51
|
Cheng MJ, Wu YY, Zeng H, Zhang TH, Hu YX, Liu SY, Cui RQ, Hu CX, Zou QM, Li CC, Ye WC, Huang W, Wang L. Asymmetric total synthesis of polycyclic xanthenes and discovery of a WalK activator active against MRSA. Nat Commun 2024; 15:5879. [PMID: 38997253 PMCID: PMC11245619 DOI: 10.1038/s41467-024-49629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
The development of new antibiotics continues to pose challenges, particularly considering the growing threat of multidrug-resistant Staphylococcus aureus. Structurally diverse natural products provide a promising source of antibiotics. Herein, we outline a concise approach for the collective asymmetric total synthesis of polycyclic xanthene myrtucommulone D and five related congeners. The strategy involves rapid assembly of the challenging benzopyrano[2,3-a]xanthene core, highly diastereoselective establishment of three contiguous stereocenters through a retro-hemiketalization/double Michael cascade reaction, and a Mitsunobu-mediated chiral resolution approach with high optical purity and broad substrate scope. Quantum mechanical calculations provide insight into stereoselective construction mechanism of the three contiguous stereocenters. Additionally, this work leads to the discovery of an antibacterial agent against both drug-sensitive and drug-resistant S. aureus. This compound operates through a unique mechanism that promotes bacterial autolysis by activating the two-component sensory histidine kinase WalK. Our research holds potential for future antibacterial drug development.
Collapse
Affiliation(s)
- Min-Jing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Yi Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, P. R. China
| | - Tian-Hong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Xia Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shi-Yi Liu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Rui-Qin Cui
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chun-Xia Hu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, P. R. China.
| | - Chuang-Chuang Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China.
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China.
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
52
|
Krysztopa-Grzybowska K, Lach J, Polak M, Strapagiel D, Dziadek J, Olszewski M, Zasada AA, Darlińska A, Lutyńska A, Augustynowicz-Kopeć E. The whole genome sequence of Polish vaccine strain Mycobacterium bovis BCG Moreau. Microbiol Spectr 2024; 12:e0425923. [PMID: 38757975 PMCID: PMC11237378 DOI: 10.1128/spectrum.04259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.
Collapse
Affiliation(s)
- Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Mycobacterium Genetics and Physiology Unit, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aniela Darlińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
53
|
Gianecini RA, Cipolla L, Rocca F, Campos J, Poklepovich T, Prieto M. [Molecular characterization of Listeria monocytogenes isolates from human and food sources in Argentina, 2018-2023]. Rev Argent Microbiol 2024; 56:329-335. [PMID: 38834434 DOI: 10.1016/j.ram.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 06/06/2024] Open
Abstract
Human listeriosis is an infectious disease caused by Listeria monocytogenes. The invasive form of this disease leads to a high rate of hospitalizations and fatality. The main mode of transmission is through contaminated ready-to-eat foods such as dairy, vegetables and meat products. The knowledge of the diversity and population dynamics of isolates collected from human and food sources is essential for the detection of clusters and the identification of common sites of infection. The aim of this study was the molecular characterization of L. monocytogenes isolates in Argentina. We sequenced a total of 63 isolates, 35 from human and 28 from food sources, collected between 2018 and 2023. Our genomic study divided the isolates into two lineages, four serogroups, 17 sequence types and 15 clonal complexes (CCs). The hypervirulent clone CC1 (lineage I; serogroup IVb) predominated in human and food samples. The phylogenomic analysis showed a high and possible epidemiological relationship between isolates from human and/or food sources, suggesting the presence of transmission chains in our country. These findings highlight the need to strengthen genomic surveillance of L. monocytogenes in Argentina. The identification of geographic distribution and characteristics of predominant and emerging clones from human and food sources might help to focus action plans and public health policies better directed at the control and prevention of listeriosis.
Collapse
Affiliation(s)
- Ricardo Ariel Gianecini
- Servicio de Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas - ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina.
| | - Lucía Cipolla
- Servicio de Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas - ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Rocca
- Servicio de Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas - ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Josefina Campos
- Unidad de Genómica y Bioinformática, ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Poklepovich
- Unidad de Genómica y Bioinformática, ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Prieto
- Servicio de Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas - ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
54
|
Ercole TG, Kava VM, Petters-Vandresen DAL, Ribeiro RA, Hungria M, Galli LV. Unveiling Agricultural Biotechnological Prospects: The Draft Genome Sequence of Stenotrophomonas geniculata LGMB417. Curr Microbiol 2024; 81:247. [PMID: 38951210 DOI: 10.1007/s00284-024-03784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.
Collapse
Affiliation(s)
- Tairine Graziella Ercole
- Postgraduate Program in Genetics, Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| | - Vanessa Merlo Kava
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Desirrê Alexia Lourenço Petters-Vandresen
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | | | - Lygia Vitoria Galli
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
55
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
56
|
Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, Davis BC, Zhang L, Vikesland PJ, Pruden A. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nat Commun 2024; 15:5412. [PMID: 38926391 PMCID: PMC11208604 DOI: 10.1038/s41467-024-49742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.
Collapse
Affiliation(s)
- Connor L Brown
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA
| | | | | | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | | | - Benjamin C Davis
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, USA
| | - Liqing Zhang
- Dept. of Computer Science, Virginia Tech, Blacksburg, USA
| | - Peter J Vikesland
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| | - Amy Pruden
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
57
|
Wu CS, Wang RJ, Chaw SM. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol 2024; 22:140. [PMID: 38915079 PMCID: PMC11197197 DOI: 10.1186/s12915-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
58
|
Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane-transforming microbial consortium. Appl Environ Microbiol 2024; 90:e0073224. [PMID: 38819127 PMCID: PMC11218628 DOI: 10.1128/aem.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
59
|
Fonseca PM, Robe LJ, Carvalho TL, Loreto ELS. Characterization of the chemoreceptor repertoire of a highly specialized fly with comparisons to other Drosophila species. Genet Mol Biol 2024; 47:e20220383. [PMID: 38885260 PMCID: PMC11182316 DOI: 10.1590/1678-4685-gmb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.
Collapse
Affiliation(s)
- Pedro Mesquita Fonseca
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Tuane Letícia Carvalho
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| |
Collapse
|
60
|
Choi BI, Fontes Noronha M, Kaindl J, Wolfe AJ. Complete genome sequences of Aerococcus loyolae ATCC TSD-300 T, Aerococcus mictus ATCC TSD-301 T, and Aerococcus tenax ATCC TSD-302 T. Microbiol Resour Announc 2024; 13:e0015624. [PMID: 38651909 PMCID: PMC11237779 DOI: 10.1128/mra.00156-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Previously identified under the single designation of Aerococcus urinae, three distinct taxonomic species have been distinguished as Aerococcus loyolae, Aerococcus mictus, and Aerococcus tenax. Here, we present the complete genome sequences of the type strains of these species assembled via a combination of short-read and long-read sequencing techniques.Registered at ClinicalTrials.gov (NCT01166438).
Collapse
Affiliation(s)
- Brian I. Choi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jacob Kaindl
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
61
|
Yamaguchi T, Furuno K, Komori K, Abe T, Sato T, Ogihara S, Aoki K, Ishii Y, Tateda K. Evolutionary dynamics of the novel ST22-PT methicillin-resistant Staphylococcus aureus clone co-harbouring Panton-Valentine leucocidin and duplicated toxic shock syndrome toxin 1 genes. Clin Microbiol Infect 2024; 30:779-786. [PMID: 38408643 DOI: 10.1016/j.cmi.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Globally, the isolation of community-associated methicillin-resistant Staphylococcus aureus (MRSA) harbouring both the Panton-Valentine leucocidin (PVL) and toxic shock syndrome toxin 1 (TSST-1) genes is rare. However, we encountered an outbreak of the ST22-PT clone exhibiting this phenotype in Japan. Notably, the TSST-1 gene was duplicated in most of the strains. This study aimed to elucidate the mechanisms underlying this gene duplication. METHODS A total of 90 MRSA isolates were collected from the skin of outpatients in Fukuoka City, Japan, between 2017 and 2019. Whole-genome sequencing was performed on MRSA strains that were PVL and TSST-1 positive. RESULTS A total of 43 (47.8%) strains produced TSST-1, 20 (22.2%) produced PVL, and 16 (17.8%) produced both. Fifteen isolates were classified as ST22/SCCmec type IVa (ST22-PT clone) and one as ST1/SCCmec type V (ST1-PT clone). Three distinct ST22-PT clones were identified: Fukuoka clone I (one PVL gene and one TSST-1 gene), Fukuoka clone II (addition of a TSST-1 gene to Fukuoka clone I), and Fukuoka clone III (marked by a chromosomal inversion in a large region from Fukuoka clone II). DISCUSSION Fukuoka clone I may have integrated a novel pathogenicity island bearing the TSST-1 gene, leading to the emergence of Fukuoka clone II with a duplicated TSST-1 gene. This duplication subsequently instigated a chromosomal inversion in a large region owing to the homologous sequence surrounding TSST-1, giving rise to Fukuoka clone III. These findings provide crucial insights into the genetic evolution of MRSA.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.
| | - Kenji Furuno
- Department of General Pediatrics & Emergency Medicine, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tomoko Abe
- Department of Clinical Laboratory, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro Sato
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan; Department of General Medicine and Emergency Care, Toho University Omori Medical Center, Tokyo, Japan
| | - Shinji Ogihara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
62
|
Zhang Z, Xiao J, Wang H, Yang C, Huang Y, Yue Z, Chen Y, Han L, Yin K, Lyu A, Fang X, Zhang L. Exploring high-quality microbial genomes by assembling short-reads with long-range connectivity. Nat Commun 2024; 15:4631. [PMID: 38821971 PMCID: PMC11143213 DOI: 10.1038/s41467-024-49060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/17/2024] [Indexed: 06/02/2024] Open
Abstract
Although long-read sequencing enables the generation of complete genomes for unculturable microbes, its high cost limits the widespread adoption of long-read sequencing in large-scale metagenomic studies. An alternative method is to assemble short-reads with long-range connectivity, which can be a cost-effective way to generate high-quality microbial genomes. Here, we develop Pangaea, a bioinformatic approach designed to enhance metagenome assembly using short-reads with long-range connectivity. Pangaea leverages connectivity derived from physical barcodes of linked-reads or virtual barcodes by aligning short-reads to long-reads. Pangaea utilizes a deep learning-based read binning algorithm to assemble co-barcoded reads exhibiting similar sequence contexts and abundances, thereby improving the assembly of high- and medium-abundance microbial genomes. Pangaea also leverages a multi-thresholding algorithm strategy to refine assembly for low-abundance microbes. We benchmark Pangaea on linked-reads and a combination of short- and long-reads from simulation data, mock communities and human gut metagenomes. Pangaea achieves significantly higher contig continuity as well as more near-complete metagenome-assembled genomes (NCMAGs) than the existing assemblers. Pangaea also generates three complete and circular NCMAGs on the human gut microbiomes.
Collapse
Grants
- This research was partially supported by the Young Collaborative Research Grant (C2004-23Y, L.Z.), HMRF (11221026, L.Z.), the open project of BGI-Shenzhen, Shenzhen 518000, China (BGIRSZ20220012, L.Z.), the Hong Kong Research Grant Council Early Career Scheme (HKBU 22201419, L.Z.), HKBU Start-up Grant Tier 2 (RC-SGT2/19-20/SCI/007, L.Z.), HKBU IRCMS (No. IRCMS/19-20/D02, L.Z.).
- This research was partially supported by the open project of BGI-Shenzhen, Shenzhen 518000, China (BGIRSZ20220014, KJ.Y.).
- The study were partially supported by the Science Technology and Innovation Committee of Shenzhen Municipality, China (SGDX20190919142801722, XD.F.),
Collapse
Affiliation(s)
- Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Jin Xiao
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Hongbo Wang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | | | - Zhen Yue
- BGI Research, Sanya, 572025, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd (KMHD), Shenzhen, China
| | - Kejing Yin
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaodong Fang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Sanya, 572025, China
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd (KMHD), Shenzhen, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
63
|
Zongo PD, Cabanel N, Royer G, Depardieu F, Hartmann A, Naas T, Glaser P, Rosinski-Chupin I. An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Nat Commun 2024; 15:4093. [PMID: 38750030 PMCID: PMC11096173 DOI: 10.1038/s41467-024-48219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.
Collapse
Affiliation(s)
- Pengdbamba Dieudonné Zongo
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Paris, France
- Université Paris Cité, Paris, France
| | - Nicolas Cabanel
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Guilhem Royer
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Florence Depardieu
- Université Paris Cité, Paris, France
- Synthetic Biology Unit, Institut Pasteur, Paris, France
| | - Alain Hartmann
- UMR AgroEcologie 1347, INRAe, Université Bourgogne Franche-Comté, Dijon, France
| | - Thierry Naas
- Team ReSIST, INSERM UMR 1184, Paris-Saclay University, Le Kremlin-Bicêtre, France
- Department of Bacteriology-Hygiene, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Isabelle Rosinski-Chupin
- Ecology and Evolution of Antibiotic Resistance Unit, Institut Pasteur, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
64
|
Lamichhane J, Choi BI, Stegman N, Fontes Noronha M, Wolfe AJ. Macrolide Resistance in the Aerococcus urinae Complex: Implications for Integrative and Conjugative Elements. Antibiotics (Basel) 2024; 13:433. [PMID: 38786161 PMCID: PMC11117264 DOI: 10.3390/antibiotics13050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The recognition of the Aerococcus urinae complex (AUC) as an emerging uropathogen has led to growing concerns due to a limited understanding of its disease spectrum and antibiotic resistance profiles. Here, we investigated the prevalence of macrolide resistance within urinary AUC isolates, shedding light on potential genetic mechanisms. Phenotypic testing revealed a high rate of macrolide resistance: 45%, among a total of 189 urinary AUC isolates. Genomic analysis identified integrative and conjugative elements (ICEs) as carriers of the macrolide resistance gene ermA, suggesting horizontal gene transfer as a mechanism of resistance. Furthermore, comparison with publicly available genomes of related pathogens revealed high ICE sequence homogeneity, highlighting the potential for cross-species dissemination of resistance determinants. Understanding mechanisms of resistance is crucial for developing effective surveillance strategies and improving antibiotic use. Furthermore, the findings underscore the importance of considering the broader ecological context of resistance dissemination, emphasizing the need for community-level surveillance to combat the spread of antibiotic resistance within the urinary microbiome.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Brian I. Choi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Natalie Stegman
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA (M.F.N.)
| |
Collapse
|
65
|
Żur-Pińska J, Sharma V, Hay AG. Draft genome sequences of five Stenotrophomonas indicatrix strains isolated from soil. Microbiol Resour Announc 2024; 13:e0065623. [PMID: 38563745 PMCID: PMC11080528 DOI: 10.1128/mra.00656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Here, we present genome sequences of five Stenotrophomonas indicatrix strains, isolated from agricultural soil. Stenotrophomonas strains are commonly associated with the rhizosphere and are well-known for their ability to degrade xenobiotics. Yet, to date, knowledge about S. indicatrix is limited.
Collapse
Affiliation(s)
- Joanna Żur-Pińska
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vrinda Sharma
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
66
|
Huang W, Tang K, Chen C, Arrowood MJ, Chen M, Guo Y, Li N, Roellig DM, Feng Y, Xiao L. Sequence introgression from exogenous lineages underlies genomic and biological differences among Cryptosporidium parvum IOWA lines. WATER RESEARCH 2024; 254:121333. [PMID: 38402753 PMCID: PMC10994760 DOI: 10.1016/j.watres.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Chengyi Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
67
|
Eckstrand CD, Torrevillas BK, Wolking RM, Bradway DS, Warg JV, Clayton RD, Williams LB, Pessier AP, Reno JL, McMenamin-Snekvik KM, Thompson J, Baszler T, Snekvik KR. Investigation of laboratory methods for characterization of aquatic viruses in fish infected experimentally with infectious salmon anemia virus. J Vet Diagn Invest 2024; 36:319-328. [PMID: 37203453 PMCID: PMC11110770 DOI: 10.1177/10406387231173332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.
Collapse
Affiliation(s)
- Chrissy D. Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Brandi K. Torrevillas
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Daniel S. Bradway
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Janet V. Warg
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Richard D. Clayton
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Laura B. Williams
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Allan P. Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Joetta Lynn Reno
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | | | - Jim Thompson
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Timothy Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Kevin R. Snekvik
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
68
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 2024; 56:1018-1031. [PMID: 38693345 PMCID: PMC11096116 DOI: 10.1038/s41588-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Zhejiang Lab, Hangzhou, China
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Yunnan, China
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jaccoline M S Zegers
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora', Málaga, Spain
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Jeffrey P Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University, Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg and Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xiyin Wang
- North China University of Science and Technology, Tangshan, China
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences, Goettingen, Germany.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
69
|
Park S, An B, Park S. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae). BMC PLANT BIOLOGY 2024; 24:303. [PMID: 38644497 PMCID: PMC11034061 DOI: 10.1186/s12870-024-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit β (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
70
|
Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, Delgado-Iribarren A, Estrada V, García C, Molero F, Sánchez-Mora P, Torres M, Vázquez A, Galán JC, Torres I, Causse Del Río M, Merino-Diaz L, López M, Galar A, Cardeñoso L, Gutiérrez A, Loras C, Escribano I, Alvarez-Argüelles ME, Del Río L, Simón M, Meléndez MA, Camacho J, Herrero L, Jiménez P, Navarro-Rico ML, Jado I, Giannetti E, Kuhn JH, Sanchez-Lockhart M, Di Paola N, Kugelman JR, Guerra S, García-Sastre A, Cuesta I, Sánchez-Seco MP, Palacios G. Monkeypox virus genomic accordion strategies. Nat Commun 2024; 15:3059. [PMID: 38637500 PMCID: PMC11026394 DOI: 10.1038/s41467-024-46949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.
Collapse
Affiliation(s)
- Sara Monzón
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sarai Varona
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832, Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Vidal-Freire
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Angel Zaballos
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | | | - Vicente Estrada
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Cristina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Montserrat Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan-Carlos Galán
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ignacio Torres
- Servicio de Microbiología, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, 46010, Valencia, Spain
| | - Manuel Causse Del Río
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - Laura Merino-Diaz
- Unidad Clínico de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Marcos López
- Servicio de Microbiología y Parasitología, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
| | - Alicia Galar
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006, Madrid, Spain
| | - Almudena Gutiérrez
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Cristina Loras
- Servicio de Microbiología, Hospital General y Universitario, 13005, Ciudad Real, Spain
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | | | | | - María Simón
- Servicio de Microbiología, Hospital Central de la Defensa "Gómez Ulla", 28947, Madrid, Spain
| | - María Angeles Meléndez
- Servicio de Microbiología y Parasitología, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Navarro-Rico
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Jado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elaina Giannetti
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, 21702, USA
| | - Mariano Sanchez-Lockhart
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Nicholas Di Paola
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Jeffrey R Kugelman
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Susana Guerra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departmento de Medicina Preventiva, Salud Publica y Microbiología, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isabel Cuesta
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maripaz P Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
71
|
Kaewkla O, Perkins M, Thamchaipenet A, Saijuntha W, Sukpanoa S, Suriyachadkun C, Chamroensaksri N, Chumroenphat T, Franco CMM. Description of Streptomyces naphthomycinicus sp. nov., an endophytic actinobacterium producing naphthomycin A and its genome insight for discovering bioactive compounds. Front Microbiol 2024; 15:1353511. [PMID: 38694805 PMCID: PMC11061393 DOI: 10.3389/fmicb.2024.1353511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Endophytic actinobacteria are a group of bacteria living inside plant tissue without harmful effects, and benefit the host plant. Many can inhibit plant pathogens and promote plant growth. This study aimed to identify a strain of Streptomyces as a novel species and study its antibiotics production. An endophytic actinobacterium, strain TML10T was isolated from a surface-sterilized leaf of a Thai medicinal plant (Terminalia mucronata Craib and Hutch). As a result of a polyphasic taxonomy study, strain TML10T was identified as a member of the genus Streptomyces. Strain TML10T was an aerobic actinobacterium with well-developed substrate mycelia with loop spore chains and spiny surface. Chemotaxonomic data, including cell wall components, major menaquinones, and major fatty acids, confirmed the affiliation of strain TML10T to the genus Streptomyces. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with a genome comparison study, allowed the genotypic and phenotypic differentiation of strain TML10T and the closest related type strains. The digital DNA-DNA hybridization (dDDH), Average nucleotide identity Blast (ANIb), and ANIMummer (ANIm) values between strain TML10T and the closest type strain, Streptomyces musisoli CH5-8T were 38.8%, 88.5%, and 90.8%, respectively. The name proposed for the new species is Streptomyces naphthomycinicus sp. nov. (TML10T = TBRC 15050T = NRRL B-65638T). Strain TML10T was further studied for liquid and solid-state fermentation of antibiotic production. Solid-state fermentation with cooked rice provided the best conditions for antibiotic production against methicillin-resistant Staphylococcus aureus. The elucidation of the chemical structures from this strain revealed a known antimicrobial agent, naphthomycin A. Mining the genome data of strain TML10T suggested its potential as a producer of antbiotics and other valuable compounds such as ε-Poly-L-lysine (ε-PL) and arginine deiminase. Strain TML10T contains the arcA gene encoding arginine deiminase and could degrade arginine in vitro.
Collapse
Affiliation(s)
- Onuma Kaewkla
- Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham, Thailand
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mike Perkins
- Deparment of Chemistry, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Weerachai Saijuntha
- Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham, Thailand
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Sudarat Sukpanoa
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitcha Chamroensaksri
- National Biobank of Thailand (NBT), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Theeraphan Chumroenphat
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | | |
Collapse
|
72
|
Mulay SA, Hahn CR, Klingeman DM, Elshahed MS, Youssef NH, Podar M. Metagenomic sequencing of a Patescibacteria-containing enrichment from Zodletone spring in Oklahoma, USA. Microbiol Resour Announc 2024; 13:e0011424. [PMID: 38497626 PMCID: PMC11008151 DOI: 10.1128/mra.00114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
An enrichment of sulfidic sediments from Zodletone spring was sequenced as a metagenome. Draft genomes representing Cloacimonadota, Deltabacterota, Firmicutes, and Patescibacteria were binned and annotated and will aid functional genomics and cultivation efforts.
Collapse
Affiliation(s)
- Sayali A. Mulay
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - C. Ryan Hahn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mircea Podar
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
73
|
Haedar JR, Yoshimura A, Wakimoto T. New variochelins from soil-isolated Variovorax sp. H002. Beilstein J Org Chem 2024; 20:692-700. [PMID: 38590537 PMCID: PMC10999976 DOI: 10.3762/bjoc.20.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
The soil bacterial genus Variovorax produce distinct photoreactive siderophores that may play a crucial role in the iron cycle within the rhizosphere. This study focused on exploring the natural products of the soil-isolated Variovorax sp. H002, leading to the isolation of variochelins A-E (1-5), a series of lipohexapeptide siderophores. NMR and MS/MS analyses revealed that these siderophores share a common core structure - a linear hexapeptide with β-hydroxyaspartate and hydroxamate functional groups, serving in iron-binding coordination. Three new variochelins C-E (3-5) were characterized by varied fatty acyl groups at their N-termini; notably, 4 and 5 represent the first variochelins with N-terminal unsaturated fatty acyl groups. Furthermore, the variochelin biosynthetic gene cluster was identified through draft genome sequencing and gene knockout experiments. Compounds 1-5 exhibited antimicrobial activities against Gram-negative bacteria, including several soil-isolated plant pathogens.
Collapse
Affiliation(s)
- Jabal Rahmat Haedar
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Aya Yoshimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
74
|
Eisenhofer R, Nesme J, Santos-Bay L, Koziol A, Sørensen SJ, Alberdi A, Aizpurua O. A comparison of short-read, HiFi long-read, and hybrid strategies for genome-resolved metagenomics. Microbiol Spectr 2024; 12:e0359023. [PMID: 38451230 PMCID: PMC10986573 DOI: 10.1128/spectrum.03590-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Shotgun metagenomics enables the reconstruction of complex microbial communities at a high level of detail. Such an approach can be conducted using both short-read and long-read sequencing data, as well as a combination of both. To assess the pros and cons of these different approaches, we used 22 fecal DNA extracts collected weekly for 11 weeks from two respective lab mice to study seven performance metrics over four combinations of sequencing depth and technology: (i) 20 Gbp of Illumina short-read data, (ii) 40 Gbp of short-read data, (iii) 20 Gbp of PacBio HiFi long-read data, and (iv) 40 Gbp of hybrid (20 Gbp of short-read +20 Gbp of long-read) data. No strategy was best for all metrics; instead, each one excelled across different metrics. The long-read approach yielded the best assembly statistics, with the highest N50 and lowest number of contigs. The 40 Gbp short-read approach yielded the highest number of refined bins. Finally, the hybrid approach yielded the longest assemblies and the highest mapping rate to the bacterial genomes. Our results suggest that while long-read sequencing significantly improves the quality of reconstructed bacterial genomes, it is more expensive and requires deeper sequencing than short-read approaches to recover a comparable amount of reconstructed genomes. The most optimal strategy is study-specific and depends on how researchers assess the trade-off between the quantity and quality of recovered genomes.IMPORTANCEMice are an important model organism for understanding the gut microbiome. When studying these gut microbiomes using DNA techniques, researchers can choose from technologies that use short or long DNA reads. In this study, we perform an extensive benchmark between short- and long-read DNA sequencing for studying mice gut microbiomes. We find that no one approach was best for all metrics and provide information that can help guide researchers in planning their experiments.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adam Koziol
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
75
|
Phu DH, Wongtawan T, Wintachai P, Nhung NT, Yen NTP, Carrique-Mas J, Turni C, Omaleki L, Blackall PJ, Thomrongsuwannakij T. Molecular characterization of Campylobacter spp. isolates obtained from commercial broilers and native chickens in Southern Thailand using whole genome sequencing. Poult Sci 2024; 103:103485. [PMID: 38335668 PMCID: PMC10869288 DOI: 10.1016/j.psj.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Doctoral Program in Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam
| | | | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Vietnam
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
76
|
Park S, Kwak M, Park S. Complete organelle genomes of Korean fir, Abies koreana and phylogenomics of the gymnosperm genus Abies using nuclear and cytoplasmic DNA sequence data. Sci Rep 2024; 14:7636. [PMID: 38561351 PMCID: PMC10985005 DOI: 10.1038/s41598-024-58253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change. Hybridization and reticulate evolution have been reported in the genus; therefore, multigene datasets from nuclear and cytoplasmic genomes are needed to better understand its evolutionary history. Using the Illumina NovaSeq 6000 and Oxford Nanopore Technologies (ONT) PromethION platforms, we generated complete mitochondrial (1,174,803 bp) and plastid (121,341 bp) genomes from A. koreana. The mitochondrial genome is highly dynamic, transitioning from cis- to trans-splicing and breaking conserved gene clusters. In the plastome, the ONT reads revealed two structural conformations of A. koreana. The short inverted repeats (1186 bp) of the A. koreana plastome are associated with different structural types. Transcriptomic sequencing revealed 1356 sites of C-to-U RNA editing in the 41 mitochondrial genes. Using A. koreana as a reference, we additionally produced nuclear and organelle genomic sequences from eight Abies species and generated multiple datasets for maximum likelihood and network analyses. Three sections (Balsamea, Momi, and Pseudopicea) were well grouped in the nuclear phylogeny, but the phylogenomic relationships showed conflicting signals in the mitochondrial and plastid genomes, indicating a complicated evolutionary history that may have included introgressive hybridization. The obtained data illustrate that phylogenomic analyses based on sequences from differently inherited organelle genomes have resulted in conflicting trees. Organelle capture, organelle genome recombination, and incomplete lineage sorting in an ancestral heteroplasmic individual can contribute to phylogenomic discordance. We provide strong support for the relationships within Abies and new insights into the phylogenomic complexity of this genus.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
77
|
Wannawong T, Mhuantong W, Macharoen P, Niemhom N, Sitdhipol J, Chaiyawan N, Umrung S, Tanasupawat S, Suwannarach N, Asami Y, Kuncharoen N. Comparative genomics reveals insight into the phylogeny and habitat adaptation of novel Amycolatopsis species, an endophytic actinomycete associated with scab lesions on potato tubers. FRONTIERS IN PLANT SCIENCE 2024; 15:1346574. [PMID: 38601305 PMCID: PMC11004387 DOI: 10.3389/fpls.2024.1346574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
A novel endophytic actinomycete, strain MEP2-6T, was isolated from scab tissues of potato tubers collected from Mae Fag Mai Sub-district, San Sai District, Chiang Mai Province, Thailand. Strain MEP2-6T is a gram-positive filamentous bacteria characterized by meso-diaminopimelic acid in cell wall peptidoglycan and arabinose, galactose, glucose, and ribose in whole-cell hydrolysates. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and hydroxy-phosphatidylethanolamine were the major phospholipids, of which MK-9(H6) was the predominant menaquinone, whereas iso-C16:0 and iso-C15:0 were the major cellular fatty acids. The genome of the strain was 10,277,369 bp in size with a G + C content of 71.7%. The 16S rRNA gene phylogenetic and core phylogenomic analyses revealed that strain MEP2-6T was closely related to Amycolatopsis lexingtonensis NRRL B-24131T (99.4%), A. pretoriensis DSM 44654T (99.3%), and A. eburnea GLM-1T (98.9%). Notably, strain MEP2-6T displayed 91.7%, 91.8%, and 87% ANIb and 49%, 48.8%, and 35.4% dDDH to A. lexingtonensis DSM 44653T (=NRRL B-24131T), A. eburnea GLM-1T, and A. pretoriensis DSM 44654T, respectively. Based on phenotypic, chemotaxonomic, and genomic data, strain MEP2-6T could be officially assigned to a novel species within the genus Amycolatopsis, for which the name Amycolatopsis solani sp. nov. has been proposed. The type of strain is MEP2-6T (=JCM 36309T = TBRC 17632T = NBRC 116395T). Amycolatopsis solani MEP2-6T was strongly proven to be a non-phytopathogen of potato scab disease because stunting of seedlings and necrotic lesions on potato tuber slices were not observed, and there were no core biosynthetic genes associated with the BGCs of phytotoxin-inducing scab lesions. Furthermore, comparative genomics can provide a better understanding of the genetic mechanisms that enable A. solani MEP2-6T to adapt to the plant endosphere. Importantly, the strain smBGCs accommodated 33 smBGCs encoded for several bioactive compounds, which could be beneficially applied in the fields of agriculture and medicine. Consequently, strain MEP2-6T is a promising candidate as a novel biocontrol agent and antibiotic producer.
Collapse
Affiliation(s)
- Thippawan Wannawong
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Wuttichai Mhuantong
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Enzyme Technology Research Team, Biorefinery and Bioproducts Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pipat Macharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Nantawan Niemhom
- Microbiological and Molecular Biological Laboratory, Scientific Instruments Center, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Neungnut Chaiyawan
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Sarinna Umrung
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
78
|
Zheng C, Li D, Wang Y, Wang L, Huang Y, Yao J. Risk factors and genetic characteristics of the carriage of hypervirulent and carbapenem-resistant Acinetobacter baumannii among pregnant women. Front Microbiol 2024; 15:1351722. [PMID: 38572236 PMCID: PMC10987950 DOI: 10.3389/fmicb.2024.1351722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
Background Carbapenem-resistant Acinetobacter baumannii (CRAB) and its emerging evolutionary branch toward hypervirulence have been neglected in pregnancy. Methods From September 2020 to August 2021, an active surveillance culture program encompassed 138 randomly selected pregnant women, with five subjected to sample collection at two different time points. The clinical characterization was explored through statistical analysis. Whole-genome sequencing, a Galleria mellonella infection model, and a global database were used to investigate the genetic characterization, pathogenicity, evolutionary history, and phylogenetic relationships of the isolates. Results Of the 41 CRAB isolates obtained, they were divided into four ClustersRS and an orphan pattern. ClusterRS 1 (n = 31), with eight complex types in pregnancy, was also the dominant ClusterRS globally, followed by ClusterRS 13 (n = 5), identified as hypervirulent KL49 CRAB, exhibiting phylogeographical specificity to Guangdong. A maternal carriage CRAB rate of 26.09% (36/138) was revealed, with half of the isolates representing novel complex types, prominently including CT3071, as the first KL7 isolates identified in Shenzhen. Both KL49 and KL7 isolates were most commonly found in the same participant, suggesting potential intraspecific competition as a possible reason for CRAB infection without carriers during pregnancy. The independent risk factors for carriers were revealed for the first time, including advanced maternal age, gestational diabetes mellitus, and Group B Streptococcus infection. Conclusion The significant carriage rate and enhanced virulence of CRAB during pregnancy emphasize the imperative for routine surveillance to forestall dissemination within this high-risk group, especially in Guangdong for ClusterRS 13 isolates.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
- Bacteriology and Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Yinglan Wang
- Department of Obstetrics and Gynecology, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Yuting Huang
- Bacteriology and Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
- Department of Head and Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences Shenzhen Center, Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
79
|
Sheriff EK, Andersen SE, Chatterjee A, Duerkop BA. Complete genome sequence of enterococcal phage G01. Microbiol Resour Announc 2024; 13:e0121723. [PMID: 38294211 DOI: 10.1128/mra.01217-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Here, we report the annotated genome of enterococcal phage G01. The G01 genome is 41,189 bp in length and contains 67 predicted open reading frames. Host range analysis revealed G01 can infect 28.6% (6/21) of Enterococcus faecalis strains tested and appears to not require the enterococcal phage infection protein PIPEF.
Collapse
Affiliation(s)
- Emma K Sheriff
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shelby E Andersen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
80
|
Qiu Z, Yuan L, Lian CA, Lin B, Chen J, Mu R, Qiao X, Zhang L, Xu Z, Fan L, Zhang Y, Wang S, Li J, Cao H, Li B, Chen B, Song C, Liu Y, Shi L, Tian Y, Ni J, Zhang T, Zhou J, Zhuang WQ, Yu K. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nat Commun 2024; 15:2179. [PMID: 38467684 PMCID: PMC10928208 DOI: 10.1038/s41467-024-46539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Li Yuan
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Bin Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Jie Chen
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Liyu Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Shi
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yonghong Tian
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China.
| |
Collapse
|
81
|
He D, Li Y, Yuan C, Pei X, Damaris RN, Yu H, Qian B, Liu Y, Yi B, Huang C, Zeng J. Characterization of the CMS genetic regulation through comparative complete mitochondrial genome sequencing in Nicotiana tabacum. THE PLANT GENOME 2024; 17:e20409. [PMID: 37961811 DOI: 10.1002/tpg2.20409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
Mitochondrial genomes (mitogenomes) of flowering plants vary greatly in structure and size, which can lead to frequent gene mutation, rearrangement, or recombination, then result in the cytoplasmic male sterile (CMS) mutants. In tobacco (Nicotiana tabacum), suaCMS lines are widely used in heterosis breeding; however, the related genetic regulations are not very clear. In this study, the cytological observation indicated that the pollen abortion of tobacco suaCMS(HD) occurred at the very early stage of the stamen primordia differentiation. In this study, the complete mitochondrial genomes of suaCMS(HD) and its maintainer HD were sequenced using the PacBio and Illumina Hiseq technology. The total length of the assembled mitogenomes of suaCMS(HD) and HD was 494,317 bp and 430,694 bp, respectively. Comparative analysis indicated that the expanded 64 K bases in suaCMS(HD) were mainly located in noncoding regions, and 23 and 21 big syntenic blocks (>5000 bp) were found in suaCMS(HD) and HD with a series of repeats. Electron transport chain-related genes were highly conserved in two mitogenomes, except five genes (ATP4, ATP6, COX2, CcmFC, and SDH3) with substantial substitutions. Three suaCMS(HD)-specific genes, orf261, orf291, and orf433, were screened. Sequence analysis and RT-PCR verification showed that they were unique to suaCMS(HD). Further gene location analysis and protein property prediction indicated that all the three genes were likely candidates for suaCMS(HD). This study provides new insight into understanding the suaCMS mechanism and is useful for improving tobacco breeding.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yifan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xiaoxiong Pei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | | | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bao Qian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
82
|
Ángeles-Argáiz RE, Aguirre-Beltrán LFL, Hernández-Oaxaca D, Quintero-Corrales C, Trujillo-Roldán MA, Castillo-Ramírez S, Garibay-Orijel R. Assembly collapsing versus heterozygosity oversizing: detection of homokaryotic and heterokaryotic Laccaria trichodermophora strains by hybrid genome assembly. Microb Genom 2024; 10:001218. [PMID: 38529901 PMCID: PMC10995626 DOI: 10.1099/mgen.0.001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.
Collapse
Affiliation(s)
- Rodolfo Enrique Ángeles-Argáiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91612, Mexico
| | - Luis Fernando Lozano Aguirre-Beltrán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91073, Mexico
| | - Christian Quintero-Corrales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| | - Mauricio A. Trujillo-Roldán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico, C.P. 22860, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| |
Collapse
|
83
|
Erban T, Sopko B, Klimov PB, Hubert J. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:161-181. [PMID: 38227156 DOI: 10.1007/s10493-023-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-225, 915 W State St, West Lafayette, IN, 47907, USA
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6 - Suchdol, Czechia.
| |
Collapse
|
84
|
Mardanov AV, Beletsky AV, Vasyagin EA, Tanashchuk TN, Shalamitskiy MY, Ravin NV. Complete genome sequence of Oenococcus oeni strain K19-3 isolated from grape must. Microbiol Resour Announc 2024; 13:e0098823. [PMID: 38088572 DOI: 10.1128/mra.00988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
The lactic acid bacteria Oenococcus oeni spp. are of significant interest in winemaking due to their ability to carry out malolactic fermentation, thereby improving the organoleptic properties of wine. Here we report the complete circular genome sequence of the Oenococcus oeni strain К19-3, isolated from red grape must at Crimean wineries.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| | - Egor A Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences , Yalta, Russia
| | - Maxim Yu Shalamitskiy
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences , Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| |
Collapse
|
85
|
Cortés-Martín A, Denise R, Guerin E, Stockdale SR, Draper LA, Ross RP, Shkoporov AN, Hill C. Isolation and characterization of a novel lytic Parabacteroides distasonis bacteriophage φPDS1 from the human gut. Gut Microbes 2024; 16:2298254. [PMID: 38178369 PMCID: PMC10773633 DOI: 10.1080/19490976.2023.2298254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
The human gut microbiome plays a significant role in health and disease. The viral component (virome) is predominantly composed of bacteriophages (phages) and has received significantly less attention in comparison to the bacteriome. This knowledge gap is largely due to challenges associated with the isolation and characterization of novel gut phages, and bioinformatic hurdles such as the lack of a universal phage marker gene and the absence of sufficient numbers of homologs in viral databases. Here, we describe the isolation from human feces of a novel lytic phage with siphovirus morphology, φPDS1, infecting Parabacteroides distasonis APCS2/PD, and classified within a newly proposed Sagittacolavirus genus. In silico and biological characterization of this phage is presented in this study. Key to the isolation of φPDS1 was the antibiotic-driven selective enrichment of the bacterial host in a fecal fermenter. Despite producing plaques and lacking genes associated with lysogeny, φPDS1 demonstrates the ability to coexist in liquid culture for multiple days without affecting the abundance of its host. Multiple studies have shown that changes in Parabacteroides distasonis abundance can be linked to various disease states, rendering this novel phage-host pair and their interactions of particular interest.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Rémi Denise
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Emma Guerin
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R. Stockdale
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N. Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
86
|
Caldas-Garcia GB, Santos VC, Fonseca PLC, de Almeida JPP, Costa MA, Aguiar ERGR. The Viromes of Six Ecosystem Service Provider Parasitoid Wasps. Viruses 2023; 15:2448. [PMID: 38140687 PMCID: PMC10747428 DOI: 10.3390/v15122448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 12/24/2023] Open
Abstract
Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost unexplored. Parasitoid wasps have been studied with regard to the endogenization of viral elements and the transmission of endogenous viral proteins that facilitate parasitism. However, circulating viruses are poorly characterized. Here, RNA viromes of six parasitoid wasp species are studied using public libraries of next-generation sequencing through an integrative bioinformatics pipeline. Our analyses led to the identification of 18 viruses classified into 10 families (Iflaviridae, Endornaviridae, Mitoviridae, Partitiviridae, Virgaviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Xinmoviridae, and Narnaviridae) and into the Bunyavirales order. Of these, 16 elements were described for the first time. We also found a known virus previously identified on a wasp prey which suggests viral transmission between the insects. Altogether, our results highlight the importance of virus surveillance in wasps as its service disruption can affect ecology, agriculture and pest management, impacting the economy and threatening human food security.
Collapse
Affiliation(s)
- Gabriela B. Caldas-Garcia
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Paula Luize Camargos Fonseca
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - João Paulo Pereira de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Marco Antônio Costa
- Departament of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil;
| | - Eric Roberto Guimarães Rocha Aguiar
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| |
Collapse
|
87
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
88
|
Liu K, Xie N, Wang Y, Liu X. The Utilization of Reference-Guided Assembly and In Silico Libraries Improves the Draft Genome of Clarias batrachus and Culter alburnus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:907-917. [PMID: 37661218 DOI: 10.1007/s10126-023-10248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Long-read sequencing technologies can generate highly contiguous genome assemblies compared to short-read methods. However, their higher cost often poses a significant barrier. To address this, we explore the utilization of mapping-based genome assembly and reference-guided assembly as cost-effective alternative approaches. We assess the efficacy of these approaches in improving the contiguity of Clarias batrachus and Culter alburnus draft genomes. Our findings demonstrate that employing an iterative mapping strategy leads to a reduction in assembly errors. Specifically, after three iterations, the Mismatches per 100 kbp value for the C. batrachus genome decreased from 2447.20 to 2432.67, reaching a minimum of 2422.67 after two iterations. Additionally, the N50 value for the C. batrachus genome increased from 362,143 to 1,315,126 bp, with a maximum of 1,315,403 bp after two iterations. Furthermore, we achieved Mismatches per 100 kbp values of 3.70 for the reference-guided assembly of C. batrachus and 0.34 for C. alburnus. Correspondingly, the N50 value for the C. batrachus and C. alburnus genomes increased from 362,143 bp and 3,686,385 bp to 2,026,888 bp and 43,735,735 bp, respectively. Finally, we successfully utilized the improved C. batrachus and C. alburnus genomes to compare genome studies using the combined approach of Ragout and Ragtag. Through a comprehensive comparative analysis of mapping-based and reference-guided genome assembly methods, we shed light on the specific contributions of reference-guided assembly in reducing assembly errors and improving assembly continuity and integrity. These advancements establish reference-guided assembly and the utilization of in silico libraries as a promising and suitable approach for comparative genomics studies.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Yuxi Wang
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Xinyi Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| |
Collapse
|
89
|
Simon SA, Schmidt K, Griesdorn L, Soares AR, Bornemann TLV, Probst AJ. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics 2023; 24:727. [PMID: 38041056 PMCID: PMC10693096 DOI: 10.1186/s12864-023-09853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND While genome-resolved metagenomics has revolutionized our understanding of microbial and genetic diversity in environmental samples, assemblies of short-reads often result in incomplete and/or highly fragmented metagenome-assembled genomes (MAGs), hampering in-depth genomics. Although Nanopore sequencing has increasingly been used in microbial metagenomics as long reads greatly improve the assembly quality of MAGs, the recommended DNA quantity usually exceeds the recoverable amount of DNA of environmental samples. Here, we evaluated lower-than-recommended DNA quantities for Nanopore library preparation by determining sequencing quality, community composition, assembly quality and recovery of MAGs. RESULTS We generated 27 Nanopore metagenomes using the commercially available ZYMO mock community and varied the amount of input DNA from 1000 ng (the recommended minimum) down to 1 ng in eight steps. The quality of the generated reads remained stable across all input levels. The read mapping accuracy, which reflects how well the reads match a known reference genome, was consistently high across all libraries. The relative abundance of the species in the metagenomes was stable down to input levels of 50 ng. High-quality MAGs (> 95% completeness, ≤ 5% contamination) could be recovered from metagenomes down to 35 ng of input material. When combined with publicly available Illumina reads for the mock community, Nanopore reads from input quantities as low as 1 ng improved the quality of hybrid assemblies. CONCLUSION Our results show that the recommended DNA amount for Nanopore library preparation can be substantially reduced without any adverse effects to genome recovery and still bolster hybrid assemblies when combined with short-read data. We posit that the results presented herein will enable studies to improve genome recovery from low-biomass environments, enhancing microbiome understanding.
Collapse
Affiliation(s)
- Sophie A Simon
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
| | - Katharina Schmidt
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Lea Griesdorn
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - André R Soares
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
90
|
Forth JH, Calvelage S, Fischer M, Hellert J, Sehl-Ewert J, Roszyk H, Deutschmann P, Reichold A, Lange M, Thulke HH, Sauter-Louis C, Höper D, Mandyhra S, Sapachova M, Beer M, Blome S. African swine fever virus - variants on the rise. Emerg Microbes Infect 2023; 12:2146537. [PMID: 36356059 PMCID: PMC9793911 DOI: 10.1080/22221751.2022.2146537] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.
Collapse
Affiliation(s)
- Jan H. Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Jan Hellert
- Centre for Structural System Biology (CSSB), Leibnitz-Institut für Virologie, Hamburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Hanna Roszyk
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Paul Deutschmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Adam Reichold
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Lange
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Svitlana Mandyhra
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kiev, Ukraine
| | - Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kiev, Ukraine
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany, Sandra Blome Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald – Insel Riems, Germany
| |
Collapse
|
91
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
92
|
Anuntasomboon P, Siripattanapipong S, Unajak S, Choowongkomon K, Burchmore R, Leelayoova S, Mungthin M, E-Kobon T. Identification of a unique conserved region from a kinetoplastid genome of Leishmania orientalis (formerly named Leishmania siamensis) strain PCM2 in Thailand. Sci Rep 2023; 13:19644. [PMID: 37950023 PMCID: PMC10638283 DOI: 10.1038/s41598-023-46638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mitochondrial DNAs (mtDNAs) appear in almost all eukaryotic species and are useful molecular markers for phylogenetic studies and species identification. Kinetoplast DNAs (kDNAs) are structurally complex circular mtDNA networks in kinetoplastids, divided into maxicircles and minicircles. Despite several kDNAs of many Leishmania species being examined, the kDNAs of the new species, Leishmania orientalis (formerly named Leishmania siamensis) strain PCM2, have not been explored. This study aimed to investigate the maxicircle and minicircle DNAs of L. orientalis strain PCM2 using hybrid genome sequencing technologies and bioinformatic analyses. The kDNA sequences were isolated and assembled using the SPAdes hybrid assembler from the Illumina short-read and PacBio long-read data. Circular contigs of the maxicircle and minicircle DNAs were reconstructed and confirmed by BLASTn and rKOMICs programs. The kDNA genome was annotated by BLASTn before the genome comparison and phylogenetic analysis by progressiveMauve, MAFFT, and MEGA programs. The maxicircle of L. orientalis strain PCM2 (18,215 bp) showed 99.92% similarity and gene arrangement to Leishmania enriettii strain LEM3045 maxicircle with variation in the 12s rRNA gene and divergent region. Phylogenetics of the whole sequence, coding regions, divergent regions, and 12s rRNA gene also confirmed this relationship and subgenera separation. The identified 105 classes of minicircles (402-1177 bp) were clustered monophyletically and related to the Leishmania donovani minicircles. The kinetoplast maxicircle and minicircle DNAs of L. orientalis strain PCM2 contained a unique conserved region potentially useful for specific diagnosis of L. orientalis and further exploration of this parasite population genetics in Thailand and related regions.
Collapse
Affiliation(s)
- Pornchai Anuntasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | | | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
93
|
Hikida H, Okazaki Y, Zhang R, Nguyen TT, Ogata H. A rapid genome-wide analysis of isolated giant viruses using MinION sequencing. Environ Microbiol 2023; 25:2621-2635. [PMID: 37543720 DOI: 10.1111/1462-2920.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Ruixuan Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Thi Tuyen Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
94
|
Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, Rhie A, Eichler EE, Phillippy AM, Koren S. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat Biotechnol 2023; 41:1474-1482. [PMID: 36797493 PMCID: PMC10427740 DOI: 10.1038/s41587-023-01662-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.
Collapse
Affiliation(s)
- Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, UK
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
95
|
Hubert J, Vrtala S, Sopko B, Dowd SE, He Q, Klimov PB, Harant K, Talacko P, Erban T. Predicting Blomia tropicalis allergens using a multiomics approach. Clin Transl Allergy 2023; 13:e12302. [PMID: 37876035 PMCID: PMC10542617 DOI: 10.1002/clt2.12302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The domestic mite Blomia tropicalis is a major source of allergens in tropical and subtropical regions. Despite its great medical importance, the allergome of this mite has not been sufficiently studied. Only 14 allergen groups have been identified in B. tropicalis thus far, even though early radioimmunoelectrophoresis techniques (27 uncharacterized allergen complexes) and comparative data based on 40 allergen groups officially recognized by the World Health Organization (WHO)/IUIS in domestic astigmatid mites suggest the presence of a large set of additional allergens. METHODS Here, we employ a multiomics approach to assess the allergome of B. tropicalis using genomic and transcriptomic sequence data and perform highly sensitive protein abundance quantification. FINDINGS Among the 14 known allergen groups, we confirmed 13 (one WHO/IUIS allergen, Blo t 19, was not found) and identified 16 potentially novel allergens based on sequence similarity. These data indicate that B. tropicalis shares 27 known/deduced allergen groups with pyroglyphid house dust mites (genus Dermatophagoides). Among these groups, five allergen-encoding genes are highly expressed at the transcript level: Blo t 1, Blo t 5, Blo t 21 (known), Blo t 15, and Blo t 18 (predicted). However, at the protein level, a different set of most abundant allergens was found: Blo t 2, 10, 11, 20 and 21 (mite bodies) or Blo t 3, 4, 6 and predicted Blo t 13, 14 and 36 (mite feces). INTERPRETATION We report the use of an integrated omics method to identify and predict an array of mite allergens and advanced, label-free proteomics to determine allergen protein abundance. Our research identifies a large set of novel putative allergens and shows that the expression levels of allergen-encoding genes may not be strictly correlated with the actual allergenic protein abundance in mite bodies.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research InstitutePragueCzechia
- Department of Microbiology, Nutrition and DieteticsFaculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePragueCzechia
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | | | - Scot E. Dowd
- MR DNA (Molecular Research LP)ShallowaterTexasUSA
| | - Qixin He
- Purdue UniversityLilly Hall of Life SciencesWest LafayetteIndianaUSA
| | - Pavel B. Klimov
- Purdue UniversityLilly Hall of Life SciencesWest LafayetteIndianaUSA
| | - Karel Harant
- Proteomics Core FacilityFaculty of ScienceCharles UniversityBIOCEVVestecCzechia
- Institute for Environmental StudiesFaculty of ScienceCharles UniversityPragueCzechia
| | - Pavel Talacko
- Proteomics Core FacilityFaculty of ScienceCharles UniversityBIOCEVVestecCzechia
| | | |
Collapse
|
96
|
Buessecker S, Chadwick GL, Quan ME, Hedlund BP, Dodsworth JA, Dekas AE. Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring. THE ISME JOURNAL 2023; 17:1649-1659. [PMID: 37452096 PMCID: PMC10504316 DOI: 10.1038/s41396-023-01472-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.
Collapse
Affiliation(s)
- Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | - Grayson L Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Melanie E Quan
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
97
|
Mochizuki T, Sakamoto M, Tanizawa Y, Nakayama T, Tanifuji G, Kamikawa R, Nakamura Y. A practical assembly guideline for genomes with various levels of heterozygosity. Brief Bioinform 2023; 24:bbad337. [PMID: 37798248 PMCID: PMC10555665 DOI: 10.1093/bib/bbad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 10/07/2023] Open
Abstract
Although current long-read sequencing technologies have a long-read length that facilitates assembly for genome reconstruction, they have high sequence errors. While various assemblers with different perspectives have been developed, no systematic evaluation of assemblers with long reads for diploid genomes with varying heterozygosity has been performed. Here, we evaluated a series of processes, including the estimation of genome characteristics such as genome size and heterozygosity, de novo assembly, polishing, and removal of allelic contigs, using six genomes with various heterozygosity levels. We evaluated five long-read-only assemblers (Canu, Flye, miniasm, NextDenovo and Redbean) and five hybrid assemblers that combine short and long reads (HASLR, MaSuRCA, Platanus-allee, SPAdes and WENGAN) and proposed a concrete guideline for the construction of haplotype representation according to the degree of heterozygosity, followed by polishing and purging haplotigs, using stable and high-performance assemblers: Redbean, Flye and MaSuRCA.
Collapse
Affiliation(s)
| | - Mika Sakamoto
- Genome Informatics Laboratory, National Institute of Genetics
| | | | - Takuro Nakayama
- Division of Life Sciences Center for Computational Sciences, University of Tsukuba, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science
| | | | | |
Collapse
|
98
|
Fedrová P, Hrala M, Tom N, Micenková L, Nascimento AMA, Bosák J, Šmajs D. Complete genome sequences of five Escherichia coli strains with probiotic attributes. Microbiol Resour Announc 2023; 12:e0036323. [PMID: 37548468 PMCID: PMC10508162 DOI: 10.1128/mra.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
The complete genome sequences of five Escherichia coli strains with probiotic attributes were determined, including strain A0 34/86, a component of the probiotic product Colinfant New Born, and strains H22, 582, B771, and B1172 with published probiotic potential. The size of sequenced genomes ranged from 5,092 to 5,408 kb.
Collapse
Affiliation(s)
- Pavla Fedrová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andréa M. A. Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
99
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
100
|
Maguire M, Ramachandran P, Tallent S, Mammel MK, Brown EW, Allard MW, Musser SM, González-Escalona N. Precision metagenomics sequencing for food safety: hybrid assembly of Shiga toxin-producing Escherichia coli in enriched agricultural water. Front Microbiol 2023; 14:1221668. [PMID: 37720160 PMCID: PMC10500926 DOI: 10.3389/fmicb.2023.1221668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Culture-independent metagenomic sequencing of enriched agricultural water could expedite the detection and virulotyping of Shiga toxin-producing Escherichia coli (STEC). We previously determined the limits of a complete, closed metagenome-assembled genome (MAG) assembly and of a complete, fragmented MAG assembly for O157:H7 in enriched agricultural water using long reads (Oxford Nanopore Technologies, Oxford), which were 107 and 105 CFU/ml, respectively. However, the nanopore assemblies did not have enough accuracy to be used in Single Nucleotide Polymorphism (SNP) phylogenies and cannot be used for the precise identification of an outbreak STEC strain. The present study aimed to determine the limits of detection and assembly for STECs in enriched agricultural water by Illumina MiSeq sequencing technology alone, followed by establishing the limit of hybrid assembly with nanopore long-read sequencing using three different hybrid assemblers (SPAdes, Unicycler, and OPERA-MS). We also aimed to generate a genome with enough accuracy to be used in a SNP phylogeny. The classification of MiSeq and nanopore sequencing identified the same highly abundant species. Using the totality of the MiSeq output and a precision metagenomics approach in which the E. coli reads are binned before assembly, the limit of detection and assembly of STECs by MiSeq were determined to be 105 and 107 CFU/ml, respectively. While a complete, closed MAG could not be generated at any concentration, a complete, fragmented MAG was produced using the SPAdes assembler with an STEC concentration of at least 107 CFU/ml. At this concentration, hybrid assembled contigs aligned to the nanopore-assembled genome could be accurately placed in a neighbor-joining tree. The MiSeq limit of detection and assembly was less sensitive than nanopore sequencing, which was likely due to factors including the small starting material (50 vs. 1 μg) and the dilution of the library loaded on the cartridge. This pilot study demonstrates that MiSeq sequencing requires higher coverage in precision metagenomic samples; however, with sufficient concentration, STECs can be characterized and phylogeny can be accurately determined.
Collapse
Affiliation(s)
- Meghan Maguire
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Sandra Tallent
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Food and Drug Administration, College Park, MD, United States
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Steven M. Musser
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| | - Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, United States
| |
Collapse
|