladies in aging societies. Indeed, aging promotes the structural and functional declines of both the heart and the blood circulation system. In this review, we revise the contribution of known longevity pathways to cardiovascular health and delineate the possibilities to interfere with them. In particular, we evaluate autophagy, the intracellular catabolic recycling system associated with life- and health-span extension. We present genetic models, pharmacological interventions, and dietary strategies that block, reduce, or enhance autophagy upon age-related cardiovascular deterioration. Caloric restriction or caloric restriction mimetics like metformin, spermidine, and rapamycin (all of which trigger autophagy) are among the most promising cardioprotective interventions during aging. We conclude that autophagy is a fundamental process to ensure cardiac and vascular health during aging and outline its putative therapeutic importance.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- From the Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.)
| | - Simon Sedej
- From the Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,BioTechMed Graz, Austria (S.S., D.C.-G., F.M.)
| | - Didac Carmona-Gutierrez
- BioTechMed Graz, Austria (S.S., D.C.-G., F.M.).,Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria (D.C.-G., F.M.)
| | - Frank Madeo
- BioTechMed Graz, Austria (S.S., D.C.-G., F.M.).,Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria (D.C.-G., F.M.)
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France (G.K.).,Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France (G.K.).,INSERM, U1138, Paris, France (G.K.).,Université Paris Descartes, Sorbonne Paris Cité, France (G.K.).,Université Pierre et Marie Curie, Paris, France (G.K.).,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France (G.K.).,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden (G.K.)
| |
Collapse
|
61
|
Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 2019; 10:2761. [PMID: 31235698 PMCID: PMC6591323 DOI: 10.1038/s41467-019-10707-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular familial or sporadic disease that is characterised by capillary-venous cavernomas, and is due to loss-of-function mutations to any one of three CCM genes. Familial CCM follows a two-hit mechanism similar to that of tumour suppressor genes, while in sporadic cavernomas only a small fraction of endothelial cells shows mutated CCM genes. We reported that in mouse models and in human patients, endothelial cells lining the lesions have different features from the surrounding endothelium, as they express mesenchymal/stem-cell markers. Here we show that cavernomas originate from clonal expansion of few Ccm3-null endothelial cells that express mesenchymal/stem-cell markers. These cells then attract surrounding wild-type endothelial cells, inducing them to express mesenchymal/stem-cell markers and to contribute to cavernoma growth. These characteristics of Ccm3-null cells are reminiscent of the tumour-initiating cells that are responsible for tumour growth. Our data support the concept that CCM has benign tumour characteristics. Cerebral cavernous malformation is a vascular disease characterized by capillary-venous cavernomas in the central nervous system. Here the authors show that cavernomas display benign tumor characteristics and originate from the clonal expansion of mutated endothelial progenitors which can attract surrounding wild-type cells, inducing their mesenchymal transition and leading to growth of the cavernoma.
Collapse
|
62
|
Otten C, Knox J, Boulday G, Eymery M, Haniszewski M, Neuenschwander M, Radetzki S, Vogt I, Hähn K, De Luca C, Cardoso C, Hamad S, Igual Gil C, Roy P, Albiges-Rizo C, Faurobert E, von Kries JP, Campillos M, Tournier-Lasserve E, Derry WB, Abdelilah-Seyfried S. Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med 2019; 10:emmm.201809155. [PMID: 30181117 PMCID: PMC6180302 DOI: 10.15252/emmm.201809155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.
Collapse
Affiliation(s)
- Cécile Otten
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gwénola Boulday
- INSERM UMR-1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Paris, France
| | - Mathias Eymery
- INSERM U1209, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, Grenoble, France
| | - Marta Haniszewski
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Developmental and Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Ingo Vogt
- German Center for Diabetes Research, Neuherberg, Germany.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kristina Hähn
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Coralie De Luca
- INSERM UMR-1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Paris, France
| | - Cécile Cardoso
- INSERM UMR-1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Paris, France
| | - Sabri Hamad
- German Center for Diabetes Research, Neuherberg, Germany.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Carla Igual Gil
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Peter Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, Grenoble, France
| | - Eva Faurobert
- INSERM U1209, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France.,CNRS UMR 5309, Grenoble, France
| | - Jens P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Mónica Campillos
- German Center for Diabetes Research, Neuherberg, Germany.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Tournier-Lasserve
- INSERM UMR-1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Paris, France.,AP-HP, Groupe hospitalier Saint-Louis, Lariboisière, Fernand-Widal, Service de génétique moléculaire neuro-vasculaire, Paris, France
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Developmental and Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany .,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
63
|
Zeineddine HA, Girard R, Saadat L, Shen L, Lightle R, Moore T, Cao Y, Hobson N, Shenkar R, Avner K, Chaudager K, Koskimäki J, Polster SP, Fam MD, Shi C, Lopez-Ramirez MA, Tang AT, Gallione C, Kahn ML, Ginsberg M, Marchuk DA, Awad IA. Phenotypic characterization of murine models of cerebral cavernous malformations. J Transl Med 2019; 99:319-330. [PMID: 29946133 PMCID: PMC6309944 DOI: 10.1038/s41374-018-0030-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are clusters of dilated capillaries that affect around 0.5% of the population. CCMs exist in two forms, sporadic and familial. Mutations in three documented genes, KRIT1(CCM1), CCM2, and PDCD10(CCM3), cause the autosomal dominant form of the disease, and somatic mutations in these same genes underlie lesion development in the brain. Murine models with constitutive or induced loss of respective genes have been applied to study disease pathobiology and therapeutic manipulations. We aimed to analyze the phenotypic characteristic of two main groups of models, the chronic heterozygous models with sensitizers promoting genetic instability, and the acute neonatal induced homozygous knockout model. Acute model mice harbored a higher lesion burden than chronic models, more localized in the hindbrain, and largely lacking iron deposition and inflammatory cell infiltrate. The chronic model mice showed a lower lesion burden localized throughout the brain, with significantly greater perilesional iron deposition, immune B- and T-cell infiltration, and less frequent junctional protein immunopositive endothelial cells. Lesional endothelial cells in both models expressed similar phosphorylated myosin light chain immunopositivity indicating Rho-associated protein kinase activity. These data suggest that acute models are better suited to study the initial formation of the lesion, while the chronic models better reflect lesion maturation, hemorrhage, and inflammatory response, relevant pathobiologic features of the human disease.
Collapse
Affiliation(s)
- Hussein A. Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Laleh Saadat
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Le Shen
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA,Department of Pathology, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Nick Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Kenneth Avner
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Kiranj Chaudager
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Sean P. Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Maged D. Fam
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| | | | - Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Carol Gallione
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC USA
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego, CA USA
| | - Douglas A. Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC USA
| | - Issam A. Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL USA
| |
Collapse
|
64
|
Lampugnani MG, Dejana E, Giampietro C. Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029322. [PMID: 28851747 DOI: 10.1101/cshperspect.a029322] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cell-cell adherens junctions (AJs) supervise fundamental vascular functions, such as the control of permeability and transmigration of circulating leukocytes, and the maintenance of existing vessels and formation of new ones. These processes are often dysregulated in pathologies. However, the evidence that links dysfunction of endothelial AJs to human pathologies is mostly correlative. In this review, we present an update of the molecular organization of AJ complexes in endothelial cells (ECs) that is mainly based on observations from experimental models. Furthermore, we report in detail on a human pathology, cerebral cavernous malformation (CCM), which is initiated by loss-of-function mutations in the genes that encode the three cytoplasmic components of AJs (CCM1, CCM2, and CCM3). At present, these represent a unique example of mutations in components of endothelial AJs that cause human disease. We describe also how studies into the defects of AJs in CCM are shedding light on the crucial regulatory mechanisms and signaling activities of these endothelial structures. Although these observations are specific for CCM, they support the concept that dysfunction of endothelial AJs can directly contribute to human pathologies.
Collapse
Affiliation(s)
- Maria Grazia Lampugnani
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20156 Milan, Italy
| | - Elisabetta Dejana
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Costanza Giampietro
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
65
|
Laviña B, Castro M, Niaudet C, Cruys B, Álvarez-Aznar A, Carmeliet P, Bentley K, Brakebusch C, Betsholtz C, Gaengel K. Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations. Development 2018; 145:dev.161182. [PMID: 29853619 DOI: 10.1242/dev.161182] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marco Castro
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Colin Niaudet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bert Cruys
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Alberto Álvarez-Aznar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.,Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden .,Integrated Cardio Metabolic Centre (ICMC), Department of Medicine Huddinge, Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
66
|
Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018; 115:202-218. [PMID: 29170092 PMCID: PMC5806631 DOI: 10.1016/j.freeradbiomed.2017.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | | | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy.
| |
Collapse
|
67
|
Donat S, Lourenço M, Paolini A, Otten C, Renz M, Abdelilah-Seyfried S. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. eLife 2018; 7:28939. [PMID: 29364115 PMCID: PMC5794256 DOI: 10.7554/elife.28939] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.
Collapse
Affiliation(s)
- Stefan Donat
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Marta Lourenço
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Cécile Otten
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Marc Renz
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
68
|
Gwinner F, Boulday G, Vandiedonck C, Arnould M, Cardoso C, Nikolayeva I, Guitart-Pla O, Denis CV, Christophe OD, Beghain J, Tournier-Lasserve E, Schwikowski B. Network-based analysis of omics data: the LEAN method. Bioinformatics 2017; 33:701-709. [PMID: 27797778 PMCID: PMC5408824 DOI: 10.1093/bioinformatics/btw676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Motivation Most computational approaches for the analysis of omics data in the context of interaction networks have very long running times, provide single or partial, often heuristic, solutions and/or contain user-tuneable parameters. Results We introduce local enrichment analysis (LEAN) for the identification of dysregulated subnetworks from genome-wide omics datasets. By substituting the common subnetwork model with a simpler local subnetwork model, LEAN allows exact, parameter-free, efficient and exhaustive identification of local subnetworks that are statistically dysregulated, and directly implicates single genes for follow-up experiments. Evaluation on simulated and biological data suggests that LEAN generally detects dysregulated subnetworks better, and reflects biological similarity between experiments more clearly than standard approaches. A strong signal for the local subnetwork around Von Willebrand Factor (VWF), a gene which showed no change on the mRNA level, was identified by LEAN in transcriptome data in the context of the genetic disease Cerebral Cavernous Malformations (CCM). This signal was experimentally found to correspond to an unexpected strong cellular effect on the VWF protein. LEAN can be used to pinpoint statistically significant local subnetworks in any genome-scale dataset. Availability and Implementation The R-package LEANR implementing LEAN is supplied as supplementary material and available on CRAN (https://cran.r-project.org). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Frederik Gwinner
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010 Paris, France.,INSERM, U1161, F-75010 Paris, France
| | - Gwénola Boulday
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010 Paris, France.,INSERM, U1161, F-75010 Paris, France
| | - Claire Vandiedonck
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 958, F-75010 Paris, France.,INSERM, U958, F-75010 Paris, France
| | - Minh Arnould
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010 Paris, France.,INSERM, U1161, F-75010 Paris, France
| | - Cécile Cardoso
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010 Paris, France.,INSERM, U1161, F-75010 Paris, France
| | - Iryna Nikolayeva
- Systems Biology Lab, C3BI, USR 3756, Institut Pasteur/CNRS, Institut Pasteur, F-75015 Paris, France.,Functional Genetics of Infectious Diseases Unit, Institut Pasteur, F-75015 Paris, France.,Univ Paris-Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Oriol Guitart-Pla
- Systems Biology Lab, C3BI, USR 3756, Institut Pasteur/CNRS, Institut Pasteur, F-75015 Paris, France
| | - Cécile V Denis
- Unité 1176, INSERM, Univ Paris-Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Unité 1176, INSERM, Univ Paris-Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France
| | - Johann Beghain
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, F-75015 Paris, France.,Genetics and Genomics of Insect Vectors, Institut Pasteur, F-75015 Paris, France
| | - Elisabeth Tournier-Lasserve
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010 Paris, France.,INSERM, U1161, F-75010 Paris, France.,AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, F-75010 Paris, France
| | - Benno Schwikowski
- Systems Biology Lab, C3BI, USR 3756, Institut Pasteur/CNRS, Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
69
|
Lopez-Ramirez MA, Fonseca G, Zeineddine HA, Girard R, Moore T, Pham A, Cao Y, Shenkar R, de Kreuk BJ, Lagarrigue F, Lawler J, Glass CK, Awad IA, Ginsberg MH. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med 2017; 214:3331-3346. [PMID: 28970240 PMCID: PMC5679163 DOI: 10.1084/jem.20171178] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/24/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
KRIT1 mutations are the most common cause of cerebral cavernous malformation (CCM). Acute Krit1 gene inactivation in mouse brain microvascular endothelial cells (BMECs) changes expression of multiple genes involved in vascular development. These changes include suppression of Thbs1, which encodes thrombospondin1 (TSP1) and has been ascribed to KLF2- and KLF4-mediated repression of Thbs1 In vitro reconstitution of TSP1 with either full-length TSP1 or 3TSR, an anti-angiogenic TSP1 fragment, suppresses heightened vascular endothelial growth factor signaling and preserves BMEC tight junctions. Furthermore, administration of 3TSR prevents the development of lesions in a mouse model of CCM1 (Krit1ECKO ) as judged by histology and quantitative micro-computed tomography. Conversely, reduced TSP1 expression contributes to the pathogenesis of CCM, because inactivation of one or two copies of Thbs1 exacerbated CCM formation. Thus, loss of Krit1 function disables an angiogenic checkpoint to enable CCM formation. These results suggest that 3TSR, or other angiogenesis inhibitors, can be repurposed for TSP1 replacement therapy for CCMs.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelial Cells/metabolism
- Gene Expression Profiling/methods
- Genetic Therapy/methods
- HEK293 Cells
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/therapy
- Humans
- KRIT1 Protein/genetics
- KRIT1 Protein/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA Interference
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
Collapse
Affiliation(s)
| | - Gregory Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Angela Pham
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Bart-Jan de Kreuk
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW Endothelial cells dysfunctions are crucial determinants of several human diseases. We review here the most recent reports on endothelial cell defects in cerebral cavernous malformations (CCMs), particularly focusing on adherens junctions. CCM is a vascular disease that affects specifically the venous microvessels of the central nervous system and which is caused by loss-of-function mutation in any one of the three CCM genes (CCM1, 2 or 3) in endothelial cells. The phenotypic result of these mutations are focal vascular malformations that are permeable and fragile causing neurological symptoms and occasionally haemorrhagic stroke. RECENT FINDINGS CCM is still an incurable disease, as no pharmacological treatment is available, besides surgery. The definition of the molecular alterations ensuing loss of function mutation of CCM genes is contributing to orientate the testing of targeted pharmacological tools.Several signalling pathways are altered in the three genotypes in a similar way and concur in the acquisition of mesenchymal markers in endothelial cells. However, also genotype-specific defects are reported, in particular for the CCM1 and CCM3 mutation. SUMMARY Besides the specific CCM disease, the characterization of endothelial alterations in CCM has the potentiality to shed light on basic molecular regulations as the acquisition and maintenance of organ and vascular site specificity of endothelial cells.
Collapse
|
71
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
72
|
Choi JP, Yang X, Foley M, Wang X, Zheng X. Induction and Micro-CT Imaging of Cerebral Cavernous Malformations in Mouse Model. J Vis Exp 2017. [PMID: 28892037 DOI: 10.3791/56476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mutations in the CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation (CCM) in humans. Mouse models of CCM disease have been established by tamoxifen induced deletion of Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. An accurate and quantitative method to assess lesion burden and progression is essential to harness the full value of these animal models. Here, we demonstrate the induction of CCM disease in a mouse model and the use of the contrast enhanced X-ray micro computed tomography (micro-CT) method to measure CCM lesion burden in mouse brains. At postnatal day 1 (P1), we used 4-hydroxytamoxifen (4HT) to activate Cre recombinase activity from the Cdh5-CreErt2 transgene to cleave the floxed allele of Ccm2. CCM lesions in mouse brains were analyzed at P8. For micro-CT, iodine based Lugol's solution was used to enhance contrast in brain tissue. We have optimized the scan parameters and utilized a voxel dimension of 9.5 µm, which lead to a minimum feature size of approximately 25 µm. This resolution is sufficient to measure CCM lesion volume and number globally and accurately, and provide high-quality 3-D mapping of CCM lesions in mouse brains. This method enhances the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute; Faculty of Medicine, Sydney Medical School, University of Sydney
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, University of Sydney
| | - Xian Wang
- Lab of Cardiovascular Signaling, Centenary Institute
| | - Xiangjian Zheng
- Lab of Cardiovascular Signaling, Centenary Institute; Faculty of Medicine, Sydney Medical School, University of Sydney; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University;
| |
Collapse
|
73
|
Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 2017; 7:8296. [PMID: 28811547 PMCID: PMC5558000 DOI: 10.1038/s41598-017-08373-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
The intracellular scaffold KRIT1/CCM1 is an established regulator of vascular barrier function. Loss of KRIT1 leads to decreased microvessel barrier function and to the development of the vascular disorder Cerebral Cavernous Malformation (CCM). However, how loss of KRIT1 causes the subsequent deficit in barrier function remains undefined. Previous studies have shown that loss of KRIT1 increases the production of reactive oxygen species (ROS) and exacerbates vascular permeability triggered by several inflammatory stimuli, but not TNF−α. We now show that endothelial ROS production directly contributes to the loss of barrier function in KRIT1 deficient animals and cells, as targeted antioxidant enzymes reversed the increase in permeability in KRIT1 heterozygous mice as shown by intravital microscopy. Rescue of the redox state restored responsiveness to TNF-α in KRIT1 deficient arterioles, but not venules. In vitro, KRIT1 depletion increased endothelial ROS production via NADPH oxidase signaling, up-regulated Nox4 expression, and promoted NF-κB dependent promoter activity. Recombinant yeast avenanthramide I, an antioxidant and inhibitor of NF-κB signaling, rescued barrier function in KRIT1 deficient cells. However, KRIT1 depletion blunted ROS production in response to TNF-α. Together, our data indicate that ROS signaling is critical for the loss of barrier function following genetic deletion of KRIT1.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Torino, Italy
| | - Nicholas Nobiletti
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eva Baldini
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Julie Keubel
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Vladimir V Shuvaev
- Department of Pharmacology, University of Pennsylvania, Pennsylvania, USA
| | | | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | | | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.
| |
Collapse
|
74
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
75
|
Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Võsa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao-Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 2017; 545:305-310. [PMID: 28489816 PMCID: PMC5757866 DOI: 10.1038/nature22075] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.
Collapse
Affiliation(s)
- Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jaesung P Choi
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiqing Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Li Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Ceylan Tanes
- CHOP Microbiome Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dmytro Kobuley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Urmo Võsa
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Dean Y Li
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lude Franke
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Blaine Hart
- Department of Neurology and Pediatrics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Leslie Morrison
- Department of Neurology and Pediatrics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago School of Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia
- Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
- Department of Pharmacology, School of Basic Medical Sciences, Tianjian Medical University, Tianjin, China
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
76
|
Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A 2017; 114:5503-5508. [PMID: 28500274 PMCID: PMC5448170 DOI: 10.1073/pnas.1702942114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common vascular anomalies that develop in the central nervous system and, more rarely, the retina. The lesions can cause headache, seizures, focal neurological deficits, and hemorrhagic stroke. Symptomatic lesions are treated according to their presentation; however, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking. We performed a high-throughput screen to identify Food and Drug Administration-approved drugs or other bioactive compounds that could effectively suppress hyperproliferation of mouse brain primary astrocytes deficient for CCM3. We demonstrate that fluvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase and the N-bisphosphonate zoledronic acid monohydrate, an inhibitor of protein prenylation, act synergistically to reverse outcomes of CCM3 loss in cultured mouse primary astrocytes and in Drosophila glial cells in vivo. Further, the two drugs effectively attenuate neural and vascular deficits in chronic and acute mouse models of CCM3 loss in vivo, significantly reducing lesion burden and extending longevity. Sustained inhibition of the mevalonate pathway represents a potential pharmacological treatment option and suggests advantages of combination therapy for CCM disease.
Collapse
|
77
|
Abstract
The disease known as cerebral cavernous malformations mostly occurs in the central nervous system, and their typical histological presentations are multiple lumen formation and vascular leakage at the brain capillary level, resulting in disruption of the blood-brain barrier. These abnormalities result in severe neurological symptoms such as seizures, focal neurological deficits and hemorrhagic strokes. CCM research has identified ‘loss of function’ mutations of three ccm genes responsible for the disease and also complex regulation of multiple signaling pathways including the WNT/β-catenin pathway, TGF-β and Notch signaling by the ccm genes. Although CCM research is a relatively new and small scientific field, as CCM research has the potential to regulate systemic blood vessel permeability and angiogenesis including that of the blood-brain barrier, this field is growing rapidly. In this review, I will provide a brief overview of CCM pathogenesis and function of ccm genes based on recent progress in CCM research. [BMB Reports 2016; 49(5): 255-262]
Collapse
Affiliation(s)
- Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
78
|
de Vos IJHM, Vreeburg M, Koek GH, van Steensel MAM. Review of familial cerebral cavernous malformations and report of seven additional families. Am J Med Genet A 2016; 173:338-351. [PMID: 27792856 DOI: 10.1002/ajmg.a.38028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/18/2016] [Indexed: 11/11/2022]
Abstract
Cerebral cavernous malformations are vascular anomalies of the central nervous system characterized by clusters of enlarged, leaky capillaries. They are caused by loss-of-function mutations in KRIT1, CCM2, or PDCD10. The proteins encoded by these genes are involved in four partially interconnected signaling pathways that control angiogenesis and endothelial permeability. Cerebral cavernous malformations can occur sporadically, or as a familial autosomal dominant disorder (FCCM) with incomplete clinical and neuroradiological penetrance and great inter-individual variability. Although the clinical course is unpredictable, symptoms typically present during adult life and include headaches, focal neurological deficits, seizures, and potentially fatal stroke. In addition to neural lesions, extraneural cavernous malformations have been described in familial disease in several tissues, in particular the skin. We here present seven novel FCCM families with neurologic and cutaneous lesions. We review histopathological and clinical features and provide an update on the pathophysiology of cerebral cavernous malformations and associated cutaneous vascular lesions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,School of Medicine and School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
79
|
Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 2016; 8:6-24. [PMID: 26612856 PMCID: PMC4718159 DOI: 10.15252/emmm.201505433] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss‐of‐function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial‐to‐mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFβ/BMP‐dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3‐MEK5‐ERK5‐MEF2 signaling axis that induces a strong increase in Kruppel‐like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1‐null ECs. KLF4 promotes TGFβ/BMP signaling through the production of BMP6. Importantly, in endothelial‐specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.
Collapse
Affiliation(s)
| | - Noemi Rudini
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Luca Bravi
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Monica Corada
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Costanza Giampietro
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Department of Biosciences, University of Milan, Milan, Italy
| | - Eleanna Papa
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Department of Neurology, Laboratory for Molecular Neuro-Oncology University Hospital Zurich, Zurich, Switzerland
| | - Marco Francesco Morini
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Luigi Maddaluno
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ralf H Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine University of Münster, Münster, Germany
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Cleveland, OH, USA Harrington Heart & Vascular Institute, Cleveland, OH, USA Department of Medicine University Hospitals Case Medical Center, Cleveland, OH, USA Case Western Reserve University School of Medicine University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Maria Grazia Lampugnani
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Mario Negri Institute of Pharmacological Research, Milan, Italy
| | - Elisabetta Dejana
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| |
Collapse
|
80
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
81
|
Choi JP, Foley M, Zhou Z, Wong WY, Gokoolparsadh N, Arthur JSC, Li DY, Zheng X. Micro-CT Imaging Reveals Mekk3 Heterozygosity Prevents Cerebral Cavernous Malformations in Ccm2-Deficient Mice. PLoS One 2016; 11:e0160833. [PMID: 27513872 PMCID: PMC4981389 DOI: 10.1371/journal.pone.0160833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Jaesung P. Choi
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney, NSW, 2050, Australia
- Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, 2050, Australia
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, NSW, 2006, Australia
| | - Zinan Zhou
- Department of Pharmacology and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104
| | - Weng-Yew Wong
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Naveena Gokoolparsadh
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, NSW, 2006, Australia
| | - J. Simon C. Arthur
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Dean Y. Li
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, UT, 84112, United States of America
| | - Xiangjian Zheng
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney, NSW, 2050, Australia
- Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, 2050, Australia
| |
Collapse
|
82
|
Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, Trabalzini L, Rimessi A, Giorgi C, Zavan B, Cassoni P, Dejana E, Retta SF, Pinton P. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 2016; 7:1403-17. [PMID: 26417067 PMCID: PMC4644374 DOI: 10.15252/emmm.201505316] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3-0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Luca Bravi
- IFOM FIRC Institute of Molecular Oncology, Milano, Italy
| | | | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | | | | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
83
|
Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JSC, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 2016; 532:122-6. [PMID: 27027284 PMCID: PMC4864035 DOI: 10.1038/nature17178] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/27/2016] [Indexed: 01/25/2023]
Abstract
Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause stroke and seizures in younger individuals1. CCMs arise from endothelial cell loss of KRIT1, CCM2, or PDCD10, non-homologous proteins that form an adaptor complex2. How disruption of the CCM complex results in disease remains controversial, with numerous signaling pathways (including Rho3,4, SMAD5 and Wnt/β-catenin6) and processes such as endothelial-mesenchymal transition (EndMT)5 proposed to play causal roles. CCM2 binds MEKK37–11, and we have recently demonstrated that CCM complex regulation of MEKK3 is essential during vertebrate heart development12. Here, we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we find that expression of the MEKK3 target genes KLF2 and KLF4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. In contrast, we find no evidence of EndMT or increased SMAD or Wnt signaling during early CCM formation. Endothelial-specific loss of Mekk3, Klf2, or Klf4 dramatically prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we demonstrate that endothelial expression of KLF2 and KLF4 is elevated in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signaling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.
Collapse
Affiliation(s)
- Zinan Zhou
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Weng-Yew Wong
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Sharika Bamezai
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Lauren M Goddard
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Su Zhou
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| | - Alexander C Wright
- Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - Matthew Foley
- Sydney Microscopy &Microanalysis, University of Sydney, Sydney, New South Wales 2050, Australia
| | - J Simon C Arthur
- Division of Cell Signaling and Immunology, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA
| | - Dean Y Li
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA.,The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia.,Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
84
|
Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med 2016; 92:100-109. [PMID: 26795600 PMCID: PMC4774945 DOI: 10.1016/j.freeradbiomed.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. METHODS Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. RESULTS The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. CONCLUSIONS Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.
Collapse
Affiliation(s)
- Hélène Choquet
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | | | - Marco Fontanella
- Department of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Leslie A Morrison
- Department of Neurology University of New Mexico, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it).
| |
Collapse
|
85
|
Bravi L, Malinverno M, Pisati F, Rudini N, Cuttano R, Pallini R, Martini M, Larocca LM, Locatelli M, Levi V, Bertani GA, Dejana E, Lampugnani MG. Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition. Stroke 2016; 47:886-90. [PMID: 26839352 DOI: 10.1161/strokeaha.115.011867] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral cavernous malformation (CCM) is characterized by multiple lumen vascular malformations in the central nervous system that can cause neurological symptoms and brain hemorrhages. About 20% of CCM patients have an inherited form of the disease with ubiquitous loss-of-function mutation in any one of 3 genes CCM1, CCM2, and CCM3. The rest of patients develop sporadic vascular lesions histologically similar to those of the inherited form and likely mediated by a biallelic acquired mutation of CCM genes in the brain vasculature. However, the molecular phenotypic features of endothelial cells in CCM lesions in sporadic patients are still poorly described. This information is crucial for a targeted therapy. METHODS We used immunofluorescence microscopy and immunohistochemistry to analyze the expression of endothelial-to-mesenchymal transition markers in the cavernoma of sporadic CCM patients in parallel with human familial cavernoma as a reference control. RESULTS We report here that endothelial cells, a cell type critically involved in CCM development, undergo endothelial-to-mesenchymal transition in the lesions of sporadic patients. This switch in endothelial phenotype has been described only in genetic CCM patients and in murine models of the disease. In addition, TGF-β/p-Smad- and β-catenin-dependent signaling pathways seem activated in sporadic cavernomas as in familial ones. CONCLUSIONS Our findings support the use of common therapeutic strategies for both sporadic and genetic CCM malformations.
Collapse
Affiliation(s)
- Luca Bravi
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Matteo Malinverno
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Federica Pisati
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Noemi Rudini
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Roberto Cuttano
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Roberto Pallini
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Maurizio Martini
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Luigi Maria Larocca
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Marco Locatelli
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Vincenzo Levi
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Giulio Andrea Bertani
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology Fondazione, Milan, Italy (L.B., M.M., F.P., N.R., R.C., E.D., M.G.L.); Institute of Neurosurgery (R.P.) and Department of Pathology (M.M., L.M.L.), Università Cattolica Sacro Cuore, Roma; Department of Surgery Division of Neurosurgery, U.O. Neurochirurgia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano (M.L., V.L., G.A.B.); Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (E.D.); and Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy (M.G.L.).
| |
Collapse
|
86
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
87
|
Kar S, Baisantry A, Nabavi A, Bertalanffy H. Role of Delta-Notch signaling in cerebral cavernous malformations. Neurosurg Rev 2016; 39:581-9. [DOI: 10.1007/s10143-015-0699-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 11/28/2022]
|
88
|
Rana U, Liu Z, Kumar SN, Zhao B, Hu W, Bordas M, Cossette S, Szabo S, Foeckler J, Weiler H, Chrzanowska-Wodnicka M, Holtz ML, Misra RP, Salato V, North PE, Ramchandran R, Miao QR. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice. Dev Biol 2015; 410:190-201. [PMID: 26746789 DOI: 10.1016/j.ydbio.2015.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023]
Abstract
Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development.
Collapse
Affiliation(s)
- Ujala Rana
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baofeng Zhao
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michelle Bordas
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Cossette
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sara Szabo
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jamie Foeckler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Hartmut Weiler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Mary L Holtz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravindra P Misra
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
89
|
Hartmann DA, Underly RG, Watson AN, Shih AY. A murine toolbox for imaging the neurovascular unit. Microcirculation 2015; 22:168-82. [PMID: 25352367 DOI: 10.1111/micc.12176] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
The neurovascular unit (NVU) coordinates many essential functions in the brain including blood flow control, nutrient delivery, and maintenance of BBB integrity. These functions are the result of a cellular and molecular interplay that we are just beginning to understand. Cells of the NVU can now be investigated in the intact brain through the combined use of high-resolution in vivo imaging and non-invasive molecular tools to observe and manipulate cell function. Mouse lines that target transgene expression to cells of the NVU will be of great value in future work. However, a detailed evaluation of target cell specificity and expression pattern within the brain is required for many existing lines. The purpose of this review was to catalog mouse lines available to cerebrovascular biologists and to discuss their utility and limitations in future imaging studies.
Collapse
Affiliation(s)
- David A Hartmann
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
90
|
Chrzanowska-Wodnicka M, White GC, Quilliam LA, Whitehead KJ. Small GTPase Rap1 Is Essential for Mouse Development and Formation of Functional Vasculature. PLoS One 2015; 10:e0145689. [PMID: 26714318 PMCID: PMC4694701 DOI: 10.1371/journal.pone.0145689] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Background Small GTPase Rap1 has been implicated in a number of basic cellular functions, including cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily conserved, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed. In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction integrity and linked with cerebral cavernous malformations. Rationale How Rap1 signaling network controls mammalian development is not clear. As a first step in addressing this question, we present phenotypes of murine total and vascular-specific Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice. Results and Conclusions The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1 in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear grossly normal and develop normal vasculature, while the remaining 50% suffer tissue degeneration and show vascular abnormalities, including hemorrhages and engorgement of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1 KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at least one Rap1 allele is required for development prior to the formation of the vascular system; and in endothelium–for the life-supporting function of the vasculature.
Collapse
Affiliation(s)
| | - Gilbert C. White
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53201, United States of America
| | - Lawrence A. Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Kevin J. Whitehead
- Division of Cardiovascular Medicine, Pediatric Cardiology, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, United States of America
| |
Collapse
|
91
|
The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 2015; 112:14284-9. [PMID: 26540726 DOI: 10.1073/pnas.1510495112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Three genes, CCM1, CCM2, and CCM3, interact genetically and biochemically and are mutated in cerebral cavernous malformations (CCM). A recently described member of this CCM family of proteins, CCM2-like (CCM2L), has high homology to CCM2. Here we show that its relative expression in different tissues differs from that of CCM2 and, unlike CCM2, the expression of CCM2L in endothelial cells is regulated by density, flow, and statins. In vitro, both CCM2L and CCM2 bind MEKK3 in a complex with CCM1. Both CCM2L and CCM2 interfere with MEKK3 activation and its ability to phosphorylate MEK5, a downstream target. The in vivo relevance of this regulation was investigated in zebrafish. A knockdown of ccm2l and ccm2 in zebrafish leads to a more severe "big heart" and circulation defects compared with loss of function of ccm2 alone, and also leads to substantial body axis abnormalities. Silencing of mekk3 rescues the big heart and body axis phenotype, suggesting cross-talk between the CCM proteins and MEKK3 in vivo. In endothelial cells, CCM2 deletion leads to activation of ERK5 and a transcriptional program that are downstream of MEKK3. These findings suggest that CCM2L and CCM2 cooperate to regulate the activity of MEKK3.
Collapse
|
92
|
Assmann JC, Körbelin J, Schwaninger M. Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta Mol Basis Dis 2015; 1862:381-94. [PMID: 26454206 DOI: 10.1016/j.bbadis.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
93
|
Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci U S A 2015; 112:8421-6. [PMID: 26109568 DOI: 10.1073/pnas.1501352112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease of the central nervous system causing hemorrhage-prone multiple lumen vascular malformations and very severe neurological consequences. At present, the only recommended treatment of CCM is surgical. Because surgery is often not applicable, pharmacological treatment would be highly desirable. We describe here a murine model of the disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report an early, cell-autonomous, Wnt-receptor-independent stimulation of β-catenin transcription activity in CCM3-deficient endothelial cells both in vitro and in vivo and a triggering of a β-catenin-driven transcription program that leads to endothelial-to-mesenchymal transition. TGF-β/BMP signaling is then required for the progression of the disease. We also found that the anti-inflammatory drugs sulindac sulfide and sulindac sulfone, which attenuate β-catenin transcription activity, reduce vascular malformations in endothelial CCM3-deficient mice. This study opens previously unidentified perspectives for an effective pharmacological therapy of intracranial vascular cavernomas.
Collapse
|
94
|
van den Berg MCW, Burgering BMT. CCM1 and the second life of proteins in adhesion complexes. Cell Adh Migr 2015; 8:146-57. [PMID: 24714220 DOI: 10.4161/cam.28437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
95
|
Lagendijk AK, Yap AS, Hogan BM. Endothelial cell-cell adhesion during zebrafish vascular development. Cell Adh Migr 2015; 8:136-45. [PMID: 24621476 DOI: 10.4161/cam.28229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell-cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell-cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell-cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell-cell adhesion.
Collapse
Affiliation(s)
- Anne K Lagendijk
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| |
Collapse
|
96
|
The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015; 32:168-80. [PMID: 25625206 DOI: 10.1016/j.devcel.2014.12.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
The cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly. These changes in gene expression result from increased activity of MEKK3, a mitogen-activated protein kinase that binds CCM2 in endothelial cells. MEKK3 is both necessary and sufficient for expression of these genes, and partial loss of MEKK3 rescues cardiac defects in CCM-deficient embryos. These findings reveal a molecular mechanism by which CCM signaling controls endothelial gene expression during cardiovascular development that may also underlie CCM formation.
Collapse
|
97
|
Schulz GB, Wieland E, Wüstehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A. Cerebral Cavernous Malformation-1 Protein Controls DLL4-Notch3 Signaling Between the Endothelium and Pericytes. Stroke 2015; 46:1337-43. [PMID: 25791711 DOI: 10.1161/strokeaha.114.007512] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral cavernous malformation (CCM) is a neurovascular dysplasia characterized by conglomerates of enlarged endothelial channels in the central nervous system, which are almost devoid of pericytes or smooth muscle cells. This disease is caused by loss-of-function mutations in CCM1, CCM2, or CCM3 genes in endothelial cells, making blood vessels highly susceptible to angiogenic stimuli. CCM1- and CCM3-silenced endothelial cells have a reduced expression of the Notch ligand Delta-like 4 (DLL4) resulting in impaired Notch signaling and irregular sprouting angiogenesis. This study aimed to address if DLL4, which is exclusively expressed on endothelial cells, may influence interactions of endothelial cells with pericytes, which express Notch3 as the predominant Notch receptor. METHODS Genetic manipulation of primary human endothelial cells and brain pericytes. Transgenic mouse models were also used. RESULTS Endothelial cell-specific ablation of Ccm1 and Ccm2 in different mouse models led to the formation of CCM-like lesions, which were poorly covered by periendothelial cells. CCM1 silencing in endothelial cells caused decreased Notch3 activity in cocultured pericytes. DLL4 proteins stimulated Notch3 receptors on human brain pericytes. Active Notch3 induced expression of PDGFRB2, N-Cadherin, HBEGF, TGFB1, NG2, and S1P genes. Notch3 signaling in pericytes enhanced the adhesion strength of pericytes to endothelial cells, limited their migratory and invasive behavior, and enhanced their antiangiogenic function. Pericytes silenced for Notch3 expression were more motile and could not efficiently repress angiogenesis. CONCLUSIONS The data suggest that Notch signaling in pericytes is important to maintain the quiescent vascular phenotype. Deregulated Notch signaling may, therefore, contribute to the pathogenesis of CCM.
Collapse
Affiliation(s)
- Gerald B Schulz
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Elfriede Wieland
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Joycelyn Wüstehube-Lausch
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Gwénola Boulday
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Iris Moll
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Elisabeth Tournier-Lasserve
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| | - Andreas Fischer
- From the Vascular Signaling and Cancer (A270), German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (G.B.S., E.W., I.M., A.F.); Vascular Biology, CBTM Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.W.-L., A.F.); INSERM U1161, Paris, France (G.B., E.T.-L.); Université Paris Diderot, Sorbonne Paris Cité, Génétique et Physiopathologe des Maladies Cérébro-Vascularies, UMR-S1161, Paris, France (G.B., E.T.-L.); AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Gènètique Molèculaire Neurovasculaire, Centre de Rèfèrence des Maladies Vasculaires Rares du Cerveau et de l'Oeil (CERVCO), Paris, France (E.T.-L.); and Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany (A.F.)
| |
Collapse
|
98
|
Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G, Duchene J, Mickoleit M, Dietrich AC, Ramspacher C, Steed E, Manet-Dupé S, Benz A, Hassel D, Vermot J, Huisken J, Tournier-Lasserve E, Felbor U, Sure U, Albiges-Rizo C, Abdelilah-Seyfried S. Regulation of β1 Integrin-Klf2-Mediated Angiogenesis by CCM Proteins. Dev Cell 2015; 32:181-90. [DOI: 10.1016/j.devcel.2014.12.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 11/03/2014] [Accepted: 12/19/2014] [Indexed: 12/01/2022]
|
99
|
Abstract
Vertebrates have evolved a powerful vascular system that involves close interactions between blood vessels and target tissues. Vascular biology had been mostly focused on the study of blood vessels for decades, which has generated large bodies of knowledge on vascular cell development, function and pathology. We argue that the prime time has arrived for vascular research on vessel-tissue interactions, especially target tissue regulation of vessel development. The central nervous system (CNS) requires a highly efficient vascular system for oxygen and nutrient transport as well as waste disposal. Therefore, neurovascular interaction is an excellent entry point to understanding target tissue regulation of blood vessel development. In this review, we summarize signaling pathways that transmit information from neural cells to blood vessels during development and the mechanisms by which they regulate each step of CNS angiogenesis. We also review important mechanisms of neural regulation of blood-brain barrier establishment and maturation, highlighting different functions of neural progenitor cells and pericytes. Finally, we evaluate potential contribution of malfunctioning neurovascular signaling to the development of brain vascular diseases and discuss how neurovascular interactions could be involved in brain tumor angiogenesis.
Collapse
Affiliation(s)
- Shang Ma
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA ; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
100
|
Mleynek TM, Chan AC, Redd M, Gibson CC, Davis CT, Shi DS, Chen T, Carter KL, Ling J, Blanco R, Gerhardt H, Whitehead K, Li DY. Lack of CCM1 induces hypersprouting and impairs response to flow. Hum Mol Genet 2014; 23:6223-34. [PMID: 24990152 DOI: 10.1093/hmg/ddu342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease of vascular malformations known to be caused by mutations in one of three genes: CCM1, CCM2 or CCM3. Despite several studies, the mechanism of CCM lesion onset remains unclear. Using a Ccm1 knockout mouse model, we studied the morphogenesis of early lesion formation in the retina in order to provide insight into potential mechanisms. We demonstrate that lesions develop in a stereotypic location and pattern, preceded by endothelial hypersprouting as confirmed in a zebrafish model of disease. The vascular defects seen with loss of Ccm1 suggest a defect in endothelial flow response. Taken together, these results suggest new mechanisms of early CCM disease pathogenesis and provide a framework for further study.
Collapse
Affiliation(s)
- Tara M Mleynek
- Department of Molecular Medicine, Department of Oncological Sciences
| | - Aubrey C Chan
- Department of Molecular Medicine, Department of Oncological Sciences
| | | | | | | | - Dallas S Shi
- Department of Molecular Medicine, Department of Human Genetics
| | - Tiehua Chen
- Department of Molecular Medicine, Small Animal Ultrasound Core, University of Utah, Salt Lake City 84112, USA
| | - Kandis L Carter
- Department of Molecular Medicine, Small Animal Ultrasound Core, University of Utah, Salt Lake City 84112, USA
| | | | - Raquel Blanco
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Holger Gerhardt
- Vascular Patterning Laboratory, VIB3-Vesalius Research Center and CMVB, Department of Oncology, KU Leuven Campus Gasthuisberg O&N4, Herestraat 49 box 912, Leuven B-3000, Belgium
| | - Kevin Whitehead
- Department of Molecular Medicine, Small Animal Ultrasound Core, University of Utah, Salt Lake City 84112, USA, Division of Cardiovascular Medicine, Salt Lake City 84132, USA and
| | - Dean Y Li
- Department of Molecular Medicine, Department of Oncological Sciences, Division of Cardiovascular Medicine, Salt Lake City 84132, USA and The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| |
Collapse
|