51
|
Conde SV, Sacramento JF, Martins FO. Immunity and the carotid body: implications for metabolic diseases. Bioelectron Med 2020; 6:24. [PMID: 33353562 PMCID: PMC7756955 DOI: 10.1186/s42234-020-00061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuro-immune communication has gained enormous interest in recent years due to increasing knowledge of the way in which the brain coordinates functional alterations in inflammatory and autoimmune responses, and the mechanisms of neuron-immune cell interactions in the context of metabolic diseases such as obesity and type 2 diabetes. In this review, we will explain how this relationship between the nervous and immune system impacts the pro- and anti-inflammatory pathways with specific reference to the hypothalamus-pituitary-adrenal gland axis and the vagal reflex and will explore the possible involvement of the carotid body (CB) in the neural control of inflammation. We will also highlight the mechanisms of vagal anti-inflammatory reflex control of immunity and metabolism, and the consequences of functional disarrangement of this reflex in settlement and development of metabolic diseases, with special attention to obesity and type 2 diabetes. Additionally, the role of CB in the interplay between metabolism and immune responses will be discussed, with specific reference to the different stimuli that promote CB activation and the balance between sympathetic and parasympathetic in this context. In doing so, we clarify the multivarious neuronal reflexes that coordinate tissue-specific responses (gut, pancreas, adipose tissue and liver) critical to metabolic control, and metabolic disease settlement and development. In the final section, we will summarize how electrical modulation of the carotid sinus nerve may be utilized to adjust these reflex responses and thus control inflammation and metabolic diseases, envisioning new therapeutics horizons.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal.
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Rua Câmara Pestana, n°6, Edifício 2, piso 3, 1150-274, Lisbon, Portugal
| |
Collapse
|
52
|
Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, Brunoni AR, Badran BW, Tanaka C, de Andrade DC, da Silva Machado DG, Morya E, Trujillo E, Swami JK, Camprodon JA, Monte-Silva K, Sá KN, Nunes I, Goulardins JB, Bikson M, Sudbrack-Oliveira P, de Carvalho P, Duarte-Moreira RJ, Pagano RL, Shinjo SK, Zana Y. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front Neurol 2020; 11:573718. [PMID: 33324324 PMCID: PMC7724108 DOI: 10.3389/fneur.2020.573718] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Adriana Baltar
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Specialized Neuromodulation Center—Neuromod, Recife, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Graduate Program in Physical Education, State University of Londrina, Londrina, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Ana Mércia Fernandes
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Clarice Tanaka
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba, Brazil
| | - Eduardo Trujillo
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Jaiti K. Swami
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Joan A. Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katia Monte-Silva
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Nunes Sá
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Isadora Nunes
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Juliana Barbosa Goulardins
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | | | - Priscila de Carvalho
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Jardim Duarte-Moreira
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
53
|
Fattori V, Ferraz CR, Rasquel-Oliveira FS, Verri WA. Neuroimmune communication in infection and pain: Friends or foes? Immunol Lett 2020; 229:32-43. [PMID: 33248166 DOI: 10.1016/j.imlet.2020.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Clinically, a variety of micro-organisms cause painful infections. Before seen as bystanders in the context of infections, recent studies have demonstrated that, as immune cells, nociceptors can sense pathogen-derived products. Nociceptors and immune cells, therefore, have evolved to communicate with each other to control inflammatory and host responses against pathogens in a complementary way. This interaction is named as neuroimmune communication (or axon-axon immune reflex) and initiates after the release of neuropeptides, such as CGRP and VIP by neurons. By this neurogenic response, nociceptors orchestrate the activity of innate and adaptive immune cells in a context-dependent manner. In this review, we focus on how nociceptors sense pathogen-derived products to shape the host response. We also highlight the new concept involving the resolution of inflammation, which is related to an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). At very low doses, SPMs act on specific receptors to silence nociceptors, limit pain and neurogenic responses, and resolve infections. Furthermore, stimulation of the vagus nerve induces SPMs production to regulate immune responses in infections. Therefore, harnessing the current understanding of neuro-immune communication and neurogenic responses might provide the bases for reprogramming host responses against infections through well balanced and effective immune response and inflammation resolution.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil.
| |
Collapse
|
54
|
Zhou Y, Wang J, Li X, Li K, Chen L, Zhang Z, Peng M. Neuroprotectin D1 Protects Against Postoperative Delirium-Like Behavior in Aged Mice. Front Aging Neurosci 2020; 12:582674. [PMID: 33250764 PMCID: PMC7674198 DOI: 10.3389/fnagi.2020.582674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Postoperative delirium (POD) is the most common postoperative complication affecting elderly patients, yet the underlying mechanism is elusive, and effective therapies are lacking. The neuroinflammation hypothesis for the pathogenesis of POD has recently emerged. Accumulating evidence is supporting the role of specialized proresolving lipid mediators (SPMs) in regulating inflammation. Neuroprotectin D1 (NPD1), a novel docosahexaenoic acid (DHA)-derived lipid mediator, has shown potent immunoresolvent and neuroprotective effects in several disease models associated with inflammation. Here, using a mouse model of POD, we investigated the role of NPD1 in postoperative cognitive impairment by assessing systemic inflammatory changes, the permeability of the blood–brain barrier (BBB), neuroinflammation, and behavior in aged mice at different time points. We report that a single dose of NPD1 prophylaxis decreased the expression of tumor necrosis factor alpha TNF-α and interleukin (IL)-6 and upregulated the expression of IL-10 in peripheral blood, the hippocampus, and the prefrontal cortex. Additionally, NPD1 limited the leakage of the BBB by increasing the expression of tight junction (TJ)-associated proteins such as ZO-1, claudin-5, and occludin. NPD1 also abolished the activation of microglia and astrocytes in the hippocampus and prefrontal cortex, which is associated with improved general and memory function after surgery. In addition, NPD1 treatment modulated the inflammatory cytokine expression profile and improved the expression of the M2 marker CD206 in lipopolysaccharide (LPS)-stimulated macrophages, which may partly explain the beneficial effects of NPD1 on inflammation. Collectively, these findings shed light on the proresolving activities of NPD1 in the pro-inflammatory milieu both in vivo and in vitro and may bring a novel therapeutic approach for POD.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaofeng Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
55
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
56
|
Wu G, Wang Z, Shan P, Huang S, Lin S, Huang W, Huang Z. Suppression of Netrin-1 attenuates angiotension II-induced cardiac remodeling through the PKC/MAPK signaling pathway. Biomed Pharmacother 2020; 130:110495. [PMID: 32688140 DOI: 10.1016/j.biopha.2020.110495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial remodeling caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. Netrin-1, which is an axonal guidance cue, has been shown to be involved in the inflammatory response, tumorigenesis, and angiogenesis in non-neuronal tissues. However, the role of Netrin-1 in cardiac remodeling has not been fully elucidated. METHODS The rat cardiomyocyte cell line H9c2 and primary neonatal rat cardiomyocytes were treated with Ang II. Cells were transfected with siRNA to silence Netrin-1 expression. Real-time polymerase chain reaction and Western blot analysis were used to detect the markers for fibrosis, apoptosis, and hypertrophy in cardiomyocytes. An Annexin V-EGFP/PI cell apoptosis detection kit was used to measure the level of apoptosis caused by angiotensin II. RESULTS We found that Netrin-1 expression was upregulated in the H9c2 cells and the neonatal rat cardiomyocytes stimulated by Ang II. The increased Netrin-1 expression was decreased by valsartan to block AT1R. Importantly, the application of Netrin-1 siRNA significantly alleviated the degrees of myocardial hypertrophy, fibrosis (reflected by Myhc, collagen I, and TGF-β) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II. In addition, the silencing of Netrin-1 substantially decreased the phosphorylation of PKCα, JNK, and P38. We treated H9c2 cells with LY317615, SP600125, and SB203580, inhibitors of PKCα, JNK, and P38, respectively, thereby resulting in a substantial decrease in hypertrophy, fibrosis, and apoptosis. CONCLUSIONS Ang II produces cardiac hypertrophy, fibrosis, and apoptosis through the upregulation of Netrin-1 and the activation of the AT1R/PKCα/MAPK (JNK, P38) pathway. Suppression of Netrin-1 can relieve Ang II-induced cardiac remodeling via inhibition of the PKCα/MAPK (JNK and P38) signaling pathway. Thus, Netrin-1 may be a novel therapeutic target for Ang II-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Gaojun Wu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhengxian Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Peiren Shan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shuang Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
57
|
Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020; 17:886-899. [PMID: 32696274 PMCID: PMC7609770 DOI: 10.1007/s13311-020-00892-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current crises in opioid abuse and chronic pain call for the development of nonopioid and nonpharmacological therapeutics for pain relief. Neuromodulation-based approaches, such as spinal cord stimulation, dorsal root ganglion simulation, and nerve stimulation including vagus nerve stimulation, have shown efficacy in achieving pain control in preclinical and clinical studies. However, the mechanisms by which neuromodulation alleviates pain are not fully understood. Accumulating evidence suggests that neuromodulation regulates inflammation and neuroinflammation-a localized inflammation in peripheral nerves, dorsal root ganglia/trigeminal ganglia, and spinal cord/brain-through neuro-immune interactions. Specialized proresolving mediators (SPMs) such as resolvins, protectins, maresins, and lipoxins are lipid molecules produced during the resolution phase of inflammation and exhibit multiple beneficial effects in resolving inflammation in various animal models. Recent studies suggest that SPMs inhibit inflammatory pain, postoperative pain, neuropathic pain, and cancer pain in rodent models via immune, glial, and neuronal modulations. It is noteworthy that sham surgery is sufficient to elevate resolvin levels and may serve as a model of resolution. Interestingly, it has been shown that the vagus nerve produces SPMs and vagus nerve stimulation (VNS) induces SPM production in vitro. In this review, we discuss how neuromodulation such as VNS controls pain via immunomodulation and neuro-immune interactions and highlight possible involvement of SPMs. In particular, we demonstrate that VNS via auricular electroacupuncture effectively attenuates chemotherapy-induced neuropathic pain. Furthermore, auricular stimulation is able to increase resolvin levels in mice. Thus, we propose that neuromodulation may control pain and inflammation/neuroinflammatioin via SPMs. Finally, we discuss key questions that remain unanswered in our understanding of how neuromodulation-based therapies provide short-term and long-term pain relief.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
58
|
Dexmedetomidine Exerts an Anti-inflammatory Effect via α2 Adrenoceptors to Prevent Lipopolysaccharide-induced Cognitive Decline in Mice. Anesthesiology 2020; 133:393-407. [DOI: 10.1097/aln.0000000000003390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background
Clinical studies have shown that dexmedetomidine ameliorates cognitive decline in both the postoperative and critical care settings. This study determined the mechanism(s) for the benefit provided by dexmedetomidine in a medical illness in mice induced by lipopolysaccharide.
Methods
Cognitive decline, peripheral and hippocampal inflammation, blood–brain barrier permeability, and inflammation resolution were assessed in male mice. Dexmedetomidine was administered in the presence of lipopolysaccharide and in combination with blockers. Cultured macrophages (RAW 264.7; BV-2) were exposed to lipopolysaccharide ± dexmedetomidine ± yohimbine; tumor necrosis factor α release into the medium and monocyte NFκB activity was determined.
Results
In vivo, lipopolysaccharide-induced cognitive decline and inflammation (mean ± SD) were reversed by dexmedetomidine (freezing time, 55.68 ± 12.31 vs. 35.40 ± 17.66%, P = 0.0286, n = 14; plasma interleukin [IL]-1β: 30.53 ± 9.53 vs. 75.68 ± 11.04 pg/ml, P < 0.0001; hippocampal IL-1β: 3.66 ± 1.88 vs. 28.73 ± 5.20 pg/mg, P < 0.0001; n = 8), which was prevented by α2 adrenoceptor antagonists. Similar results were found in 12-month-old mice. Lipopolysaccharide also increased blood–brain barrier leakage, inflammation-resolution orchestrator, and proresolving and proinflammatory mediators; each lipopolysaccharide effect was attenuated by dexmedetomidine, and yohimbine prevented dexmedetomidine’s attenuating effect. In vitro, lipopolysaccharide-induced tumor necrosis factor α release (RAW 264.7: 6,308.00 ± 213.60 vs. 7,767.00 ± 358.10 pg/ml, P < 0.0001; BV-2: 1,075.00 ± 40.41 vs. 1,280.00 ± 100.30 pg/ml, P = 0.0003) and NFκB–p65 activity (nuclear translocation [RAW 264.7: 1.23 ± 0.31 vs. 2.36 ± 0.23, P = 0.0031; BV-2: 1.08 ± 0.26 vs. 1.78 ± 0.14, P = 0.0116]; phosphorylation [RAW 264.7: 1.22 ± 0.40 vs. 1.94 ± 0.23, P = 0.0493; BV-2: 1.04 ± 0.36 vs. 2.04 ± 0.17, P = 0.0025]) were reversed by dexmedetomidine, which was prevented by yohimbine.
Conclusions
Preclinical studies suggest that the cognitive benefit provided by dexmedetomidine in mice administered lipopolysaccharide is mediated through α2 adrenoceptor–mediated anti-inflammatory pathways.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
59
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
60
|
Gudernatsch V, Stefańczyk SA, Mirakaj V. Novel Resolution Mediators of Severe Systemic Inflammation. Immunotargets Ther 2020; 9:31-41. [PMID: 32185148 PMCID: PMC7064289 DOI: 10.2147/itt.s243238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Nonresolving inflammation, a hallmark of underlying severe inflammatory processes such as sepsis, acute respiratory distress syndrome and multiple organ failure is a major cause of admission to the intensive care unit and high mortality rates. Many survivors develop new functional limitations and health problems, and in cases of sepsis, approximately 40% of patients are rehospitalized within three months. Over the last few decades, better treatment approaches have been adopted. Nevertheless, the lack of knowledge underlying the complex pathophysiology of the inflammatory response organized by numerous mediators and the induction of complex networks impede curative therapy. Thus, increasing evidence indicates that resolution of an acute inflammatory response, considered an active process, is the ideal outcome that leads to tissue restoration and organ function. Many mediators have been identified as immunoresolvents, but only a few have been shown to contribute to both the initial and resolution phases of severe systemic inflammation, and these agents might finally substantially impact the therapeutic approach to severe inflammatory processes. In this review, we depict different resolution mediators/immunoresolvents contributing to resolution programmes specifically related to life-threatening severe inflammatory processes.
Collapse
Affiliation(s)
- Verena Gudernatsch
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sylwia Anna Stefańczyk
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valbona Mirakaj
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
61
|
Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural Control of Inflammation: Bioelectronic Medicine in Treatment of Chronic Inflammatory Disease. Cold Spring Harb Perspect Med 2020; 10:a034181. [PMID: 31358521 PMCID: PMC7050580 DOI: 10.1101/cshperspect.a034181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is important for antimicrobial defense and for tissue repair after trauma. The inflammatory response and its resolution are both active processes that must be tightly regulated to maintain homeostasis. Excessive inflammation and nonresolving inflammation cause tissue damage and chronic disease, including autoinflammatory and cardiovascular diseases. An improved understanding of the cellular and molecular mechanisms that regulate inflammation has supported development of novel therapies for several inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. Many of the specific anticytokine therapies carry a risk for excessive immunosuppression and serious side effects. The discovery of the inflammatory reflex and the increasingly detailed understanding of the molecular interactions between homeostatic neural reflexes and the immune system have laid the foundation for bioelectronic medicine in the field of inflammatory diseases. Neural interfaces and nerve stimulators are now being tested in human clinical trials and may, as the technology develops further, have advantages over conventional drugs in terms of better compliance, continuously adaptable control of dosing, better monitoring, and reduced risks for unwanted side effects. Here, we review the current mechanistic understanding of common autoinflammatory conditions, consider available therapies, and discuss the potential use of increasingly capable devices in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Michael Eberhardson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Monica Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
62
|
Dean S, Wang CS, Nam K, Maruyama CL, Trump BG, Baker OJ. Aspirin Triggered Resolvin D1 reduces inflammation and restores saliva secretion in a Sjögren's syndrome mouse model. Rheumatology (Oxford) 2020; 58:1285-1292. [PMID: 30877775 DOI: 10.1093/rheumatology/kez072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES SS is characterized by chronic inflammation of the salivary glands leading to loss of secretory function, thereby suggesting specialized pro-resolving mediators targeting inflammation to be a viable option for treating SS. Previous studies demonstrated that aspirin-triggered resolvin D1 (AT-RvD1) prevents chronic inflammation and enhances saliva secretion in a SS-like mouse model when applied before disease onset. However, this therapy cannot be used in SS patients given that diagnosis occurs post-disease onset and no reliable screening methods exist. Therefore, we examined whether treatment with AT-RvD1 reduces SS-like features in a mouse model post-disease onset. METHODS Tail vein injections were performed in a SS-like mouse model both with and without AT-RvD1 post-disease onset for 8 weeks, with salivary gland function and inflammatory status subsequently determined. RESULTS Treatment of a SS-like mouse model with AT-RvD1 post-disease onset restores saliva secretion in both females and males. Moreover, although AT-RvD1 treatment does not reduce the overall submandibular gland lymphocytic infiltration, it does reduce the number of T helper 17 cells within the infiltrates in both sexes. Finally, AT-RvD1 reduces SS-associated pro-inflammatory cytokine gene and protein expression levels in submandibular glands from female but not male mice. CONCLUSION AT-RvD1 treatment administered post-disease onset reduces T helper 17 cells and successfully restores salivary gland function in a SS mouse model with variable effects noted by sex, thus warranting further examination of both the causes for the sex differences and the mechanisms responsible for the observed treatment effect.
Collapse
Affiliation(s)
- Spencer Dean
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Kihoon Nam
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | | | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
63
|
Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural reflex control of vascular inflammation. Bioelectron Med 2020; 6:3. [PMID: 32232111 PMCID: PMC7065709 DOI: 10.1186/s42234-020-0038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease that underlies myocardial infarction and stroke. Efficacious treatment for hyperlipidemia and hypertension has significantly reduced morbidity and mortality in cardiovascular disease. However, atherosclerosis still confers a considerable risk of adverse cardiovascular events. In the current mechanistic understanding of the pathogenesis of atherosclerosis, inflammation is pivotal both in disease development and progression. Recent clinical data provided support for this notion and treatment targeting inflammation is currently being explored. Interestingly, neural reflexes regulate cytokine production and inflammation. Hence, new technology utilizing implantable devices to deliver electrical impulses to activate neural circuits are currently being investigated in treatment of inflammation. Hopefully, it may become possible to target vascular inflammation in cardiovascular disease using bioelectronic medicine. In this review, we discuss neural control of inflammation and the potential implications of new therapeutic strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- A. S. Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - M. Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - A. L. Gallina
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - L. Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - P. S. Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
64
|
Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2020; 16:389-406. [PMID: 30846875 DOI: 10.1038/s41569-019-0169-2] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Arif Yurdagul
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Columbia University Irving Medical Center, New York, NY, USA
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| |
Collapse
|
65
|
Jain A, Hakim S, Woolf CJ. Unraveling the Plastic Peripheral Neuroimmune Interactome. THE JOURNAL OF IMMUNOLOGY 2020; 204:257-263. [DOI: 10.4049/jimmunol.1900818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 01/16/2023]
|
66
|
Levine YA, Faltys M, Chernoff D. Harnessing the Inflammatory Reflex for the Treatment of Inflammation-Mediated Diseases. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034330. [PMID: 30833463 DOI: 10.1101/cshperspect.a034330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treating diseases nonpharmacologically, using targeted neurostimulation instead of systemic drugs, is a hallmark of the burgeoning field of bioelectronic medicine. In this review, we provide a brief overview of the discovery and function of the prototypical neuroimmune reflex, the "inflammatory reflex." We discuss various biomarkers developed and used to translate early physiological discoveries into dosing parameters used in experimental settings, from the treatment of animal models of disease through a proof-of-concept clinical study in rheumatoid arthritis (RA). Finally, we relate how unique aspects of this form of therapy enabled the design of a next-generation implanted pulse generator using integrated electrodes, currently under evaluation in a U.S.-based clinical study for patients with drug refractory RA.
Collapse
|
67
|
Willemze RA, Brinkman DJ, Welting O, van Hamersveld PHP, Verseijden C, Luyer MD, Wildenberg ME, Seppen J, de Jonge WJ. Acetylcholine-producing T cells augment innate immune-driven colitis but are redundant in T cell-driven colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G557-G568. [PMID: 31322912 DOI: 10.1152/ajpgi.00067.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical trials suggest that vagus nerve stimulation presents an alternative approach to classical immune suppression in Crohn's disease. T cells capable of producing acetylcholine (ChAT+ T cells) in the spleen are essential mediators of the anti-inflammatory effect of vagus nerve stimulation. Besides the spleen, ChAT+ T cells are found abundantly in Peyer's patches of the small intestine. However, the role of ChAT+ T cells in colitis pathogenesis is unknown. Here, we made use of CD4creChATfl/fl mice (CD4ChAT-/- mice) lacking ChAT expression specifically in CD4+ T cells. Littermates (ChATfl/fl mice) served as controls. In acute dextran sulfate sodium (DSS)-induced colitis (7 days of 2% DSS in drinking water), CD4ChAT-/- mice showed attenuated colitis and lower intestinal inflammatory cytokine levels compared with ChATfl/fl mice. In contrast, in a resolution model of DSS-induced colitis (5 days of 2% DSS followed by 7 days without DSS), CD4ChAT-/- mice demonstrated a worsened colitis recovery and augmented colonic histological inflammation scores and inflammatory cytokine levels as compared with ChATfl/fl mice. In a transfer colitis model using CD4+CD45RBhigh T cells, T cells from CD4ChAT-/- mice induced a similar level of colitis compared with ChATfl/fl T cells. Together, our results indicate that ChAT+ T cells aggravate the acute innate immune response upon mucosal barrier disruption in an acute DSS-induced colitis model, whereas they are supporting the later resolution process of this innate immune-driven colitis. Surprisingly, ChAT expression in T cells seems redundant in the context of T cell-driven colitis.NEW & NOTEWORTHY By using different mouse models of experimental colitis, we provide evidence that in dextran sulfate sodium-induced colitis, ChAT+ T cells capable of producing acetylcholine worsen the acute immune response, whereas they support the later healing phase of this innate immune-driven colitis.
Collapse
Affiliation(s)
- Rose A Willemze
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - David J Brinkman
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Olaf Welting
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - Caroline Verseijden
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Manon E Wildenberg
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - Jurgen Seppen
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Amsterdam University Medical Center, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
68
|
Serhan CN, de la Rosa X, Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation. J Intern Med 2019; 286:240-258. [PMID: 30565762 DOI: 10.1111/joim.12871] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive chronic inflammation is linked to many diseases and considered a stress factor in humans (Robbins Pathologic Basis of Disease. Philadelphia: W.B. Saunders Co., 1999, Proc Natl Acad Sci USA, 2008, 105: 17949, Immunity, 44, 2016, 44: 463, N Engl J Med, 2011, 364: 656). Today, the resolution of inflammation is widely recognized as a cellular biochemically active process involving biosynthesis of a novel superfamily of endogenous chemical signals coined specialized pro-resolving mediators (SPMs; Nature, 2014, 510:92). Herein, we review recent evidence, indicating a role for the vagus nerve and vagotomy in the regulation of lipid mediators. Vagotomy reduces pro-resolving mediators, including the lipoxins, resolvins, protectins and maresins, delaying resolution in mouse peritonitis. Vagotomy also delays resolution of Escherichia coli infection in mice. Specifically, right vagus regulates peritoneal Group 3 innate lymphoid cell (ILC-3) number and peritoneal macrophage responses with lipid mediator profile signatures with elevated pro-inflammatory eicosanoids and reduced resolvins, including the novel protective immunoresolvent agonist protectin conjugate in tissue regeneration1 (PCTR1). Acetylcholine upregulates PCTR biosynthesis, and administration of PCTR1 to vagotomized mice restores tissue resolution and host responses to E. coli infections. Results obtained with human vagus ex vivo indicate that vagus can produce both pro-inflammatory eicosanoids, such as prostaglandins and leukotrienes, as well as the SPM. Electrical stimulation of human vagus in vitro reduces both prostaglandins and leukotrienes and enhances resolvins and the other SPM. These results elucidate a host protective mechanism mediated by vagus stimulation of SPM that includes resolvins and PCTR1 to regulate myeloid antimicrobial functions and resolution of infection. Moreover, they define a new pro-resolution of inflammation reflex operative in mice and human tissue that involves a vagus SPM circuit.
Collapse
Affiliation(s)
- C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - X de la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Dexmedetomidine Prevents Cognitive Decline by Enhancing Resolution of High Mobility Group Box 1 Protein-induced Inflammation through a Vagomimetic Action in Mice. Anesthesiology 2019; 128:921-931. [PMID: 29252509 DOI: 10.1097/aln.0000000000002038] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammation initiated by damage-associated molecular patterns has been implicated for the cognitive decline associated with surgical trauma and serious illness. We determined whether resolution of inflammation mediates dexmedetomidine-induced reduction of damage-associated molecular pattern-induced cognitive decline. METHODS Cognitive decline (assessed by trace fear conditioning) was induced with high molecular group box 1 protein, a damage-associated molecular pattern, in mice that also received blockers of neural (vagal) and humoral inflammation-resolving pathways. Systemic and neuroinflammation was assessed by proinflammatory cytokines. RESULTS Damage-associated molecular pattern-induced cognitive decline and inflammation (mean ± SD) was reversed by dexmedetomidine (trace fear conditioning: 58.77 ± 8.69% vs. 41.45 ± 7.64%, P < 0.0001; plasma interleukin [IL]-1β: 7.0 ± 2.2 pg/ml vs. 49.8 ± 6.0 pg/ml, P < 0.0001; plasma IL-6: 3.2 ± 1.6 pg/ml vs. 19.5 ± 1.7 pg/ml, P < 0.0001; hippocampal IL-1β: 4.1 ± 3.0 pg/mg vs. 41.6 ± 8.0 pg/mg, P < 0.0001; hippocampal IL-6: 3.4 ± 1.3 pg/mg vs. 16.2 ± 2.7 pg/mg, P < 0.0001). Reversal by dexmedetomidine was prevented by blockade of vagomimetic imidazoline and α7 nicotinic acetylcholine receptors but not by α2 adrenoceptor blockade. Netrin-1, the orchestrator of inflammation-resolution, was upregulated (fold-change) by dexmedetomidine (lung: 1.5 ± 0.1 vs. 0.7 ± 0.1, P < 0.0001; spleen: 1.5 ± 0.2 vs. 0.6 ± 0.2, P < 0.0001), resulting in upregulation of proresolving (lipoxin-A4: 1.7 ± 0.2 vs. 0.9 ± 0.2, P < 0.0001) and downregulation of proinflammatory (leukotriene-B4: 1.0 ± 0.2 vs. 3.0 ± 0.3, P < 0.0001) humoral mediators that was prevented by α7 nicotinic acetylcholine receptor blockade. CONCLUSIONS Dexmedetomidine resolves inflammation through vagomimetic (neural) and humoral pathways, thereby preventing damage-associated molecular pattern-mediated cognitive decline.
Collapse
|
70
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
71
|
Trembach N, Zabolotskikh I. The pathophysiology of complications after laparoscopic colorectal surgery: Role of baroreflex and chemoreflex impairment. ACTA ACUST UNITED AC 2019; 26:115-120. [PMID: 31146925 DOI: 10.1016/j.pathophys.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/14/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The aim of this study was to assess the dynamics of baroreflex sensitivity (BRS) during laparoscopic colorectal surgery in patients with different chemoreflex sensitivity assessed with breath-holding test. METHODS The study included 80 patients (mean age, 68 ± 7 years) who underwent routine laparoscopic colorectal surgery under general/epidural anaesthesia. Patients were retrospectively divided into two groups: with normal (breath-holding duration ≥38 s, group N [n = 42]) or high (breath-holding duration <38 s, group H [n = 38]) chemoreflex sensitivity. BRS was initially evaluated after arterial catheter placement before induction, after induction, after pneumoperitoneum, after extubation, and 6 h and 24 h after extubation. RESULTS Average BRS was significantly lower in the group with high peripheral chemoreflex sensitivity at all time points. The use of pneumoperitoneum did not significantly influence BRS in either group. After the surgery and 6 h after extubation, no significant changes were observed. After 6 h of the surgery, 11.9% of patients in group N and 57.8% of those in group H (p < 0.05) had severe baroreflex dysfunction (BRS < 3 ms/mmHg). After 24 h, only two patients in group N (vs 13 [34.2%] in group H, p < 0.05) had this dysfunction. CONCLUSION Patients with high chemoreflex sensitivity have lower BRS, and it decreases further after anaesthesia induction. The recovery process can take up to 24 h, with an increased risk of perioperative complications in patients with high preoperative chemoreflex sensitivity. The use of pneumoperitoneum does not significantly affect BRS.
Collapse
Affiliation(s)
- Nikita Trembach
- Department of Anesthesiology, Intensive Care and Transfusiology, Kuban State Medical University, 350063, Krasnodar, Sedin str., 4, Russian Federation.
| | - Igor Zabolotskikh
- Department of Anesthesiology, Intensive Care and Transfusiology, Kuban State Medical University, 350063, Krasnodar, Sedin str., 4, Russian Federation.
| |
Collapse
|
72
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
73
|
Li R, Lai IK, Maze M. Specialised pro-resolving mediators: the magic bullet for perioperative neurocognitive disorders? Br J Anaesth 2019; 122:292-294. [PMID: 30770043 DOI: 10.1016/j.bja.2018.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Rong Li
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Ieng Kit Lai
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
74
|
Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, Giera M, Mirakaj V. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun 2019; 10:633. [PMID: 30733433 PMCID: PMC6367413 DOI: 10.1038/s41467-019-08328-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
The bidirectional communication between the immune and nervous system is important in regulating immune responses. Here we show that the adrenergic nerves of sympathetic nervous system orchestrate inflammation resolution and regenerative programs by modulating repulsive guidance molecule A (RGM-A). In murine peritonitis, adrenergic nerves and RGM-A show bidirectional activation by stimulating the mutual expression and exhibit a higher potency for the cessation of neutrophil infiltration; this reduction is accompanied by increased pro-resolving monocyte or macrophage recruitment, polymorphonucleocyte clearance and specialized pro-resolving lipid mediators production at sites of injury. Chemical sympathectomy results in hyperinflammation and ineffective resolution in mice, while RGM-A treatments reverse these phenotypes. Signalling network analyses imply that RGM-A and β2AR agonist regulate monocyte activation by suppressing NF-κB activity but activating RICTOR and PI3K/AKT signalling. Our results thus illustrate the function of sympathetic nervous system and RGM-A in regulating resolution and tissue repair in a murine acute peritonitis model. Diverse interactions between the nervous and immune systems have been shown, but specific mechanistic insights are still lacking. Here the authors show, using both mouse inflammation models and clinical correlation, that adrenergic nerve may ameliorate inflammation by inducing repulsive guidance molecule A signalling.
Collapse
Affiliation(s)
- Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Torsten Kaussen
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Verena Gudernatsch
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Timo Schumacher
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
75
|
Abstract
Surgery and other invasive procedures, which are routinely performed during general anesthesia, may induce an inflammatory response in the patient. This inflammatory response is an inherent answer of the body to the intervention and can be both beneficial and potentially harmful. The immune system represents a unique evolutionary achievement equipping higher organisms with an effective defense mechanism against exogenous pathogens. However, not only bacteria might evoke an immune response but also other noninfectious stimuli like the surgical trauma or mechanical ventilation may induce an inflammatory response of varying degree. In these cases, the immune system activation is not always beneficial for the patients and might carry the risk of concomitant, harmful effects on host cells, tissues, or even whole organ systems. Research over the past decades has contributed substantial information in which ways surgical patients may be affected by inflammatory reactions. Modulations of the patient's immune system may be evoked by the use of anesthetic agents, the nature of surgical trauma and the use of any supportive therapy during the perioperative period. The effects on the patient may be manifold, including various proinflammatory effects. This review focuses on the causes and effects of inflammation in the perioperative period. In addition, we also highlight possible approaches by which inflammation in the perioperative may be modulated in the future.
Collapse
Affiliation(s)
- Jan Rossaint
- From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
76
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
77
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
78
|
Tarnawski L, Reardon C, Caravaca AS, Rosas-Ballina M, Tusche MW, Drake AR, Hudson LK, Hanes WM, Li JH, Parrish WR, Ojamaa K, Al-Abed Y, Faltys M, Pavlov VA, Andersson U, Chavan SS, Levine YA, Mak TW, Tracey KJ, Olofsson PS. Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Front Immunol 2018; 9:2648. [PMID: 30538698 PMCID: PMC6277584 DOI: 10.3389/fimmu.2018.02648] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Macrophage cytokine production is regulated by neural signals, for example in the inflammatory reflex. Signals in the vagus and splenic nerves are relayed by choline acetyltransferase+ T cells that release acetylcholine, the cognate ligand for alpha7 nicotinic acetylcholine subunit-containing receptors (α7nAChR), and suppress TNF release in macrophages. Here, we observed that electrical vagus nerve stimulation with a duration of 0.1–60 s significantly reduced systemic TNF release in experimental endotoxemia. This suppression of TNF was sustained for more than 24 h, but abolished in mice deficient in the α7nAChR subunit. Exposure of primary human macrophages and murine RAW 264.7 macrophage-like cells to selective ligands for α7nAChR for 1 h in vitro attenuated TNF production for up to 24 h in response to endotoxin. Pharmacological inhibition of adenylyl cyclase (AC) and knockdown of adenylyl cyclase 6 (AC6) or c-FOS abolished cholinergic suppression of endotoxin-induced TNF release. These findings indicate that action potentials in the inflammatory reflex trigger a change in macrophage behavior that requires AC and phosphorylation of the cAMP response element binding protein (CREB). These observations further our mechanistic understanding of neural regulation of inflammation and may have implications for development of bioelectronic medicine treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Colin Reardon
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, Davis, CA, United States
| | - April S Caravaca
- Department of Medicine, Center for Bioelectronic Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mauricio Rosas-Ballina
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Michael W Tusche
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | | | - LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - William M Hanes
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jian Hua Li
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - William R Parrish
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Yousef Al-Abed
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ulf Andersson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peder S Olofsson
- Department of Medicine, Center for Bioelectronic Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
79
|
Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol 2018; 315:G651-G658. [PMID: 30001146 PMCID: PMC6293249 DOI: 10.1152/ajpgi.00195.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Improved understanding of neuroimmune communication and the neural regulation of immunity and inflammation has recently led to proposing the concept of the "neuroimmune communicatome." This advance is based on experimental evidence for an organized and brain-integrated reflex-like relationship and dialogue between the nervous and the immune systems. A key circuitry in this communicatome is provided by efferent vagus nerve fibers and cholinergic signaling. Inflammation and metabolic alterations coexist in many disorders affecting the liver and the gastrointestinal (GI) tract, including obesity, metabolic syndrome, fatty liver disease, liver injury, and liver failure, as well as inflammatory bowel disease. Here, we outline mechanistic insights regarding the role of the vagus nerve and cholinergic signaling in the regulation of inflammation linked to metabolic derangements and the pathogenesis of these disorders in preclinical settings. Recent clinical advances using this knowledge in novel therapeutic neuromodulatory approaches within the field of bioelectronic medicine are also briefly summarized.
Collapse
Affiliation(s)
- Christine N. Metz
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Valentin A. Pavlov
- 1Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
80
|
Serhan CN, de la Rosa X, Jouvene CC. Cutting Edge: Human Vagus Produces Specialized Proresolving Mediators of Inflammation with Electrical Stimulation Reducing Proinflammatory Eicosanoids. THE JOURNAL OF IMMUNOLOGY 2018; 201:3161-3165. [PMID: 30355784 DOI: 10.4049/jimmunol.1800806] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
Inflammatory resolution is a process that, when uncontrolled, impacts many organs and diseases. As an active, self-limited inflammatory process, resolution involves biosynthesis of specialized proresolving mediators (SPM) (e.g., lipoxins, resolvins [Rv], protectins, and maresins). Because vagal stimulation impacts inflammation, we examined human and mouse vagus ex vivo to determine if they produce lipid mediators. Using targeted lipid mediator metabololipidomics, we identified lipoxins, Rv, and protectins produced by both human and mouse vagus as well as PGs and leukotrienes. Human vagus produced SPM (e.g., RvE1, NPD1/PD1, MaR1, RvD5, and LXA4) on stimulation that differed from mouse (RvD3, RvD6, and RvE3), demonstrating species-selective SPM. Electrical vagus stimulation increased SPM in both human and mouse vagus as did incubations with Escherichia coli. Electrical vagus stimulation increased SPM and decreased PGs and leukotrienes. These results provide direct evidence for vagus SPM and eicosanoids. Moreover, they suggest that this vagus SPM circuit contributes to a new proresolving vagal reflex.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier de la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Charlotte C Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
81
|
Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul 2018; 12:19-29. [PMID: 30337243 DOI: 10.1016/j.brs.2018.10.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The vagus nerve is involved in regulating immunity and resolving inflammation. Current strategies aimed at modulating neuroinflammation and cognitive decline, in many cases, are limited and ineffective. OBJECTIVE We sought to develop a minimally invasive, targeted, vagus nerve stimulation approach (pVNS), and we tested its efficacy with respect to microglial activation and amelioration of cognitive dysfunction following lipopolysaccharide (LPS) endotoxemia in mice. METHODS We stimulated the cervical vagus nerve in mice using an ultrasound-guided needle electrode under sevoflurane anesthesia. The concentric bipolar needle electrode was percutaneously placed adjacent to the carotid sheath and stimulation was verified in real-time using bradycardia as a biomarker. Activation of vagal fibers was confirmed with immunostaining in relevant brainstem structures, including the dorsal motor nucleus and nucleus tractus solitarius. Efficacy of pVNS was evaluated following administration of LPS and analyses of changes in inflammation and behavior. RESULTS pVNS enabled stimulation of the vagus nerve as demonstrated by changes in bradycardia and histological evaluation of c-Fos and choline acetyltransferase expression in brainstem nuclei. Following LPS administration, pVNS significantly reduced plasma levels of tumor necrosis factor-α at 3 h post-injection. pVNS prevented LPS-induced hippocampal microglial activation as analyzed by changes in Iba-1 immunoreactivity, including cell body enlargement and shortened ramifications. Cognitive dysfunction following endotoxemia was also restored by pVNS. CONCLUSION Targeted cervical VNS using this novel percutaneous approach reduced LPS-induced systemic and brain inflammation and significantly improved cognitive responses. These results provide a novel therapeutic approach using bioelectronic medicine to modulate neuro-immune interactions that affect cognition.
Collapse
Affiliation(s)
- William J Huffman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Saraswathi Subramaniyan
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Electrical and Computer Engineering, Neurobiology, and Neurosurgery, Duke University, Durham, NC, 27708, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
82
|
Schlegel M, Körner A, Kaussen T, Knausberg U, Gerber C, Hansmann G, Jónasdóttir HS, Giera M, Mirakaj V. Inhibition of neogenin fosters resolution of inflammation and tissue regeneration. J Clin Invest 2018; 128:4711-4726. [PMID: 30222138 DOI: 10.1172/jci96259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
The resolution of inflammation is an active process that is coordinated by endogenous mediators. Previous studies have demonstrated the immunomodulatory properties of the axonal guidance proteins in the initial phase of acute inflammation. We hypothesized that the neuronal guidance protein neogenin (Neo1) modulates mechanisms of inflammation resolution. In murine peritonitis, Neo1 deficiency (Neo1-/-) resulted in higher efficacies in reducing neutrophil migration into injury sites, increasing neutrophil apoptosis, actuating PMN phagocytosis, and increasing the endogenous biosynthesis of specialized proresolving mediators, such as lipoxin A4, maresin-1, and protectin DX. Neo1 expression was limited to Neo1-expressing Ly6Chi monocytes, and Neo1 deficiency induced monocyte polarization toward an antiinflammatory and proresolving phenotype. Signaling network analysis revealed that Neo1-/- monocytes mediate their immunomodulatory effects specifically by activating the PI3K/AKT pathway and suppressing the TGF-β pathway. In a cohort of 59 critically ill, intensive care unit (ICU) pediatric patients, we found a strong correlation between Neo1 blood plasma levels and abdominal compartment syndrome, Pediatric Risk of Mortality III (PRISM-III) score, and ICU length of stay and mortality. Together, these findings identify a crucial role for Neo1 in regulating tissue regeneration and resolution of inflammation, and determined Neo1 to be a predictor of morbidity and mortality in critically ill children affected by clinical inflammation.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Torsten Kaussen
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Urs Knausberg
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Carmen Gerber
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Hulda Soffia Jónasdóttir
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
83
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
84
|
Hua X, Vijay R, Channappanavar R, Athmer J, Meyerholz DK, Pagedar N, Tilley S, Perlman S. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight 2018; 3:99025. [PMID: 29875310 DOI: 10.1172/jci.insight.99025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/19/2018] [Indexed: 12/28/2022] Open
Abstract
The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.
Collapse
Affiliation(s)
- Xiaoyang Hua
- Department of Otolaryngology-Head and Neck Surgery
| | - Rahul Vijay
- Interdisciplinary Program in Immunology.,Department of Microbiology and Immunology, and
| | | | | | | | | | - Stephen Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley Perlman
- Interdisciplinary Program in Immunology.,Department of Microbiology and Immunology, and
| |
Collapse
|
85
|
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128:2657-2669. [PMID: 29757195 DOI: 10.1172/jci97943] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechanisms that control the resolution of acute inflammation provides insight into preventing and treating inflammatory diseases in multiple organs. This Review focuses on the resolution phase of inflammation with identification of specialized pro-resolving mediators (SPMs) that involve three separate biosynthetic and potent mediator families, which are defined using the first quantitative resolution indices to score this vital process. These are the resolvins, protectins, and maresins: bioactive metabolomes that each stimulate self-limited innate responses, enhance innate microbial killing and clearance, and are organ-protective. We briefly address biosynthesis of SPMs and their activation of endogenous resolution programs as terrain for new therapeutic approaches that are not, by definition, immunosuppressive, but rather new immunoresolvent therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
86
|
Abstract
The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| | - Sangeeta S Chavan
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| | - Kevin J Tracey
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| |
Collapse
|
87
|
Abstract
Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.
Collapse
|
88
|
Abstract
The brain is both the orchestrator as well as the target of the innate immune system's response to the aseptic trauma of surgery. When trauma-induced inflammation is not appropriately regulated persistent neuro-inflammation interferes with the synaptic plasticity that underlies the learning and memory aspects of cognition. The complications that ensue, include postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) at two poles of a constellation that is now termed perioperative neurocognitive disorders. While the relationship of acute POD to the more indolent POCD is not completely understood both can be further complicated by earlier-onset of dementia and higher mortality. How and why these disorders occur is the focus of this report. The innate immune system response to peripheral trauma signals to the brain through a regulated cascade of cellular and molecular actors producing a teleological defense mechanism, "sickness behavior," to curtail further injury and initiate repair. Sickness behavior, including disordered cognition, is terminated by neural and humoral pathways that restore homeostasis and launch the organism on a path to good health. With so many "moving parts" the innate immune system is vulnerable in clinical settings that include advanced age and lifestyle-induced diseases such as "unhealthy" obesity and the inevitable insulin resistance. Under these conditions, inflammation may become exaggerated and long-lived. Consideration is provided how to identify the high-risk surgical patient and both pharmacological (including biological compounds) and non-pharmacological strategies to customize care.
Collapse
Affiliation(s)
- Sarah Saxena
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, UCSF; Department of anesthesia, Université Libre de Bruxelles, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, UCSF.
| |
Collapse
|
89
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
90
|
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther 2018; 186:98-113. [PMID: 29352860 DOI: 10.1016/j.pharmthera.2018.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disorder characterized by persistent inflammation of the airways with mucosal infiltration of eosinophils, T lymphocytes, and mast cells, and release of proinflammatory cytokines and lipid mediators. The natural resolution of airway inflammation is now recognized as an active host response, with highly coordinated cellular events under the control of endogenous pro-resolving mediators that enable the restoration of tissue homeostasis. Lead members of proresolving mediators are enzymatically derived from essential polyunsaturated fatty acids, including arachidonic acid-derived lipoxins, eicosapentaenoic acid-derived E-series resolvins, and docosahexaenoic acid-derived D-series resolvins, protectins, and maresins. Functionally, these specialized pro-resolving mediators can limit further leukocyte recruitment, induce granulocyte apoptosis, and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to lymphatics and blood vessels, and help initiate tissue repair and healing. In this review, we highlight cellular and molecular mechanisms for successful resolution of inflammation, and describe the main specialized pro-resolving mediators that drive these processes. Furthermore, we report recent data suggesting that the pathobiology of severe asthma may result in part from impaired resolution of airway inflammation, including defects in the biosynthesis of these specialized pro-resolving mediators. Finally, we discuss resolution-based therapeutic perspectives.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, 1, place de l'Hôpital, 67091 Strasbourg, France; EA 3072, University of Strasbourg, France.
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
91
|
Tackling Pain Associated with Rheumatoid Arthritis: Proton-Sensing Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:49-64. [PMID: 30306514 DOI: 10.1007/978-981-13-1756-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. Chronic pain that comes with RA turns independent, essentially becoming its own disease. It could partly explain that a significant number (50%) of RA patients fail to respond to current RA therapies that focus mainly on suppression of joint inflammation. The acute phase of pain seems to associate with joint inflammation in early RA. In established RA, the chronic phase of pain could be linked to inflammatory components of neuron-immune interactions and noninflammatory components. Accumulating evidence suggests that the initial inflammation and autoimmunity in RA (preclinical RA) begin outside of the joint and may originate at mucosal sites and alterations in the composition of microbiota located at mucosal sites could be essential for mucosal inflammation, triggering joint inflammation. Fibroblast-like synoviocytes in the inflamed joint respond to cytokines to release acidic components, lowering pH in synovial fluid. Extracellular proton binds to proton-sensing ion channels, and G-protein-coupled receptors in joint nociceptive fibers may contribute to sensory transduction and release of neurotransmitters, leading to pain and hyperalgesia. Activation of peripheral sensory neurons or nociceptors further modulates inflammation, resulting in neuroinflammation or neurogenic inflammation. Peripheral and central nerves work with non-neuronal cells (such as immune cells, glial cells) in concert to contribute to the chronic phase of RA-associated pain. This review will discuss actions of proton-sensing receptors on neurons or non-neuronal cells that modulate RA pathology and associated chronic pain, and it will be beneficial for the development of future therapeutic treatments.
Collapse
|
92
|
|
93
|
Perretti M, Norling LV. Actions of SPM in regulating host responses in arthritis. Mol Aspects Med 2017; 58:57-64. [DOI: 10.1016/j.mam.2017.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
94
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
95
|
Serhan CN. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Aspects Med 2017; 58:1-11. [PMID: 28263773 PMCID: PMC5582020 DOI: 10.1016/j.mam.2017.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
It is with great pleasure that I write this foreword and introduction to this Special Issue dedicated to the protective actions of the pro-resolving mediators and edited by my colleague Dr. Jesmond Dalli. Many of my collaborators and colleagues that helped to uncover the actions and clinical potential of the resolvins and other specialized proresolving mediators (SPM), namely, the superfamily of pro-resolving mediators that includes the resolvin (E-series, D-series and DPA-derived), protectin and maresin families, as well as the arachidonic acid-derived lipoxins, join me in this special issue. They have given contributions that present exciting new results on the remarkable actions and potency of these unique molecules, the SPM moving forward the importance of their mediators and pathways in human biology. Each contribution to this issue is presented by world authorities in their respective fields covering discoveries that demonstrate the importance and impact of resolution mediators in biology, medicine and surgery. While some of the authors were students and/or fellows with me and others, they are today the founding "resolutionists" of a new era of appreciation of autacoid biosynthesis and metabolomics in human health and disease with their rigorous attention to experimental detail and discovery. The chapters of this issue are filled with exciting new discoveries demonstrating the dynamics and potential of resolution mediators.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
96
|
Hellen IA, Steffen M, Stocker T, Christian S. Small but mighty: Platelets as central effectors of host defense. Thromb Haemost 2017; 117:651-661. [DOI: 10.1160/th16-12-0921] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
SummaryPlatelets actively participate in inflammatory processes and drive diseases such as atherosclerosis, rheumatoid arthritis and cancer metastasis. However, platelets also have anti-inflammatory and anti-infective properties, which have received less consideration in the past. In this review, we highlight recent findings on the role of platelets in host defense and describe regulatory pathways modulating immuneresponses. Furthermore, we discuss the role of platelets for the resolution of inflammation and tissue repair. These conceptual changes contribute to our understanding of platelet biology in disease.
Collapse
|
97
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
98
|
Dalli J, Serhan CN. Immunoresolvents signaling molecules at intersection between the brain and immune system. Curr Opin Immunol 2017; 50:48-54. [PMID: 29154174 PMCID: PMC5869050 DOI: 10.1016/j.coi.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/12/2017] [Accepted: 10/07/2017] [Indexed: 12/18/2022]
Abstract
The vagus nerve regulates ILC-3 and macrophage trafficking to the peritoneum. Vagotomy reduces peritoneal PCTR concentrations and alters tissue resolution tone. Resection of the vagus nerve impairs resolution responses to sterile and infectious insults.
Understanding mechanisms that control immunity is central in the quest to gain insights into the etiopathology of many of the diseases that afflict modern societies. New results implicate the nervous system as a central player in controlling many aspects of both the innate and adaptive arms of the immune response. Furthermore it is now well appreciated that a novel group of autacoids termed as specialized proresolving mediators, which are enzymatically produced from essential fatty acids, orchestrate the immune response promoting the termination of inflammation as well as tissue repair and regeneration. The present brief review discusses evidence for the crosstalk between the nervous system and leukocytes in regulating SPM production. We will also discuss the impact that this has on controlling tissue resolution tone and the resolution of both infectious and sterile inflammation.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
99
|
Resolution of inflammation and sepsis survival are improved by dietary Ω-3 fatty acids. Cell Death Differ 2017; 25:421-431. [PMID: 29053142 PMCID: PMC5762854 DOI: 10.1038/cdd.2017.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Critical conditions such as sepsis following infection or traumatic injury disturb the complex state of homeostasis that may lead to uncontrolled inflammation resulting in organ failure, shock and death. They are associated with endogenous mediators that control the onset of acute inflammatory response, but the central problem remains the complete resolution of inflammation. Omega-3 enriched lipid emulsions (Ω-3+ LEs) were used in experimental studies and clinical trials to establish homeostasis, yet with little understanding about their role on the resolution of inflammation and tissue regeneration. Here, we demonstrate that Ω-3 lipid emulsions (LEs) orchestrate inflammation-resolution/regeneration mechanism during sterile peritonitis and murine polymicrobial sepsis. Ω-3+ LEs recessed neutrophil infiltration, reduced pro-inflammatory mediators, reduced the classical monocyte and enhanced the non-classical monocytes/macrophages recruitment and finally increased the efferocytosis in sepsis. The actions of Ω-3+ LE were 5-lipoxygenase (5-LOX) and 12/15-lipoxygenase (12/15-LOX) dependent. Ω-3+ LEs shortened the resolution interval by 56%, stimulated the endogenous biosynthesis of resolution mediators lipoxin A4, protectin DX and maresin 1 and contributed to tissue regeneration. Ω-3+ LEs protected against hypothermia and weight loss and enhanced survival in murine polymicrobial sepsis. We highlighted a role of Ω-3+ LEs in regulating key mechanisms within the resolution terrain during murine sepsis. This might form the basis for a rational design of sepsis specific clinical nutrition.
Collapse
|
100
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|