51
|
Xifró X, Miñano-Molina AJ, Saura CA, Rodríguez-Álvarez J. Ras protein activation is a key event in activity-dependent survival of cerebellar granule neurons. J Biol Chem 2014; 289:8462-72. [PMID: 24523415 DOI: 10.1074/jbc.m113.536375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal activity promotes the survival of cerebellar granule neurons (CGNs) during the postnatal development of cerebellum. CGNs that fail to receive excitatory inputs will die by apoptosis. This process could be mimicked in culture by exposing CGNs to either a physiological concentration of KCl (5 mm or K5) plus N-methyl-d-aspartate (NMDA) or to 25 mm KCl (K25). We have previously described that a 24-h exposure to NMDA (100 μm) or K25 at 2 days in vitro induced long term survival of CGNs in K5 conditions. Here we have studied the molecular mechanisms activated at 2 days in vitro in these conditions. First we showed that NMDA or K25 addition promoted a rapid stimulation of PI3K and a biphasic phosphorylation on Ser-473 of Akt, a PI3K substrate. Interestingly, we demonstrated that only the first wave of Akt phosphorylation is necessary for the NMDA- and K25-mediated survival. Additionally, we detected that both NMDA and K25 increased ERK activity with a similar time-course. Moreover, our results showed that NMDA-mediated activation of the small G-protein Ras is necessary for PI3K/Akt pathway activation, whereas Rap1 was involved in NMDA phosphorylation of ERK. On the other hand, Ras, but not Rap1, mediates K25 activation of PI3K/Akt and MEK/ERK pathways. Because neuroprotection by NMDA or K25 is mediated by Ras (and not by Rap1) activation, we propose that Ras stimulation is a crucial event in NMDA- and K25-mediated survival of CGNs through the activation of PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Xavier Xifró
- From the Institut de Neurociencies and Department of Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
52
|
Stokman G, Qin Y, Booij TH, Ramaiahgari S, Lacombe M, Dolman MEM, van Dorenmalen KMA, Teske GJD, Florquin S, Schwede F, van de Water B, Kok RJ, Price LS. Epac-Rap signaling reduces oxidative stress in the tubular epithelium. J Am Soc Nephrol 2014; 25:1474-85. [PMID: 24511123 DOI: 10.1681/asn.2013070679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activation of Rap1 by exchange protein activated by cAMP (Epac) promotes cell adhesion and actin cytoskeletal polarization. Pharmacologic activation of Epac-Rap signaling by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP during ischemia-reperfusion (IR) injury reduces renal failure and application of 8-pCPT-2'-O-Me-cAMP promotes renal cell survival during exposure to the nephrotoxicant cisplatin. Here, we found that activation of Epac by 8-pCPT-2'-O-Me-cAMP reduced production of reactive oxygen species during reoxygenation after hypoxia by decreasing mitochondrial superoxide production. Epac activation prevented disruption of tubular morphology during diethyl maleate-induced oxidative stress in an organotypic three-dimensional culture assay. In vivo renal targeting of 8-pCPT-2'-O-Me-cAMP to proximal tubules using a kidney-selective drug carrier approach resulted in prolonged activation of Rap1 compared with nonconjugated 8-pCPT-2'-O-Me-cAMP. Activation of Epac reduced antioxidant signaling during IR injury and prevented tubular epithelial injury, apoptosis, and renal failure. Our data suggest that Epac1 decreases reactive oxygen species production by preventing mitochondrial superoxide formation during IR injury, thus limiting the degree of oxidative stress. These findings indicate a new role for activation of Epac as a therapeutic application in renal injury associated with oxidative stress.
Collapse
Affiliation(s)
- Geurt Stokman
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands;
| | - Yu Qin
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Tijmen H Booij
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Sreenivasa Ramaiahgari
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | | - M Emmy M Dolman
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | | | | | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands; OcellO BV, Leiden, The Netherlands
| |
Collapse
|
53
|
Brown LM, Rogers KE, McCammon JA, Insel PA. Identification and validation of modulators of exchange protein activated by cAMP (Epac) activity: structure-function implications for Epac activation and inhibition. J Biol Chem 2014; 289:8217-30. [PMID: 24497631 DOI: 10.1074/jbc.m114.548636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling molecule cAMP primarily mediates its effects by activating PKA and/or exchange protein activated by cAMP (Epac). Epac has been implicated in many responses in cells, but its precise roles have been difficult to define in the absence of Epac inhibitors. Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is directly activated by cAMP. Using a bioluminescence resonance energy transfer-based assay (CAMYEL) to examine modulators of Epac activity, we took advantage of its intramolecular movement that occurs upon cAMP binding to assess Epac activation. We found that the use of CAMYEL can detect the binding of cAMP analogs to Epac and their modulation of its activity and can distinguish between agonists (cAMP), partial agonists (8-chlorophenylthio-cAMP), and super agonists (8-chlorophenylthio-2'-O-Me-cAMP). The CAMYEL assay can also identify competitive and uncompetitive Epac inhibitors, e.g. (Rp)-cAMPS and CE3F4, respectively. To confirm the results with the CAMYEL assay, we used Swiss 3T3 cells and assessed the ability of cyclic nucleotide analogs to modulate the activity of Epac or PKA, determined by Rap1 activity or VASP phosphorylation, respectively. We used computational molecular modeling to analyze the interaction of analogs with Epac1. The results reveal a rapid means to identify modulators (potentially including allosteric inhibitors) of Epac activity that also provides insight into the mechanisms of Epac activation and inhibition.
Collapse
|
54
|
Giannotta M, Benedetti S, Tedesco FS, Corada M, Trani M, D'Antuono R, Millet Q, Orsenigo F, Gálvez BG, Cossu G, Dejana E. Targeting endothelial junctional adhesion molecule-A/ EPAC/ Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Mol Med 2013; 6:239-58. [PMID: 24378569 PMCID: PMC3927958 DOI: 10.1002/emmm.201302520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscular dystrophies are severe genetic diseases for which no efficacious therapies exist. Experimental clinical treatments include intra-arterial administration of vessel-associated stem cells, called mesoangioblasts (MABs). However, one of the limitations of this approach is the relatively low number of cells that engraft the diseased tissue, due, at least in part, to the sub-optimal efficiency of extravasation, whose mechanisms for MAB are unknown. Leukocytes emigrate into the inflamed tissues by crossing endothelial cell-to-cell junctions and junctional proteins direct and control leukocyte diapedesis. Here, we identify the endothelial junctional protein JAM-A as a key regulator of MAB extravasation. We show that JAM-A gene inactivation and JAM-A blocking antibodies strongly enhance MAB engraftment in dystrophic muscle. In the absence of JAM-A, the exchange factors EPAC-1 and 2 are down-regulated, which prevents the activation of the small GTPase Rap-1. As a consequence, junction tightening is reduced, allowing MAB diapedesis. Notably, pharmacological inhibition of Rap-1 increases MAB engraftment in dystrophic muscle, which results into a significant improvement of muscle function offering a novel strategy for stem cell-based therapies.
Collapse
Affiliation(s)
- Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation (IFOM), Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang Z, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem 2013; 288:27712-23. [PMID: 23946483 PMCID: PMC3784689 DOI: 10.1074/jbc.m113.466904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/13/2013] [Indexed: 11/06/2022] Open
Abstract
The small G protein Rap1 can mediate "inside-out signaling" by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.
Collapse
Affiliation(s)
| | | | | | - Yumi Kariya
- From the Vollum Institute, and
- the Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Zhiping Wang
- From the Vollum Institute, and
- Department of Surgery, Oregon Health and Science University, Portland, Oregon 97239 and
| | | |
Collapse
|
56
|
Phosphorylation of the guanine-nucleotide-exchange factor CalDAG-GEFI by protein kinase A regulates Ca(2+)-dependent activation of platelet Rap1b GTPase. Biochem J 2013; 453:115-23. [PMID: 23600630 DOI: 10.1042/bj20130131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In blood platelets the small GTPase Rap1b is activated by cytosolic Ca2+ and promotes integrin αIIbβ3 inside-out activation and platelet aggregation. cAMP is the major inhibitor of platelet function and antagonizes Rap1b stimulation through a mechanism that remains unclear. In the present study we demonstrate that the Ca2+-dependent exchange factor for Rap1b, CalDAG-GEFI (calcium and diacylglycerol-regulated guanine-nucleotide-exchange factor I), is a novel substrate for the cAMP-activated PKA (protein kinase A). CalDAG-GEFI phosphorylation occurred in intact platelets treated with the cAMP-increasing agent forskolin and was inhibited by the PKA inhibitor H89. Purified recombinant CalDAG-GEFI was also phosphorylated in vitro by the PKA catalytic subunit. By screening a panel of specific serine to alanine residue mutants, we identified Ser116 and Ser586 as PKA phosphorylation sites in CalDAG-GEFI. In transfected HEK (human embryonic kidney)-293 cells, as well as in platelets, forskolin-induced phosphorylation of CalDAG-GEFI prevented the activation of Rap1b induced by the Ca2+ ionophore A23187. In platelets this effect was associated with the inhibition of aggregation. Moreover, cAMP-mediated inhibition of Rap1b was lost in HEK-293 cells transfected with a double mutant of CalDAG-GEFI unable to be phosphorylated by PKA. The results of the present study demonstrate that phosphorylation of CalDAG-GEFI by PKA affects its activity and represents a novel mechanism for cAMP-mediated inhibition of Rap1b in platelets.
Collapse
|
57
|
Subramanian H, Zahedi RP, Sickmann A, Walter U, Gambaryan S. Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation. J Thromb Haemost 2013; 11:1574-82. [PMID: 23611601 DOI: 10.1111/jth.12271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Signaling via protein kinase A (PKA) and protein kinase G (PKG) is critical for maintaining platelets in the resting state. Both kinases down-regulate the activity of the small GTPase Rap1b, a critical signaling switch for integrin activation and platelet aggregation. However, the mechanism of Rap1b regulation by PKA and PKG is largely unknown. OBJECTIVE To identify the PKA phosphorylation sites in calcium and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), the main GEF for Rap1b in platelets, and the effect of CalDAG-GEFI phosphorylation in Rap1b activation. METHODS The phosphorylation sites in CalDAG-GEFI were identified by radio-active phosphate incorporation assay and mass spectrometry. Phospho-antibody was developed to detect CalDAG-GEFI phosphorylation in Western blots. Rap1b activation was detected by Rap1-GTP pull-down assay. RESULTS S587 was identified as the major PKA phosphorylation site in CalDAG-GEFI, while S116/117 was weakly phosphorylated. Phosphorylation of S587 correlated with the inhibitory effect of PKA on Rap1b activation in platelets. In HEK293 cells, expression of a phospho-mimetic mutant of CalDAG-GEFI (S587D) abolished agonist-induced Rap1b activation. Mutation of S587 to alanine partially reversed the inhibitory effect of PKA signaling on Rap1b activation, while mutation of S116, S117 and S587 to alanine completely abolished the inhibitory effect of PKA on Rap1b activation. CONCLUSION Our study strongly suggests that phosphorylation of CalDAG-GEFI is a critical mechanism by which PKA controls Rap1b-dependent platelet aggregation.
Collapse
Affiliation(s)
- H Subramanian
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
58
|
Utreras E, Henriquez D, Contreras-Vallejos E, Olmos C, Di Genova A, Maass A, Kulkarni AB, Gonzalez-Billault C. Cdk5 regulates Rap1 activity. Neurochem Int 2013; 62:848-53. [PMID: 23416045 PMCID: PMC3791512 DOI: 10.1016/j.neuint.2013.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
Rap1 signaling is important for migration, differentiation, axonal growth, and during neuronal polarity. Rap1 can be activated by external stimuli, which in turn regulates specific guanine nucleotide exchange factors such as C3G, among others. Cdk5 functions are also important to neuronal migration and differentiation. Since we found that pharmacological inhibition of Cdk5 by using roscovitine reduced Rap1 protein levels in COS-7 cells and also C3G contains three putative phosphorylation sites for Cdk5, we examined whether the Cdk5-dependent phosphorylation of C3G could affect Rap1 expression and activity. We co-transfected C3G and tet-OFF system for p35 over-expression, an activator of Cdk5 activity into COS-7 cells, and then we evaluated phosphorylation in serine residues in C3G by immunoprecipitation and Western blot. We found that p35 over-expression increased C3G-serine-phosphorylation while inhibition of p35 expression by tetracycline or inhibition of Cdk5 activity with roscovitine decreased it. Interestingly, we found that MG-132, a proteasome inhibitor, rescue Rap1 protein levels in the presence of roscovitine. Besides, C3G-serine-phosphorylation and Rap1 protein levels were reduced in brain from Cdk5(-/-) as compared with the Cdk5(+/+) brain. Finally, we found that p35 over-expression increased Rap1 activity while inhibition of p35 expression by tetracycline or roscovitine decreased Rap1 activity. These results suggest that Cdk5-mediated serine-phosphorylation of C3G may control Rap1 stability and activity, and this may potentially impact various neuronal functions such as migration, differentiation, and polarity.
Collapse
Affiliation(s)
- Elias Utreras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | - Daniel Henriquez
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | | | - Cristina Olmos
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences
| | - Alex Di Genova
- Center for Mathematical Modeling and Center for Genome Regulation, Universidad de Chile
| | - Alejandro Maass
- Center for Mathematical Modeling and Center for Genome Regulation, Universidad de Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
59
|
Tilley DO, Arman M, Smolenski A, Cox D, O'Donnell JS, Douglas CWI, Watson SP, Kerrigan SW. Glycoprotein Ibα and FcγRIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. J Thromb Haemost 2013; 11:941-50. [PMID: 23413961 DOI: 10.1111/jth.12175] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Infective endocarditis (IE) is characterized by thrombus formation on a cardiac valve. The oral bacterium, Streptococcus oralis, is recognized for its ability to colonize damaged heart valves and is frequently isolated from patients with IE. Platelet interaction with S. oralis leads to the development of a thrombotic vegetation on heart valves, which results in valvular incompetence and congestive heart failure. OBJECTIVE To investigate the mechanism through which platelets become activated upon binding S. oralis. PATIENTS AND METHODS Platelet interactions with immobilized bacteria under shear conditions were assessed using a parallel flow chamber. S. oralis-inducible platelet reactivity was determined using light transmission aggregometry. Dense granule secretion was measured by luminometry using a luciferin/luciferase assay. RESULTS Using shear rates that mimic physiological conditions, we demonstrated that S. oralis was able to support platelet adhesion under venous (50-200 s(-1) ) and arterial shear conditions (800 s(-1) ). Platelets rolled along immobilized S. oralis through an interaction with GPIbα. Following rolling, platelet microaggregate formation was observed on immobilized S. oralis. Aggregate formation was dependent on S. oralis binding IgG, which cross-links to platelet FcγRIIa. This interaction led to phosphorylation of the ITAM domain on FcγRIIa, resulting in dense granule secretion, amplification through the ADP receptor and activation of RAP1, culminating in platelet microaggregate formation. CONCLUSIONS These results suggest a model of interaction between S. oralis and platelets that leads to the formation of a stable septic vegetation on damaged heart valves.
Collapse
Affiliation(s)
- D O Tilley
- Cardiovascular Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Rap1 can bypass the FAK-Src-Paxillin cascade to induce cell spreading and focal adhesion formation. PLoS One 2012; 7:e50072. [PMID: 23209645 PMCID: PMC3507925 DOI: 10.1371/journal.pone.0050072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
We developed new image analysis tools to analyse quantitatively the extracellular-matrix-dependent cell spreading process imaged by live-cell epifluorescence microscopy. Using these tools, we investigated cell spreading induced by activation of the small GTPase, Rap1. After replating and initial adhesion, unstimulated cells exhibited extensive protrusion and retraction as their spread area increased, and displayed an angular shape that was remodelled over time. In contrast, activation of endogenous Rap1, via 007-mediated stimulation of Epac1, induced protrusion along the entire cell periphery, resulting in a rounder spread surface, an accelerated spreading rate and an increased spread area compared to control cells. Whereas basal, anisotropic, spreading was completely dependent on Src activity, Rap1-induced spreading was refractory to Src inhibition. Under Src inhibited conditions, the characteristic Src-induced tyrosine phosphorylations of FAK and paxillin did not occur, but Rap1 could induce the formation of actomyosin-connected adhesions, which contained vinculin at levels comparable to that found in unperturbed focal adhesions. From these results, we conclude that Rap1 can induce cell adhesion and stimulate an accelerated rate of cell spreading through mechanisms that bypass the canonical FAK-Src-Paxillin signalling cascade.
Collapse
|
61
|
Mun H, Jeon TJ. Regulation of actin cytoskeleton by Rap1 binding to RacGEF1. Mol Cells 2012; 34:71-6. [PMID: 22644079 PMCID: PMC3887774 DOI: 10.1007/s10059-012-0097-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/12/2023] Open
Abstract
Rap1 is rapidly and transiently activated in response to chemoattractant stimulation and helps establish cell polarity by locally modulating cytoskeletons. Here, we investigated the mechanisms by which Rap1 controls actin cytoskeletal reorganization in Dictyostelium and found that Rap1 interacts with RacGEF1 in vitro and stimulates F-actin polymerization at the sites where Rap1 is activated upon chemoattractant stimulation. Live cell imaging using GFP-coronin, a reporter for F-actin, demonstrates that cells expressing constitutively active Rap1 (Rap1CA) exhibit a high level of F-actin uniformly distributed at the cortex including the posterior and lateral sides of the chemotaxing cell. Examination of the localization of a PH-domain containing PIP3 reporter, PhdA-GFP, and the activation of Akt/Pkb and other Ras proteins in Rap1CA cells reveals that activated Rap1 has no effect on the production of PIP3 or the activation of Akt/Pkb and Ras proteins in response to chemoattractant stimulation. Rac family proteins are crucial regulators in actin cytoskeletal reorganization. In vitro binding assay using truncated RacGEF1 proteins shows that Rap1 interacts with the DH domain of RacGEF1. Taken together, these results suggest that Rap1-mediated F-actin polymerization probably occurs through the Rac signaling pathway by directly binding to RacGEF1.
Collapse
Affiliation(s)
- Hyemin Mun
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759,
Korea
| | - Taeck J. Jeon
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759,
Korea
| |
Collapse
|
62
|
Sadrian B, Cheng TW, Shull O, Gong Q. Rap1gap2 regulates axon outgrowth in olfactory sensory neurons. Mol Cell Neurosci 2012; 50:272-82. [PMID: 22732430 DOI: 10.1016/j.mcn.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/30/2022] Open
Abstract
Olfactory sensory neurons (OSNs) extend their axons from the nasal epithelium to their odorant receptor-dependent locations in the olfactory bulb. Previous studies have identified several membrane proteins along the projection pathway, and on OSN axons themselves, which regulate this process; however, little is known about the signaling mechanisms through which these factors act. We have identified and characterized Rap1gap2, a novel small GTPase regulator, in OSNs during early postnatal mouse development. Rap1gap2 overexpression limits neurite outgrowth and branching in Neuro-2a cells, and counteracts Rap1-induced augmentation of neurite outgrowth. Rap1gap2 expression is developmentally regulated within OSNs, with high expression in early postnatal stages that ultimately drops to undetectable levels by adulthood. This temporal pattern coincides with an early postnatal plastic period of OSN innervation refinement at the OB glomerular layer. Rap1gap2 stunts OSN axon outgrowth when overexpressed in vitro, while knock-down of Rap1gap2 transcript results in a significant increase in axon length. These results indicate an important role of Rap1gap2 in OSN axon growth dynamics during early postnatal development.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
63
|
Gutiérrez-Herrero S, Maia V, Gutiérrez-Berzal J, Calzada N, Sanz M, González-Manchón C, Pericacho M, Ortiz-Rivero S, González-Porras JR, Arechederra M, Porras A, Guerrero C. C3G transgenic mouse models with specific expression in platelets reveal a new role for C3G in platelet clotting through its GEF activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1366-77. [PMID: 22659131 DOI: 10.1016/j.bbamcr.2012.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 01/10/2023]
Abstract
We have generated mouse transgenic lineages for C3G (tgC3G) and C3GΔCat (tgC3GΔCat, C3G mutant lacking the GEF domain), where the transgenes are expressed under the control of the megakaryocyte and platelet specific PF4 (platelet factor 4) gene promoter. Transgenic platelet activity has been analyzed through in vivo and in vitro approaches, including bleeding time, aggregation assays and flow cytometry. Both transgenes are expressed (RNA and protein) in purified platelets and megakaryocytes and do not modify the number of platelets in peripheral blood. Transgenic C3G animals showed bleeding times significantly shorter than control animals, while tgC3GΔCat mice presented a remarkable bleeding diathesis as compared to their control siblings. Accordingly, platelets from tgC3G mice showed stronger activation in response to platelet agonists such as thrombin, PMA, ADP or collagen than control platelets, while those from tgC3GΔCat animals had a lower response. In addition, we present data indicating that C3G is a mediator in the PKC pathway leading to Rap1 activation. Remarkably, a significant percentage of tgC3G mice presented a higher level of neutrophils than their control siblings. These results indicate that C3G plays an important role in platelet clotting through a mechanism involving its GEF activity and suggest that it might be also involved in neutrophil development.
Collapse
|
64
|
Keller DM, Clark EA, Goodman RH. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol Endocrinol 2012; 26:989-99. [PMID: 22539037 DOI: 10.1210/me.2011-1205] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MicroRNA-375 (miR-375) is necessary for proper formation of pancreatic islets in vertebrates and is necessary for the development of β-cells in mice, but regulation of miR-375 in these cells is poorly understood. Here, we show that miR-375 is transcriptionally repressed by the cAMP-protein kinase A (PKA) pathway and that this repression is mediated through a block in RNA polymerase II binding to the miR-375 promoter. cAMP analogs that are PKA selective repress miR-375, as do cAMP agonists and the glucagon-like peptide-1 receptor agonist, exendin-4. Repression of the miR-375 precursor occurs rapidly in rat insulinoma INS-1 832/13 cells, within 15 min after cAMP stimulation, although the mature microRNA declines more slowly due to the kinetics of RNA processing. Repression of miR-375 in isolated rat islets by exendin-4 also occurs slowly, after several hours of stimulation. Glucose is another reported antagonist of miR-375 expression, although we demonstrate here that glucose does not target the microRNA through the PKA pathway. As reported previously, miR-375 negatively regulates insulin secretion, and attenuation of miR-375 through the cAMP-PKA pathway may boost the insulin response in pancreatic β-cells.
Collapse
Affiliation(s)
- David M Keller
- Department of Biological Sciences, California State University, Chico, CA 95929-0515, USA.
| | | | | |
Collapse
|
65
|
van Hooren KWEM, van Agtmaal EL, Fernandez-Borja M, van Mourik JA, Voorberg J, Bierings R. The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in endothelial cells. J Biol Chem 2012; 287:24713-20. [PMID: 22511766 DOI: 10.1074/jbc.m111.321976] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells contain specialized storage organelles called Weibel-Palade bodies (WPBs) that release their content into the vascular lumen in response to specific agonists that raise intracellular Ca(2+) or cAMP. We have previously shown that cAMP-mediated WPB release is dependent on protein kinase A (PKA) and involves activation of the small GTPase RalA. Here, we have investigated a possible role for another PKA-independent cAMP-mediated signaling pathway in the regulation of WPB exocytosis, namely the guanine nucleotide exchange factor Epac1 and its substrate, the small GTPase Rap1. Epinephrine stimulation of endothelial cells leads to Rap1 activation in a PKA-independent fashion. siRNA-mediated knockdown of Epac1 abolished epinephrine-induced activation of Rap1 and resulted in decreased epinephrine-induced WPB exocytosis. Down-regulation of Rap1 expression and prevention of Rap1 activation through overexpression of Rap1GAP effectively reduced epinephrine- but not thrombin-induced WPB exocytosis. Taken together, these data uncover a new Epac-Rap1-dependent pathway by which endothelial cells can regulate WPB exocytosis in response to agonists that signal through cAMP.
Collapse
Affiliation(s)
- Kathinka W E M van Hooren
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory Amsterdam Medical Center, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Endothelial prostacyclin and nitric oxide potently inhibit platelet functions. Prostacyclin and nitric oxide actions are mediated by platelet adenylyl and guanylyl cyclases, which synthesize cyclic AMP (cAMP) and cyclic GMP (cGMP), respectively. Cyclic nucleotides stimulate cAMP-dependent protein kinase (protein kinase A [PKA]I and PKAII) and cGMP-dependent protein kinase (protein kinase G [PKG]I) to phosphorylate a broad panel of substrate proteins. Substrate phosphorylation results in the inactivation of small G-proteins of the Ras and Rho families, inhibition of the release of Ca(2+) from intracellular stores, and modulation of actin cytoskeleton dynamics. Thus, PKA/PKG substrates translate prostacyclin and nitric oxide signals into a block of platelet adhesion, granule release, and aggregation. cAMP and cGMP are degraded by phosphodiesterases, which might restrict signaling to specific subcellular compartments. An emerging principle of cyclic nucleotide signaling in platelets is the high degree of interconnection between activating and cAMP/cGMP-dependent inhibitory signaling pathways at all levels, including cAMP/cGMP synthesis and breakdown, and PKA/PKG-mediated substrate phosphorylation. Furthermore, defects in cAMP/cGMP pathways might contribute to platelet hyperreactivity in cardiovascular disease. This article focuses on recent insights into the regulation of the cAMP/cGMP signaling network and on new targets of PKA and PKG in platelets.
Collapse
Affiliation(s)
- A Smolenski
- UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
67
|
TGFβ1 regulates endothelial cell spreading and hypertrophy through a Rac-p38-mediated pathway. Biol Cell 2012; 100:537-50. [DOI: 10.1042/bc20080021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
68
|
Wittchen ES, Hartnett ME. The small GTPase Rap1 is a novel regulator of RPE cell barrier function. Invest Ophthalmol Vis Sci 2011; 52:7455-63. [PMID: 21873678 DOI: 10.1167/iovs.11-7295] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether the small GTPase Rap1 regulates the formation and maintenance of the retinal pigment epithelial (RPE) cell junctional barrier. METHODS An in vitro model was used to study RPE barrier properties. To dissect the role of Rap1, two techniques were used to inhibit Rap1 function: overexpression of RapGAP, which acts as a negative regulator of endogenous Rap1 activity, and treatment with engineered, adenovirally-transduced microRNAs to knockdown Rap1 protein expression. Transepithelial electrical resistance (TER) and real-time cellular analysis (RTCA) of impedance were used as readouts for barrier properties. Immunofluorescence microscopy was used to visualize localization of cadherins under steady state conditions and also during junctional reassembly after calcium switch. Finally, choroidal endothelial cell (CEC) migration across RPE monolayers was quantified under conditions of Rap1 inhibition in RPE. RESULTS Knockdown of Rap1 or inhibition of its activity in RPE reduces TER and electrical impedance of the RPE monolayers. The loss of barrier function is also reflected by the mislocalization of cadherins and formation of gaps within the monolayer. TER measurement and immunofluorescent staining of cadherins after a calcium switch indicate that junctional reassembly kinetics are also impaired. Furthermore, CEC transmigration is significantly higher in Rap1-knockdown RPE monolayers compared with control. CONCLUSIONS Rap1 GTPase is an important regulator of RPE cell junctions, and is required for maintenance of barrier function. This observation that RPE monolayers lacking Rap1 allow greater transmigration of CECs suggests a possible role for potentiating choroidal neovascularization during the pathology of neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
69
|
Zhang G, Xiang B, Ye S, Chrzanowska-Wodnicka M, Morris AJ, Gartner TK, Whiteheart SW, White GC, Smyth SS, Li Z. Distinct roles for Rap1b protein in platelet secretion and integrin αIIbβ3 outside-in signaling. J Biol Chem 2011; 286:39466-77. [PMID: 21940635 DOI: 10.1074/jbc.m111.239608] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)β(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)β(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)β(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)β(3) outside-in signaling.
Collapse
Affiliation(s)
- Guoying Zhang
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wu J, Zhang Y, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2 regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem 2011; 286:33954-62. [PMID: 21832044 DOI: 10.1074/jbc.m110.187344] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prognosis for patients with early stage kidney cancer has improved, but the treatment options for patients with locally advanced disease and metastasis remain few. Understanding the molecular mechanisms that regulate invasion and metastasis is critical for developing successful therapies to treat these patients. Proinflammatory prostaglandin E(2) plays an important role in cancer initiation and progression via activation of cognate EP receptors that belong to the superfamily of G protein-coupled receptors. Here we report that prostaglandin E(2) promotes renal cancer cell invasion through a signal transduction pathway that encompasses EP4 and small GTPase Rap. Inactivation of Rap signaling with Rap1GAP, like inhibition of EP4 signaling with ligand antagonist or knockdown with shRNA, reduces the kidney cancer cell invasion. Human kidney cells evidence increased EP4 and decreased Rap1GAP expression levels in the malignant compared with benign samples. These results support the idea that targeted inhibition of EP4 signaling and restoration of Rap1GAP expression constitute a new strategy to control kidney cancer progression.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Pathology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
71
|
Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T, Norton L, Ludwig T, Sperandio M, Hawkins PT, Stephens L, Vermeren S. The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood 2011; 118:1087-98. [PMID: 21490342 DOI: 10.1182/blood-2010-10-312959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils form a vital part of the innate immune response, but at the same time their inappropriate activation contributes to autoimmune diseases. Many molecular components are involved in fine-tuning neutrophil function. We report here the first characterization of the role of ARAP3, a PI3K and Rap-regulated GTPase-activating protein for RhoA and Arf6 in murine neutrophils. We show that neutrophils lacking ARAP3 are preactivated in vitro and in vivo, exhibiting increased β2 integrin affinity and avidity. ARAP3-deficient neutrophils are hyperresponsive in several adhesion-dependent situations in vitro, including the formation of reactive oxygen species, adhesion, spreading, and granule release. ARAP3-deficient cells adhere more firmly under flow conditions in vitro and to the vessel wall in vivo. Finally, loss of ARAP3 interferes with integrin-dependent neutrophil chemotaxis. The results of the present study suggest an important function of ARAP3 downstream of Rap. By modulating β2 integrin activity, ARAP3 guards neutrophils in their quiescent state unless activated.
Collapse
|
72
|
Ser756 of β2 integrin controls Rap1 activity during inside-out activation of αMβ2. Biochem J 2011; 437:461-7. [DOI: 10.1042/bj20101666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During αMβ2-mediated phagocytosis, the small GTPase Rap1 activates the β2 integrin by binding to a region between residues 732 and 761. Using COS-7 cells transfected with αMβ2, we show that αMβ2 activation by the phorbol ester PMA involves Ser756 of β2. This residue is critical for the local positioning of talin and biochemically interacts with Rap1. Using the CaM (calmodulin) antagonist W7, we found Rap1 recruitment and the inside-out activation of αMβ2 to be affected. We also report a role for CaMKII (calcium/CaM-dependent kinase II) in the activation of Rap1 during integrin activation. These results demonstrate a distinct physiological role for Ser756 of β2 integrin, in conjunction with the actions of talin and Rap1, during αMβ2 activation in macrophages.
Collapse
|
73
|
Banerjee R, Henson BS, Russo N, Tsodikov A, D'Silva NJ. Rap1 mediates galanin receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell Signal 2011; 23:1110-8. [PMID: 21345369 PMCID: PMC3090707 DOI: 10.1016/j.cellsig.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 02/06/2023]
Abstract
Previously we showed that galanin, a neuropeptide, is secreted by human squamous cell carcinoma of the head and neck (SCCHN) in which it exhibits an autocrine mitogenic effect. We also showed that rap1, a ras-like signaling protein, is a critical mediator of SCCHN progression. Given the emerging importance of the galanin cascade in regulating proliferation and survival, we investigated the effect of GAL on SCCHN progression via induction of galanin receptor 2 (GALR2)-mediated rap1 activation. Studies were performed in multiple SCCHN cell lines by inducing endogenous GALR2, by stably overexpressing GALR2 and by downregulating endogenous GALR2 with siGALR2. Cell proliferation and survival, mediated by the ERK and AKT signaling cascades, respectively, were evaluated by functional and immunoblot analysis. The role of rap1 in GALR2-mediated proliferation and survival was evaluated by modulating expression. Finally, the effect of GALR2 on tumor growth was determined. GALR2 stimulated proliferation and survival via ERK and AKT activation, respectively. Knockdown or inactivation of rap1 inhibited GALR2-induced, AKT and ERK-mediated survival and proliferation. Overexpression of GALR2 promoted tumor growth in vivo. GALR2 promotes proliferation and survival in vitro, and promotes tumor growth in vivo, consistent with an oncogenic role for GALR2 in SCCHN.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Guanosine Triphosphate/metabolism
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 2/metabolism
- Transplantation, Heterologous
- Tumor Burden
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
74
|
Abstract
Regulation of cell-cell and cell-matrix interaction is essential for the normal physiology of metazoans and is important in many diseases. Integrin adhesion receptors can rapidly increase their affinity (integrin activation) in response to intracellular signaling events in a process termed inside-out signaling. The transmembrane domains of integrins and their interactions with the membrane are important in inside-out signaling. Moreover, integrin activation is tightly regulated by a complex network of signaling pathways. Here, we review recent progress in understanding how the membrane environment can, in cooperation with integrin-binding proteins, regulate integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
75
|
Zieba BJ, Artamonov MV, Jin L, Momotani K, Ho R, Franke AS, Neppl RL, Stevenson AS, Khromov AS, Chrzanowska-Wodnicka M, Somlyo AV. The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 2011; 286:16681-92. [PMID: 21454546 PMCID: PMC3089510 DOI: 10.1074/jbc.m110.205062] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/11/2011] [Indexed: 11/06/2022] Open
Abstract
Agonist activation of the small GTPase, RhoA, and its effector Rho kinase leads to down-regulation of smooth muscle (SM) myosin light chain phosphatase activity, an increase in myosin light chain (RLC(20)) phosphorylation and force. Cyclic nucleotides can reverse this process. We report a new mechanism of cAMP-mediated relaxation through Epac, a GTP exchange factor for the small GTPase Rap1 resulting in an increase in Rap1 activity and suppression of RhoA activity. An Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP ("007"), significantly reduced agonist-induced contractile force, RLC(20), and myosin light chain phosphatase phosphorylation in both intact and permeabilized vascular, gut, and airway SMs independently of PKA and PKG. The vasodilator PGI(2) analog, cicaprost, increased Rap1 activity and decreased RhoA activity in intact SMs. Forskolin, phosphodiesterase inhibitor isobutylmethylxanthine, and isoproterenol also significantly increased Rap1-GTP in rat aortic SM cells. The PKA inhibitor H89 was without effect on the 007-induced increase in Rap1-GTP. Lysophosphatidic acid-induced RhoA activity was reduced by treatment with 007 in WT but not Rap1B null fibroblasts, consistent with Epac signaling through Rap1B to down-regulate RhoA activity. Isoproterenol-induced increase in Rap1 activity was inhibited by silencing Epac1 in rat aortic SM cells. Evidence is presented that cooperative cAMP activation of PKA and Epac contribute to relaxation of SM. Our findings demonstrate a cAMP-mediated signaling mechanism whereby activation of Epac results in a PKA-independent, Rap1-dependent Ca(2+) desensitization of force in SM through down-regulation of RhoA activity. Cyclic AMP inhibition of RhoA is mediated through activation of both Epac and PKA.
Collapse
Affiliation(s)
- Bartosz J. Zieba
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
- the Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mykhaylo V. Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Aaron S. Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Ronald L. Neppl
- the Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Andra S. Stevenson
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | - Alexander S. Khromov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| | | | - Avril V. Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
76
|
Ross SH, Post A, Raaijmakers JH, Verlaan I, Gloerich M, Bos JL. Ezrin is required for efficient Rap1-induced cell spreading. J Cell Sci 2011; 124:1808-18. [PMID: 21540295 DOI: 10.1242/jcs.079830] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rap family of small GTPases regulate the adhesion of cells to extracellular matrices. Several Rap-binding proteins have been shown to function as effectors that mediate Rap-induced adhesion. However, little is known regarding the relationships between these effectors, or about other proteins that are downstream of or act in parallel to the effectors. To establish whether an array of effectors was required for Rap-induced cell adhesion and spreading, and to find new components involved in Rap-signal transduction, we performed a small-scale siRNA screen in A549 lung epithelial cells. Of the Rap effectors tested, only Radil blocked Rap-induced spreading. Additionally, we identified a novel role for Ezrin downstream of Rap1. Ezrin was necessary for Rap-induced cell spreading, but not Rap-induced cell adhesion or basal adhesion processes. Furthermore, Ezrin depletion inhibited Rap-induced cell spreading in several cell lines, including primary human umbilical vein endothelial cells. Interestingly, Radixin and Moesin, two proteins with high homology to Ezrin, are not required for Rap-induced cell spreading and cannot compensate for loss of Ezrin to rescue Rap-induced cell spreading. Here, we present a novel function for Ezrin in Rap1-induced cell spreading and evidence of a non-redundant role of an ERM family member.
Collapse
Affiliation(s)
- Sarah H Ross
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
77
|
Chen L, Fu Y, Ren M, Xiao B, Rubin CS. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 2011; 70:51-65. [PMID: 21482356 PMCID: PMC3081643 DOI: 10.1016/j.neuron.2011.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
Abstract
RasGRPs, which load GTP onto Ras and Rap1, are expressed in vertebrate and invertebrate neurons. The functions, regulation, and mechanisms of action of neuronal RasGRPs are unknown. Here, we show how C. elegans RGEF-1b, a prototypical neuronal RasGRP, regulates a critical behavior. Chemotaxis to volatile odorants was disrupted in RGEF-1b-deficient (rgef-1⁻/⁻) animals and wild-type animals expressing dominant-negative RGEF-1b in AWC sensory neurons. AWC-specific expression of RGEF-1b-GFP restored chemotaxis in rgef-1⁻/⁻ mutants. Signals disseminated by RGEF-1b in AWC neurons activated a LET-60 (Ras)-MPK-1 (ERK) signaling cascade. Other RGEF-1b and LET-60 effectors were dispensable for chemotaxis. A bifunctional C1 domain controlled intracellular targeting and catalytic activity of RGEF-1b and was essential for sensory signaling in vivo. Chemotaxis was unaffected when Ca²+-binding EF hands and a conserved phosphorylation site of RGEF-1b were inactivated. Diacylglycerol-activated RGEF-1b links external stimuli (odorants) to behavior (chemotaxis) by activating the LET-60-MPK-1 pathway in specific neurons.
Collapse
Affiliation(s)
- Lu Chen
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
78
|
Stokman G, Qin Y, Genieser HG, Schwede F, de Heer E, Bos JL, Bajema IM, van de Water B, Price LS. Epac-Rap signaling reduces cellular stress and ischemia-induced kidney failure. J Am Soc Nephrol 2011; 22:859-72. [PMID: 21493776 DOI: 10.1681/asn.2010040423] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal ischemia-reperfusion injury is associated with the loss of tubular epithelial cell-cell and cell-matrix interactions which contribute to renal failure. The Epac-Rap signaling pathway is a potent regulator of cell-cell and cell-matrix adhesion. The cyclic AMP analogue 8-pCPT-2'-O-Me-cAMP has been shown to selectively activate Epac, whereas the addition of an acetoxymethyl (AM) ester to 8-pCPT-2'-O-Me-cAMP enhanced in vitro cellular uptake. Here we demonstrate that pharmacological activation of Epac-Rap signaling using acetoxymethyl-8-pCPT-2'-O-Me-cAMP preserves cell adhesions during hypoxia in vitro, maintaining the barrier function of the epithelial monolayer. Intrarenal administration in vivo of 8-pCPT-2'-O-Me-cAMP also reduced renal failure in a mouse model for ischemia-reperfusion injury. This was accompanied by decreased expression of the tubular cell stress marker clusterin-α, and lateral expression of β-catenin after ischemia indicative of sustained tubular barrier function. Our study emphasizes the undervalued importance of maintaining tubular epithelial cell adhesion in renal ischemia and demonstrates the potential of pharmacological modulation of cell adhesion as a new therapeutic strategy to reduce the extent of injury in kidney disease and transplantation.
Collapse
Affiliation(s)
- Geurt Stokman
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kiyokawa E, Aoki K, Nakamura T, Matsuda M. Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster Resonance Energy Transfer (FRET): Implications for signaling and pharmacology. Annu Rev Pharmacol Toxicol 2011; 51:337-58. [PMID: 20936947 DOI: 10.1146/annurev-pharmtox-010510-100234] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low molecular weight ("small") GTPases are key regulators of a number of signaling cascades. Each GTPase is regulated by numerous guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and each GTPase binds to numerous effector proteins in a GTP-dependent manner. In many instances, individual regulators activate more than one GTPase, and each effector binds to one or more GTPases belonging to the same family. To untangle these complex networks, probes based on the principle of Förster resonance energy transfer (FRET) are widely used. Here, we provide an overview of the probes based on FRET and examples of discoveries achieved with them. In the process, we attempt to delineate the merits, current limitations, and future applications of this technique to pharmacological studies.
Collapse
Affiliation(s)
- Etsuko Kiyokawa
- Department of Pathology and Biology of Diseases, Kyoto University, Japan
| | | | | | | |
Collapse
|
80
|
Verma SK, Ganesan TS, Kishore U, Parker PJ. The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A. Protein Cell 2011; 2:237-49. [PMID: 21468893 DOI: 10.1007/s13238-011-1028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/13/2011] [Indexed: 10/25/2022] Open
Abstract
Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation, adhesion, differentiation, and embryogenesis. The downstream effectors through which Rap1A mediates its diverse effects are largely unknown. Here we show that Rap1A, but not the related small G proteins Rap2 or Ras, binds the tumor suppressor Ras association domain family 1A (RASSF1A) in a manner that is regulated by phosphorylation of RASSF1A. Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Medical Oncology, Medical Sciences Division, The University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
81
|
Chen CXJ, Soto I, Guo YL, Liu Y. Control of secondary granule release in neutrophils by Ral GTPase. J Biol Chem 2011; 286:11724-33. [PMID: 21282111 DOI: 10.1074/jbc.m110.154203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.
Collapse
Affiliation(s)
- Celia X-J Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
82
|
The Ras-PI3K signaling pathway is involved in clathrin-independent endocytosis and the internalization of influenza viruses. PLoS One 2011; 6:e16324. [PMID: 21283725 PMCID: PMC3024431 DOI: 10.1371/journal.pone.0016324] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/14/2010] [Indexed: 12/16/2022] Open
Abstract
Background Influenza virus infection causes highly contagious, severe respiratory disorders and gives rise to thousands of deaths every year; however, the efficacy of currently approved defense strategies, including vaccines and neuraminidase inhibitors, is limited because the virus frequently acquires resistance via antigen drift and reassortment. It is therefore important to establish a novel, effective therapeutic strategy that is effective irrespective of viral subtype. Methodology/Principal Findings Here, we identify the Ras–phosphoinositide 3-kinase (PI3K) signaling pathway as a host-cell regulatory mechanism for influenza virus entry. The binding of Ras to PI3K is specifically involved in clathrin-independent endocytosis, endosomal maturation, and intracellular transport of viruses, which result in decreased infectious efficacy of different subtypes of influenza viruses in cells lacking the Ras–PI3K interaction. Moreover, influenza virus infection indeed triggered Ras activation and subsequent PI3K activation in early endosomes. Conclusions/Significance Taken together, these results demonstrate that the Ras–PI3K signaling axis acts as a host-oriented mechanism for viral internalization. Given that virus incorporation is a process conserved among virus subtypes and species, this signaling pathway may provide a target for potent, well-tolerated prophylactics and therapeutics against a broad range of viruses.
Collapse
|
83
|
Rufanova VA, Alexanian A, Ostendorf T, Bokemeyer D, Prosser S, Miller B, Sorokin A. Endothelin signaling via guanine exchange factor C3G in renal glomerular mesangial cells. Can J Physiol Pharmacol 2011; 88:808-16. [PMID: 20725139 DOI: 10.1139/y10-056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The guanine nucleotide exchange factor C3G is one of the mediators of endothelin-1 (ET-1) intracellular signaling cascades and is vital for kidney development and homeostasis. The aim of the current study was to analyze the specificity of ET-1-induced signaling via C3G in rat glomerular mesangial cells (GMC) and to investigate the biological significance of C3G during mesangioproliferative glomerulonephritis. In GMC, C3G expression was increased (1) in vivo after induction of the anti-Thy1 model of glomerulonephritis and (2) in cell culture experiments after fetal bovine serum incubation. To examine the consequences of C3G up-regulation, adenovirus-mediated gene transfer of C3G into cultured glomerular cells was done, and the GTP loading of the small G proteins Rap1 and R-Ras was analyzed. Overexpression of C3G in mesangial cells resulted in enhanced activation of Rap1, but failed to affect the GTP-bound status of R-Ras in ET-1-stimulated cells. C3G overexpression led to significant changes in GMC spreading and migration patterns in response to ET-1 stimulation and increased stress fiber formation, which was mimicked by Rap1A overexpression. Together, these findings suggest (1) the existence of regulatory mechanisms resulting in disease-related up-regulation of C3G in GMC and (2) that an increase in the C3G protein level may contribute to the resolution stage of mesangioproliferative glomerulonephritis by reducing GMC sensitivity to ET-1, modulating cellular motility, and actin dynamics.
Collapse
Affiliation(s)
- Victoriya A Rufanova
- Department of Medicine, Division of Nephrology and Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
In leukocytes, integrins play important roles in adhesive interactions with endothelium, antigen-presenting cells, and effector functions such as cytotoxicity. This chapter describes methods to study Ras proximity 1 (Rap1), a signaling molecule that has been increasingly recognized as an important regulator of integrin-mediated cell adhesion in the immune system as well as hemostasis. Rap1 is activated by a wide variety of external stimuli including chemokines and antigens. Signaling via Rap1 transmits an inside-out signal to the integrins, thereby increasing adhesiveness to ligands such as immunoglobulin superfamily proteins as well as extracellular matrix proteins and plasma proteins. This process induces leukocyte cell adhesion to the endothelium and antigen-presenting cells. In addition to integrin regulation, activated Rap1 induces cell polarity of lymphocytes, which is coordinated with LFA-1 redistribution to the leading edge.
Collapse
|
85
|
Cha I, Lee SH, Jeon TJ. Chemoattractant-mediated Rap1 activation requires GPCR/G proteins. Mol Cells 2010; 30:563-7. [PMID: 21103944 DOI: 10.1007/s10059-010-0153-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 10/18/2022] Open
Abstract
Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.
Collapse
Affiliation(s)
- Injun Cha
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759, Korea
| | | | | |
Collapse
|
86
|
Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HLDM, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A. Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 2010; 30:12806-15. [PMID: 20861385 PMCID: PMC6633564 DOI: 10.1523/jneurosci.3142-10.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 08/01/2010] [Indexed: 11/21/2022] Open
Abstract
Hyperexcitability of peripheral nociceptive pathways is often associated with inflammation and is an important mechanism underlying inflammatory pain. Here we describe a completely novel mechanism via which nociceptor G-protein-coupled receptor kinase 2 (GRK2) contributes to regulation of inflammatory hyperalgesia. We show that nociceptor GRK2 is downregulated during inflammation. In addition, we show for the first time that prostaglandin E2 (PGE2)-induced hyperalgesia is prolonged from <6 h in wild-type (WT) mice to 3 d in mice with low GRK2 in Nav1.8+ nociceptors (SNS-GRK2+/- mice). This prolongation of PGE2 hyperalgesia in SNS-GRK2+/- mice does not depend on changes in the sensitivity of the prostaglandin receptors because prolonged hyperalgesia also developed in response to 8-Br-cAMP. PGE2 or cAMP-induced hyperalgesia in WT mice is PKA dependent. However, PKA activity is not required for hyperalgesia in SNS-GRK2+/- mice. SNS-GRK2+/- mice developed prolonged hyperalgesia in response to the Exchange proteins directly activated by cAMP (Epac) activator 8-pCPT-2'-O-Me-cAMP (8-pCPT). Coimmunoprecipitation experiments showed that GRK2 binds to Epac1. In vitro, GRK2 deficiency increased 8-pCPT-induced activation of the downstream effector of Epac, Rap1, and extracellular signal-regulated kinase (ERK). In vivo, inhibition of MEK1 or PKCε prevented prolonged PGE2, 8-Br-cAMP, and 8-pCPT hyperalgesia in SNS-GRK2+/- mice. In conclusion, we discovered GRK2 as a novel Epac1-interacting protein. A reduction in the cellular level of GRK2 enhances activation of the Epac-Rap1 pathway. In vivo, low nociceptor GRK2 leads to prolonged inflammatory hyperalgesia via biased cAMP signaling from PKA to Epac-Rap1, ERK/PKCε pathways.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Huijing Wang
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Anibal Garza-Carbajal
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Hanneke L. D. M. Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Fried J. Zwartkruis
- Department of Physiological Chemistry, University Medical Center Utrecht, Center for Biomedical Genetics and Cancer Genomics Center, 3584 CG, Utrecht, The Netherlands, and
| | - John N. Wood
- Molecular Nociception Group, University College London, London WC1E 6BT, United Kingdom
| | - Robert Dantzer
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Keith W. Kelley
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Cobi J. Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
87
|
RGS/Gi2alpha interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood 2010; 116:6092-100. [PMID: 20852125 DOI: 10.1182/blood-2010-05-283846] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although much is known about extrinsic regulators of platelet function such as nitric oxide and prostaglandin I(2) (PGI(2)), considerably less is known about intrinsic mechanisms that prevent overly robust platelet activation after vascular injury. Here we provide the first evidence that regulators of G-protein signaling (RGS) proteins serve this role in platelets, using mice with a G184S substitution in G(i2α) that blocks RGS/G(i2) interactions to examine the consequences of lifting constraints on G(i2)-dependent signaling without altering receptor:effector coupling. The results show that the G(i2α)(G184S) allele enhances platelet aggregation in vitro and increases platelet accumulation after vascular injury when expressed either as a global knock-in or limited to hematopoietic cells. Biochemical studies show that these changes occur in concert with an attenuated rise in cyclic adenosine monophosphate levels in response to prostacyclin and a substantial increase in basal Akt activation. In contrast, basal cyclic adenosine monophosphate (cAMP) levels, agonist-stimulated increases in [Ca(++)](i), Rap1 activation, and α-granule secretion were unaffected. Collectively, these observations (1) demonstrate an active role for RGS proteins in regulating platelet responsiveness, (2) show that this occurs in a pathway-selective manner, and (3) suggest that RGS proteins help to prevent unwarranted platelet activation as well as limiting the magnitude of the normal hemostatic response.
Collapse
|
88
|
Kamioka Y, Yasuda S, Fujita Y, Aoki K, Matsuda M. Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J Biol Chem 2010; 285:33540-33548. [PMID: 20724475 DOI: 10.1074/jbc.m110.135517] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
EGF-induced activation of ERK has been extensively studied by both experimental and theoretical approaches. Here, we used a simulation model based mostly on experimentally determined parameters to study the ERK-mediated negative feedback regulation of the Ras guanine nucleotide exchange factor, son of sevenless (SOS). Because SOS1 is phosphorylated at multiple serine residues upon stimulation, we evaluated the role of the multiplicity by building two simulation models, which we termed the decisive and cooperative phosphorylation models. The two models were constrained by the duration of Ras activation and basal phosphorylation level of SOS1. Possible solutions were found only in the decisive model wherein at least three, and probably more than four, phosphorylation sites decisively suppress the SOS activity. Thus, the combination of experimental approaches and the model analysis has suggested an unexpected role of multiple phosphorylations of SOS1 in the negative regulation.
Collapse
Affiliation(s)
- Yuji Kamioka
- From the Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto 606-8501; Innovative Techno-Hub for Integrated Medical Bio-Imaging, Kyoto University, Kyoto 606-8501
| | - Shuhei Yasuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto 606-8501
| | - Yoshihisa Fujita
- From the Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto 606-8501
| | - Kazuhiro Aoki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto 606-8501; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Michiyuki Matsuda
- From the Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto 606-8501; Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto 606-8501.
| |
Collapse
|
89
|
Abstract
Rapid activation of platelets at sites of vascular injury is a critical event in thrombosis and hemostasis. Here, we review recent findings, which (a) identified CalDAG-GEFI (RasGRP2) at the nexus of the rapid Ca(2+)-dependent platelet activation, (b) demonstrated a complex synergy between signaling provided by CalDAG-GEFI, protein kinase C and the Gi-coupled receptor for ADP, P2Y12, and (c) suggested CalDAG-GEFI as a novel target for anti-platelet therapy.
Collapse
Affiliation(s)
- Lucia Stefanini
- Department of Medicine and Cardeza Foundation, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
90
|
Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 2010; 58:790-801. [PMID: 20091784 DOI: 10.1002/glia.20963] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglia are the primary immune surveillance cells in the brain, and when activated they play critical roles in inflammatory reactions and tissue repair in the damaged brain. Microglia rapidly extend their processes toward the damaged areas in response to stimulation of the metabotropic ATP receptor P2Y(12) by ATP released from damaged tissue. This chemotactic response is a highly important step that enables microglia to function properly at normal and pathological sites in the brain. To investigate the molecular pathways that underlie microglial process extension, we developed a novel method of modeling microglial process extension that uses transwell chambers in which the insert membrane is coated with collagen gel. In this study, we showed that ATP increased microglial adhesion to collagen gel, and that the ATP-induced process extension and increase in microglial adhesion were inhibited by integrin blocking peptides, RGD, and a functional blocking antibody against integrin-beta1. An immunoprecipitation analysis with an antibody against the active form of integrin-beta1 showed that P2Y(12) mediated the integrin-beta1 activation by ATP. In addition, time-lapse imaging of EGFP-labeled microglia in mice hippocampal slices showed that RGD inhibited the directional process extension toward the nucleotide source, and immunohistochemical staining showed that integrin-beta1 accumulated in the tips of the microglial processes in rat hippocampal slices stimulated with ADP. These findings indicate that ATP induces the integrin-beta1 activation in microglia through P2Y(12) and suggest that the integrin-beta1 activation is involved in the directional process extension by microglia in brain tissue.
Collapse
Affiliation(s)
- Keiko Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Milani R, Ferreira CV, Granjeiro JM, Paredes-Gamero EJ, Silva RA, Justo GZ, Nader HB, Galembeck E, Peppelenbosch MP, Aoyama H, Zambuzzi WF. Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion. J Cell Biochem 2010; 109:957-66. [PMID: 20127719 DOI: 10.1002/jcb.22479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell adhesion on surfaces is a fundamental process in the emerging biomaterials field and developmental events as well. However, the mechanisms regulating this biological process in osteoblasts are not fully understood. Reversible phosphorylation catalyzed by kinases is probably the most important regulatory mechanism in eukaryotes. Therefore, the goal of this study is to assess osteoblast adhesion through a molecular prism under a peptide array technology, revealing essential signaling proteins governing adhesion-related events. First, we showed that there are main morphological changes on osteoblast shape during adhesion up to 3 h. Second, besides classical proteins activated upon integrin activation, our results showed a novel network involving signaling proteins such as Rap1A, PKA, PKC, and GSK3beta during osteoblast adhesion on polystyrene. Third, these proteins were grouped in different signaling cascades including focal adhesion establishment, cytoskeleton rearrangement, and cell-cycle arrest. We have thus provided evidence that a global phosphorylation screening is able to yield a systems-oriented look at osteoblast adhesion, providing new insights for understanding of bone formation and improvement of cell-substratum interactions. Altogether, these statements are necessary means for further intervention and development of new approaches for the progress of tissue engineering.
Collapse
Affiliation(s)
- Renato Milani
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol Cell Biol 2010; 30:3956-69. [PMID: 20547757 DOI: 10.1128/mcb.00242-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epac1 (exchange protein directly activated by cyclic AMP [cAMP]) couples intracellular cAMP to the activation of Rap1, a Ras family GTPase that regulates cell adhesion, proliferation, and differentiation. Using mass spectrometry, we identified the small G protein Ran and Ran binding protein 2 (RanBP2) as potential binding partners of Epac1. Ran is a small G protein best known for its role in nuclear transport and can be found at the nuclear pore through its interaction with RanBP2. Here we demonstrate that Ran-GTP and Epac1 interact with each other in vivo and in vitro. This binding requires a previously uncharacterized Ras association (RA) domain in Epac1. Surprisingly, the interaction of Epac1 with Ran is necessary for the efficient activation of Rap1 by Epac1. We propose that Ran and RanBP2 anchor Epac1 to the nuclear pore, permitting cAMP signals to activate Rap1 at the nuclear envelope.
Collapse
|
93
|
Nishida M, Suda R, Nagamatsu Y, Tanabe S, Onohara N, Nakaya M, Kanaho Y, Shibata T, Uchida K, Sumimoto H, Sato Y, Kurose H. Pertussis toxin up-regulates angiotensin type 1 receptors through Toll-like receptor 4-mediated Rac activation. J Biol Chem 2010; 285:15268-15277. [PMID: 20231290 PMCID: PMC2865339 DOI: 10.1074/jbc.m109.076232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 03/08/2010] [Indexed: 02/05/2023] Open
Abstract
Pertussis toxin (PTX) is recognized as a specific tool that uncouples receptors from G(i) and G(o) through ADP-ribosylation. During the study analyzing the effects of PTX on Ang II type 1 receptor (AT1R) function in cardiac fibroblasts, we found that PTX increases the number of AT1Rs and enhances AT1R-mediated response. Microarray analysis revealed that PTX increases the induction of interleukin (IL)-1beta among cytokines. Inhibition of IL-1beta suppressed the enhancement of AT1R-mediated response by PTX. PTX increased the expression of IL-1beta and AT1R through NF-kappaB, and a small GTP-binding protein, Rac, mediated PTX-induced NF-kappaB activation through NADPH oxidase-dependent production of reactive oxygen species. PTX induced biphasic increases in Rac activity, and the Rac activation in a late but not an early phase was suppressed by IL-1beta siRNA, suggesting that IL-1beta-induced Rac activation contributes to the amplification of Rac-dependent signaling induced by PTX. Furthermore, inhibition of TLR4 (Toll-like receptor 4) abolished PTX-induced Rac activation and enhancement of AT1R function. However, ADP-ribosylation of G(i)/G(o) by PTX was not affected by inhibition of TLR4. Thus, PTX binds to two receptors; one is TLR4, which activates Rac, and another is the binding site that is required for ADP-ribosylation of G(i)/G(o).
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Reiko Suda
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yuichi Nagamatsu
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Shihori Tanabe
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Setagaya, Tokyo 158-8501
| | - Naoya Onohara
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582
| | - Yoji Sato
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Setagaya, Tokyo 158-8501
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582.
| |
Collapse
|
94
|
Anaplastic lymphoma kinase activates the small GTPase Rap1 via the Rap1-specific GEF C3G in both neuroblastoma and PC12 cells. Oncogene 2010; 29:2817-30. [PMID: 20190816 DOI: 10.1038/onc.2010.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many different types of cancer originate from aberrant signaling from the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), arising through different translocation events and overexpression. Further, activating point mutations in the ALK domain have been recently reported in neuroblastoma. To characterize signaling in the context of the full-length receptor, we have examined whether ALK is able to activate Rap1 and contribute to differentiation/proliferation processes. We show that ALK activates Rap1 via the Rap1-specific guanine-nucleotide exchange factor C3G, which binds in a constitutive complex with CrkL to activated ALK. The activation of the C3G/Rap1 pathway results in neurite outgrowth of PC12 cells, which is inhibited by either overexpression of Rap1GAP or siRNA-mediated knockdown of Rap1 itself or the guanine nucleotide exchange factor C3G. Significantly, this pathway also appears to function in the regulation of proliferation of neuroblastoma cells such as SK-N-SH and SH-SY5Y, because abrogation of Rap1 activity by Rap1-specific siRNA or overexpression of Rap1GAP reduces cellular growth. These results suggest that ALK activation of Rap1 may contribute to cell proliferation and oncogenesis of neuroblastoma driven by gain-of-function mutant ALK receptors.
Collapse
|
95
|
Yoshiki S, Matsunaga-Udagawa R, Aoki K, Kamioka Y, Kiyokawa E, Matsuda M. Ras and calcium signaling pathways converge at Raf1 via the Shoc2 scaffold protein. Mol Biol Cell 2010; 21:1088-96. [PMID: 20071468 PMCID: PMC2836960 DOI: 10.1091/mbc.e09-06-0455] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of Raf1 at the plasma membrane requires not only Ras activation but also an increase in Ca2+ concentration or inhibition of calmodulin. The Ca2+-dependent activation of Raf1 is abrogated by knockdown of Shoc2. We show that the Shoc2 scaffold protein modulates Ras-dependent Raf1 activation in a Ca2+- and calmodulin-dependent manner. Situated downstream of Ras is a key signaling molecule, Raf1. Increase in Ca2+ concentration has been shown to modulate the Ras-dependent activation of Raf1; however, the mechanism underlying this effect remains elusive. Here, to characterize the role of Ca2+ in Ras signaling to Raf1, we used a synthetic guanine nucleotide exchange factor (GEF) for Ras, eGRF. In HeLa cells expressing eGRF, Ras was activated by the cAMP analogue 007 as efficiently as by epidermal growth factor (EGF), whereas the activation of Raf1, MEK, and ERK by 007 was about half of that by EGF. Using a biosensor based on fluorescence resonance energy transfer, it was found that activation of Raf1 at the plasma membrane required not only Ras activation but also an increase in Ca2+ concentration or inhibition of calmodulin. Furthermore, the Ca2+-dependent activation of Raf1 was found to be abrogated by knockdown of Shoc2, a scaffold protein that binds both Ras and Raf1. These observations indicated that the Shoc2 scaffold protein modulates Ras-dependent Raf1 activation in a Ca2+- and calmodulin-dependent manner.
Collapse
Affiliation(s)
- Sayaka Yoshiki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Rap1, a mercenary among the Ras-like GTPases. Dev Biol 2010; 340:1-9. [PMID: 20060392 DOI: 10.1016/j.ydbio.2009.12.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 01/07/2023]
Abstract
The small Ras-like GTPase Rap1 is an evolutionary conserved protein that originally gained interest because of its capacity to revert the morphological phenotype of Ras-transformed fibroblasts. Rap1 is regulated by a large number of stimuli that include growth factors and cytokines, but also physical force and osmotic stress. Downstream of Rap1, a plethora of effector molecules has been proposed on the basis of biochemical studies. Here, we present an overview of genetic studies on Rap1 in various model organisms and relate the observed phenotypes to in vitro studies. The picture that emerges is one in which Rap1 is a versatile regulator of morphogenesis, by regulating diverse processes that include establishment of cellular polarity, cell-matrix interactions and cell-cell adhesion. Surprisingly, genetic experiments indicate that in the various model organisms, Rap1 uses distinct effector molecules that impinge upon the actin cytoskeleton and adhesion molecules.
Collapse
|
97
|
Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, Bradford C, Prince M, Wang CY, Fearon ER, D'Silva NJ. Rap1 stabilizes beta-catenin and enhances beta-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res 2009; 16:65-76. [PMID: 20028760 DOI: 10.1158/1078-0432.ccr-09-1122] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE In head and neck squamous cell carcinoma (HNSCC) cells, Rap1 shuttles between the nucleus and cytoplasm. Prior findings suggested that Rap1 may modulate the beta-catenin-independent Wnt pathway in some settings, but the role of Rap1 in beta-catenin-dependent Wnt signaling remains undefined. EXPERIMENTAL DESIGN AND RESULTS We observed that beta-catenin bound to active Rap1 in vitro and Rap1 activated beta-catenin/T-cell factor (TCF)-dependent transcription. Immunofluorescence studies showed that ectopic expression of Rap1 increased nuclear translocation of beta-catenin. Overexpression of active Rap1 facilitated an increase in beta-catenin-mediated transcription that was abrogated by dominant-negative TCF4. Conversely, small interfering RNA-mediated inhibition of endogenous Rap1 expression inhibited beta-catenin/TCF-mediated transcription as well as invasion of HNSCC. Furthermore, inhibition of Rap1 expression downregulated the expression of matrix metalloproteinase 7, a transcriptional target of beta-catenin/TCF. In HNSCC cells stably transfected with beta-catenin or treated with lithium chloride or Wnt3A to stabilize endogenous beta-catenin, inhibition of Rap1 expression led to decreases in the free pool of beta-catenin. Immunohistochemical studies of tissue from HNSCC patients revealed that increased beta-catenin intensity correlated with higher tumor stage. Furthermore, the prognostic effect of active Rap1 on tumor N stage was found to depend on cytosolic beta-catenin expression (P < 0.013). When beta-catenin is high, higher Rap1GTP intensity is associated with more advanced N stage. CONCLUSIONS The findings suggest that Rap1 enhances beta-catenin stability and nuclear localization. In addition to indicating that Rap1 has a significant role in regulating beta-catenin and beta-catenin-dependent progression to more advanced N-stage lesions, these data highlight Rap1 as a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Mitsuo Goto
- Departments of Periodontics and Oral Medicine and Biologic and Materials Science, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Boettner B, Van Aelst L. Control of cell adhesion dynamics by Rap1 signaling. Curr Opin Cell Biol 2009; 21:684-93. [PMID: 19615876 PMCID: PMC2841981 DOI: 10.1016/j.ceb.2009.06.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/16/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Individual cells in their particular environments adhere to the extracellular matrix (ECM) and their neighbours via integrin-containing and cadherin-containing complexes, respectively. The dynamics of these interactions regulate the formation and maintenance of complex tissues. An expanding body of evidence accentuates the role of the small Rap1 GTPase and its associated signaling network in many of these processes. In this review we will discuss more recently revealed roles of Rap1 signaling by primarily focusing on functions of the Rap1 effectors RIAM, KRIT-1/CCM1 and AF-6/Afadin in junctional regulation of the vascular system and in epithelial cells. Furthermore, we will describe novel findings on the Rap activator PDZ-GEF in the regulation of cell-cell adhesion between epithelial cells and within a stem cell niche.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
99
|
Hara S, Nakaseko C, Yamasaki S, Hattori M, Bos JL, Saito Y, Minato N, Saito T. Involvement of Rap-1 activation and early termination of immune synapse in CTLA-4-mediated negative signal. ACTA ACUST UNITED AC 2009; 14:150-8. [PMID: 19490760 DOI: 10.1179/102453309x402241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is a T cell co-stimulation receptor that delivers inhibitory signals upon activation. This inhibitory effect by CTLA-4 requires activation of small GTPase Rap-1. However, the precise mechanism underlying these negative signals remains unclear. Here, we show that CTLA-4-induced suppression of IL-2 production correlates with rapid destabilization of immunological synapse (IS) formation in murine normal T cell clones. Overexpression of Spa-1, a Rap-1-specific GTPase activating protein (GAP), abolished both Rap-1 activation and IL-2 suppression induced by CTLA-4. Although we failed to find any specific inhibition of activation of early signals upon CTLA-4 engagement, we found that CTLA-4 specifically up-regulates cell motility and suppresses prolonged accumulation of Talin at the contact area with antigen presenting cells upon antigen stimulation. These results suggest that Rap-1 is activated upon CTLA-4 ligation and mediates inhibitory signals through prevention of IS formation.
Collapse
Affiliation(s)
- Satoru Hara
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Dao VT, Dupuy AG, Gavet O, Caron E, de Gunzburg J. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J Cell Sci 2009; 122:2996-3004. [PMID: 19638416 DOI: 10.1242/jcs.041301] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
At the onset of mitosis, most adherent cells undergo cell retraction characterised by the disassembly of focal adhesions and actin stress fibres. Mitosis takes place in rounded cells, and the two daughter cells spread again after cytokinesis. Because of the well-documented ability of the small GTPase Rap1 to stimulate integrin-dependent adhesion and spreading, we assessed its role during mitosis. We show that Rap1 activity is regulated during this process. Changes in Rap1 activity play an essential role in regulating cell retraction and spreading, respectively, before and after mitosis of HeLa cells. Indeed, endogenous Rap1 is inhibited at the onset of mitosis; conversely, constitutive activation of Rap1 inhibits the disassembly of premitotic focal adhesions and of the actin cytoskeleton, leading to delayed mitosis and to cytokinesis defects. Rap1 activity slowly increases after mitosis ends; inhibition of Rap1 activation by the ectopic expression of the dominant-negative Rap1[S17A] mutant prevents the rounded cells from spreading after mitosis. For the first time, we provide evidence for the direct regulation of adhesion processes during mitosis via the activity of the Rap1 GTPase.
Collapse
Affiliation(s)
- Vi Thuy Dao
- Institut Curie, Centre de Recherche, Inserm U528, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | |
Collapse
|