51
|
Ponguta LA, Gregory CW, French FS, Wilson EM. Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer. J Biol Chem 2008; 283:20989-1001. [PMID: 18511414 DOI: 10.1074/jbc.m802392200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The androgen receptor (AR) is required for prostate cancer development and contributes to tumor progression after remission in response to androgen deprivation therapy. Epidermal growth factor (EGF) increases AR transcriptional activity at low levels of androgen in the CWR-R1 prostate cancer cell line derived from the castration-recurrent CWR22 prostate cancer xenograft. Here we report that knockdown of AR decreases EGF stimulation of prostate cancer cell growth and demonstrate a mechanistic link between EGF and AR signaling. The EGF-induced increase in AR transcriptional activity is dependent on phosphorylation at mitogen-activated protein kinase consensus site Ser-515 in the AR NH(2)-terminal region and at protein kinase C consensus site Ser-578 in the AR DNA binding domain. Phosphorylation at these sites alters the nuclear-cytoplasmic shuttling of AR and AR interaction with the Ku-70/80 regulatory subunits of DNA-dependent protein kinase. Abolishing AR Ser-578 phosphorylation by introducing an S578A mutation eliminates the AR transcriptional response to EGF and increases both AR binding of Ku-70/80 and nuclear retention of AR in association with hyperphosphorylation of AR Ser-515. The results support a model in which AR transcriptional activity increases castration-recurrent prostate cancer cell growth in response to EGF by site-specific serine phosphorylation that regulates nuclear-cytoplasmic shuttling through interactions with the Ku-70/80 regulatory complex.
Collapse
Affiliation(s)
- Liliana A Ponguta
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
52
|
Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 2008; 113:443-56. [DOI: 10.1007/s10549-008-9956-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
53
|
Abstract
Conditional gene silencing in mammalian cells, via the controlled expression of short hairpin RNAs (shRNAs), is an effective method for studying gene function, particularly if the gene is essential for cell survival or development. Here we describe a simple and rapid protocol for the generation of tetracycline (Tet)-inducible vectors that express shRNAs in a time- and dosage-dependent manner. Tet-operator (TetO) sequences responsive to occupation by the Tet-repressor (TetR) were inserted at alternative positions within the wild-type H1 promoter and cloned into a eukaryotic expression vector. Additional cloning sites downstream of the promoter enable the insertion of shRNA sequences. This Tet-inducible shRNA expression system can be used for both transient and stable RNA interference (RNAi) approaches to control gene function in a spatiotemporal fashion. The entire protocol (preparation of constructs, generation of stable cell lines and functional analysis) can be completed in 3 months.
Collapse
|
54
|
Hoeflich KP, Jaiswal B, Davis DP, Seshagiri S. Inducible BRAF suppression models for melanoma tumorigenesis. Methods Enzymol 2008; 439:25-38. [PMID: 18374154 DOI: 10.1016/s0076-6879(07)00403-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic mutations in BRAF have been reported in 50 to 70% of melanomas. The most common mutation is a valine to glutamic acid substitution at codon 600 (V600E). (V600E)BRAF constitutively activates ERK signaling and promotes proliferation, survival, and tumor growth. However, although BRAF is mutated in up to 80% of benign nevi, they rarely progress into melanoma. This implicates the BRAF mutation to be an initiating event that requires additional lesions in the genome for full-blown progression to melanoma. Even though the mutations appear early during the pathogenesis of melanoma, targeted BRAF knockdown using inducible shRNA in melanoma cell lines with BRAF mutations shows that BRAF is required for growth and maintenance of tumor in xenograft models.
Collapse
Affiliation(s)
- Klaus P Hoeflich
- Genentech Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | | | | | | |
Collapse
|
55
|
|
56
|
Gropp M, Reubinoff BE. Lentiviral–RNA–Interference System Mediating Homogenous and Monitored Level of Gene Silencing in Human Embryonic Stem Cells. CLONING AND STEM CELLS 2007; 9:339-45. [PMID: 17907944 DOI: 10.1089/clo.2006.0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic modifications of human embryonic stem cells (hESCs) that will efficiently promote stable homogenous gene silencing, and will also allow monitoring of the silencing level, may be invaluable for the study of function of genes in early human embryogenesis, differentiation, and maintenance of pluripotency of hESCs. RNA-mediated interference (RNAi) emerges as a highly efficient tool for specific knockdown of gene expression. Lentiviruses are efficient vectors for the delivery and stable expression of transgenes in hESCs. We sought to develop a lentiviral-RNAi-based system that will efficiently induce homogenous gene silencing and will allow the monitoring of its relative level in hESCs. Dual-promoter lentiviral vectors coexpressing an RNAi cassette and a reporter gene were initially used for efficient and stable induction of heterogeneous levels of gene silencing in polyclonal hESCs. This step was further combined with the isolation of transduced clones with different homogenous levels of gene silencing. The level of silencing in each of the clones correlated and could be monitored by the level of expression of the vector's reporter transgene. Thus, our system allows easy identification of clones with relatively different homogenous levels of gene silencing. Our approach would be valuable for the study of function of genes, in particular those whose role in hESCs biology depends on their level of expression.
Collapse
Affiliation(s)
- Michal Gropp
- The Hadassah Human Embryonic Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
57
|
Nassanian H, Sanchez AM, Lo A, Bradley KA, Lee B. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange. PLoS One 2007; 2:e767. [PMID: 17712415 PMCID: PMC1942083 DOI: 10.1371/journal.pone.0000767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RNA interference (RNAi), mediated by small interfering RNA (siRNA), is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC). The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template. PRINCIPAL FINDINGS We show here the use of a ligase chain reaction (LCR) to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each). Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells. CONCLUSIONS The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.
Collapse
Affiliation(s)
- Hoorig Nassanian
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Ana M. Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Alice Lo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- University of California at Los Angeles AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
58
|
Berlivet S, Guiraud V, Houlard M, Gérard M. pHYPER, a shRNA vector for high-efficiency RNA interference in embryonic stem cells. Biotechniques 2007; 42:738, 740-3. [PMID: 17612297 DOI: 10.2144/000112454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a powerful method to generate loss-of-function phenotypes. Plasmid vectors with RNA polymerase III promoters have been developed to express short hairpin RNAs (shRNAs) in mammalian cells. In order to optimize the efficiency of these vectors in embryonic stem (ES) cells, we have constructed and tested several plasmids, based on the H1 promoter; that direct the expression of shRNAs. The original pSUPER vector was used as a reference in this study. This vector drives the expression of shRNAs from a basic 0.2-kb H1 promoter; which exhibits a variable expression when integrated into the genome of ES cells. We used a 2.5-kb mouse genomic fragment containing the H1 promoter to construct a new H1 shRNA vector pHYPER. A comparison of this vector with the basic 0.2-kb H1 vector showed that pHYPER directs the synthesis of higher amounts of shRNAs. Using epifluorescence and fluorescent-activated cell sorting (FACS) analysis, we demonstrated that pHYPER is 4-fold more active than the 0.2-kb H1-based vector after integration into the genome of mouse ES cells. We provide a new, improved H1 shRNA vector that is optimized for both transient transfection studies and the generation of stable ES cell lines.
Collapse
Affiliation(s)
- Soizik Berlivet
- Commissariat a l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS), Epigenetic Regulation and Cancer Group, Cif-sur-Yvette, France
| | | | | | | |
Collapse
|
59
|
Wang W, Takimoto JK, Louie GV, Baiga TJ, Noel JP, Lee KF, Slesinger PA, Wang L. Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 2007; 10:1063-72. [PMID: 17603477 PMCID: PMC2692200 DOI: 10.1038/nn1932] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 06/01/2007] [Indexed: 11/09/2022]
Abstract
Proteins participate in various biological processes and can be harnessed to probe and control biological events selectively and reproducibly, but the genetic code limits the building block to 20 common amino acids for protein manipulation in living cells. The genetic encoding of unnatural amino acids will remove this restriction and enable new chemical and physical properties to be precisely introduced into proteins. Here we present new strategies for generating orthogonal tRNA-synthetase pairs, which made possible the genetic encoding of diverse unnatural amino acids in different mammalian cells and primary neurons. Using this new methodology, we incorporated unnatural amino acids with extended side chains into the K+ channel Kv1.4, and found that the bulkiness of residues in the inactivation peptide is essential for fast channel inactivation, a finding that had not been possible using conventional mutagenesis. This technique will stimulate and facilitate new molecular studies using tailored unnatural amino acids for cell biology and neurobiology.
Collapse
Affiliation(s)
- Wenyuan Wang
- Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Tiscornia G, Singer O, Verma IM. Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat Protoc 2007; 1:234-40. [PMID: 17406238 DOI: 10.1038/nprot.2006.36] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) has emerged as a powerful technique to downregulate gene expression. The use of polIII promoters to express small hairpin RNAs (shRNAs), combined with the versatility and robustness of lentiviral vector-mediated gene delivery to a wide range of cell types offers the possibility of long-term downregulation of specific target genes both in vitro and in vivo. The use of silencing lentivectors allows for a rapid and convenient way of establishing cell lines (or transgenic mice) that stably express shRNAs for analysis of phenotypes produced by knockdown of a gene product. Here we present two possible protocols describing the design and cloning of silencing lentiviral vectors. These protocols can be completed in less than 3 weeks.
Collapse
Affiliation(s)
- Gustavo Tiscornia
- The Salk Institute for Biological Studies, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
61
|
Camacho-Leal P, Zhai AB, Stanners CP. A co-clustering model involving alpha5beta1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J Cell Physiol 2007; 211:791-802. [PMID: 17286276 DOI: 10.1002/jcp.20989] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CEA functions as an intercellular adhesion molecule and is up-regulated in a wide variety of human cancers, including colon, breast and lung. Its over-expression inhibits cellular differentiation, blocks cell polarization, distorts tissue architecture, and inhibits anoikis of many different cell types. Here we report results concerning the molecular mechanism involved in these biological effects, where relatively rapid molecular changes not requiring alterations in gene expression were emphasized. Confocal microscopy experiments showed that antibody-mediated clustering of a deletion mutant of CEA (DeltaNCEA), normally incapable of self binding and clustering, led to the co-localization of integrin alpha5beta1 with patches of DeltaNCEA on the cell surface. Activation of alpha5, as defined by an anti-alpha5 mAb-sensitive increase in cell adhesion to immobilized fibronectin, and an increased binding of soluble fibronectin to cells, was also observed. This was accompanied by the recruitment of integrin-linked kinase (ILK), protein kinase B (PKB/Akt), and the mitogen-activated protein kinase (MAPK) to membrane microdomains and the phosphorylation of Akt and MAPK. Inhibition of PI3-K and ILK, but not MAPK, prevented the alpha5beta1 integrin activation. Conversely, anti-alpha5 antibody inhibited the PI3-K-mediated activation of Akt, implying the involvement of outside-in and inside-out signaling in integrin activation. Therefore we propose that CEA-mediated signaling involves clustering of CEA and co-clustering and activation of the alpha5beta1 and associated specific signaling elements on the internal surfaces of membrane microdomains. These changes may represent a molecular mechanism for the biological effects of CEA.
Collapse
Affiliation(s)
- Pilar Camacho-Leal
- Department of Biochemistry and McGill Cancer Centre, McGill University, Quebec, Canada
| | | | | |
Collapse
|
62
|
Myslinski E, Gérard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Res 2007; 35:3453-64. [PMID: 17478512 PMCID: PMC1904299 DOI: 10.1093/nar/gkm239] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BubR1 is a key protein mediating spindle checkpoint activation. Loss of this checkpoint control results in chromosomal instability and aneuploidy. The transcriptional regulation of the cell cycle regulated human BUB1B gene, which encodes BubR1, was investigated in this report. A minimal BUB1B gene promoter containing 464 bp upstream from the translation initiation codon was sufficient for cell cycle regulated promoter activity. A pivotal role for transcription factor hStaf/ZNF143 in the expression of the BUB1B gene was demonstrated through gel retardation assays, transient expression of mutant BUB1B promoter–reporter gene constructs and chromatin immunoprecipitation assay. Two phylogenetically conserved hStaf/ZNF143-binding sites (SBS) were identified which are indispensable for BUB1B promoter activity. In addition, we found that the domain covering the transcription start sites contains conserved boxes homologous to initiator (Inr), cell cycle dependent (CDE) and cell cycle genes homology regions (CHR) elements. Mutations within the CDE and CHR elements led to diminished cell cycle regulation of BUB1B transcription. These results demonstrate that BUB1B gene transcription is positively regulated by hStaf/ZNF143, a ubiquitously expressed factor, and that the CDE-CHR tandem element was essential for G2/M-specific transcription of the BUB1B gene.
Collapse
Affiliation(s)
| | | | | | - Philippe Carbon
- *To whom correspondence should be addressed. Tel: +33 3 88 41 70 64; Fax: +33 3 88 60 22 18;
| |
Collapse
|
63
|
Henriksen JR, Løkke C, Hammerø M, Geerts D, Versteeg R, Flægstad T, Einvik C. Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res 2007; 35:e67. [PMID: 17426119 PMCID: PMC1888813 DOI: 10.1093/nar/gkm193] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conditional expression of short hairpin RNAs (shRNAs) to knock down target genes is a powerful tool to study gene function. The most common inducible expression systems are based on tetracycline-regulated RNA polymerase III promoters. During the last years, several tetracycline-inducible U6 and H1 promoter variants have been reported in different experimental settings showing variable efficiencies. In this study, we compare the most common variants of these promoters in several mammalian cell lines. For all cell lines tested, we find that several inducible U6 and H1 promoters containing single tetracycline operator (tetO) sequences show high-transcriptional background in the non-induced state. Promoter variants containing two tetO sequences show tight suppression of transcription in the non-induced state, and high tet responsiveness and high gene knockdown efficiency upon induction in all cell lines tested. We report a variant of the H1 promoter containing two O2-type tetO sequences flanking the TATA box that shows little transcriptional background in the non-induced state and up to 90% target knockdown when the inducer molecule (dox-doxycycline) is added. This inducible system for RNAi-based gene silencing is a good candidate for use both in basic research on gene function and for potential therapeutic applications.
Collapse
Affiliation(s)
- Jørn R. Henriksen
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cecilie Løkke
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Martin Hammerø
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Dirk Geerts
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Trond Flægstad
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christer Einvik
- Department of Pediatrics, University Hospital of North-Norway, Department of Pediatrics, Institute of Clinical Biology, University of Tromsø, 9037 Tromsø, Norway and Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- *To whom correspondence should be addressed. +47 77 644735+47 77 645350
| |
Collapse
|
64
|
Hayafune M, Miyano-Kurosaki N, Park WS, Moori Y, Takaku H. Silencing of HIV-1 gene expression by two types of siRNA expression systems. Antivir Chem Chemother 2007; 17:241-9. [PMID: 17176628 DOI: 10.1177/095632020601700501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The RNA interference (RNAi) phenomenon is a recently discovered process in which the introduction of a double-stranded RNA (dsRNA) into cells causes the specific degradation of mRNA containing the same sequence. We designed mammalian expression vectors that direct the synthesis of small interfering RNA (siRNA)-like transcripts and examined them for their siRNA-mediated gene interference targeting the env gene (NL4-3:7490-7508, E7490). We constructed siRNA expression vectors for two different strands (sense and antisense; tandem promoter) and for siRNA expressed from the short hairpin RNA (shRNA). The inhibition efficacy on HIV-1 replication differed between these two vectors. Notably, the shRNA vector pU6-env-shRNA inhibited p24 production more effectively than the tandem promoter expression vector pU6-env-siRNA. Furthermore, we examined the ability of lentiviral vectors expressing shRNA to suppress HIV-1 expression in HIV-1-infected SupT1 cells. The env-shRNA (E 7490) almost completely suppressed HIV-1 expression in infected cells for up to 15 days.
Collapse
Affiliation(s)
- Masaaki Hayafune
- Department of Life and Environmental Science, Chiba Institute of Technology, Narashino-shi, Chiba, Japan
| | | | | | | | | |
Collapse
|
65
|
Abstract
RNA interference (RNAi) is a naturally occurring cellular defense mechanism against viral infections and transposon invasion. Short double-stranded RNA molecules, so-called small-interfering (si)RNAs, bind their complementary mRNA leading to the mRNA's degradation. During the past few years, RNAi has become a valuable tool for transient as well as stable repression of gene expression rendering the time-consuming production of knockout animals superfluous. In this chapter the usability of the RNAi technology in cancer research will be described, focusing on the application of large-scale screens for identification of new components in cancer-relevant signal pathways (e.g., p53, RAS). The screens are especially helpful in the detection of potential anticancer drug targets or siRNAs with therapeutic potential.
Collapse
Affiliation(s)
- Uta Fuchs
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität München, München, Germany
| | | |
Collapse
|
66
|
Cheng TL, Chang WT. Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells. Methods Mol Biol 2007; 408:223-241. [PMID: 18314586 DOI: 10.1007/978-1-59745-547-3_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism of posttranscriptional gene silencing induced by introducing the double-stranded RNAs (dsRNAs) into cells. Recent progress in RNAi-based gene-silencing techniques has revolutionarily advanced in studies of the functional genomics and molecular therapeutics. Among the widely used dsRNAs including exogenously synthetic and endogenously expressed small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), the shRNAs are more efficient than siRNAs on the induction of gene silencing and currently have evolved as an extremely powerful and the most popular gene silencing reagent. The DNA vector-based shRNA-expression systems provide not only a simple and effective way in inhibiting gene activities in either inheritable or inducible manner, but also a cost-effective tool in constructing the expression vectors. To fully explore the DNA vector-based shRNA-expression systems in RNAi-mediated gene-silencing techniques, four distinct RNA polymerase III (Pol III)-controlled type III promoter-based expression vectors are constructed including pHsH1, pHsU6, pMmH1, and pMmU6, which contain either the RNase P RNA H1 (H1) or small nuclear RNA U6 (U6) promoter from human and mouse. Moreover, to improve the constructing and screening efficiency for the shRNA-expression recombinant clones, these four DNA vectors are further reconstructed by inserting a stuffer of puromycin resistance gene (PuroR) between restriction enzyme ClaI and HindIII sites, which makes the preparation of vectors easy and simple for cloning the shRNA-expression sequences. Because of the ease, speed, and cost efficiency, these four improved DNA vector-based shRNA-expression vectors provide a simple, convenient, and efficient gene-silencing system for analyzing specific gene functions in mammalian cells. Herein, the simple and practical procedures for the construction of DNA vector-based expression vectors, potential and rational design rules for the selection of effective RNAi-targeting sequences, efficient and cost-effective cloning strategies for the construction of shRNA-expression cassettes, and effective and functional activity assays for the evaluation of expressed shRNAs are described.
Collapse
Affiliation(s)
- Tsung-Lin Cheng
- National Cheng Kung University Medical College, Tainan, Taiwan
| | | |
Collapse
|
67
|
Verca MSB, Weber P, Mayer C, Graf C, Refojo D, Kühn R, Grummt I, Lutz B. Development of a species-specific RNA polymerase I-based shRNA expression vector. Nucleic Acids Res 2006; 35:e10. [PMID: 17158154 PMCID: PMC1802596 DOI: 10.1093/nar/gkl1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) can be induced in vitro either by application of synthetic short interfering RNAs (siRNAs), or by intracellular expression of siRNAs or short hairpin RNAs (shRNAs) from transfected vectors. The most widely used promoters for siRNA/shRNA expression are based on polymerase III (Pol III)-dependent transcription. We developed an alternative vector for siRNA/shRNA expression, using a mouse RNA polymerase I (Pol I) promoter. Pol I-dependent transcription serves in cells for production of ribosomal RNA (rRNA), and as such, is ubiquitously and stably active in different cell types. As Pol I-dependent transcription is highly species-specific, Pol I-based system provides an important biosafety advantage with respect to silencing of genes with unknown functions.
Collapse
Affiliation(s)
- M. S. Brenz Verca
- Max Planck Institute of PsychiatryKraepelinstrasse 2-10, D-80804 Munich, Germany
- To whom correspondence should be addressed. Tel: +49 6131 3925912; Fax: +49 6131 3923536;
| | - Peter Weber
- Max Planck Institute of PsychiatryKraepelinstrasse 2-10, D-80804 Munich, Germany
| | - Christine Mayer
- Division of Molecular Biology of the Cell II, German Cancer Research CenterIm Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Cornelia Graf
- Max Planck Institute of PsychiatryKraepelinstrasse 2-10, D-80804 Munich, Germany
| | - Damián Refojo
- Max Planck Institute of PsychiatryKraepelinstrasse 2-10, D-80804 Munich, Germany
| | - Ralf Kühn
- Institute for Developmental Genetics/GSFIngolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research CenterIm Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Beat Lutz
- Max Planck Institute of PsychiatryKraepelinstrasse 2-10, D-80804 Munich, Germany
- Department of Physiological Chemistry, Johannes Gutenberg-University MainzDuesbergweg 6, D-55099 Mainz, Germany
- To whom correspondence should be addressed. Tel: +49 6131 3925912; Fax: +49 6131 3923536;
| |
Collapse
|
68
|
Myslinski E, Gérard MA, Krol A, Carbon P. A Genome Scale Location Analysis of Human Staf/ZNF143-binding Sites Suggests a Widespread Role for Human Staf/ZNF143 in Mammalian Promoters. J Biol Chem 2006; 281:39953-62. [PMID: 17092945 DOI: 10.1074/jbc.m608507200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staf was originally identified as the transcriptional activator of Xenopus tRNA(Sec) and small nuclear (sn) RNA-type genes. Recently, transcription of seven human (h) protein coding genes was reported to be activated by the human ortholog hStaf/ZNF143. Here we have used a combined in silico and biochemical approach to identify 1175 conserved hStaf/ZNF143-binding sites (SBS) distributed in 938 promoters of four mammalian genomes. The SBS shows a significant positional preference and occurs mostly within 200 bp upstream of the transcription start site. Chromatin immunoprecipitation assays with 295 of the promoters established that 90% contain bona fide SBS. By extrapolating the values of this mapping to the full sizes of the mammalian genomes, we can infer the existence of at least 2500 SBS distributed in 2000 promoters. This unexpected large number strongly suggests that SBS constitutes one of the most widespread transcription factor-binding sites in mammalian promoters. Furthermore, we demonstrated that the presence of the SBS alone is sufficient to direct expression of a luciferase reporter gene, suggesting that hStaf/ZNF143 can recruit per se the transcription machinery.
Collapse
Affiliation(s)
- Evelyne Myslinski
- Institut de Biologie Moléculaire et Cellulaire, UPR CNRS Architecture et Réactivité de l'ARN, Université Louis Pasteur, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
69
|
Kim K, Duramad O, Qin XF, Su B. MEKK3 is essential for lipopolysaccharide-induced interleukin-6 and granulocyte-macrophage colony-stimulating factor production in macrophages. Immunology 2006; 120:242-50. [PMID: 17116170 PMCID: PMC2265862 DOI: 10.1111/j.1365-2567.2006.02495.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mitogen-activated protein/ERK kinase kinase 3 (MEKK3) is a Ser/Thr protein kinase belonging to the MEKK/STE11 subgroup of the MAP3K family. Recently, we found that MEKK3 plays a critical role in interleukin-1 (IL-1) receptor and Toll-like receptor 4 signalling using established primary mouse embryonic fibroblast (MEF) cell lines. However, the function of MEKK3 in immune cells has not been studied because germ-line MEKK3 knockout mice are embryonically lethal between embryonic days 10 and 11. In this study, we used small interference RNA to the mouse Mekk3 gene to specifically knock down MEKK3 expression in the macrophage line Raw264.7. We found that the lipopolysaccharide-induced IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production was dramatically decreased in MEKK3 knockdown cells whereas the tumour necrosis factor-alpha and IL-1beta production were not affected. We also observed that the ERK1/2, p38 and JNK MAPK induction in MEKK3 knockdown cells were moderately inhibited within the first 60 min of stimulation, while the ERK and p38 were more severely inhibited after 2-4 hr of stimulation. Degradation of IkappaBalpha was also partially blocked in MEKK3 knockdown cells. Notably, the impairment in IL-6 and GM-CSF production in the MEKK3 knockdown cells was restored by reintroducing a human Mekk3 cDNA that could not be targeted by mouse Mekk3-siRNAs. In conclusion, this study showed that MEKK3 is a crucial and specific regulator of the proinflammatory cytokines IL-6 and GM-CSF in macrophages and provided a novel method for investigating MEKK3 function in other immune cells.
Collapse
Affiliation(s)
- Kihwan Kim
- Department of Immunology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
70
|
Pagano A, Castelnuovo M, Tortelli F, Ferrari R, Dieci G, Cancedda R. New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. PLoS Genet 2006; 3:e1. [PMID: 17274687 PMCID: PMC1790723 DOI: 10.1371/journal.pgen.0030001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 11/20/2006] [Indexed: 02/04/2023] Open
Abstract
By means of a computer search for upstream promoter elements (distal sequence element and proximal sequence element) typical of small nuclear RNA genes, we have identified in the human genome a number of previously unrecognized, putative transcription units whose predicted products are novel noncoding RNAs with homology to protein-coding genes. By elucidating the function of one of them, we provide evidence for the existence of a sense/antisense-based gene-regulation network where part of the polymerase III transcriptome could control its polymerase II counterpart. After the sequence of the human genome was determined, it was immediately recognized that a large part of the regulation of the gene expression occurring in the cells under physiological, as well as under pathological conditions, is carried out by RNA molecules that do not code for proteins (the “noncoding portion” of the genome). Here, we focus on small RNA molecules transcribed by the RNA polymerase III and identify a novel set of approximately 30 noncoding (nc) RNA genes. We propose that these RNA transcripts play a key role in regulating the expression of specific protein-coding genes transcribed by the RNA polymerase II, thus constituting an unprecedented example of cogene/gene pairs. Furthermore, we provide evidence that the RNA polymerase III, in addition to the well-known task in the constitutive synthesis of small RNAs (such as 5S rRNA and tRNAs), also plays a key role in the area of gene-expression control. A detailed investigation of the function of one of the novel ncRNA genes, called 21A, revealed that its transcript plays a role in the control of the proliferation of some tumor cells. The above findings significantly expand our understanding of the ncRNA universe and open the way to further studies aimed at the elucidation of the molecular pathways involving this novel class of regulatory RNAs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Computational Biology
- Gene Expression Regulation
- Genome, Human/genetics
- HeLa Cells
- Humans
- Mice
- Microfilament Proteins/genetics
- Models, Genetic
- Molecular Sequence Data
- NIH 3T3 Cells
- Nucleic Acid Conformation
- RNA Polymerase III/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Sequence Analysis, DNA
- Species Specificity
- TATA Box/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Aldo Pagano
- Dipartimento di Oncologia Biologia e Genetica, Università di Genova, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
71
|
Heinonen JE, Mohamed AJ, Nore BF, Smith CIE. Inducible H1 promoter-driven lentiviral siRNA expression by Stuffer reporter deletion. Oligonucleotides 2006; 15:139-44. [PMID: 15989428 DOI: 10.1089/oli.2005.15.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction of 19-23-bp small interfering RNA (siRNA) into mammalian cells has become a standard procedure to downregulate mRNA with high efficacy. siRNAs can be introduced into cells either as synthetic duplexes or as hairpin structures produced by Pol III promoter-driven vectors. Pol III promoter-expressed small hairpin RNAs (shRNAs) offer a great possibility for the production of endogenous siRNA, which can be used for stable siRNA production in vivo. A major drawback of this strategy is the incapability of detecting rapidly occurring cellular responses. Here, we present a lentiviral shRNA-producing vector system, which can be induced by CRE recombinase enzyme to overcome these limitations. Following the addition of CRE, the pLIND (LentiINDucible) will activate siRNA production by deleting EGFP and a stop cassette between the promoter and siRNA oligo. Target gene downregulation capacity was comparable to that of a noninducible siRNA system.
Collapse
Affiliation(s)
- Juhana E Heinonen
- Clinical Research Center (CRC) at Novum, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
| | | | | | | |
Collapse
|
72
|
Kappel S, Matthess Y, Zimmer B, Kaufmann M, Strebhardt K. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res 2006; 34:4527-36. [PMID: 16945954 PMCID: PMC1636372 DOI: 10.1093/nar/gkl628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/10/2006] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool to induce loss-of-function phenotypes by post-transcriptional silencing of gene expression. In this study we wondered whether inducible RNAi-cassettes integrated into cellular DNA possess the power to trigger neoplastic growth. For this purpose inducible RNAi vectors containing tetracycline (Tet)-responsive derivatives of the H1 promoter for the conditional expression of short hairpin RNA (shRNA) were used to target human polo-like kinase 1 (Plk1), which is overexpressed in a broad spectrum of human tumors. In the absence of doxycycline (Dox) HeLa clones expressing TetR, that carry the RNAi-cassette stably integrated, exhibited no significant alteration in Plk1 expression levels. In contrast, exposure to Dox led to marked downregulation of Plk1 mRNA to 3% and Plk1 protein to 14% in cell culture compared to mismatch shRNA/Plk1-expressing cells. As a result of Plk1 depletion cell proliferation decreased to 17%. Furthermore, for harnessing RNAi for silencing disease-related genes in vivo we transplanted inducible RNAi-HeLa cells onto nude mice. After administration of Dox knockdown of Plk1 expression was observed correlating to a significant inhibition of tumor growth. Taken together, our data revealed that genomically integrated RNAi-elements are suitable to hamper tumor growth by conditional expression of shRNA.
Collapse
Affiliation(s)
- Sven Kappel
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Manfred Kaufmann
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
73
|
Mäkinen PI, Koponen JK, Kärkkäinen AM, Malm TM, Pulkkinen KH, Koistinaho J, Turunen MP, Ylä-Herttuala S. Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 2006; 8:433-41. [PMID: 16389634 DOI: 10.1002/jgm.860] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a post-transcriptional RNA degradation process, which has become a very useful tool in gene function studies and gene therapy applications. Long-term cellular expression of small interfering RNA (siRNA) molecules required for many gene therapy applications can be achieved by lentiviral vectors (LVs). The two most commonly used promoters to drive the short hairpin RNA (shRNA) expression are the human U6 small nuclear promoter (U6) and the human H1 promoter (H1). METHODS We investigated whether there is any significant difference between the efficiencies of U6 and H1 in LV-mediated RNAi using green fluorescent protein (GFP) as a target gene by flow cytometry and real-time reverse-transcription polymerase chain reaction (RT-PCR) in endothelial cells. Also, we compared the efficiencies of U6 and H1 in the GFP transgenic mouse brain after stereotactic LV injection. RESULTS We show that the U6 promoter is more efficient than H1 in GFP silencing in vitro, leading to 80% GFP knockdown at an average of one integrated vector genome per target cell genome. The silencing is persistent for several months. In addition, the U6 promoter is superior to H1 in vivo and leads to stable GFP knockdown in mouse brain for at least 9 months. CONCLUSIONS These results show that LV-mediated RNAi is a powerful gene-silencing method for the long-term inhibition of gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Petri I Mäkinen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Mi J, Zhang X, Rabbani ZN, Liu Y, Su Z, Vujaskovic Z, Kontos CD, Sullenger BA, Clary BM. H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Res 2006; 34:3577-84. [PMID: 16855294 PMCID: PMC1524923 DOI: 10.1093/nar/gkl482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aptamers offer advantages over other oligonucleotide-based approaches that artificially interfere with target gene function due to their ability to bind protein products of these genes with high affinity and specificity. However, RNA aptamers are limited in their ability to target intracellular proteins since even nuclease-resistant aptamers do not efficiently enter the intracellular compartments. Moreover, attempts at expressing RNA aptamers within mammalian cells through vector-based approaches have been hampered by the presence of additional flanking sequences in expressed RNA aptamers, which may alter their functional conformation. In this report, we successfully expressed a ‘pure’ RNA aptamer specific for NF-κB p50 protein (A-p50) utilizing an adenoviral vector employing the H1 RNA polymerase III promoter. Binding of the expressed aptamer to its target and subsequent inhibition of NF-κB mediated intracellular events were demonstrated in human lung adenocarcinoma cells (A549), murine mammary carcinoma cells (4T1) as well as a human tumor xenograft model. This success highlights the promise of RNA aptamers to effectively target intracellular proteins for in vitro discovery and in vivo applications.
Collapse
Affiliation(s)
- Jing Mi
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Xiuwu Zhang
- Department of Psychiatry, Duke University Medical CenterDurham, NC, USA
| | - Zahid N Rabbani
- Department of Radiation Oncology, Duke University Medical CenterDurham, NC, USA
| | - Yingmiao Liu
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Zhen Su
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical CenterDurham, NC, USA
| | | | | | - Bryan M. Clary
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
- To whom correspondence should be addressed at Box 3629 and Box 2633, Duke University Medical Center, Durham, NC 27710, USA. Tel: +1 919 684 3381; Fax: +1 919 668 0487;
| |
Collapse
|
75
|
|
76
|
Ong SP, Choo BGH, Chu JJH, Ng ML. Expression of vector-based small interfering RNA against West Nile virus effectively inhibits virus replication. Antiviral Res 2006; 72:216-23. [PMID: 16870272 DOI: 10.1016/j.antiviral.2006.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 05/26/2006] [Accepted: 06/07/2006] [Indexed: 12/23/2022]
Abstract
RNA interference is one of the effective emerging anti-viral strategies to inhibit virus infection in cells. In this study, a small interfering RNA expressing vector (pSilencer-NS5) targeting the NS5 gene of West Nile virus (WNV) was employed to target and destroy WNV transcripts. Real-time PCR revealed drastic reduction in WNV RNA transcripts in pSilencer-NS5-transfected Vero cells. The virus infectious titre was also significantly reduced by 90% as determined by plaque assays. The resulting decrease in virus replication was shown to be specific since both scrambled and nucleotide(s) mismatch siRNA against WNV NS5 gene did not have any effect on WNV productive yields. Furthermore, Western immunoblot analysis on the expression of viral NS5 and envelope (E) proteins showed significant down-regulation on the expression of viral NS5 and envelope (E) proteins in virus-infected cells that were pre-transfected with pSilencer-NS5. These data clearly supported the notion that the expression of vector-based siRNA against WNV NS5 gene is able to exert its silencing effect on WNV-infected cells without inducing cytotoxicity, hence holding promise in therapeutic treatment of this important emerging infectious disease.
Collapse
Affiliation(s)
- S P Ong
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597 Singapore, Singapore
| | | | | | | |
Collapse
|
77
|
Kazachenko KY, Avdonin PV. Vector systems of RNA interference. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Ong ST, Li F, Du J, Tan YW, Wang S. Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum Gene Ther 2006; 16:1404-12. [PMID: 16390271 DOI: 10.1089/hum.2005.16.1404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Plasmid and viral vectors harboring an RNA polymerase (Pol) III promoter would be useful in achieving sustained cellular expression of short interfering RNA (siRNA) to inhibit disease-associated genes. Given that transcription machineries directed by certain Pol II and III promoters may use common factors, we investigated whether the enhancer of the Pol II cytomegalovirus (CMV) immediate-early promoter could improve the efficacy of RNA interference mediated by the Pol III H1 promoter. We constructed a hybrid promoter by appending the CMV enhancer 5' to the H1 promoter. In the context of plasmid vectors, the hybrid promoter provided up to 50% greater inhibition of the expression of target genes than the unmodified H1 promoter and extended the silencing effect beyond that provided by the H1 promoter. Insect baculoviruses can infect a broad range of mammalian cell types. We constructed a baculovector expression cassette in which the synthesis of short hairpin RNA was under the control of the hybrid CMV enhancer-H1 promoter. This recombinant baculovirus vector was capable of suppressing expression of a target gene by 95% in cultured cells and by 82% in vivo in rat brain. These findings indicate that the hybrid CMV enhancer-H1 promoter can be used favorably for RNA interference.
Collapse
Affiliation(s)
- Seow Theng Ong
- Institute of Bioengineering and Nanotechnology, National University of Singapore, Singapore 138669
| | | | | | | | | |
Collapse
|
79
|
Abstract
Small interfering RNAs (siRNAs) are as effective as long double-stranded RNAs (dsRNAs) at targeting and silencing genes by RNA interference (RNAi). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. They are also promising reagents for developing gene-specific therapeutics. The specific inhibition of viral replication is particularly well suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on the recent advances in siRNA-based clinical trials.
Collapse
Affiliation(s)
- N Miyano-Kurosaki
- Department of Life and Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, 2-17-1 Narashino, Tsudanuma, 275-0016 Chiba, Japan
| | | |
Collapse
|
80
|
Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S, Bai W, Frantz G, Zhang Z, Koeppen H, de Sauvage FJ, Davis DP. Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res 2005; 65:9751-61. [PMID: 16266996 DOI: 10.1158/0008-5472.can-04-4531] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To identify genes that could serve as targets for novel cancer therapeutics, we used a bioinformatic analysis of microarray data comparing gene expression between normal and tumor-derived primary human tissues. From this approach, we have found that maternal embryonic leucine zipper kinase (Melk), a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. An oligonucleotide microarray analysis of multiple human tumor samples and cell lines suggests that Melk expression is frequently elevated in cancer relative to normal tissues, a pattern confirmed by quantitative reverse transcription-PCR and Western blotting of selected primary tumor samples. In situ hybridization localized Melk expression to malignant epithelial cells in 96%, 23%, and 13% of colorectal, lung, and ovarian tissue tumor samples, respectively. Expression of this gene is also elevated in spontaneous tumors derived from the ApcMin and Apc1638N murine models of intestinal tumorigenesis. To begin addressing whether Melk is relevant for tumorigenesis, RNA interference-mediated silencing within human and murine tumor cell lines was done. We show that Melk knockdown decreases proliferation and anchorage-independent growth in vitro as well as tumor growth in a xenograft model. Together, these results suggest that Melk may provide a growth advantage for neoplastic cells and, therefore, inactivation may be therapeutically beneficial.
Collapse
Affiliation(s)
- Daniel Gray
- Department of Molecular Biology, Pathology, and Bioinformatics, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hung CF, Cheng TL, Wu RH, Teng CF, Chang WT. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells. Biochem Biophys Res Commun 2005; 339:1035-42. [PMID: 16337609 DOI: 10.1016/j.bbrc.2005.11.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells.
Collapse
Affiliation(s)
- Chuan-Fu Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, No. 1, University Road, Tainan 701, Taiwan, ROC
| | | | | | | | | |
Collapse
|
82
|
Yang F, Zhang Y, Cao YL, Wang SH, Liu L. Establishment and utilization of a tetracycline-controlled inducible RNA interfering system to repress gene expression in chronic myelogenous leukemia cells. Acta Biochim Biophys Sin (Shanghai) 2005; 37:851-6. [PMID: 16331330 DOI: 10.1111/j.1745-7270.2005.00112.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi), a posttranscriptional gene silencing process mediated by small double-stranded RNA specifically complementary to the targeted transcript, has been used extensively in the development of novel therapeutic approaches against various human diseases including chronic myelogenous leukemia (CML). Here, we report the successful construction of a tetracycline-controlled siRNA in CML cell line K562. A K562 cell line stably expressing the reverse tetracycline-controlled transactivator (rtTA) was constructed. A tetracycline responsive element (TRE) was integrated into the RNA polymerase III promoter region of pBS/U6 that was used to drive specific siRNA to target the novel cytokine receptor-like factor 3 (CRLF3) gene. The results show that rtTA was able to recognize the TRE to prevent siRNA-mediated exogenous and endogenous CRLF3 gene repressions. Moreover, CRLF3-siRNA mediated gene repression could be induced in a dose-dependent manner in the presence of doxycycline. Thus, the inducible siRNAi system in K562 cells might be useful for the study of RNAi-mediated therapeutic approaches against CML.
Collapse
MESH Headings
- Base Sequence
- Gene Expression Regulation
- Gene Targeting
- Genetic Vectors
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nuclear
- Receptors, Cytokine/genetics
- Response Elements
- Tetracyclines/pharmacology
- Trans-Activators
- Transfection
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology and Etiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
83
|
Rumi M, Ishihara S, Aziz M, Kazumori H, Ishimura N, Yuki T, Kadota C, Kadowaki Y, Kinoshita Y. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochem Biophys Res Commun 2005; 339:540-7. [PMID: 16300730 DOI: 10.1016/j.bbrc.2005.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor alpha-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use.
Collapse
Affiliation(s)
- Mohammad Rumi
- Second Department of Internal Medicine, Shimane University School of Medicine, 89-1 Enya-Cho, Izumo-shi, Shimane 693-0021, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Theng Ong S, Li F, Du J, Tan YW, Wang S. Hybrid Cytomegalovirus Enhancer-H1 Promoter-Based Plasmid and Baculovirus Vectors Mediate Effective RNA Interference. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
85
|
Abstract
The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.
Collapse
Affiliation(s)
- G Lenz
- Departamento de Biofísica, Federal do Rio Grande do Sul, Av. Benito Goncalves 9500, 91501-370 Porto Alegre, RS, Brasil.
| |
Collapse
|
86
|
Dai F, Yusuf F, Farjah GH, Brand-Saberi B. RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis. Dev Biol 2005; 285:80-90. [PMID: 16055113 DOI: 10.1016/j.ydbio.2005.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 12/24/2022]
Abstract
The RNA interference technique is a powerful tool to understand gene function. Intriguingly, RNA interference cannot only be used for cells in vitro, but also in living organisms. Here, we have adapted the method for use in the chick embryo. However, this technique is limited by the uncertainty in predicting the RNAi transfection efficiency and site in the embryo. Hence, we elaborated a modified vector system, pEGFP-shRNA, which can coexpress enhanced green fluorescent protein (EGFP) and short hairpin RNA (shRNA) simultaneously to facilitate analysis of gene silencing in chicken embryos. We tested the silencing of two highly conserved genes (cAxin2, cParaxis), which play crucial roles in chicken embryonic developmental processes. For each target gene, four to five small DNA inserts, each of them encoding one shRNA, were selected and cloned individually to the vector downstream of the Pol III promoter (either human H1 or U6 promoter), which shared with highly conserved motifs in human and chicken. The pEGFP-shRNA constructs were electroporated into the neural tube or somites. After subsequent re-incubation of 24 h, the EGFP expression, with green fluorescent signal, indicated the transfected regions in the neural tube or somites. The EGFP expressing embryos were further submitted into the process of in situ hybridization for examination of the silencing effects. The results show that the EGFP signal in transfected areas correlated with the silencing of the target genes (cAxin2, cParaxis). The cAxin2 expression was inhibited by shRNAs of either targeting the RGS domain or the DAX domain coding region. The cParaxis mRNA level in transgenic somites and the related migratory myogenic population was also reduced. The results suggest that our novel dual expression EGFP-shRNA system opens a new possibility to study gene function in a convenient and efficient way.
Collapse
Affiliation(s)
- Fangping Dai
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Freiburg University, Albertstrasse 17, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
87
|
Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J. An Unusual Primate Locus that Attracted Two Independent Alu Insertions and Facilitates their Transcription. J Mol Biol 2005; 350:200-14. [PMID: 15922354 DOI: 10.1016/j.jmb.2005.03.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 03/18/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
BC200 RNA, a neuronal, small non-messenger RNA that originated from a monomeric Alu element is specific to anthropoid primates. Tarsiers lack an insert at the orthologous genomic position, whereas strepsirrhines (Lemuriformes and Lorisiformes) acquired a dimeric Alu element, independently from anthropoids. In Galago moholi, the CpG dinucleotides are conspicuously conserved, while in Eulemur coronatus a large proportion is changed, indicating that the G.moholi Alu is under purifying selection and might be transcribed. Indeed, Northern blot analysis of total brain RNA from G.moholi with a specific probe revealed a prominent signal. In contrast, a corresponding signal was absent from brain RNA from E.coronatus. Isolation and sequence analysis of additional strepsirrhine loci confirmed the differential sequence conservation including CpG patterns of the orthologous dimeric Alu elements in Lorisiformes and Lemuriformes. Interestingly, all examined Alu elements from Lorisiformes were transcribed, while all from Lemuriformes were silent when transiently transfected into HeLa cells. Upstream sequences, especially those between the transcriptional start site and -22 upstream, were important for basal transcriptional activity. Thus, the BC200 RNA gene locus attracted two independent Alu insertions during its evolutionary history and provided upstream promoter elements required for their transcription.
Collapse
Affiliation(s)
- A Ludwig
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
88
|
Kuninger D, Stauffer D, Eftekhari S, Wilson E, Thayer M, Rotwein P. Gene disruption by regulated short interfering RNA expression, using a two-adenovirus system. Hum Gene Ther 2005; 15:1287-92. [PMID: 15684704 DOI: 10.1089/hum.2004.15.1287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Specific gene ablation by RNA inference (RNAi) involves the binding of short interfering RNA (siRNA), 21 to 22 nucleotides long, to complementary mRNA sequences, leading to sequence-specific posttranslational gene silencing, thus providing a powerful tool for studying gene function with potential therapeutic applications. Here we describe the development of a two-vector adenovirus system for efficient, tightly controlled hairpin siRNA expression (shRNA). Regulated expression of the shRNA is conferred within an adenoviral vector by a modified RNA polymerase III promoter containing a Tet operator element adjacent to the transcription start site. In the presence of the tetracycline repressor protein (TetR), encoded in a second adenovirus, shRNA expression is repressed. Addition of tetracycline abolishes TetR binding, allowing shRNA transcription to proceed, and leading to reduced mRNA and protein expression. Here we establish the efficacy of this system by delivering siRNA targeted against the transcriptional coactivator p300. Our results show tetracycline-mediated inhibition of p300 mRNA and protein accumulation in the presence of both viruses, but no effect in the absence of antibiotic. Regulated adenoviral shRNA vectors offer the advantages of being able to infect a wide array of replicating and nonreplicating cells and of allowing temporal control of gene silencing.
Collapse
Affiliation(s)
- David Kuninger
- Molecular Medicine Division, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
89
|
Matthess Y, Kappel S, Spänkuch B, Zimmer B, Kaufmann M, Strebhardt K. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 2005; 24:2973-80. [PMID: 15735719 DOI: 10.1038/sj.onc.1208472] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/15/2004] [Accepted: 12/13/2004] [Indexed: 11/08/2022]
Abstract
RNA interference (RNAi) is a powerful tool for studying gene function. We developed an inducible genetic element for short interfering RNA-mediated gene silencing. This system uses a tetracycline (Tet)-responsive derivative of the H1 promoter and the Tet repressor (TetR) for conditional expression of short hairpin RNA (shRNA) in HeLa cells. Promoter constructs were generated, which contain the Tet operator (TetO) derived from a prokaryotic Tet resistance transposon upstream and/or downstream of the TATA box. To quantify the response of controllable transcription units for shRNA expression, we examined the functional activity of polo-like kinase 1 (PLK1), a key component of mitotic progression, that is overexpressed in many human tumors. Cotransfection of plasmids for the expression of TetR and shRNA/PLK1 under the control of an H1 promoter-variant carrying TetO upstream of the TATA box did not alter PLK1 expression and proliferation properties of HeLa cells in the absence of doxycycline. Addition of the antibiotic led to marked downregulation of endogenous PLK1 accompanied by strong inhibition of cellular proliferation. Our data indicate that an inducible transcription system for shRNAs based on the human H1 promoter could be a versatile tool for controlled gene silencing in vitro.
Collapse
Affiliation(s)
- Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, JW Goethe-University, Theodor-Stern-Kai 7, Haus 15, Frankfurt 60590, Germany
| | | | | | | | | | | |
Collapse
|
90
|
Wu MT, Wu RH, Hung CF, Cheng TL, Tsai WH, Chang WT. Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem Biophys Res Commun 2005; 330:53-9. [PMID: 15781231 DOI: 10.1016/j.bbrc.2005.02.129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Indexed: 11/28/2022]
Abstract
We have constructed four different RNA polymerase III (Pol III)-based expression vectors, containing H1 or U6 promoters from human and mouse, which enable the endogenous production of small RNA transcripts for gene silencing applications. In addition, to facilitate the selection of recombinant clones, we have further improved these vectors by constructing a stuffer of puromycin resistance gene (Puro(r)) between ClaI and HindIII sites, which makes the preparation of vectors easy for rapid and efficient cloning of targeting sequences. A comparative analysis of the silencing efficiency between shRNA, sense-RNA, antisense-RNA, and siRNA showed that both the shRNA and siRNA, but not the sense-RNA and antisense-RNA, dramatically inhibit the targeting gene firefly luciferase activity in mammalian cells. However, there were no significant differences in the inhibition of firefly luciferase expression by shRNA and siRNA expressed from these DNA vectors. In summary, these improved DNA vector-based RNAi systems should provide a simple, convenient, and efficient cloning strategy for studying gene functions in mammalian cells.
Collapse
Affiliation(s)
- Meng-Tsai Wu
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
91
|
Chen M, Zhang L, Zhang HY, Xiong X, Wang B, Du Q, Lu B, Wahlestedt C, Liang Z. A universal plasmid library encoding all permutations of small interfering RNA. Proc Natl Acad Sci U S A 2005; 102:2356-61. [PMID: 15695593 PMCID: PMC548965 DOI: 10.1073/pnas.0401549101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small interfering RNA (siRNA) is normally designed to silence preselected known genes. Such selections are inevitably prone to bias as a result of limited knowledge about the biological process, transcript identity, and functions. A library that contains all permutations of siRNA could avoid such problems. In this paper, it is shown that 5 x 10(7) siRNA-encoding plasmids can be constructed in a single tube by using vectors with two mutated RNA polymerase III promoters arranged in a convergent manner. Such a library was used to carry out genomewide screening of functional genes in a phenotype-driven manner. Multiple siRNAs that induce a significant increase of cell proliferation speed were identified.
Collapse
Affiliation(s)
- Meihong Chen
- Chinese Human Genome Center North Beijing, Beijing 100176, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Smart N, Scambler PJ, Riley PR. A rapid and sensitive assay for quantification of siRNA efficiency and specificity. Biol Proced Online 2005; 7:1-7. [PMID: 15678169 PMCID: PMC545496 DOI: 10.1251/bpo99] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 11/23/2022] Open
Abstract
RNA Interference has rapidly emerged as an efficient procedure for knocking down gene expression in model systems. However, cross-reactivity, whereby multiple genes may be simultaneously targeted by a single short interfering RNA (siRNA), can potentially jeopardize correct interpretation of gene function. As such, it is essential to test the specificity of a siRNA prior to a full phenotypic analysis. To this end, we have adapted a reporter-based assay harnessing the sensitivity of luciferase activity to provide a quantitative readout of relative RNAi efficacy and specificity. We have tested different siRNAs directed against Thymosin beta4 (Tbeta4); determined their effectiveness at silencing Tbeta4 and have both excluded off-target silencing of the Tbeta4 homologue Thymosin beta10 (Tbeta10) and demonstrated partial knockdown of Tbeta10 despite significant (12/23; 52%) sequence mismatch. This assay system is applicable to any RNAi study where there is a risk of targeting homologous genes and to the monitoring of off-target effects at the genome level following microarray expression profiling.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| | - Peter James Scambler
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| | - Paul Richard Riley
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| |
Collapse
|
93
|
Futaki S, Hayashi Y, Emoto T, Weber CN, Sekiguchi K. Sox7 plays crucial roles in parietal endoderm differentiation in F9 embryonal carcinoma cells through regulating Gata-4 and Gata-6 expression. Mol Cell Biol 2005; 24:10492-503. [PMID: 15542856 PMCID: PMC529033 DOI: 10.1128/mcb.24.23.10492-10503.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During early rodent development, the parietal endoderm appears from an inner cell mass and produces large amounts of basement membrane components, such as laminin-1 and collagen IV. To elucidate the regulatory network for gene expression during these procedures, we constructed a series of short interfering RNA expression vectors targeted to various transcription factors, transfected them into F9 embryonal carcinoma cells, and evaluated the effects of the gene silencing on the induction of parietal endoderm differentiation and basement membrane component production by treating F9 cells with all trans-retinoic acid and dibutyryl cyclic AMP. Among the transcription factors tested, silencing of Sox7 or combined silencing of Gata-4 and Gata-6 resulted in suppression of cell shape changes and laminin-1 production, which are the hallmarks of parietal endoderm differentiation. In cells silenced for Sox7, induction of Gata-4 and Gata-6 by retinoic acid and cyclic AMP treatment was inhibited, while induction of Sox7 was not affected in cells silenced for Gata-4 and Gata-6, indicating that Sox7 is an upstream regulatory factor for these Gata factors. Nevertheless, silencing of Sox7 did not totally cancel the action of retinoic acid, since upregulation of coup-tf2, keratin 19, and retinoic acid receptor beta2 was not abolished in Sox7-silenced F9 cells. Although overexpression of Sox7 alone was insufficient to induce parietal endoderm differentiation, overexpression of Gata-4 or Gata-6 in Sox7-silenced F9 cells restored the differentiation into parietal endoderm. Sox7 is therefore required for the induction of Gata-4 and Gata-6, and the interplay among these transcription factors plays a crucial role in parietal endoderm differentiation.
Collapse
Affiliation(s)
- Sugiko Futaki
- Sekiguchi Biomatrix Signaling Project, Japanese Science and Technology Agency, Aichi Medical University, 21 Karimata, Yazako Nagakute-cho, Aichi-gun, Aichi 480-1195, Japan
| | | | | | | | | |
Collapse
|
94
|
Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004; 78:13687-96. [PMID: 15564478 PMCID: PMC533941 DOI: 10.1128/jvi.78.24.13687-13696.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference, a natural biological phenomenon mediated by small interfering RNAs (siRNAs), has been demonstrated in recent studies to be an effective strategy against human immunodeficiency virus type 1 (HIV-1). In the present study, we used 21-bp chemically synthesized siRNA duplexes whose sequences were derived from the gp41 gene, nef, tat, and rev regions of viral RNA. These sequences are conserved in select neurotropic strains of HIV-1 (JR-FL, JR-CSF, and YU-2). The designed siRNAs exerted a potent antiviral effect on these HIV-1 strains. The antiviral effect was mediated at the RNA level (as observed by the down-regulation of the HIV-1-specific spliced transcript generating a 1.2-kbp reverse transcription [RT]-PCR product) as well as viral assembly on the cell membrane. Spliced transcripts (apart from the most abundant transcript generating a 1.2-kbp RT-PCR product) arising from an unspliced precursor likely contributed, albeit to a lesser extent, to the antiviral effect. The resultant progeny viruses had infectivities similar to that of input virus. We therefore conclude that these siRNAs interfere with the processing of the unspliced transcripts for the gp41 gene, tat, rev, and nef, eventually affecting viral assembly and leading to the overall inhibition of viral production. Apart from using the gp41 gene as a target, the conservation of each of these targets in the above-mentioned viral strains, as well as several primary isolates, would enable these siRNAs to be used as potent antiviral tools for investigations with cells derived from the central nervous system in order to evaluate their therapeutic potential and assess their utility in inhibiting HIV-1 neuropathogenesis and neuroinvasion.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Base Sequence
- Brain/virology
- Cells, Cultured
- Cerebrospinal Fluid/virology
- Gene Products, nef/chemistry
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Envelope Protein gp41/chemistry
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/metabolism
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Macrophages/virology
- Monocytes/virology
- RNA Interference
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Rajnish S Dave
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St., Suite 329, Philadelphia, PA 19107, USA
| | | |
Collapse
|
95
|
Bardeleben C, Moore RL, Wayne RK. Isolation and Molecular Evolution of the Selenocysteine tRNA (Cf TRSP) and RNase P RNA (Cf RPPH1) Genes in the Dog Family, Canidae. Mol Biol Evol 2004; 22:347-59. [PMID: 15496554 DOI: 10.1093/molbev/msi022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In an effort to identify rapidly evolving nuclear sequences useful for phylogenetic analyses of closely related species, we isolated two genes transcribed by RNA polymerase III (pol III), the selenocysteine tRNA gene (TRSP) and an RNase P RNA (RPPH1) gene from the domestic dog (Canis familiaris). We focus on genes transcribed by pol III because their coding regions are small (generally 100-300 base pairs [bp]) and their essential promoter elements are located within a couple of hundred bps upstream of the coding region. Therefore, we predicted that regions flanking the coding region and outside of the promoter elements would be free of constraint and would evolve rapidly. We amplified TRSP from 23 canids and RPPH1 from 12 canids and analyzed the molecular evolution of these genes and their utility as phylogenetic markers for resolving relationships among species in Canidae. We compared the rate of evolution of the gene-flanking regions to other noncoding regions of nuclear DNA (introns) and to the mitochondrial encoded COII gene. Alignment of TRSP from 23 canids revealed that regions directly adjacent to the coding region display high sequence variability. We discuss this pattern in terms of functional mechanisms of transcription. Although the flanking regions evolve no faster than introns, both genes were found to be useful phylogenetic markers, in part, because of the synapomorphic indels found in the flanking regions. Gene trees generated from the TRSP and RPPH1 loci were generally in agreement with the published mtDNA phylogeny and are the first phylogeny of Canidae based on nuclear sequences.
Collapse
Affiliation(s)
- Carolyne Bardeleben
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
| | | | | |
Collapse
|
96
|
Strack S, Cribbs JT, Gomez L. Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 2004; 279:47732-9. [PMID: 15364932 DOI: 10.1074/jbc.m408015200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The predominant forms of protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, are dimers of catalytic (C) and scaffolding (A) subunits and trimers with an additional variable regulatory subunit. In mammals, catalytic and scaffolding subunits are encoded by two genes each (alpha/beta), whereas three gene families (B, B', and B'') with a total of 12 genes contribute PP2A regulatory subunits. We generated stable PC12 cell lines in which the major scaffolding Aalpha subunit can be knocked down by inducible RNA interference (RNAi) to study its role in cell viability. Aalpha RNAi decreased total PP2A activity as well as protein levels of C, B, and B' but not B'' subunits. Inhibitor experiments indicate that monomeric C and B subunits are degraded by the proteosome. Knock-down of Aalpha triggered cell death by redundant apoptotic and non-apoptotic mechanisms because the inhibition of RNAi-associated caspase activation failed to stall cell death. PP2A holoenzymes positively regulate survival kinase signaling, because RNAi reduced basal and epidermal growth factor-stimulated Akt phosphorylation. RNAi-resistant Aalpha cDNAs rescued RNAi-induced loss of the C subunit, and Aalpha point mutants prevented regulatory subunit degradation as predicted from each mutant's binding specificity. In transient, stable, and stable-inducible rescue experiments, both wild-type Abeta and Aalpha mutants capable of binding to at least one family of regulatory subunits were able to delay Aalpha RNAi-induced death of PC12 cells. However, only the expression of wild-type Aalpha restored viability completely. Thus, heterotrimeric PP2A holoenzymes containing the Aalpha subunit and members of all three regulatory subunit families are necessary for mammalian cell viability.
Collapse
Affiliation(s)
- Stefan Strack
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
97
|
Mangeot PE, Cosset FL, Colas P, Mikaelian I. A universal transgene silencing method based on RNA interference. Nucleic Acids Res 2004; 32:e102. [PMID: 15249598 PMCID: PMC484202 DOI: 10.1093/nar/gnh105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inducible gene expression systems have contributed significantly to the understanding of molecular regulatory networks. Here we describe a simple and powerful RNA interference-based method that can silence the expression of any transgene. We first used an IRES bicistronic lentiviral vector and showed that targeting the second cistron with a specific siRNA resulted in silencing of both transgenes. We then inserted a siRNA minimal target sequence in the 3'-untranslated region (3'-UTR) of a transgene and showed that the cognate siRNA delivered by a lentiviral vector led to the partial silencing of the transgene. The multimerization of this siRNA target sequence led to the highly efficient silencing of four different transgenes. This new method to silence transgene expression is more versatile than existing methods of conditional inactivation of gene expression, such as transcriptional switches or site-specific recombination. It is applicable to a wide variety of models including primary cells, terminally differentiated cells and transgenic animals.
Collapse
Affiliation(s)
- Philippe-Emmanuel Mangeot
- Aptanomics and INSERM U412, Ecole Normale Supérieure, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
98
|
Sivakumaran K, Choi SK, Hema M, Kao CC. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 2004; 78:6091-101. [PMID: 15163702 PMCID: PMC416551 DOI: 10.1128/jvi.78.12.6091-6101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based solely on in vitro results, two contrasting models have been proposed for the recognition of the brome mosaic virus (BMV) subgenomic core promoter by the replicase. The first posits that the replicase recognizes at least four key nucleotides in the core promoter, followed by an induced fit, wherein some of the nucleotides base pair prior to the initiation of RNA synthesis (S. Adkins and C. C. Kao, Virology 252:1-8, 1998). The second model posits that a short RNA hairpin in the core promoter serves as a landing pad for the replicase and that at least some of the key nucleotides help form a stable hairpin (P. C. J. Haasnoot, F. Brederode, R. C. L. Olsthoorn, and J. Bol, RNA 6:708-716, 2000; P. C. J. Haasnoot, R. C. L. Olsthoorn, and J. Bol, RNA 8:110-122, 2002). We used transfected barley protoplasts to examine the recognition of the subgenomic core promoter by the BMV replicase. Key nucleotides required for subgenomic initiation in vitro were found to be important for RNA4 levels in protoplasts. In addition, additional residues not required in vitro and the formation of an RNA hairpin within the core promoter were correlated with wild-type RNA4 levels in cells. Using a template competition assay, the core promoter of ca. 20 nucleotides was found to be sufficient for replicase binding. Mutations of the key residues in the core promoter reduced replicase binding, but deletions that disrupt the predicted base pairing in the proposed stem retained binding at wild-type levels. Together, these results indicate that key nucleotides in the BMV subgenomic core promoter direct replicase recognition but that the formation of a stem-loop is required at a step after binding. Additional functional characterization of the subgenomic core promoter was performed. A portion of the promoter for BMV minus-strand RNA synthesis could substitute for the subgenomic core promoter in transfected cells. The comparable sequence from Cowpea Chlorotic Mottle Virus (CCMV) could also substitute for the BMV subgenomic core promoter. However, nucleotides in the CCMV core required for RNA synthesis are not identical to those in BMV, suggesting that the subgenomic core promoter can induce the BMV replicase in interactions needed for subgenomic RNA transcription in vivo.
Collapse
Affiliation(s)
- K Sivakumaran
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
99
|
Lu T, Burdelya LG, Swiatkowski SM, Boiko AD, Howe PH, Stark GR, Gudkov AV. Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci U S A 2004; 101:7112-7. [PMID: 15118089 PMCID: PMC406474 DOI: 10.1073/pnas.0402048101] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The basis of constitutive activation of NF-kappaB, essential for survival and resistance to apoptosis in many tumors, is not well understood. We find that transforming growth factor beta2 (TGFbeta2), predominantly in its latent form, is secreted by several different types of tumor cell lines that exhibit constitutively active NF-kappaB and that TGFbeta2 potently stimulates the activation of NF-kappaB in reporter cells. Suppression of TGFbeta2 expression by small interfering RNA kills prostate cancer PC3 cells, indicating that the TGFbeta2-NF-kappaB pathway is important for their viability. These findings identify TGFbeta2 as a potential target for therapeutic strategies to inhibit the growth of tumor cells that depend on constitutively active NF-kappaB, or to sensitize them to treatment with cytotoxic drugs.
Collapse
Affiliation(s)
- Tao Lu
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Dave RS, Pomerantz RJ. RNA interference: on the road to an alternate therapeutic strategy! Rev Med Virol 2004; 13:373-85. [PMID: 14625885 DOI: 10.1002/rmv.407] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA interference (RNAi) is a newly described natural biological phenomenon mediated by small interfering RNA (siRNA) molecules which target viral mRNA for degradation by cellular enzymes. RNAi has become a method of choice for studying gene function, especially in mammalian systems. With proof-of-concept studies already presented against a wide variety of human pathogens and several innovative methods of delivering the siRNA to a wide variety of primary cells available, the role for siRNA as a potential therapeutic strategy is becoming increasingly clear. This review presents recent advances in this direction.
Collapse
Affiliation(s)
- Rajnish S Dave
- Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|