51
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
52
|
Stefen H, Suchowerska AK, Chen BJ, Brettle M, Kuschelewski J, Gunning PW, Janitz M, Fath T. Tropomyosin isoforms have specific effects on the transcriptome of undifferentiated and differentiated B35 neuroblastoma cells. FEBS Open Bio 2018; 8:570-583. [PMID: 29632810 PMCID: PMC5881551 DOI: 10.1002/2211-5463.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tropomyosins, a family of actin‐associated proteins, bestow actin filaments with distinct biochemical and physical properties which are important for determining cell shape and regulating many cellular processes in eukaryotic cells. Here, we used RNA‐seq to investigate the effect of four tropomyosin isoforms on gene expression in undifferentiated and differentiated rat B35 neuroblastoma cells. In undifferentiated cells, overexpression of tropomyosin isoforms Tpm1.12, Tpm2.1, Tpm3.1, and Tpm4.2 differentially regulates a vast number of genes, clustering into several gene ontology terms. In differentiated cells, tropomyosin overexpression exerts a much weaker influence on overall gene expression. Our findings are particularly compelling because they demonstrate that tropomyosin‐dependent changes are attenuated once the cells are induced to follow a defined path of differentiation. Database Sequence data for public availability are deposited in the European Nucleotide Archive under the accession number PRJEB24136.
Collapse
Affiliation(s)
- Holly Stefen
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | | | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Merryn Brettle
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Jennifer Kuschelewski
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| | - Peter William Gunning
- Cellular and Genetic Medicine Unit School of Medical Sciences UNSW Sydney NSW Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit School of Medical Science UNSW Sydney NSW Australia
| |
Collapse
|
53
|
Gunning PW, Hardeman EC. Tropomyosin-directed tuning of myosin motor function: Insights from mutagenesis. Cytoskeleton (Hoboken) 2018. [DOI: 10.1002/cm.21441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- P. W. Gunning
- School of Medical Sciences; UNSW; Sydney New South Wales 2052 Australia
| | - E. C. Hardeman
- School of Medical Sciences; UNSW; Sydney New South Wales 2052 Australia
| |
Collapse
|
54
|
Masedunskas A, Appaduray MA, Lucas CA, Lastra Cagigas M, Heydecker M, Holliday M, Meiring JCM, Hook J, Kee A, White M, Thomas P, Zhang Y, Adelstein RS, Meckel T, Böcking T, Weigert R, Bryce NS, Gunning PW, Hardeman EC. Parallel assembly of actin and tropomyosin, but not myosin II, during de novo actin filament formation in live mice. J Cell Sci 2018; 131:jcs.212654. [PMID: 29487177 DOI: 10.1242/jcs.212654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 01/04/2023] Open
Abstract
Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.
Collapse
Affiliation(s)
| | | | | | | | - Marco Heydecker
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia.,Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Mira Holliday
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Anthony Kee
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Melissa White
- South Australian Genome Editing, Facility Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Thomas
- South Australian Genome Editing, Facility Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yingfan Zhang
- NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Till Böcking
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
55
|
Kee AJ, Chagan J, Chan JY, Bryce NS, Lucas CA, Zeng J, Hook J, Treutlein H, Laybutt DR, Stehn JR, Gunning PW, Hardeman EC. On-target action of anti-tropomyosin drugs regulates glucose metabolism. Sci Rep 2018; 8:4604. [PMID: 29545590 PMCID: PMC5854615 DOI: 10.1038/s41598-018-22946-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 β-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jayshan Chagan
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christine A Lucas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jun Zeng
- MedChemSoft Solutions, Level 3 Brandon Park Drive, Wheelers Hill, 3150, VIC, Australia
| | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Herbert Treutlein
- Sanoosa Pty. Ltd., 35 Collins Street, Melbourne, 3000, VIC, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Justine R Stehn
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Novogen Pty Ltd, 502/20 George St, Hornsby, NSW, 2077, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
56
|
Jeong S, Lim S, Schevzov G, Gunning PW, Helfman DM. Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling. Oncotarget 2018; 8:33544-33559. [PMID: 28431393 PMCID: PMC5464889 DOI: 10.18632/oncotarget.16825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Here we report the identification and characterization of a novel high molecular weight isoform of tropomyosin, Tpm4.1, expressed from the human TPM4 gene. Tpm4.1 expression is down-regulated in a subset of breast cancer cells compared with untransformed MCF10A breast epithelial cells and in highly metastatic breast cancer cell lines derived from poorly metastatic MDA-MD-231 cells. In addition, patients with invasive ductal breast carcinoma show decreased TPM4 expression compared with patients with ductal breast carcinoma in situ, and low TPM4 expression is associated with poor prognosis. Loss of Tpm4.1 using siRNA in MCF10A cells increases cell migration in wound-healing and Boyden chamber assays and invasion out of spheroids as well as disruption of cell-cell adhesions. Down-regulation of Tpm4.1 in MDA-MB-231 cells leads to disruption of actin organization and increased cell invasion and dissemination from spheroids into collagen gels. The down-regulation of Tpm4.1 induces Rac1-mediated alteration of myosin IIB localization, and pharmacologic inhibition of Rac1 or down-regulation of myosin IIB using siRNA inhibits the invasive phenotypes in MCF10A cells. Thus Tpm4.1 plays an important role in blocking invasive behaviors through Rac1-myosin IIB signaling and our findings suggest that decreased expression of Tpm4.1 might play a crucial role during tumor progression.
Collapse
Affiliation(s)
- SukYeong Jeong
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - SunYoung Lim
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW, Sydney, NSW, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW, Sydney, NSW, Australia
| | - David M Helfman
- Department of Biological Sciences, Korean Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
57
|
Suchowerska AK, Fok S, Stefen H, Gunning PW, Hardeman EC, Power J, Fath T. Developmental Profiling of Tropomyosin Expression in Mouse Brain Reveals Tpm4.2 as the Major Post-synaptic Tropomyosin in the Mature Brain. Front Cell Neurosci 2017; 11:421. [PMID: 29311841 PMCID: PMC5743921 DOI: 10.3389/fncel.2017.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.
Collapse
Affiliation(s)
- Alexandra K Suchowerska
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandra Fok
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Holly Stefen
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John Power
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
58
|
Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC. ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken) 2017; 74:379-389. [PMID: 28834398 DOI: 10.1002/cm.21405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4+/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lingyan Yang
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Galina Schevzov
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
59
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
60
|
Jégou A, Romet-Lemonne G. Single Filaments to Reveal the Multiple Flavors of Actin. Biophys J 2017; 110:2138-46. [PMID: 27224479 DOI: 10.1016/j.bpj.2016.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022] Open
Abstract
A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences.
Collapse
Affiliation(s)
- Antoine Jégou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
61
|
Gormal R, Valmas N, Fath T, Meunier F. A role for tropomyosins in activity-dependent bulk endocytosis? Mol Cell Neurosci 2017; 84:112-118. [PMID: 28545680 DOI: 10.1016/j.mcn.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.
Collapse
Affiliation(s)
- Rachel Gormal
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Nicholas Valmas
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Frederic Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
62
|
Currier MA, Stehn JR, Swain A, Chen D, Hook J, Eiffe E, Heaton A, Brown D, Nartker BA, Eaves DW, Kloss N, Treutlein H, Zeng J, Alieva IB, Dugina VB, Hardeman EC, Gunning PW, Cripe TP. Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Mol Cancer Ther 2017; 16:1555-1565. [PMID: 28522589 DOI: 10.1158/1535-7163.mct-16-0873] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.1, using a first-in-class compound, TR100. Here, we screened over 200 other antitropomyosin analogues for anticancer and on-target activity using a series of in vitro cell-based and biochemical assays. ATM-3507 was selected as the new lead based on its ability to disable Tpm3.1-containing filaments, its cytotoxicity potency, and more favorable drug-like characteristics. We tested ATM-3507 and TR100 alone and in combination with antimicrotubule agents against neuroblastoma models in vitro and in vivo Both ATM-3507 and TR100 showed a high degree of synergy in vitro with vinca alkaloid and taxane antimicrotubule agents. In vivo, combination-treated animals bearing human neuroblastoma xenografts treated with antitropomyosin combined with vincristine showed minimal weight loss, a significant and profound regression of tumor growth and improved survival compared with control and either drug alone. Antitropomyosin combined with vincristine resulted in G2-M phase arrest, disruption of mitotic spindle formation, and cellular apoptosis. Our data suggest that small molecules targeting the actin cytoskeleton via tropomyosin sensitize cancer cells to antimicrotubule agents and are tolerated together in vivo This combination warrants further study. Mol Cancer Ther; 16(8); 1555-65. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Justine R Stehn
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Ashleigh Swain
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Duo Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Jeff Hook
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Eleanor Eiffe
- Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Andrew Heaton
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - David Brown
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Novogen Pty Ltd, Hornsby, New South Wales, Australia
| | - Brooke A Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - David W Eaves
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nina Kloss
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | | | - Jun Zeng
- MedChemSoft Solutions, Wheelers Hill, Victoria, Australia
| | - Irina B Alieva
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vera B Dugina
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia.,Mathematical Methods in Biology, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio. .,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
63
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
64
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
65
|
Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K, Gressin L, Gunning PW, Manstein DJ, Michelot A, Lappalainen P. Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro. Curr Biol 2017; 27:705-713. [PMID: 28216317 PMCID: PMC5344678 DOI: 10.1016/j.cub.2017.01.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/28/2022]
Abstract
Actin filaments assemble into a variety of networks to provide force for diverse cellular processes [1]. Tropomyosins are coiled-coil dimers that form head-to-tail polymers along actin filaments and regulate interactions of other proteins, including actin-depolymerizing factor (ADF)/cofilins and myosins, with actin [2, 3, 4, 5]. In mammals, >40 tropomyosin isoforms can be generated through alternative splicing from four tropomyosin genes. Different isoforms display non-redundant functions and partially non-overlapping localization patterns, for example within the stress fiber network [6, 7]. Based on cell biological studies, it was thus proposed that tropomyosin isoforms may specify the functional properties of different actin filament populations [2]. To test this hypothesis, we analyzed the properties of actin filaments decorated by stress-fiber-associated tropomyosins (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2). These proteins bound F-actin with high affinity and competed with α-actinin for actin filament binding. Importantly, total internal reflection fluorescence (TIRF) microscopy of fluorescently tagged proteins revealed that most tropomyosin isoforms cannot co-polymerize with each other on actin filaments. These isoforms also bind actin with different dynamics, which correlate with their effects on actin-binding proteins. The long isoforms Tpm1.6 and Tpm1.7 displayed stable interactions with actin filaments and protected filaments from ADF/cofilin-mediated disassembly, but did not activate non-muscle myosin IIa (NMIIa). In contrast, the short isoforms Tpm3.1, Tpm3.2, and Tpm4.2 displayed rapid dynamics on actin filaments and stimulated the ATPase activity of NMIIa, but did not efficiently protect filaments from ADF/cofilin. Together, these data provide experimental evidence that tropomyosin isoforms segregate to different actin filaments and specify functional properties of distinct actin filament populations. Stress-fiber-associated tropomyosin isoforms segregate to different actin filaments Tropomyosin isoforms bind F-actin with different dynamics Dynamic tropomyosin isoforms activate non-muscle myosin II Stable tropomyosin isoforms protect actin filaments from ADF/cofilin
Collapse
Affiliation(s)
- Gergana Gateva
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Tommi Kotila
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Laurène Gressin
- Biosciences and Biotechnology Institute of Grenoble, LPCV/CNRS/CEA/UGA/INRA, 38054 Grenoble, France
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Alphée Michelot
- Aix-Marseille University, CNRS, IBDM, 13284 Marseille, France
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
66
|
Appaduray MA, Masedunskas A, Bryce NS, Lucas CA, Warren SC, Timpson P, Stear JH, Gunning PW, Hardeman EC. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics. PLoS One 2016; 11:e0168203. [PMID: 27977753 PMCID: PMC5158027 DOI: 10.1371/journal.pone.0168203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.
Collapse
Affiliation(s)
- Mark A. Appaduray
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Andrius Masedunskas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Nicole S. Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Sean C. Warren
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jeffrey H. Stear
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Peter W. Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
67
|
Ostrowska Z, Robaszkiewicz K, Moraczewska J. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:88-98. [PMID: 27693909 DOI: 10.1016/j.bbapap.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
Tropomyosin and cofilin are actin-binding proteins which control dynamics of actin assembly and disassembly. Tropomyosin isoforms can either inhibit or enhance cofilin activity, but the mechanism of this diverse regulation is not well understood. In this work mechanisms of actin dynamics regulation by four cytoskeletal tropomyosin isoforms and cofilin-1 were studied with the use of biochemical and fluorescent microscopy assays. The recombinant tropomyosin isoforms were products of two genes: TPM1 (Tpm1.6 and Tpm1.8) and TPM3 (Tpm3.2 and Tpm3.4). Tpm1.6/1.8 bound to F-actin with higher apparent binding constants and lower cooperativities than Tpm3.2/3.4. In consequence, subsaturating concentrations of cofilin-1 removed 50% of Tpm3.2/3.4 from F-actin. By contrast, 2 and 5.5 molar excess of cofilin-1 over actin was required to dissociate 50% of Tpm1.6/1.8. All tropomyosins inhibited the rate of spontaneous polymerization of actin, which was reversed by cofilin-1. Products of TPM1 favored longer filaments and protected them from cofilin-induced depolymerization. This was in contrast to the isoforms derived from TPM3, which facilitated depolymerization. Tpm3.4 was the only isoform, which increased frequency of the filament severing by cofilin-1. Tpm1.6/1.8 inhibited, but Tpm3.2/3.4 enhanced cofilin-induced conformational changes leading to accelerated release of rhodamine-phalloidin from the filament. We concluded that the effects were executed through different actin affinities of tropomyosin isoforms and cooperativities of tropomyosin and cofilin-1 binding. The results obtained in vitro were in good agreement with localization of tropomyosin isoforms in stable or highly dynamic filaments demonstrated before in various cells.
Collapse
Affiliation(s)
- Zofia Ostrowska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland.
| |
Collapse
|
68
|
Abstract
The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
69
|
Coombes JD, Schevzov G, Kan CY, Petti C, Maritz MF, Whittaker S, Mackenzie KL, Gunning PW. Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout. Cell Mol Biol Lett 2016; 20:626-46. [PMID: 26274783 DOI: 10.1515/cmble-2015-0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Extensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.
Collapse
|
70
|
Janco M, Bonello TT, Byun A, Coster ACF, Lebhar H, Dedova I, Gunning PW, Böcking T. The impact of tropomyosins on actin filament assembly is isoform specific. BIOARCHITECTURE 2016; 6:61-75. [PMID: 27420374 DOI: 10.1080/19490992.2016.1201619] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.
Collapse
Affiliation(s)
- Miro Janco
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| | - Teresa T Bonello
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Alex Byun
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Adelle C F Coster
- c School of Mathematics and Statistics , University of New South Wales , Sydney , NSW , Australia
| | - Helene Lebhar
- d School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Irina Dedova
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Peter W Gunning
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Till Böcking
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| |
Collapse
|
71
|
Vrhovski B, McKay K, Schevzov G, Gunning PW, Weinberger RP. Smooth Muscle-specific α Tropomyosin Is a Marker of Fully Differentiated Smooth Muscle in Lung. J Histochem Cytochem 2016; 53:875-83. [PMID: 15995146 DOI: 10.1369/jhc.4a6504.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tropomyosin (Tm) is one of the major components of smooth muscle. Currently it is impossible to easily distinguish the two major smooth muscle (sm) forms of Tm at a protein level by immunohistochemistry due to lack of specific antibodies. α-sm Tm contains a unique 2a exon not found in any other Tm. We have produced a polyclonal antibody to this exon that specifically detects α-sm Tm. We demonstrate here the utility of this antibody for the study of smooth muscle. The tissue distribution of α-sm Tm was shown to be highly specific to smooth muscle. α-sm Tm showed an identical profile and tissue colocalization with α-sm actin both by Western blotting and immunohistochemistry. Using lung as a model organ system, we examined the developmental appearance of α-sm Tm in comparison to α-sm actin in both the mouse and human. α-sm Tm is a late-onset protein, appearing much later than actin in both species. There were some differences in onset of appearance in vascular and airway smooth muscle with airway appearing earlier. α-sm Tm can therefore be used as a good marker of mature differentiated smooth muscle cells. Along with α-sm actin and sm-myosin antibodies, α-sm Tm is a valuable tool for the study of smooth muscle.
Collapse
Affiliation(s)
- Bernadette Vrhovski
- The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
| | | | | | | | | |
Collapse
|
72
|
Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O'neill GM, Yang N, Verrills NM, Kavallaris M, Gunning PW. Tissue-specific Tropomyosin Isoform Composition. J Histochem Cytochem 2016; 53:557-70. [PMID: 15872049 DOI: 10.1369/jhc.4a6505.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells ( Gunning et al. 1998b ). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
74
|
Bergs A, Ishitsuka Y, Evangelinos M, Nienhaus GU, Takeshita N. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans. Front Microbiol 2016; 7:682. [PMID: 27242709 PMCID: PMC4860496 DOI: 10.3389/fmicb.2016.00682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.
Collapse
Affiliation(s)
- Anna Bergs
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Biology, University of AthensAthens, Greece
| | - G U Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Department of Physics, University of Illinois at Urbana-ChampaignUrbana-Champaign, IL, USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| |
Collapse
|
75
|
Manstein DJ, Mulvihill DP. Tropomyosin-Mediated Regulation of Cytoplasmic Myosins. Traffic 2016; 17:872-7. [DOI: 10.1111/tra.12399] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Dietmar J. Manstein
- Institute for Biophysical Chemistry; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
- Division for Structural Analysis; Medizinische Hochschule Hannover; Carl-Neuberg-Strasse 1 30625 Hannover Germany
| | | |
Collapse
|
76
|
Brayford S, Bryce NS, Schevzov G, Haynes EM, Bear JE, Hardeman EC, Gunning PW. Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge. Curr Biol 2016; 26:1312-8. [PMID: 27112294 DOI: 10.1016/j.cub.2016.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/26/2022]
Abstract
At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration.
Collapse
Affiliation(s)
- Simon Brayford
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elizabeth M Haynes
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - James E Bear
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
77
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
78
|
Heissler SM, Sellers JR. Various Themes of Myosin Regulation. J Mol Biol 2016; 428:1927-46. [PMID: 26827725 DOI: 10.1016/j.jmb.2016.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
Abstract
Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA.
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, MD 20892-8015, USA
| |
Collapse
|
79
|
A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Sci Rep 2016; 6:19816. [PMID: 26804624 PMCID: PMC4726228 DOI: 10.1038/srep19816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022] Open
Abstract
The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development.
Collapse
|
80
|
Robaszkiewicz K, Ostrowska Z, Marchlewicz K, Moraczewska J. Tropomyosin isoforms differentially modulate the regulation of actin filament polymerization and depolymerization by cofilins. FEBS J 2015; 283:723-37. [DOI: 10.1111/febs.13626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Zofia Ostrowska
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Kamila Marchlewicz
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology; Faculty of Natural Sciences; Kazimierz Wielki University in Bydgoszcz; Poland
| |
Collapse
|
81
|
Lim CY, Han W. Tropomodulin3 as the link between insulin-activated AKT2 and cortical actin remodeling in preparation of GLUT4 exocytosis. BIOARCHITECTURE 2015; 4:210-4. [PMID: 26280982 DOI: 10.1080/19490992.2015.1031949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is well established that insulin-induced remodeling of actin filaments into a cortical mesh is required for insulin-stimulated GLUT4 exocytosis. Akt2 and its downstream effectors play a pivotal role in mediating the translocation and membrane fusion of GLUT4-storage vesicle (GSV). However, the direct downstream effector underlying the event of cortical actin reorganization has not been elucidated. In a recent study in Nature Communications, (1) Lim et al identify Tropomodulin3 (Tmod3) as a downstream target of the Akt2 kinase and describe the role of this pointed-end actin-capping protein in regulating insulin-dependent exocytosis of GSVs in adipocytes through the remodeling of the cortical actin network. Phosphorylation of Tmod3 by Akt2 on Ser71 modulates insulin-induced actin remodeling, a key step for GSV fusion with the plasma membrane (PM). Furthermore, the authors establish Tm5NM1 (Tpm3.1 in new nomenclature) (2) as the cognate tropomyosin partner of Tmod3, and an essential role of Tmod3-Tm5NM1 interaction for GSV exocytosis and glucose uptake. This study elucidates a novel effector of Akt2 that provides a direct mechanistic link between Akt2 signaling and actin reorganization essential for vesicle fusion, and suggests that a subset of actin filaments with specific molecular compositions may be dedicated for the process of vesicle fusion.
Collapse
Affiliation(s)
- Chun-Yan Lim
- a Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium ; Agency for Science; Technology and Research ; Singapore , Republic of Singapore
| | | |
Collapse
|
82
|
Jang WI, Jo YJ, Kim HC, Jia JL, Namgoong S, Kim NH. Non-muscle tropomyosin (Tpm3) is crucial for asymmetric cell division and maintenance of cortical integrity in mouse oocytes. Cell Cycle 2015; 13:2359-69. [PMID: 25483187 DOI: 10.4161/cc.29333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.
Collapse
Affiliation(s)
- Woo-In Jang
- a Department of Animal Sciences; Chungbuk National University; Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
83
|
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128:2965-74. [PMID: 26240174 DOI: 10.1242/jcs.172502] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.
Collapse
Affiliation(s)
- Peter W Gunning
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Daniel P Mulvihill
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
84
|
Kee AJ, Yang L, Lucas CA, Greenberg MJ, Martel N, Leong GM, Hughes WE, Cooney GJ, James DE, Ostap EM, Han W, Gunning PW, Hardeman EC. An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 2015; 16:691-711. [PMID: 25783006 PMCID: PMC4945106 DOI: 10.1111/tra.12282] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
Collapse
Affiliation(s)
- Anthony J. Kee
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Lingyan Yang
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Michael J. Greenberg
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Nick Martel
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
| | - Gary M. Leong
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
- Department of Paediatric Endocrinology and DiabetesMater Children's HospitalSouth BrisbaneQLD4010Australia
| | - William E. Hughes
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Gregory J. Cooney
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular BioscienceUniversity of SydneySydneyNSW2006Australia
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Weiping Han
- Singapore Bioimaging ConsortiumAgency for Science, Technology and Research (A*STAR)Singapore138667Singapore
| | - Peter W. Gunning
- Oncology Research UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| |
Collapse
|
85
|
Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015; 128:2009-19. [DOI: 10.1242/jcs.165563] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity.
Collapse
Affiliation(s)
- Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Shane Whitaker
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Popp
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| |
Collapse
|
86
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
87
|
Goins LM, Mullins RD. A novel tropomyosin isoform functions at the mitotic spindle and Golgi in Drosophila. Mol Biol Cell 2015; 26:2491-504. [PMID: 25971803 PMCID: PMC4571303 DOI: 10.1091/mbc.e14-12-1619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/05/2015] [Indexed: 12/28/2022] Open
Abstract
Most eukaryotic cells express multiple isoforms of the actin-binding protein tropomyosin that help construct a variety of cytoskeletal networks. Only one nonmuscle tropomyosin (Tm1A) has previously been described in Drosophila, but developmental defects caused by insertion of P-elements near tropomyosin genes imply the existence of additional, nonmuscle isoforms. Using biochemical and molecular genetic approaches, we identified three tropomyosins expressed in Drosophila S2 cells: Tm1A, Tm1J, and Tm2A. The Tm1A isoform localizes to the cell cortex, lamellar actin networks, and the cleavage furrow of dividing cells--always together with myosin-II. Isoforms Tm1J and Tm2A colocalize around the Golgi apparatus with the formin-family protein Diaphanous, and loss of either isoform perturbs cell cycle progression. During mitosis, Tm1J localizes to the mitotic spindle, where it promotes chromosome segregation. Using chimeras, we identified the determinants of tropomyosin localization near the C-terminus. This work 1) identifies and characterizes previously unknown nonmuscle tropomyosins in Drosophila, 2) reveals a function for tropomyosin in the mitotic spindle, and 3) uncovers sequence elements that specify isoform-specific localizations and functions of tropomyosin.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA 94158
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
88
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
89
|
Clayton JE, Pollard LW, Murray GG, Lord M. Myosin motor isoforms direct specification of actomyosin function by tropomyosins. Cytoskeleton (Hoboken) 2015; 72:131-45. [PMID: 25712463 DOI: 10.1002/cm.21213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 11/08/2022]
Abstract
Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in nonmuscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting nonprocessive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating nonmuscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs.
Collapse
Affiliation(s)
- Joseph E Clayton
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | | | | | | |
Collapse
|
90
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
91
|
Caldwell BJ, Lucas C, Kee AJ, Gaus K, Gunning PW, Hardeman EC, Yap AS, Gomez GA. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken) 2015; 71:663-76. [PMID: 25545457 DOI: 10.1002/cm.21202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023]
Abstract
Epithelial cells generate contractile forces at their cell-cell contacts. These are concentrated at the specialized apical junction of the zonula adherens (ZA), where a ring of stabilized E-cadherin lies adjacent to prominent actomyosin bundles. Coupling of adhesion and actomyosin contractility yields tension in the junction. The biogenesis of junctional contractility requires actin assembly at the ZA as well as the recruitment of nonmuscle myosin II, but the molecular regulators of these processes are not yet fully understood. We now report a role for tropomyosins 5NM1 (Tm5NM1) and 5NM2 (Tm5NM2) in their generation. Both these tropomyosin isoforms were found at the ZA and their depletion by RNAi or pharmacological inhibition reduced both F-actin and myosin II content at the junction. Photoactivation analysis revealed that the loss of F-actin was attributable to a decrease in filament stability. These changes were accompanied by a decrease in E-cadherin content at junctions. Ultimately, both long-term depletion of Tm5NM1/2 and acute inhibition with drugs caused junctional tension to be reduced. Thus these tropomyosin isoforms are novel contributors to junctional contractility and integrity.
Collapse
Affiliation(s)
- Benjamin J Caldwell
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
93
|
Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun 2015; 6:5951. [PMID: 25575350 PMCID: PMC4354152 DOI: 10.1038/ncomms6951] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022] Open
Abstract
Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.
Collapse
|
94
|
Hook J, Lemckert F, Schevzov G, Fath T, Gunning P. Functional identity of the gamma tropomyosin gene: Implications for embryonic development, reproduction and cell viability. BIOARCHITECTURE 2014; 1:49-59. [PMID: 21866263 DOI: 10.4161/bioa.1.1.15172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 01/15/2023]
Abstract
The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, βTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80-100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function.
Collapse
Affiliation(s)
- Jeff Hook
- Department of Pharmacology The School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | | | | | |
Collapse
|
95
|
O'Neill GM. Scared stiff: Stabilizing the actin cytoskeleton to stop invading cancer cells in their tracks. BIOARCHITECTURE 2014; 1:29-31. [PMID: 21866259 DOI: 10.4161/bioa.1.1.14665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/28/2010] [Indexed: 01/29/2023]
Abstract
In recent years the concept of plasticity between invasion modes used by individual cancer cells has been gaining increasing interest in the field. Individually invading tumour cells can be divided into those that use a mesenchymal invasion mode, those that use "amoeboid" invasion and those that can switch between the two modes. The morphological distinctions between these different modes of invasion suggest that the actin cytoskeleton is likely to be a major contributor to the plasticity of cancer cell invasion mechanisms. We have recently investigated this idea by manipulating expression of Tm5NM1, one isoform of the tropomyosin family of actin-associating proteins. In a novel finding, we discovered that stabilizing the actin cytoskeleton via elevated expression of Tm5NM1 specifically inhibits mesenchymal-type cancer cell invasion, without causing transition to "amoeboid" motility-thus stopping the invading cancer cells in their tracks. The present perspective discusses our recent data in the context of current understanding of invasion plasticity and considers how stabilizing actin filaments may inhibit the mesenchymal invasion mode.
Collapse
Affiliation(s)
- Geraldine M O'Neill
- Children's Cancer Research Unit; Kids Research Institute; The Children's Hospital at Westmead; Discipline of Paediatrics and Child Health; University of Sydney; Sydney, Australia
| |
Collapse
|
96
|
Masedunskas A, Appaduray M, Hardeman EC, Gunning PW. What makes a model system great? INTRAVITAL 2014. [DOI: 10.4161/intv.26287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
97
|
Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. BIOARCHITECTURE 2014; 2:75-87. [PMID: 22880146 PMCID: PMC3414384 DOI: 10.4161/bioa.20975] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments.
Collapse
Affiliation(s)
- Melissa Desouza
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | |
Collapse
|
98
|
Guven K, Gunning P, Fath T. TPM3 and TPM4 gene products segregate to the postsynaptic region of central nervous system synapses. BIOARCHITECTURE 2014; 1:284-289. [PMID: 22545181 PMCID: PMC3337131 DOI: 10.4161/bioa.1.6.19336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synaptic function in the central nervous system (CNS) is highly dependent on a dynamic actin cytoskeleton in both the pre- and the postsynaptic compartment. Remodelling of the actin cytoskeleton is controlled by tropomyosins, a family of actin-associated proteins which define distinct actin filament populations. Here we show that TPM3 and TPM4 gene products localize to the postsynaptic region in mouse hippocampal neurons. Furthermore our data confirm previous findings of isoform segregation to the pre- and postsynaptic compartments at CNS synapses. These data provide fundamental insights in the formation of functionally distinct actin filament populations at the pre- and post-synapse.
Collapse
|
99
|
Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol 2014; 34:4436-46. [PMID: 25288639 DOI: 10.1128/mcb.00796-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.
Collapse
|
100
|
Trendowski M. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochim Biophys Acta Rev Cancer 2014; 1846:599-616. [PMID: 25286320 DOI: 10.1016/j.bbcan.2014.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 02/06/2023]
Abstract
Although cytoskeletal-directed agents have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of neoplastic cells, they are all microtubule-based drugs, and there has yet to be any microfilament- or intermediate filament-directed agents approved for clinical use. There are many inherent differences between the cytoskeletal networks of malignant and normal cells, providing an ideal target to attain preferential damage. Further, numerous microfilament-directed agents, and an intermediate filament-directed agent of particular interest (withaferin A) have demonstrated in vitro and in vivo efficacy, suggesting that cytoskeletal filaments may be exploited to supplement chemotherapeutic approaches currently used in the clinical setting. Therefore, this review is intended to expose academics and clinicians to the tremendous variety of cytoskeletal filament-directed agents that are currently available for further chemotherapeutic evaluation. The mechanisms by which microfilament directed- and intermediate filament-directed agents damage malignant cells are discussed in detail in order to establish how the drugs can be used in combination with each other, or with currently approved chemotherapeutic agents to generate a substantial synergistic attack, potentially establishing a new paradigm of chemotherapeutic agents.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|